-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpixelwindow.nb
2325 lines (2164 loc) · 90.2 KB
/
pixelwindow.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.4' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 92175, 2317]
NotebookOptionsPosition[ 87646, 2155]
NotebookOutlinePosition[ 88007, 2171]
CellTagsIndexPosition[ 87964, 2168]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Pixel window functions", "Section",
CellChangeTimes->{{3.667547018403582*^9, 3.667547022923442*^9}}],
Cell[CellGroupData[{
Cell["2-d round pixel of radius R", "Subsection",
CellChangeTimes->{{3.667547028147195*^9, 3.6675470380268517`*^9}, {
3.6675645541916723`*^9, 3.667564554327527*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"W2", "[",
RowBox[{"k_", ",", " ", "R_"}], "]"}], "=",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"\[Pi]", " ",
SuperscriptBox["R", "2"]}], ")"}],
RowBox[{"-", "1"}]],
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"r", " ",
RowBox[{"Exp", "[",
RowBox[{"I", " ", "k", " ", "r", " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}], "]"}]}], ",", " ",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "R"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"k", ">", "0"}], ",", " ",
RowBox[{"R", ">", "0"}]}], "}"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.6674127499291277`*^9, 3.667412914682583*^9}, {
3.6674644713520823`*^9, 3.667464568874733*^9}, {3.66746462309125*^9,
3.667464629201867*^9}, 3.667564565007937*^9}],
Cell[BoxData[
FractionBox[
RowBox[{"2", " ",
RowBox[{"BesselJ", "[",
RowBox[{"1", ",",
RowBox[{"k", " ", "R"}]}], "]"}]}],
RowBox[{"k", " ", "R"}]]], "Output",
CellChangeTimes->{{3.667412794360312*^9, 3.6674129152970953`*^9}, {
3.667464527270473*^9, 3.6674645403804197`*^9}, 3.667464578038509*^9,
3.667464631029908*^9, 3.667546324310074*^9, 3.667564685272751*^9,
3.669125221509512*^9, 3.693829330236534*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox[
RowBox[{"W2", "[",
RowBox[{"kR", ",", "1"}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"kR", ",", "0", ",", "3"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.667464589186038*^9, 3.667464706550757*^9},
3.667564568503496*^9}],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV1Hk0ldsbB/Bj6tUgEhquUoYTSUITxfdVpNxblEhI5CSpTLdrznRxczgS
pcz8JBniRpEhcc0pEqFCGZIhXhlCJ/ze9lp77fX5Z6/n2eu7n83nHE+c52Uw
GAn0/nXO/u6QYOjopDW7+GtRCGZtkW9iHkOhqkX4L78a67fnMC3RFuGuvkA7
S/xD8rt4W3BVjHl+0h7PPxh2memAG5oTn2dpr1doK1lsd0HhsMGXKdqa7myV
+nhXnPVzEBinbVWrlR5p7Yl9xsfIYdoBEpOSFkwf5DVRd/pov8kzqo+c9gPD
1mhFJ23We6XAmfYAiCd6JLTQnuYRhEVxILKFbH5/8atehd658vhgqJuJSJTT
XnO89LGc73XM7w2Yf0z7gXu0I9uajR8ORTwZtBtq9T8bMcNx4qCXVTjtHDdR
Qwv+CDgXEyW+tN1CfR+GT0fASOOMqhNtwfzTdpPtkdiff8HtGO3XNTXVcvVR
WM8npbufdsx7NRnT4ls4u/SesgLtrbwru0vjo7H+lqQ5g/aEuNc+inMH9qOi
8cMLFEoUBu9u9r2Lvvudcy20/zj+n1GwdSx0bo4vv0fbMdm13oCZiAUJfbY6
7b2P+5gBa5Jwrm1ZniRtBkv+gBl/Mjw1H35fmKdQ73Y7KWw6GcXHk9rKaZsl
OZp9a/8fzii5flOnraXADGEbpqLVxJ8hQVs6v7NQpj4VNmf9tn37SWGk5oi4
SfE9OJ9kfbhH23tM5nVx/H1YKAvf5qFt5f5+wUg8Hfw6/GFtXAo6vDeVRjnp
8LHkS86kLSSxwJbyfQDFPkUpQ9qJmh26gdaZyDD09Yz4QaEiLKzkKDMHcT7b
HgzMUigbfvdyeUYOVgXPRD+gXXp4S3e9Yi56LHW9LtI257VmpK79F/2KPrKD
MxSMy7jSUhsfITJ4bq7jOwX93Sp2axTy4c5YWnB9isLhz+1Orvb56E+NWVSn
rXfLx+NtVj6E2EsxPEnXO9HAjtr+GH+ppCTp0dbKsX0ovPMJWpUuDU5/o6DG
jJ8gUAjjEXbiJoqC6tsDXFu/QkhU6h+pGKOwI3CIr6aiEI0z5sNWtLf37hYP
