-
Notifications
You must be signed in to change notification settings - Fork 34
Open
Description
Hey! Your model looks really cool- just wondering if you can point me in the right direction as to how to solve this issue. I'm using this code:
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
from pathlib import Path
import time
DIR_NAME="./images/"
dirpath = Path(DIR_NAME)
# create parent dir if doesn't exist
dirpath.mkdir(parents=True, exist_ok=True)
pipe = AutoPipelineForText2Image.from_pretrained("warp-ai/wuerstchen", torch_dtype=torch.float16).to("mps")
caption = "A grim woman wearing rusty atompunk power-armor, holding a massive gauss rifle, standing on a cliff overlooking a vast desert, 70mm film still"
negative = "3d, cartoon, doll, lowres"
images = pipe(
prompt=caption,
negative_prompt=negative,
width=1280,
height=1024,
prior_timesteps=DEFAULT_STAGE_C_TIMESTEPS,
prior_guidance_scale=4.0,
num_images_per_prompt=1,
).images
for idx, image in enumerate(images):
image_name = f'{time.time()}.png'
image_path = dirpath / image_name
image.save(image_path)This is the console output I get:
Loading pipeline components...: 100%|█████████████| 5/5 [00:07<00:00, 1.45s/it]
Loading pipeline components...: 100%|█████████████| 4/4 [00:11<00:00, 2.75s/it]
100%|███████████████████████████████████████████| 29/29 [00:40<00:00, 1.41s/it]
0%| | 0/12 [00:00<?, ?it/s]/Users/jackwooldridge/StableDiffusion/diffusers/venv/lib/python3.9/site-packages/torch/nn/functional.py:4027: UserWarning: The operator 'aten::_upsample_bicubic2d_aa.out' is not currently supported on the MPS backend and will fall back to run on the CPU. This may have performance implications. (Triggered internally at /Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/mps/MPSFallback.mm:13.)
return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors)
100%|███████████████████████████████████████████| 12/12 [00:30<00:00, 2.54s/it]
And here's the image that gets output at the end:
I've tried with no negative prompts and different output sizes. The output always seems to have this distortion.
Metadata
Metadata
Assignees
Labels
No labels
