|
3 | 3 | from typing import Optional, Union, List |
4 | 4 |
|
5 | 5 | import numpy as np |
6 | | - |
7 | | -from deeptime.markov.tools.analysis import is_connected |
8 | | -from deeptime.markov.tools.estimation import sample_tmatrix, transition_matrix |
| 6 | +from deeptime.markov.hmm._hmm_bindings import util as _bd_util |
9 | 7 |
|
10 | 8 | from deeptime.base import Estimator |
| 9 | +from deeptime.markov import TransitionCountModel, compute_dtrajs_effective, number_of_states |
11 | 10 | from deeptime.markov._base import BayesianMSMPosterior |
12 | 11 | from deeptime.markov._transition_matrix import stationary_distribution |
13 | 12 | from deeptime.markov.hmm import HiddenMarkovModel |
14 | | -from ._output_model import DiscreteOutputModel |
15 | | -from ._util import observations_in_state, sample_hidden_state_trajectory |
16 | 13 | from deeptime.markov.msm import MarkovStateModel |
17 | | -from deeptime.markov import TransitionCountModel, compute_dtrajs_effective, number_of_states |
18 | | -from deeptime.markov.hmm._hmm_bindings import util as _bd_util |
| 14 | +from deeptime.markov.tools.analysis import is_connected |
| 15 | +from deeptime.markov.tools.estimation import sample_tmatrix, transition_matrix |
19 | 16 | from deeptime.util.types import ensure_dtraj_list |
20 | | - |
21 | | -__author__ = 'noe, clonker' |
22 | | - |
23 | | -__all__ = [ |
24 | | - 'BayesianHMMPosterior', |
25 | | - 'BayesianHMM', |
26 | | -] |
27 | | - |
28 | | -from ...util.decorators import deprecated_method |
| 17 | +from ._output_model import DiscreteOutputModel |
| 18 | +from ._util import observations_in_state, sample_hidden_state_trajectory |
29 | 19 |
|
30 | 20 | from ...util.platform import handle_progress_bar |
31 | 21 | from ...util.validation import ck_test |
@@ -651,28 +641,3 @@ def _append_sample(self, models, prior, sample_model): |
651 | 641 | reversible=self.reversible, count_model=count_model), |
652 | 642 | output_model=model_copy.output_model, initial_distribution=model_copy.initial_distribution, |
653 | 643 | hidden_state_trajectories=model_copy.hidden_trajs)) |
654 | | - |
655 | | - @deprecated_method("Deprecated in v0.4.1 and will be removed soon, please use model.ck_test.") |
656 | | - def chapman_kolmogorov_validator(self, mlags, test_model: BayesianHMMPosterior = None): |
657 | | - r""" Replaced by `deeptime.markov.hmm.BayesianHMMPosterior.ck_test`. """ |
658 | | - test_model = self.fetch_model() if test_model is None else test_model |
659 | | - assert test_model is not None, "We need a test model via argument or an estimator which was already" \ |
660 | | - "fit to data." |
661 | | - |
662 | | - from . import DiscreteOutputModel |
663 | | - assert isinstance(test_model.prior.output_model, DiscreteOutputModel), \ |
664 | | - "Can only perform CKTest for discrete output models" |
665 | | - |
666 | | - from deeptime.markov._observables import MembershipsObservable |
667 | | - obs = MembershipsObservable(test_model, np.eye(test_model.prior.n_hidden_states)) |
668 | | - from deeptime.util.validation import DeprecatedCKValidator |
669 | | - |
670 | | - def fit_for_lag(data, lag): |
671 | | - estimator = BayesianHMM.default(dtrajs=data, n_hidden_states=self.initial_hmm.n_hidden_states, |
672 | | - lagtime=lag, n_samples=self.n_samples, stride=self.stride, |
673 | | - initial_distribution_prior=self.initial_distribution_prior, |
674 | | - transition_matrix_prior=self.transition_matrix_prior, |
675 | | - reversible=self.reversible, stationary=self.stationary) |
676 | | - return estimator.fit(data).fetch_model() |
677 | | - |
678 | | - return DeprecatedCKValidator(self, fit_for_lag, mlags, obs, test_model) |
0 commit comments