1HmKR5M3hRNGKcgnNu9h6BdB3EDpi+BXCpISxLXZkyUI3u/8JmeQgsASF2LI
/jm0Pdd0qPVQGDziKzyZ/hxuuolDJZ8ovOCErZnvfw79BT+xg7Rr2S1R15XL
URDtXXDsI4VQ0bHU+Ixy9ASR28y7KIhJy1RVJVTgJbd54PA7CkxtDr94cCXs
Dba8d3tN578vSjD2XiVWKwoo9DXR+Q2KXSFVWQnRcafIo7SH69LFFBhV0CiQ
fCLVSCHX8D9ZTc8qrMaERlEDnTerGZ3zDtXQL1M9UVFD4YivddATk1qo5eku
ypXS73Oj4lDKVdpZ0qruJXS/SZsFOZG1YF//EFJfTM+Dsh42q7EWubdEHlws
ohC9YB2x+lAdanI7kpMKKPRfOxfnvKseVW53wnv/peDnbfNISawBJ7+G5lfd
o2AfVumyTrUBz7NEYrmpFE7Gy+wUMGxAUOqydBXaW0r7CjpDG7D9wO2dcSkU
Grk2paF8L5ETFyLFSqTr8WLVDk28REOHtvarOxQKPc53pTU3IlY3ZN18CIX7
Wpfa1080ghVoFyJAO5rPufmGaBP+brnKXXGdgivHu9rDqAllGqyBtcEUdqdE
PTz6tgm6RU3vZAPofPZ/KvO8/Br9KemHhTwpvF8ufEPaqRmmCgMdmy5SeGd2
SdnFrQWsWOWYUzoU2L16l+8EtyAk24+76yAFDXvZjNLbLWAfiwlafYBCvEeX
NPG4BZJ8Lqtegv5vdw0k4sdbMJgzt1RtH4Uvb9Xmqy+2Ys0lk4gOFXr+Gf58
sc7iLYRERwIDNlJYpcexrSDbwX82+I3J9BhEWs/n7TH/AKEEIrszYgwymy5n
BJ37iEOW8voZUmPY23WlQTuyBwNDkQLhGaOo+OH3R2tcH/bvkiGuSI7C7nld
XVnAZ/jnHJnl4XxFjE36enGrL3imrVG3+vsIlEx7vi+cH4LVlEWwq94IuicN
GskjI2hmbT29Mm4YEx/X7ZAwHoUI54b/w7YhRGR5Xjh1iu5z3ye2gtAQmMKC
R93jxiGo8fSklv4gCpz8ssKTviFa8eziBqcvaJWLIo5HTmA06IS7SNIAZP9u
kT8TM4lly1m5nMLPUDf8uDMpbgpFivc5O173o8spSIsTNg3VW2lboqf7kKd+
Wqj65neIHPcZ91vSBwmT2ncPgmaw7OsqFRVmL9DLuPnf1VlsfsnwF9LvQYyE
nRDTfQ6yV5nL35p/QkDixX922f/AwyW7/yyd70ZC492acCcunpz6YGMj04Vr
DlHjG1x+IuTKpmle0w8YsZZfe/rcPDL4mi0i8t4hdH6Yv9t2AR7K4rfjJtpR
/FWPWmm2iEmXpQI7zdrQJre3V0OWQTooR4sItbbCTsFGOSqNQSY112urq7eg
wsTcS3sjD9l52FY9tqYZaqbDGWIpPGTb0puaMQdf4/Lfh9o1f+Mlx492BhQ0
v8J1W8EfPFG8JPdP5ySvQw14tsF6cViMj5R5terWibQ6FC0E820N5yN3XBiV
kzpeg8b8g8OcVfxk7rO086VjlajeZFsTFslPtrW7vJAsrUBgoXFKzzIBUjzP
0zs4+TkspDstzTkCZPAzC9Ofz0rALVD+TZFYQt6396oatXoKb76hl7d9lpDC
Hr0qLkZPICGrbi3HIMim0P1rSg/nwc3BZGqZB0HGhlJ6bJtcSO5m1TG9CPLK
NrsE76O5KJ93jj9wjSDleW7ou+/JxTIOR8fTnyAZ6h7poctzkZhVdWsohCC7
jSL/kH6cg5pB1V11sQS5ouKz3koiB2I2wq5BpQR5LDyK25GfjaKtG/RTygiy
M1Fs9VRiNiwntm58Vk6QrcutzqxlZ+OB/6GaqSqC/GTwT5C3VTb2JV+TYL0i
yMR0Pd58oWyc6xopONBNkJ6/Z8a3X8wCkTbHtvxEkE6DYgZBxlnIvkyc9ewl
yO2OxZv2a2fhO1eayBsgSBajSLJ6bRbY681ObaYIstbD8aROXSaUey8oan4j
yI1PU7o0HmeiNeOvRdNJgmx/w+OtkZyJjeo30yNmCFItfM/kSfdMVDKSvLLn
CLLD2r/ekZUJu7psgzouQWa59+RGGWZiRUSxTP88QZ6QF0kr35+JR6fqZhYX
6ftFq9O/y2fi/yT234k=
"]]},
Annotation[#, "Charting`Private`Tag$2566#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 2.99999993877551}, {0, 1}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.667464654846335*^9, 3.6674647077861547`*^9},
3.667546326598652*^9, 3.667564688184317*^9, 3.6691252347395697`*^9,
3.693829330511134*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["square pixel of side \[Lambda] (symmetrized)", "Subsection",
CellChangeTimes->{{3.667547044346374*^9, 3.667547049530389*^9}, {
3.669124942011072*^9, 3.669124947169595*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Wsquare", "[",
RowBox[{"k_", ",", "\[Lambda]_"}], "]"}], ":=",
RowBox[{"W2", "[",
RowBox[{"k", ",",
RowBox[{"\[Lambda]", "/",
RowBox[{"\[Sqrt]", "\[Pi]"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.6674649158132763`*^9, 3.667464953952036*^9}, {
3.667546274483786*^9, 3.667546289979245*^9}, 3.667564571495241*^9}],
Cell[CellGroupData[{
Cell["check limits", "Subsubsection",
CellChangeTimes->{{3.667547078281159*^9, 3.667547079849105*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"Wsquare", "[",
RowBox[{"k", ",", "\[Lambda]"}], "]"}], ",", " ",
