comments | difficulty | edit_url | tags | ||||
---|---|---|---|---|---|---|---|
true |
简单 |
|
给你两棵二叉树的根节点 p
和 q
,编写一个函数来检验这两棵树是否相同。
如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的。
示例 1:
输入:p = [1,2,3], q = [1,2,3] 输出:true
示例 2:
输入:p = [1,2], q = [1,null,2] 输出:false
示例 3:
输入:p = [1,2,1], q = [1,1,2] 输出:false
提示:
- 两棵树上的节点数目都在范围
[0, 100]
内 -104 <= Node.val <= 104
我们可以使用 DFS 递归的方法来解决这个问题。
首先判断两个二叉树的根节点是否相同,如果两个根节点都为空,则两个二叉树相同,如果两个根节点中有且只有一个为空,则两个二叉树一定不同。如果两个根节点都不为空,则判断它们的值是否相同,如果不相同则两个二叉树一定不同,如果相同,则分别判断两个二叉树的左子树是否相同以及右子树是否相同。当以上所有条件都满足时,两个二叉树才相同。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSameTree(self, p: Optional[TreeNode], q: Optional[TreeNode]) -> bool:
if p == q:
return True
if p is None or q is None or p.val != q.val:
return False
return self.isSameTree(p.left, q.left) and self.isSameTree(p.right, q.right)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if (p == q) return true;
if (p == null || q == null || p.val != q.val) return false;
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if (p == q) return true;
if (!p || !q || p->val != q->val) return false;
return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSameTree(p *TreeNode, q *TreeNode) bool {
if p == q {
return true
}
if p == nil || q == nil || p.Val != q.Val {
return false
}
return isSameTree(p.Left, q.Left) && isSameTree(p.Right, q.Right)
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSameTree(p: TreeNode | null, q: TreeNode | null): boolean {
if (p == null && q == null) {
return true;
}
if (p == null || q == null || p.val !== q.val) {
return false;
}
return isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
fn dfs(p: &Option<Rc<RefCell<TreeNode>>>, q: &Option<Rc<RefCell<TreeNode>>>) -> bool {
if p.is_none() && q.is_none() {
return true;
}
if p.is_none() || q.is_none() {
return false;
}
let r1 = p.as_ref().unwrap().borrow();
let r2 = q.as_ref().unwrap().borrow();
r1.val == r2.val && Self::dfs(&r1.left, &r2.left) && Self::dfs(&r1.right, &r2.right)
}
pub fn is_same_tree(
p: Option<Rc<RefCell<TreeNode>>>,
q: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
Self::dfs(&p, &q)
}
}
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} p
* @param {TreeNode} q
* @return {boolean}
*/
var isSameTree = function (p, q) {
if (!p && !q) return true;
if (p && q) {
return p.val === q.val && isSameTree(p.left, q.left) && isSameTree(p.right, q.right);
}
return false;
};
/**
* Definition for a binary tree node.
* class TreeNode {
* public $val = null;
* public $left = null;
* public $right = null;
* function __construct($val = 0, $left = null, $right = null) {
* $this->val = $val;
* $this->left = $left;
* $this->right = $right;
* }
* }
*/
class Solution {
/**
* @param TreeNode $p
* @param TreeNode $q
* @return Boolean
*/
function isSameTree($p, $q) {
if ($p == null && $q == null) {
return true;
}
if ($p == null || $q == null) {
return false;
}
if ($p->val != $q->val) {
return false;
}
return $this->isSameTree($p->left, $q->left) && $this->isSameTree($p->right, $q->right);
}
}
我们也可以使用 BFS 迭代的方法来解决这个问题。
首先将两个二叉树的根节点分别加入两个队列。每次从两个队列各取出一个节点,进行如下比较操作。如果两个节点的值不相同,则两个二叉树的结构一定不同,如果两个节点的值相同,则判断两个节点的子节点是否为空,如果只有一个节点的左子节点为空,则两个二叉树的结构一定不同,如果只有一个节点的右子节点为空,则两个二叉树的结构一定不同,如果左右子节点的结构相同,则将两个节点的左子节点和右子节点分别加入两个队列,对于下一次迭代,将从两个队列各取出一个节点进行比较。当两个队列同时为空时,说明我们已经比较完了所有节点,两个二叉树的结构完全相同。
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isSameTree(self, p: TreeNode, q: TreeNode) -> bool:
if p == q:
return True
if p is None or q is None:
return False
q1, q2 = deque([p]), deque([q])
while q1 and q2:
a, b = q1.popleft(), q2.popleft()
if a.val != b.val:
return False
la, ra = a.left, a.right
lb, rb = b.left, b.right
if (la and not lb) or (lb and not la):
return False
if (ra and not rb) or (rb and not ra):
