@@ -52,19 +52,19 @@ np_array<std::int64_t> generateObservationTrajectory(const np_array_nfc<State> &
52
52
auto nThreads = std::thread::hardware_concurrency ();
53
53
std::vector<deeptime::thread::scoped_thread> threads;
54
54
threads.reserve (nThreads);
55
- auto grainSize = std::max (static_cast <pybind11 ::ssize_t >(1 ), nTimesteps / nThreads);
55
+ auto grainSize = std::max (static_cast <py ::ssize_t >(1 ), nTimesteps / nThreads);
56
56
57
57
const auto * hiddenStateTrajectoryBuf = hiddenStateTrajectory.data ();
58
58
const auto * outputProbabilitiesBuf = outputProbabilities.data ();
59
59
60
- for (pybind11 ::ssize_t nextIndex = 0 ; nextIndex < nTimesteps; nextIndex += grainSize) {
60
+ for (py ::ssize_t nextIndex = 0 ; nextIndex < nTimesteps; nextIndex += grainSize) {
61
61
auto beginIndex = nextIndex;
62
62
auto endIndex = std::min (nextIndex+grainSize, nTimesteps);
63
63
threads.emplace_back ([hiddenStateTrajectoryBuf, outputProbabilitiesBuf,
64
64
beginIndex, endIndex, outputPtr, nObs]{
65
65
auto generator = deeptime::rnd::randomlySeededGenerator ();
66
66
std::discrete_distribution<> ddist;
67
- for (pybind11 ::ssize_t t = beginIndex; t < endIndex; ++t) {
67
+ for (py ::ssize_t t = beginIndex; t < endIndex; ++t) {
68
68
auto state = hiddenStateTrajectoryBuf[t];
69
69
auto begin = outputProbabilitiesBuf + state * nObs; // outputProbabilities.at(state, 0)
70
70
auto end = outputProbabilitiesBuf + (state+1 ) * nObs; // outputProbabilities.at(state+1, 0)
@@ -94,7 +94,7 @@ np_array<dtype> toOutputProbabilityTrajectory(const np_array_nfc<State> &observa
94
94
auto T = observations.shape (0 );
95
95
96
96
#pragma omp parallel for collapse(2) default(none) firstprivate(P, obs, nHidden, nObs, T, outputPtr)
97
- for (ssize_t t = 0 ; t < T; ++t) {
97
+ for (py:: ssize_t t = 0 ; t < T; ++t) {
98
98
for (std::size_t i = 0 ; i < nHidden; ++i) {
99
99
outputPtr[t*nHidden + i] = P[obs[t] + i*nObs];
100
100
}
@@ -107,7 +107,7 @@ template<typename dtype, typename State>
107
107
void sample (const std::vector<np_array_nfc<State>> &observationsPerState, np_array_nfc<dtype> &outputProbabilities,
108
108
const np_array_nfc<dtype> &prior) {
109
109
auto nObs = outputProbabilities.shape (1 );
110
- ssize_t currentState{0 };
110
+ py:: ssize_t currentState{0 };
111
111
112
112
auto & generator = deeptime::rnd::staticThreadLocalGenerator ();
113
113
deeptime::rnd::dirichlet_distribution<dtype> dirichlet;
@@ -126,7 +126,7 @@ void sample(const std::vector<np_array_nfc<State>> &observationsPerState, np_arr
126
126
std::vector<dtype> histPrivate (nObs, 0 );
127
127
128
128
#pragma omp for
129
- for (ssize_t i = 0 ; i < T; ++i) {
129
+ for (py:: ssize_t i = 0 ; i < T; ++i) {
130
130
++histPrivate.at (observationsBuf[i]);
131
131
}
132
132
@@ -140,7 +140,7 @@ void sample(const std::vector<np_array_nfc<State>> &observationsPerState, np_arr
140
140
141
141
#else
142
142
143
- for (ssize_t i = 0 ; i < observations.size (); ++i) {
143
+ for (py:: ssize_t i = 0 ; i < observations.size (); ++i) {
144
144
++hist.at (observations.at (i));
145
145
}
146
146
@@ -228,7 +228,7 @@ np_array<dtype> pO(dtype o, const np_array_nfc<dtype> &mus, const np_array_nfc<d
228
228
auto sigmasBuf = sigmas.data ();
229
229
230
230
#pragma omp parallel for
231
- for (pybind11 ::ssize_t i = 0 ; i < N; ++i) {
231
+ for (py ::ssize_t i = 0 ; i < N; ++i) {
232
232
pBuf[i] = sample (o, musBuf[i], sigmasBuf[i]);
233
233
}
234
234
@@ -306,7 +306,7 @@ std::tuple<np_array<dtype>, np_array<dtype>> fit(std::size_t nHiddenStates, cons
306
306
for (decltype (nHiddenStates) i = 0 ; i < nHiddenStates; ++i) {
307
307
dtype dot = 0 ;
308
308
dtype wStateSum = 0 ;
309
- for (ssize_t t = 0 ; t < obs.shape (0 ); ++t) {
309
+ for (py:: ssize_t t = 0 ; t < obs.shape (0 ); ++t) {
310
310
dot += w.at (t, i) * obsPtr[t];
311
311
wStateSum += w.at (t, i);
312
312
}
@@ -335,7 +335,7 @@ std::tuple<np_array<dtype>, np_array<dtype>> fit(std::size_t nHiddenStates, cons
335
335
for (decltype (nHiddenStates) i = 0 ; i < nHiddenStates; ++i) {
336
336
dtype wStateSum = 0 ;
337
337
dtype sigmaUpdate = 0 ;
338
- for (ssize_t t = 0 ; t < obs.shape (0 ); ++t) {
338
+ for (py:: ssize_t t = 0 ; t < obs.shape (0 ); ++t) {
339
339
auto sqrty = static_cast <dtype>(obsPtr[t]) - static_cast <dtype>(means.at (i));
340
340
sigmaUpdate += w.at (t, i) * sqrty*sqrty;
341
341
wStateSum += w.at (t, i);
0 commit comments