RowBox[{"k", "\[Rule]", "0"}]}], "]"}]], "Input",
CellChangeTimes->{{3.667465400635003*^9, 3.6674654130874643`*^9}, {
3.667465503205755*^9, 3.667465503420977*^9}, {3.6675463017238483`*^9,
3.667546302306707*^9}, {3.667547177966721*^9, 3.6675471799569807`*^9}}],
Cell[BoxData["1"], "Output",
CellChangeTimes->{
3.667465413885174*^9, 3.667465504033422*^9, {3.6675462987094584`*^9,
3.6675463027156267`*^9}, 3.667546332828629*^9, 3.6675471811097097`*^9,
3.66756469244058*^9, 3.693829330635817*^9}]
}, Open ]],
Cell["but it only works in the limit\[Ellipsis]", "Text",
CellChangeTimes->{{3.6675471342153482`*^9, 3.6675471465101013`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Wsquare", "[",
RowBox[{"0", ",", "1"}], "]"}]], "Input",
CellChangeTimes->{{3.667465498924069*^9, 3.6674655076845922`*^9}, {
3.66754718607646*^9, 3.6675471884125433`*^9}}],
Cell[BoxData[
TemplateBox[{
"Power","infy",
"\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \
encountered.\"",2,5,1,21728599086629669415,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.667465508136991*^9, 3.6675471894824247`*^9,
3.667564694857798*^9, 3.693829330678529*^9}],
Cell[BoxData[
TemplateBox[{
"Infinity","indet",
"\"Indeterminate expression \\!\\(\\*RowBox[{\\\"0\\\", \\\" \\\", \
SqrtBox[\\\"\[Pi]\\\"], \\\" \\\", \\\"ComplexInfinity\\\"}]\\) \
encountered.\"",2,5,2,21728599086629669415,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.667465508136991*^9, 3.6675471894824247`*^9,
3.667564694857798*^9, 3.6938293308090982`*^9}],
Cell[BoxData["Indeterminate"], "Output",
CellChangeTimes->{3.667465508200553*^9, 3.667547189527389*^9,
3.667564694905061*^9, 3.693829330821074*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["numerical checks for our case", "Subsubsection",
CellChangeTimes->{{3.667547116087309*^9, 3.6675471207991543`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
SuperscriptBox[
RowBox[{"Wsquare", "[",
RowBox[{"k", ",", " ",
RowBox[{"2048", "/", "128"}]}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"k", ",",
SuperscriptBox["10",
RowBox[{"-", "3"}]], ",",
SuperscriptBox["10",
RowBox[{"-", "1.5"}]]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6675462396000347`*^9, 3.6675462636849623`*^9}, {
3.667546335985683*^9, 3.667546362735836*^9}, {3.667546414821745*^9,
3.667546420237526*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV0nlM02cYB3BgGuZ+FUq52v4MomwJLmMwjoBcrzDUTkCwblURLCoycCDj
8AJGkMMDURm0utBytuWIgIjFaRB4BIrIOZSrFg8UD5DxIgJDEdzLH0+efPLk
SZ48+a47EMU/pKOlpeVLark7rOoXZRTRINNibO3/jNHzBzdG4wppOKX9yHrZ
F6XZ9sICGpIOS9jLfmPt32eXR0PUnvmxPuJcQYfh479oGB7nZC57SXY32zqL
hvrO2a6HxG3uVVl9STRIfZ5ufUAcEHcm0yyQBl7Mc1YPcYratEjDpCFog2jn
PeJdOm+SxO1ckPMsFhuIvQWDHtXpXNiOVxTWEnvK5etmnLkgknbgcuJXtdfb
7Wc5cCf4ZHAeceZdaVZ+OQfUU6zqC8Q75ktcwoUccIQZTQJx8/TUNRsuBwrq
DevCiJ1esz3W9bBBmf9iyH/5voJkid45NjAzSy0diSUpuppALzaInBL5XOKn
wgjHvg+msCtk4y9zSxj9o2UQxFOawtH7E1U9xC2SnIKXYaawIGoKLyAe3O9w
74WZKRznqsVhxFfemtx6ojaBsonqDivigKgBlc4lE3B3qfl1dBGj9pv9Uouf
TCDlOTdNTOw2X5MVuWgMJzIW5myJu0OuhbNvGMPKtWenmz5hxBC/pSDSGDY8
2Xt7G7Fv48qOrPXGkJpvLFEuYORSKdy5b9gIHruPmRoS81qHIPOKEfDPb20M
+ojRbrW196iPERyLiwpP+ICRcXVrvpOuEdyR/bvl7DxG/cku+jfrDIGONc/f
/R9GysSeEFG0ITQV6pV8nsVok6ssNeo7QwjQBJdfmMGoZ/bnxtgRFkhX+HQ1
TmNExW5piZOwoHtbklvPFEah9K6qAQEL8n4D3eJJ8q/6zbX7GSw4ovyid/wt
