Skip to content

Latest commit

 

History

History
229 lines (191 loc) · 5.97 KB

File metadata and controls

229 lines (191 loc) · 5.97 KB
comments difficulty edit_url tags
true
Medium
Array
Math
Matrix

中文文档

Description

You are given an n x n 2D matrix representing an image, rotate the image by 90 degrees (clockwise).

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

 

Example 1:

Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [[7,4,1],[8,5,2],[9,6,3]]

Example 2:

Input: matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
Output: [[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]

 

Constraints:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 20
  • -1000 <= matrix[i][j] <= 1000

Solutions

Solution 1: In-place Rotation

According to the problem requirements, we need to rotate $\text{matrix}[i][j]$ to $\text{matrix}[j][n - i - 1]$.

We can first flip the matrix upside down, i.e., swap $\text{matrix}[i][j]$ with $\text{matrix}[n - i - 1][j]$, and then flip the matrix along the main diagonal, i.e., swap $\text{matrix}[i][j]$ with $\text{matrix}[j][i]$. This way, we can rotate $\text{matrix}[i][j]$ to $\text{matrix}[j][n - i - 1]$.

The time complexity is $O(n^2)$, where $n$ is the side length of the matrix. The space complexity is $O(1)$.

Python3

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        n = len(matrix)
        for i in range(n >> 1):
            for j in range(n):
                matrix[i][j], matrix[n - i - 1][j] = matrix[n - i - 1][j], matrix[i][j]
        for i in range(n):
            for j in range(i):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]

Java

class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n >> 1; ++i) {
            for (int j = 0; j < n; ++j) {
                int t = matrix[i][j];
                matrix[i][j] = matrix[n - i - 1][j];
                matrix[n - i - 1][j] = t;
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                int t = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = t;
            }
        }
    }
}

C++

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 0; i < n >> 1; ++i) {
            for (int j = 0; j < n; ++j) {
                swap(matrix[i][j], matrix[n - i - 1][j]);
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                swap(matrix[i][j], matrix[j][i]);
            }
        }
    }
};

Go

func rotate(matrix [][]int) {
	n := len(matrix)
	for i := 0; i < n>>1; i++ {
		for j := 0; j < n; j++ {
			matrix[i][j], matrix[n-i-1][j] = matrix[n-i-1][j], matrix[i][j]
		}
	}
	for i := 0; i < n; i++ {
		for j := 0; j < i; j++ {
			matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]
		}
	}
}

TypeScript

/**
 Do not return anything, modify matrix in-place instead.
 */
function rotate(matrix: number[][]): void {
    matrix.reverse();
    for (let i = 0; i < matrix.length; ++i) {
        for (let j = 0; j < i; ++j) {
            const t = matrix[i][j];
            matrix[i][j] = matrix[j][i];
            matrix[j][i] = t;
        }
    }
}

Rust

impl Solution {
    pub fn rotate(matrix: &mut Vec<Vec<i32>>) {
        let n = matrix.len();
        for i in 0..n / 2 {
            for j in 0..n {
                let t = matrix[i][j];
                matrix[i][j] = matrix[n - i - 1][j];
                matrix[n - i - 1][j] = t;
            }
        }
        for i in 0..n {
            for j in 0..i {
                let t = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = t;
            }
        }
    }
}

JavaScript

/**
 * @param {number[][]} matrix
 * @return {void} Do not return anything, modify matrix in-place instead.
 */
var rotate = function (matrix) {
    matrix.reverse();
    for (let i = 0; i < matrix.length; ++i) {
        for (let j = 0; j < i; ++j) {
            [matrix[i][j], matrix[j][i]] = [matrix[j][i], matrix[i][j]];
        }
    }
};

C#

public class Solution {
    public void Rotate(int[][] matrix) {
        int n = matrix.Length;
        for (int i = 0; i < n >> 1; ++i) {
            for (int j = 0; j < n; ++j) {
                int t = matrix[i][j];
                matrix[i][j] = matrix[n - i - 1][j];
                matrix[n - i - 1][j] = t;
            }
        }
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                int t = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = t;
            }
        }
    }
}