-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdownstream_regression.py
222 lines (174 loc) · 6.79 KB
/
downstream_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from copy import deepcopy
import numpy as np
import torch
from torch import nn
from torch.utils import data
# from ignite.metrics import FID, InceptionScore
from torchmetrics.image.inception import InceptionScore
from torchmetrics.image.fid import FrechetInceptionDistance
from torch.utils.tensorboard.writer import SummaryWriter
from torchvision.transforms import ToPILImage
from torchvision.utils import make_grid
from datasets import Dataset, Splitter
from models import (
EEmaGeBase,
EEmaGeChannelNet,
EEmaGeBaseReconstructor,
EEmaGeChannelNetReconstructor,
)
from utils.args import get_test_ssl_arguments
from utils.train_helpers import transform, process_large_dataset
import sys, os, random
import matplotlib.pyplot as plt
def matplotlib_imshow(img):
img = to_pil(img)
plt.imshow(img)
# TODO: is 적용을 위한 생성 파라미터 찾아볼 것
def compute_matrix(model, test_loader, writer, step):
# matrix_fid = FID(device=device)
matric_fid = FrechetInceptionDistance(feature=2048)
matric_is = InceptionScore()
# matrix_fid.reset()
model.eval()
sample_images = None
with torch.no_grad():
for batch in process_large_dataset(test_loader):
batch = (batch[0], batch[1])
eeg_x, image_y = tuple(b.to(device, dtype=torch.float) for b in batch)
image_out = model(eeg_x)
# matrix_fid.update((image_out, image_y))
out, true = [], []
for image, y in zip(image_out, image_y):
image = (image * 255).to(torch.uint8).cpu()
y = (y * 255).to(torch.uint8).cpu()
out.append(image)
true.append(y)
out, true = np.array(out), np.array(true)
out = torch.Tensor(out).to(dtype=torch.uint8)
true = torch.Tensor(true).to(dtype=torch.uint8)
# pdb.set_trace()
matric_is.update(out)
matric_fid.update(true, real=True)
matric_fid.update(out, real=False)
sample_images = image_out
img_grid = make_grid(sample_images)
matplotlib_imshow(img_grid)
writer.add_image("EEmaGe", img_grid, step)
return matric_is.compute(), matric_fid.compute()
def train(model, train_dataloader, test_dataloader):
optimizer = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()), lr=3e-4
)
loss_fn = nn.MSELoss()
writer = SummaryWriter()
best_epoch, best_step, best_fid, best_model_weights = 0, 0, 0.0, None
step = 0
for epoch in range(1, args.epoch + 1):
model.train()
train_epoch_loss = 0.0
for batch in process_large_dataset(train_dataloader):
eeg, image = batch[0].to(device), batch[1].to(device)
output = model(eeg)
loss = loss_fn(output, image)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_epoch_loss += loss.item() * eeg.size(0)
step += 1
if step % 100 == 0:
cur_fid = compute_matrix(model, test_dataloader, writer, step)
print(f"FID @ step {step}: {cur_fid}")
if cur_fid > best_fid:
best_epoch, best_step, best_fid = epoch, step, cur_fid
best_model_weights = deepcopy(model.state_dict())
model.train()
train_epoch_loss = train_epoch_loss / len(train_dataloader.dataset)
print(f"LOSS @ epoch {epoch}: {train_epoch_loss}")
writer.add_scalar("train_loss/epoch", train_epoch_loss, epoch)
writer.flush()
print(f"Best FID: {best_fid} @ epoch {best_epoch}, step {best_step}")
torch.save(
best_model_weights,
os.path.join(
saved_models_dir,
"best_{}_{}_{}.pt".format(args.model_type, best_epoch, best_step),
),
)
model.load_state_dict(best_model_weights)
i = 1
model.eval()
with torch.no_grad():
for batch in process_large_dataset(test_dataloader):
batch = (batch[0], batch[1])
eeg, image = tuple(b.to(device) for b in batch)
image_out = model(eeg)
for image in image_out:
pil_image = to_pil(image)
pil_image.save(f"{generated_images_dir}/{i}.png")
i += 1
def main():
if args.model_type == "base":
pretrained = EEmaGeBase(
eeg_exclusion_channel_num=args.eeg_exclusion_channel_num
)
pretrained.load_state_dict(
torch.load(os.path.join(saved_models_dir, args.model_type + ".pt"))
)
model = EEmaGeBaseReconstructor(
eeg_exclusion_channel_num=args.eeg_exclusion_channel_num
)
model.eeg_feature_extractor = pretrained.eeg_feature_extractor
model.encoder = pretrained.encoder
model.image_decoder = pretrained.image_decoder
elif args.model_type == "channelnet":
pretrained = EEmaGeChannelNet(
eeg_exclusion_channel_num=args.eeg_exclusion_channel_num
)
pretrained.load_state_dict(
torch.load(os.path.join(saved_models_dir, args.model_type + ".pt"))
)
model = EEmaGeChannelNetReconstructor()
model.eeg_feature_extractor = pretrained.eeg_feature_extractor
model.encoder = pretrained.encoder
model.image_decoder = pretrained.image_decoder
model.to(device)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
dataset = Dataset(
args.eeg_train_data, args.image_data_path, args.model_type, transform
)
loaders = {
split: data.DataLoader(
Splitter(
dataset,
split_name=split,
split_path=args.block_splits_path,
shuffle=args.should_shuffle,
downstream_task=args.downstream_task,
),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.number_workers,
)
for split in ["train", "val", "test"]
}
train_loader = loaders["train"]
test_loader = loaders["test"]
# train(model, train_loader, test_loader)
writer = SummaryWriter()
is_score, fid_score = compute_matrix(model, test_loader, writer, 0)
print(f"IS: {is_score}\tFID: {fid_score}")
root = os.path.dirname(__file__)
saved_models_dir = os.path.join(root, "saved_models")
if not os.path.exists(saved_models_dir):
sys.exit(f"Directory {saved_models_dir} does not exist.")
generated_images_dir = os.path.join(root, "generated_images")
os.makedirs(generated_images_dir, exist_ok=True)
args = get_test_ssl_arguments()
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
torch.manual_seed(args.seed)
random.seed(args.seed)
to_pil = ToPILImage()
if __name__ == "__main__":
main()