2beISx9rNYCTq/zEWmMYDacmx+QmGEB7xNGZwJcYXS7ttOQ5GMBRzVpRzAhG
UXOOLYIpJmT45dqufkzygk4lXlQwwY3ebvTnIEZ93l8tNQmZEFDcPlnRi1Ew
P1pqbsQEJGh15rdjZPIlRg05+vB9+fEf5+9i1Dodr7ZfpQ9M8YTZitsYJfY2
VSzG6EGuGXNpqJLkyzGDBa9WQ+T0dm11EUaP3l/y9ApaDQ0V6YoQEUZW8h0V
3DYGqMcOhhWmkrkmu2zclQF5xc+iS6IxWlOWaPmHMwOuWjXn+BML40LL9J0Y
YPuDa8rH3zEaZTiX2dsxoMj3RIsv8aTbSGnSBgbEq5ofvTuCkXahdSnLhAEq
pcrOJgIjy5BOhTOmQBWmupMWitFhm5vfdE1QkBoU6mBJXPmpQCEcpyA4/vqx
jkMY2YpjFWkvKRh43cw3IHZt5Sq6NRSEKjZH5h7EyM8yXH6gjYI57jO94mCM
smf4X8+qKKjQvq3jSdwHrvIzzRQ4nfu2fkRI8rOHKa9ooOBWmn+6OfGBjL9l
c0oKajze75MEYSQXFFmcq6Fg/f3h1I3Er9efl9HVFHiw/I4MBmIUUbdPtukq
BfLzXjks4qozPIuHZRQIhlO6ru3F6N1OW9mhEgouW0OnD7G9+RqLeRkFz0bV
WWMBGB2bWCnLKKKAw6vknCb+H4mejwk=
"]]},
Annotation[#, "Charting`Private`Tag$2766#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-6.907755208494838, 0.9798002721311178},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Log, Exp}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Log, Exp}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Log, Exp}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Log, Exp}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}], Automatic}, {{{-6.907755278982137,
FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-6.214608098422191,
FormBox[
TagBox[
InterpretationBox["\"0.002\"", 0.002, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-5.298317366548036,
FormBox[
TagBox[
InterpretationBox["\"0.005\"", 0.005, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-4.605170185988091,
FormBox[
TagBox[
InterpretationBox["\"0.010\"", 0.01, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-3.912023005428146,
FormBox[
TagBox[
InterpretationBox["\"0.020\"", 0.02, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-7.600902459542082,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.418580902748128,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.264430222920869,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.1308988302963465`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.013115794639964,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-6.502290170873972,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-5.809142990314028,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-5.521460917862246,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-5.115995809754082,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-4.961845129926823,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-4.8283137373023015`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-4.710530701645918,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-4.199705077879927,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-3.506557897319982,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-3.2188758248682006`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.995732273553991,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.8134107167600364`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.659260036932778,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.5257286443082556`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.4079456086518722`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-2.3025850929940455`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}}, Automatic}]]], "Output",
CellChangeTimes->{3.6675463638496923`*^9, 3.667546420684482*^9,
