|
| 1 | +import { |
| 2 | + AdamOptimizer, |
| 3 | + Cost, |
| 4 | + CPU, |
| 5 | + Dropout1DLayer, |
| 6 | + Init, |
| 7 | + setupBackend, |
| 8 | + tensor, |
| 9 | +} from "jsr:@denosaurs/[email protected]"; |
| 10 | +import { Sequential } from "jsr:@denosaurs/[email protected]/core"; |
| 11 | +import { NadamOptimizer } from "jsr:@denosaurs/[email protected]/core/optimizers"; |
| 12 | +import { |
| 13 | + DenseLayer, |
| 14 | + ReluLayer, |
| 15 | + SoftmaxLayer, |
| 16 | +} from "jsr:@denosaurs/[email protected]/core/layers"; |
| 17 | + |
| 18 | +import { |
| 19 | + useSplit, |
| 20 | + ClassificationReport, |
| 21 | + MatrixLike, |
| 22 | +} from "jsr:@denosaurs/[email protected]/utilities"; |
| 23 | + |
| 24 | +import { CategoricalEncoder } from "jsr:@denosaurs/[email protected]/utilities/encoding"; |
| 25 | +import { |
| 26 | + CountVectorizer, |
| 27 | + TfIdfTransformer, |
| 28 | + SplitTokenizer, |
| 29 | +} from "jsr:@denosaurs/[email protected]/utilities/text"; |
| 30 | + |
| 31 | +import { parse as parseCsv } from "jsr:@std/[email protected]/parse"; |
| 32 | + |
| 33 | +import { format as duration } from "jsr:@std/[email protected]/duration"; |
| 34 | + |
| 35 | +console.time("Time Elapsed"); |
| 36 | + |
| 37 | +console.log("\nImports loaded."); |
| 38 | + |
| 39 | +const file = Deno.readTextFileSync( |
| 40 | + "examples/sentiment-analysis/text_emotion.csv" |
| 41 | +); |
| 42 | + |
| 43 | +console.log("\nData file loaded."); |
| 44 | +console.timeLog("Time Elapsed"); |
| 45 | + |
| 46 | +const data = parseCsv(file, { skipFirstRow: true }) as { |
| 47 | + sentiment: string; |
| 48 | + content: string; |
| 49 | +}[]; |
| 50 | + |
| 51 | +const text = data.map((x) => x.content); |
| 52 | +const labels = data.map((x) => x.sentiment); |
| 53 | + |
| 54 | +console.log("\nCSV Parsed"); |
| 55 | +console.timeLog("Time Elapsed"); |
| 56 | + |
| 57 | +const [[trainX, trainY], [testX, testY]] = useSplit( |
| 58 | + { shuffle: true, ratio: [7, 3] }, |
| 59 | + text, |
| 60 | + labels |
| 61 | +); |
| 62 | + |
| 63 | +console.log("Data Split"); |
| 64 | +console.timeLog("Time Elapsed"); |
| 65 | + |
| 66 | +const tokenizer = new SplitTokenizer({ |
| 67 | + skipWords: "english", |
| 68 | + standardize: { lowercase: true, stripNewlines: true }, |
| 69 | +}); |
| 70 | + |
| 71 | +const tokens = tokenizer.fit(trainX).transform(trainX); |
| 72 | + |
| 73 | +console.log("\nX tokenized"); |
| 74 | +console.timeLog("Time Elapsed"); |
| 75 | + |
| 76 | +const vectorizer = new CountVectorizer(tokenizer.vocabulary.size); |
| 77 | + |
| 78 | +const vecX = vectorizer.transform(tokens, "f32"); |
| 79 | + |
| 80 | +tokens.splice(0, tokens.length); |
| 81 | + |
| 82 | +console.log("\nX vectorized"); |
| 83 | +console.timeLog("Time Elapsed"); |
| 84 | + |
| 85 | +const transformer = new TfIdfTransformer(); |
| 86 | + |
| 87 | +const tfidfX = transformer.fit(vecX).transform<"f32">(vecX); |
| 88 | + |
