-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdownstream_classification.py
142 lines (112 loc) · 4.55 KB
/
downstream_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from torch import nn
from torch.utils import data
from torch.utils.tensorboard.writer import SummaryWriter
from utils.train_helpers import process_large_dataset
from utils.args import get_downstream_classification_arguments
from models import EEmaGeClassifier
from datasets.perceivelab import PerceivelabClassification, ClassificationSplitter
import os, random
from copy import deepcopy
from datetime import datetime
def train(model, train_dataloader, validate_dataloader):
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=3e-4
)
loss_fn = nn.CrossEntropyLoss()
best_epoch, best_accuracy, best_model_weights = 0, 0.0, None
for epoch in range(1, args.epoch + 1):
model.train()
train_epoch_loss = 0.0
train_correct = 0
for eeg, label in process_large_dataset(train_dataloader):
eeg, label = eeg.to(device), label.to(device)
output = model(eeg)
loss = loss_fn(output, label)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_epoch_loss += loss.item() * label.size(0)
predict = torch.argmax(output, dim=1)
train_correct += (label == predict).sum().float()
model.eval()
validate_epoch_loss = 0.0
validate_correct = 0
with torch.no_grad():
for eeg, label in process_large_dataset(validate_dataloader):
eeg, label = eeg.to(device), label.to(device)
output = model(eeg)
loss = loss_fn(output, label)
validate_epoch_loss += loss.item() * label.size(0)
predict = torch.argmax(output, dim=1)
validate_correct += (label == predict).sum().float()
train_epoch_loss = train_epoch_loss / len(train_dataloader.dataset)
train_accuracy = train_correct / len(train_dataloader.dataset) * 100
validate_epoch_loss = validate_epoch_loss / len(validate_dataloader.dataset)
validate_accuracy = validate_correct / len(validate_dataloader.dataset) * 100
print(
f"Epoch {epoch}\nTrain Accuracy: {train_accuracy:.4f}\tTrain Loss: {train_epoch_loss:.4f}\tValidate Accuracy: {validate_accuracy:.4f}\tValidate Loss: {validate_epoch_loss:.4f}"
)
writer.add_scalar("Loss/train", train_epoch_loss, epoch)
writer.add_scalar("Loss/validate", validate_epoch_loss, epoch)
writer.add_scalar("Accuracy/train", train_accuracy, epoch)
writer.add_scalar("Accuracy/validate", validate_accuracy, epoch)
writer.flush()
if validate_accuracy > best_accuracy:
best_epoch, best_accuracy = epoch, validate_accuracy
best_model_weights = deepcopy(model.state_dict())
torch.save(
model.state_dict(),
"./saved_models/{}_classification.pt".format(args.model_type),
)
print(f"\n\nBest Accuracy: {best_accuracy} at epoch {best_epoch}")
torch.save(
best_model_weights,
os.path.join(
"./saved_models/",
"best_{}_{}_{}".format(args.model_type, best_epoch, datetime.now()),
),
)
def main():
model = EEmaGeClassifier(
model_type=args.model_type,
eeg_exclusion_channel_num=args.eeg_exclusion_channel_num,
pretrained_model_path=args.pretrained_model_path,
)
model.to(device)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
dataset = PerceivelabClassification(
args.eeg_train_data,
args.image_data_path,
args.model_type,
)
loaders = {
split: data.DataLoader(
ClassificationSplitter(
dataset,
split_name=split,
split_path=args.block_splits_path,
shuffle=args.should_shuffle,
# downstream_task=args.downstream_task,
downstream_task=False,
),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.number_workers,
)
for split in ["train", "val", "test"]
}
train_dataloader = loaders["train"]
validate_dataloader = loaders["test"]
train(model, train_dataloader, validate_dataloader)
writer.close()
args = get_downstream_classification_arguments()
if args.cuda:
assert torch.cuda.is_available() == True, "You need GPUs which support CUDA"
device = torch.device("cuda" if args.cuda else "cpu")
torch.manual_seed(args.seed)
random.seed(args.seed)
writer = SummaryWriter()
if __name__ == "__main__":
main()