3.667564697969179*^9, 3.693829330908556*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
SuperscriptBox[
RowBox[{"Wsquare", "[",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "1.5"}]], ",",
RowBox[{"2048", "/", "128"}]}], "]"}], "2"]], "Input",
CellChangeTimes->{{3.667546467204047*^9, 3.667546501522255*^9}}],
Cell[BoxData["0.9798002693076155`"], "Output",
CellChangeTimes->{{3.667546489057797*^9, 3.66754650209407*^9},
3.6675647007033854`*^9, 3.693829330961616*^9}]
}, Open ]]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["square pixel of side \[Lambda] (2D)", "Subsection",
CellChangeTimes->{{3.667547044346374*^9, 3.667547049530389*^9}, {
3.669124942011072*^9, 3.669124974112444*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"Wsquare1D", "[",
RowBox[{"k_", ",", "\[Lambda]_"}], "]"}], ":=", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0", ",",
RowBox[{"k", " ",
RowBox[{"\[Lambda]", "/", "2"}]}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"WSquare2D", "[",
RowBox[{"kx_", ",", " ", "ky_", ",", " ", "\[Lambda]_"}], "]"}], ":=",
RowBox[{
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0", ",",
RowBox[{"kx", " ",
RowBox[{"\[Lambda]", "/", "2"}]}]}], "]"}],
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0", ",",
RowBox[{"ky", " ",
RowBox[{"\[Lambda]", "/", "2"}]}]}], "]"}]}]}]}], "Input",
CellChangeTimes->{{3.6674649158132763`*^9, 3.667464953952036*^9}, {
3.667546274483786*^9, 3.667546289979245*^9}, 3.667564571495241*^9, {
3.669124982120186*^9, 3.669124983447894*^9}, {3.669125025110216*^9,
3.669125040493607*^9}, {3.6691251167000113`*^9, 3.669125161176609*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{
RowBox[{"WSquare2D", "[",
RowBox[{
RowBox[{"k", " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}], ",", " ",
RowBox[{"k", " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}], ",", "1"}], "]"}], " ", "k"}],
",", " ",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",",
RowBox[{"2", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"k", ">", "0"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.6691253262533627`*^9, 3.669125408973543*^9}}],
Cell[BoxData[
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"k", " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0", ",",
RowBox[{
FractionBox["1", "2"], " ", "k", " ",
RowBox[{"Cos", "[", "\[Phi]", "]"}]}]}], "]"}], " ",
RowBox[{"SphericalBesselJ", "[",
RowBox[{"0", ",",
RowBox[{
FractionBox["1", "2"], " ", "k", " ",
RowBox[{"Sin", "[", "\[Phi]", "]"}]}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"\[Phi]", ",", "0", ",",
RowBox[{"2", " ", "\[Pi]"}]}], "}"}], ",",
RowBox[{"Assumptions", "\[Rule]",
RowBox[{"k", ">", "0"}]}]}], "]"}]], "Output",
CellChangeTimes->{{3.669125405562789*^9, 3.669125412579468*^9},
3.6938293387083282`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"Wsquare", "[",
RowBox[{"kR", ",", " ", "1"}], "]"}], "/", " ",
RowBox[{"Wsquare1D", "[",
RowBox[{"kR", ",", "1"}], "]"}]}], ")"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"kR", ",",
SuperscriptBox["10",
RowBox[{"-", "3"}]], ",",
SuperscriptBox["10", "0.7"]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0.95", ",", "1.4"}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.693829640949759*^9, 3.69382966888557*^9}, {