| 89 | +console.log("\nX Transformed", tfidfX.shape); |
| 90 | +console.timeLog("Time Elapsed"); |
| 91 | + |
| 92 | +const encoder = new CategoricalEncoder<string>(); |
| 93 | + |
| 94 | +const oneHotY = encoder.fit(trainY).transform(trainY, "f32"); |
| 95 | + |
| 96 | +Deno.writeTextFileSync( |
| 97 | + "examples/sentiment-analysis/mappings.json", |
| 98 | + JSON.stringify(Array.from(encoder.mapping.entries())) |
| 99 | +); |
| 100 | +Deno.writeTextFileSync( |
| 101 | + "examples/sentiment-analysis/vocab.json", |
| 102 | + JSON.stringify(Array.from(tokenizer.vocabulary.entries())) |
| 103 | +); |
| 104 | +Deno.writeTextFileSync( |
| 105 | + "examples/sentiment-analysis/tfidf.json", |
| 106 | + JSON.stringify(transformer.idf) |
| 107 | +); |
| 108 | + |
| 109 | +console.log("\nCPU Backend Loading"); |
| 110 | +console.timeLog("Time Elapsed"); |
| 111 | + |
| 112 | +await setupBackend(CPU); |
| 113 | + |
| 114 | +console.log("\nCPU Backend Loaded"); |
| 115 | +console.timeLog("Time Elapsed"); |
| 116 | + |
| 117 | +const net = new Sequential({ |
| 118 | + size: [4, vecX.nCols], |
| 119 | + layers: [ |
| 120 | + DenseLayer({ size: [256], init: Init.Kaiming }), |
| 121 | + ReluLayer(), |
| 122 | + DenseLayer({ size: [32], init: Init.Kaiming }), |
| 123 | + ReluLayer(), |
| 124 | + DenseLayer({ size: [16], init: Init.Kaiming }), |
| 125 | + ReluLayer(), |
| 126 | + DenseLayer({ size: [16], init: Init.Kaiming }), |
| 127 | + ReluLayer(), |
| 128 | + DenseLayer({ size: [16], init: Init.Kaiming }), |
| 129 | + ReluLayer(), |
| 130 | + Dropout1DLayer({ probability: 0.5 }), |
| 131 | + DenseLayer({ size: [encoder.mapping.size], init: Init.Kaiming }), |
| 132 | + SoftmaxLayer(), |
| 133 | + ], |
| 134 | + silent: false, |
| 135 | + optimizer: AdamOptimizer(), |
| 136 | + cost: Cost.CrossEntropy, |
| 137 | + patience: 10, |
| 138 | +}); |
| 139 | + |
| 140 | +console.log("\nStarting"); |
| 141 | +console.timeLog("Time Elapsed"); |
| 142 | +const timeStart = performance.now(); |
| 143 | + |
| 144 | +net.train( |
| 145 | + [{ inputs: tensor(tfidfX), outputs: tensor(oneHotY) }], |
| 146 | + 100, |
| 147 | + 2, |
| 148 | + 0.002 |
| 149 | +); |
| 150 | + |
| 151 | +console.log( |
| 152 | + `Training complete in ${duration(performance.now() - timeStart, { |
| 153 | + style: "narrow", |
| 154 | + })}.` |
| 155 | +); |
| 156 | + |
| 157 | +const predYSoftmax = await net.predict( |
| 158 | + tensor( |
| 159 | + transformer.transform<"f32">( |
| 160 | + vectorizer.transform(tokenizer.transform(testX), "f32") |
| 161 | + ) |
| 162 | + ) |
| 163 | +); |
| 164 | + |
| 165 | +CategoricalEncoder.fromSoftmax<"f32">(predYSoftmax as MatrixLike<"f32">); |
| 166 | +const predY = encoder.untransform(predYSoftmax as MatrixLike<"f32">); |
| 167 | + |
| 168 | +console.log(new ClassificationReport(testY, predY)); |
| 169 | + |
| 170 | +net.saveFile("examples/sentiment-analysis/sentiment.st"); |
0 commit comments