return False
if la:
q1.append(la)
q2.append(lb)
if ra:
q1.append(ra)
q2.append(rb)
return True
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if (p == q) {
return true;
}
if (p == null || q == null) {
return false;
}
Deque<TreeNode> q1 = new ArrayDeque<>();
Deque<TreeNode> q2 = new ArrayDeque<>();
q1.offer(p);
q2.offer(q);
while (!q1.isEmpty() && !q2.isEmpty()) {
p = q1.poll();
q = q2.poll();
if (p.val != q.val) {
return false;
}
TreeNode la = p.left, ra = p.right;
TreeNode lb = q.left, rb = q.right;
if ((la != null && lb == null) || (lb != null && la == null)) {
return false;
}
if ((ra != null && rb == null) || (rb != null && ra == null)) {
return false;
}
if (la != null) {
q1.offer(la);
q2.offer(lb);
}
if (ra != null) {
q1.offer(ra);
q2.offer(rb);
}
}
return true;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if (p == q) return true;
if (!p || !q) return false;
queue<TreeNode*> q1{{p}};
queue<TreeNode*> q2{{q}};
while (!q1.empty() && !q2.empty()) {
p = q1.front();
q = q2.front();
if (p->val != q->val) return false;
q1.pop();
q2.pop();
TreeNode *la = p->left, *ra = p->right;
TreeNode *lb = q->left, *rb = q->right;
if ((la && !lb) || (lb && !la)) return false;
if ((ra && !rb) || (rb && !ra)) return false;
if (la) {
q1.push(la);
q2.push(lb);
}
if (ra) {
q1.push(ra);
q2.push(rb);
}
}
return true;
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isSameTree(p *TreeNode, q *TreeNode) bool {
if p == q {
return true
}
if p == nil || q == nil {
return false
}
q1 := []*TreeNode{p}
q2 := []*TreeNode{q}
for len(q1) > 0 && len(q2) > 0 {
p, q = q1[0], q2[0]
if p.Val != q.Val {
return false
}
q1, q2 = q1[1:], q2[1:]
la, ra := p.Left, p.Right
lb, rb := q.Left, q.Right
if (la != nil && lb == nil) || (lb != nil && la == nil) {
return false
}
if (ra != nil && rb == nil) || (rb != nil && ra == nil) {
return false
}
if la != nil {
q1 = append(q1, la)
q2 = append(q2, lb)
}
if ra != nil {
q1 = append(q1, ra)
q2 = append(q2, rb)
}
}
return true
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function isSameTree(p: TreeNode | null, q: TreeNode | null): boolean {
const queue = [];
p && queue.push(p);
q && queue.push(q);
if (queue.length === 1) {
return false;
}
while (queue.length !== 0) {
const node1 = queue.shift();
const node2 = queue.shift();
if (node1.val !== node2.val) {
return false;
}
if (
(node1.left == null && node2.left != null) ||
(node1.left != null && node2.left == null)
) {
return false;
}
if (
(node1.right == null && node2.right != null) ||
(node1.right != null && node2.right == null)
) {
return false;
}
if (node1.left != null) {
queue.push(node1.left);
queue.push(node2.left);
}
if (node1.right != null) {
queue.push(node1.right);
queue.push(node2.right);
}
}
return true;
}
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
pub fn is_same_tree(
mut p: Option<Rc<RefCell<TreeNode>>>,
mut q: Option<Rc<RefCell<TreeNode>>>,
) -> bool {
let mut queue = VecDeque::new();
if p.is_some() {
queue.push_back(p.take());
}
if q.is_some() {
queue.push_back(q.take());
}
if queue.len() == 1 {
return false;
}
while queue.len() != 0 {
if let (Some(mut node1), Some(mut node2)) = (queue.pop_front(), queue.pop_front()) {
let mut node1 = node1.as_mut().unwrap().borrow_mut();
let mut node2 = node2.as_mut().unwrap().borrow_mut();
if node1.val != node2.val {
return false;
}
match (node1.left.is_some(), node2.left.is_some()) {
(false, false) => {}
(true, true) => {
queue.push_back(node1.left.take());
queue.push_back(node2.left.take());
}
(_, _) => {
return false;
}
}
match (node1.right.is_some(), node2.right.is_some()) {
(false, false) => {}
(true, true) => {
queue.push_back(node1.right.take());
queue.push_back(node2.right.take());
}
(_, _) => {
return false;
}
}
}
}
true
}
}