3.693829728602902*^9, 3.6938297661133013`*^9}, {3.693829845543439*^9,
3.693829896474944*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd1Xk41NsbAHAGY4vByFaWhpR0W6Sy9h6VfU03hawNvyJUSspWoquoSKQR
xlKWbJVkK7KlibJFkaVEJdV3MBNxc8/8zvOc5zyfv84573nf867yDnL0IfHx
8THw5K2tEQ+Ztd4OcGANiZ+PjwAp16aPDm10MKZFkHnOCkv9nV12DLhWtVI8
V1q+vLBiIQTcc+pUeW6X55NIMYuAJ1rnt/DMPqFkLfziPLR9FLHhefFdBaX5
Rwxkvd57hGcRE/vec7Jx0DjtFc8zteBrmrFBPKjYb3nAswolxu23x1UQ//J8
iOflhpSkwcZEsHimKsmPzQg8OFO97zrMDRvs4lktp3Bf2pdkeGSqGMHz3Tfc
xyFhKRDwu6aW5/Wiu5X2Sd6EyyS1JZ63HxseltZlQLiG7g0Sdl2utgnRmg40
67Fxnnf2h+a+cs6AjuF9RgLYa7JEK1qACTb+sb94ntTbNK4rmg2bT+48KIhd
3O0kl9edDdZiTS0865DzQqN9cuEBiZIvhM3JYhWyN+SBd+iAChm7Sp894DmX
BwvZR9J53hGwwxji7wLNqCdHGNuy9y3/YnkhfO7qnRTFXha4pON/tgiStOrj
xLBfCWvSB3bdA7PUAG1x7L8Ng1ur+opB4bNc1DJszxyJ+FOLZVAtnOFBwZZR
UXKf9i6H5XcL1aWwZ/xKuIXPy6Gj9+wUz5WCvWsUk+5D/Vr/BBlsQ71Vl3+p
PwShglghOeyVsRW0sriHkNRU9ZPnP13mtb7fH4KE0P1heewG/8CpN5UVQLdh
sxSxzbJq7SosK6HW9OF7ZWxHshP1eFA1iAvuGdfE/nmx5kT2+2oI3Ka3bS12
grBqd5dlDSDPugQt7FaRL4k6GrWguvq21XpsffGzkrNv6+Ct5xNRHV5+iryO
MVzVAMxP+Sk7sN0tzlf07G+AzULHEMIuidvyyf9qA6yN7ydMsK1E03bdXmiA
nJBYb1PsC2JepH/fPIOQx16XbLC5y2ainl5uAvmVpuOu2Ltt75Q5PWuCWDvF
STfs5Cv7R378agLBiWuzHtibJOt2qPo0g4CCjxId+wgl9t8oaIENwY8Kj2K/
l5YPM5ltBTKo9kdiN8oZhjS7sUD9z9PAfOyjrvahTxNZkGg/OV+ILcc8dLaq
iQUG40KXi7H9tBIii7Vegk6LZPV93vsZDV28wXkJCm0BjnXYh7yibtKvdMDi
y5QT3dikPq+D0e6dcNLHxo/ET8D+OX+3pdOdYPVxLlkIu1gpxD08qRM0qzMa
RbCdPC57hjR3gklK1wYKdtGXB3S/dV0wzze5cyW244JAgCO3C4S+qbhsx85R
uxtBu9oD2kE1Zsexa0Qkzqnm90CpFXfxJHYPERy9sqEHyJdIVaHYgs9M/pGb
7gGr4CtG57B9vYYSxZx6wWXuVNQ17HU5snnTym9g7czAVCn2A/ULrMaSPnAZ
3HuYjc0Sn2yvb+0Dk70m1RzssRmH13UjfUBXE6P8xpZtVumtlO6HJN2NL0gk
AkLoNUNFp/pB6mHXaVlsgzts4rrxW7B93/5UD7tJ01P+UMc7CL94gBuDzXIN
s4788g7eRybYXcbuTkyNuiUwAKLeF4uvYY/+bv/8Wn8AcqRenWFg/3mlX2V0
dwC6Teucy7H1TlOd5aIGoe3xtY1D2KXPWxkvNg0BY1Zyu6EAAbYVchQFq1FQ
FNzdLyJIwJfXdcpPnUaBprFiMwU7+pv3evqhUfCIX5G4HLuKVmZZHj4KskcZ
bjRsWpJ5jEXZKCzoMbcZYXMDQudDZT9AJMP6wzFs5pqBsXfDH0CsdpvyMPYM
I6MqPXgMHBOv72kTIoA8pDzqcH4MGmP6MjuxFVQzhcnXxqAv/8D0W2yj3Eyn
Y0VjsDSlVPwVO+Ze1uzuD2Ow+mmZnzgZx7cue9MPu0/gKDAi64CtO3SnAK0b
h4kb6erD2CdVS9PGRydgzIXkISFCgM/B/Xkbd0xCflxjXrEYrs8Rtb5Ur+/A
FCWnhEsQ8HJJX9WbTsCdO/bms1IEfHsQ7Cu8wAYUIhHBkCVgV+OZpuJLM+Ds
1XcuVYGAOGaz4VYDDgyKGafSlQm4l61q3t7BhdHDNza40gioPV4fYHZhDiwW
zyDrtQQIZGoXNWz6DUGBLImaDQSs/Z5/xvLZAghMGPfabsX/mfgR+qPgf6Fe
npatbEyAto3Bx42iS+DW7J8tb4rzdUPBEzNPPlT61Vgz3o4ACl0xhbOdH4m3
tt56dACf555MpTY/CcX6GnRIHCIg1KWUvneQhIyZee1WQQT0K3UfJOULoFeV
6X+awnD9iL73uB8oiKaK/pqRuoTv5xFH7DEXQtL1FOvXaQTkttaxzkiTkb9W
9/xAAQFnUpJ1kqfIyDg6fHCklgD/6w53ipuE0eqwgOvunbi/MlO8bBNEkNZ6
2hWrcQLy5CLujfiIIr81Yi3af3A/ypjaMb9JDPlFFw2XybPBZu/OIZk5MTRk
O2WpuIUNq48ZiKp0iiMdm9Ckgb1sCMisiSy/tQxJekRl3DzFBm3dofO6JyXQ
jweuegqZbDgw+M8rQJLIxZO2fkUbG7LLFTStRSjINeDszuccNnh9txa3+EBB
p360D1L/moa2DAHliX1SiBTqnDzlOw2MUJ0FZpMUKlk3x7hUMg1n/XqHXTdK
I5W0ggjLxWmQ9jH430CyNHLXeBb+yH4G6MnHK7v4ZBDH0XlC/fEMBLKOFiX4
yiBdRu9bF81ZuKgwmGvOkkHbbsaXSOXNgjNDiR62jYqUhStPBO3iQExBqQlF
j4qitvtkcU05UFq5UzVXn4qeeHQfjbLgAKnHb4BlREWKFg0/U2w5UCRe66C0
i4rM7aC+bz8HFsNdjavtqchHxPBNwVEOZHrclvt1mIqWTVQ03LrJgU8aKi9O
pFNRg+K85rIZDqzXn8zcmkFF5ZalW724HAi2rTw5l0lFEonMnqp5vF+InVpk
DhU91rBsC+LjgtrzyNOXCqkoSXv046IEF9yOjKxmPqaiyWbywVQtLvSVMKM7
eqjolHjL5kFvLti0lPx97g0V+f5/cOE/R4txCg==
"]]},
Annotation[#, "Charting`Private`Tag$187036#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0.95},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Identity, Identity}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Identity, Identity}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 5.0118722340100215`}, {0.95, 1.4}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.6938296265579023`*^9, 3.693829669845295*^9}, {
3.693829733408641*^9, 3.693829766486326*^9}, {3.693829851176683*^9,
3.6938298974792137`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["check limits", "Subsubsection",
CellChangeTimes->{{3.667547078281159*^9, 3.667547079849105*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Limit", "[",
RowBox[{
RowBox[{"Wsquare", "[",
RowBox[{"k", ",", "\[Lambda]"}], "]"}], ",", " ",
RowBox[{"k", "\[Rule]", "0"}]}], "]"}]], "Input",
CellChangeTimes->{{3.667465400635003*^9, 3.6674654130874643`*^9}, {
3.667465503205755*^9, 3.667465503420977*^9}, {3.6675463017238483`*^9,
3.667546302306707*^9}, {3.667547177966721*^9, 3.6675471799569807`*^9}}],
Cell[BoxData["1"], "Output",
CellChangeTimes->{
3.667465413885174*^9, 3.667465504033422*^9, {3.6675462987094584`*^9,
3.6675463027156267`*^9}, 3.667546332828629*^9, 3.6675471811097097`*^9,
3.66756469244058*^9, 3.693829338830986*^9}]
}, Open ]],
Cell["but it only works in the limit\[Ellipsis]", "Text",
CellChangeTimes->{{3.6675471342153482`*^9, 3.6675471465101013`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Wsquare", "[",
RowBox[{"0", ",", "1"}], "]"}]], "Input",
CellChangeTimes->{{3.667465498924069*^9, 3.6674655076845922`*^9}, {
3.66754718607646*^9, 3.6675471884125433`*^9}}],
Cell[BoxData[
TemplateBox[{
"Power","infy",
"\"Infinite expression \\!\\(\\*FractionBox[\\\"1\\\", \\\"0\\\"]\\) \
encountered.\"",2,12,3,21728599086629669415,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.667465508136991*^9, 3.6675471894824247`*^9,
3.667564694857798*^9, 3.69382933886686*^9}],
Cell[BoxData[
TemplateBox[{
"Infinity","indet",
"\"Indeterminate expression \\!\\(\\*RowBox[{\\\"0\\\", \\\" \\\", \
SqrtBox[\\\"\[Pi]\\\"], \\\" \\\", \\\"ComplexInfinity\\\"}]\\) \
encountered.\"",2,12,4,21728599086629669415,"Local"},
"MessageTemplate"]], "Message", "MSG",
CellChangeTimes->{3.667465508136991*^9, 3.6675471894824247`*^9,
3.667564694857798*^9, 3.69382933888977*^9}],
Cell[BoxData["Indeterminate"], "Output",
CellChangeTimes->{3.667465508200553*^9, 3.667547189527389*^9,
3.667564694905061*^9, 3.693829338896269*^9}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["numerical checks for our case", "Subsubsection",
CellChangeTimes->{{3.667547116087309*^9, 3.6675471207991543`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLinearPlot", "[",
RowBox[{
SuperscriptBox[
RowBox[{"Wsquare", "[",
RowBox[{"k", ",", " ",
RowBox[{"2048", "/", "128"}]}], "]"}], "2"], ",", " ",
RowBox[{"{",
RowBox[{"k", ",",
SuperscriptBox["10",
RowBox[{"-", "3"}]], ",",
SuperscriptBox["10",
RowBox[{"-", "1.5"}]]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6675462396000347`*^9, 3.6675462636849623`*^9}, {
3.667546335985683*^9, 3.667546362735836*^9}, {3.667546414821745*^9,
3.667546420237526*^9}}],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV0nlM02cYB3BgGuZ+FUq52v4MomwJLmMwjoBcrzDUTkCwblURLCoycCDj
8AJGkMMDURm0utBytuWIgIjFaRB4BIrIOZSrFg8UD5DxIgJDEdzLH0+efPLk
SZ48+a47EMU/pKOlpeVLark7rOoXZRTRINNibO3/jNHzBzdG4wppOKX9yHrZ
F6XZ9sICGpIOS9jLfmPt32eXR0PUnvmxPuJcQYfh479oGB7nZC57SXY32zqL
hvrO2a6HxG3uVVl9STRIfZ5ufUAcEHcm0yyQBl7Mc1YPcYratEjDpCFog2jn
PeJdOm+SxO1ckPMsFhuIvQWDHtXpXNiOVxTWEnvK5etmnLkgknbgcuJXtdfb
7Wc5cCf4ZHAeceZdaVZ+OQfUU6zqC8Q75ktcwoUccIQZTQJx8/TUNRsuBwrq
DevCiJ1esz3W9bBBmf9iyH/5voJkid45NjAzSy0diSUpuppALzaInBL5XOKn
wgjHvg+msCtk4y9zSxj9o2UQxFOawtH7E1U9xC2SnIKXYaawIGoKLyAe3O9w
74WZKRznqsVhxFfemtx6ojaBsonqDivigKgBlc4lE3B3qfl1dBGj9pv9Uouf
TCDlOTdNTOw2X5MVuWgMJzIW5myJu0OuhbNvGMPKtWenmz5hxBC/pSDSGDY8
2Xt7G7Fv48qOrPXGkJpvLFEuYORSKdy5b9gIHruPmRoS81qHIPOKEfDPb20M
+ojRbrW196iPERyLiwpP+ICRcXVrvpOuEdyR/bvl7DxG/cku+jfrDIGONc/f
/R9GysSeEFG0ITQV6pV8nsVok6ssNeo7QwjQBJdfmMGoZ/bnxtgRFkhX+HQ1
TmNExW5piZOwoHtbklvPFEah9K6qAQEL8n4D3eJJ8q/6zbX7GSw4ovyid/wt
2beISx9rNYCTq/zEWmMYDacmx+QmGEB7xNGZwJcYXS7ttOQ5GMBRzVpRzAhG
UXOOLYIpJmT45dqufkzygk4lXlQwwY3ebvTnIEZ93l8tNQmZEFDcPlnRi1Ew
P1pqbsQEJGh15rdjZPIlRg05+vB9+fEf5+9i1Dodr7ZfpQ9M8YTZitsYJfY2
VSzG6EGuGXNpqJLkyzGDBa9WQ+T0dm11EUaP3l/y9ApaDQ0V6YoQEUZW8h0V
3DYGqMcOhhWmkrkmu2zclQF5xc+iS6IxWlOWaPmHMwOuWjXn+BML40LL9J0Y
YPuDa8rH3zEaZTiX2dsxoMj3RIsv8aTbSGnSBgbEq5ofvTuCkXahdSnLhAEq
pcrOJgIjy5BOhTOmQBWmupMWitFhm5vfdE1QkBoU6mBJXPmpQCEcpyA4/vqx
jkMY2YpjFWkvKRh43cw3IHZt5Sq6NRSEKjZH5h7EyM8yXH6gjYI57jO94mCM
smf4X8+qKKjQvq3jSdwHrvIzzRQ4nfu2fkRI8rOHKa9ooOBWmn+6OfGBjL9l
c0oKajze75MEYSQXFFmcq6Fg/f3h1I3Er9efl9HVFHiw/I4MBmIUUbdPtukq
BfLzXjks4qozPIuHZRQIhlO6ru3F6N1OW9mhEgouW0OnD7G9+RqLeRkFz0bV
WWMBGB2bWCnLKKKAw6vknCb+H4mejwk=
"]]},
Annotation[#, "Charting`Private`Tag$10953#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-6.907755208494838, 0.9798002721311178},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Part[#, 2]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {
Charting`ScaledTicks[{Log, Exp}],
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Part[{{Log, Exp}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Log, Exp}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Part[{{Log, Exp}, {Identity, Identity}}, 1, 2][#]& )[
Part[#, 1]],
(Part[{{Log, Exp}, {Identity, Identity}}, 2, 2][#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{
Charting`ScaledTicks[{Log, Exp}], Automatic}, {{{-6.907755278982137,
FormBox["0.001`", TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-6.214608098422191,
FormBox[
TagBox[
InterpretationBox["\"0.002\"", 0.002, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-5.298317366548036,
FormBox[
TagBox[
InterpretationBox["\"0.005\"", 0.005, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-4.605170185988091,
FormBox[
TagBox[
InterpretationBox["\"0.010\"", 0.01, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-3.912023005428146,
FormBox[
TagBox[
InterpretationBox["\"0.020\"", 0.02, AutoDelete -> True],
NumberForm[#, {
DirectedInfinity[1], 3.}]& ], TraditionalForm], {0.01, 0.}, {
AbsoluteThickness[0.1]}}, {-7.600902459542082,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.418580902748128,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.264430222920869,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.1308988302963465`,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {
AbsoluteThickness[0.1]}}, {-7.013115794639964,
FormBox[
InterpretationBox[
StyleBox[
GraphicsBox[{}, ImageSize -> {0., 0.}, BaselinePosition ->
Baseline], "CacheGraphics" -> False],
Spacer[{0., 0.}]], TraditionalForm], {0.005, 0.}, {