Skip to content

Latest commit

 

History

History
1267 lines (1095 loc) · 38.3 KB

File metadata and controls

1267 lines (1095 loc) · 38.3 KB
comments difficulty edit_url tags
true
困难
数组
哈希表
滑动窗口
堆(优先队列)

English Version

题目描述

中位数是有序序列最中间的那个数。如果序列的长度是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。

例如:

  • [2,3,4],中位数是 3
  • [2,3],中位数是 (2 + 3) / 2 = 2.5

给你一个数组 nums,有一个长度为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口向右移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。

 

示例:

给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。

窗口位置                      中位数
---------------               -----
[1  3  -1] -3  5  3  6  7       1
 1 [3  -1  -3] 5  3  6  7      -1
 1  3 [-1  -3  5] 3  6  7      -1
 1  3  -1 [-3  5  3] 6  7       3
 1  3  -1  -3 [5  3  6] 7       5
 1  3  -1  -3  5 [3  6  7]      6

 因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]

 

提示:

  • 你可以假设 k 始终有效,即:k 始终小于等于输入的非空数组的元素个数。
  • 与真实值误差在 10 ^ -5 以内的答案将被视作正确答案。

解法

方法一:双优先队列(大小根堆) + 延迟删除

我们可以使用两个优先队列(大小根堆)维护当前窗口中的元素,其中一个优先队列存储当前窗口中较小的一半元素,另一个优先队列存储当前窗口中较大的一半元素。这样,当前窗口的中位数就是两个优先队列的堆顶元素的平均值或其中的一个。

我们设计一个类 $\textit{MedianFinder}$,用于维护当前窗口中的元素。该类包含以下方法:

  • add_num(num):将 $\textit{num}$ 加入当前窗口中。
  • find_median():返回当前窗口中元素的中位数。
  • remove_num(num):将 $\textit{num}$ 从当前窗口中移除。
  • prune(pq):如果堆顶元素在延迟删除字典 $\textit{delayed}$ 中,则将其从堆顶弹出,并从该元素的延迟删除次数中减一。如果该元素的延迟删除次数为零,则将其从延迟删除字典中删除。
  • rebalance():如果较小的一半元素的数量比较大的一半元素的数量多 $2$ 个,则将较大的一半元素的堆顶元素加入较小的一半元素中;如果较小的一半元素的数量比较大的一半元素的数量少,则将较大的一半元素的堆顶元素加入较小的一半元素中。

add_num(num) 方法中,我们先考虑将 $\textit{num}$ 加入较小的一半元素中,如果 $\textit{num}$ 大于较大的一半元素的堆顶元素,则将 $\textit{num}$ 加入较大的一半元素中。然后我们调用 rebalance() 方法,使得两个优先队列的大小之差不超过 $1$

remove_num(num) 方法中,我们将 $\textit{num}$ 的延迟删除次数加一。然后我们将 $\textit{num}$ 与较小的一半元素的堆顶元素进行比较,如果 $\textit{num}$ 小于等于较小的一半元素的堆顶元素,则更新较小的一半元素的大小,并且调用 prune() 方法,使得较小的一半元素的堆顶元素不在延迟删除字典中。否则,我们更新较大的一半元素的大小,并且调用 prune() 方法,使得较大的一半元素的堆顶元素不在延迟删除字典中。

find_median() 方法中,如果当前窗口的大小为奇数,则返回较小的一半元素的堆顶元素;否则,返回较小的一半元素的堆顶元素与较大的一半元素的堆顶元素的平均值。

prune(pq) 方法中,如果堆顶元素在延迟删除字典中,则将其从堆顶弹出,并从该元素的延迟删除次数中减一。如果该元素的延迟删除次数为零,则将其从延迟删除字典中删除。

rebalance() 方法中,如果较小的一半元素的数量比较大的一半元素的数量多 $2$ 个,则将较大的一半元素的堆顶元素加入较小的一半元素中;如果较小的一半元素的数量比较大的一半元素的数量少,则将较大的一半元素的堆顶元素加入较小的一半元素中。

时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $\textit{nums}$ 的长度。

Python3

class MedianFinder:
    def __init__(self, k: int):
        self.k = k
        self.small = []
        self.large = []
        self.delayed = defaultdict(int)
        self.small_size = 0
        self.large_size = 0

    def add_num(self, num: int):
        if not self.small or num <= -self.small[0]:
            heappush(self.small, -num)
            self.small_size += 1
        else:
            heappush(self.large, num)
            self.large_size += 1
        self.rebalance()

    def find_median(self) -> float:
        return -self.small[0] if self.k & 1 else (-self.small[0] + self.large[0]) / 2

    def remove_num(self, num: int):
        self.delayed[num] += 1
        if num <= -self.small[0]:
            self.small_size -= 1
            if num == -self.small[0]:
                self.prune(self.small)
        else:
            self.large_size -= 1
            if num == self.large[0]:
                self.prune(self.large)
        self.rebalance()

    def prune(self, pq: List[int]):
        sign = -1 if pq is self.small else 1
        while pq and sign * pq[0] in self.delayed:
            self.delayed[sign * pq[0]] -= 1
            if self.delayed[sign * pq[0]] == 0:
                self.delayed.pop(sign * pq[0])
            heappop(pq)

    def rebalance(self):
        if self.small_size > self.large_size + 1:
            heappush(self.large, -heappop(self.small))
            self.small_size -= 1
            self.large_size += 1
            self.prune(self.small)
        elif self.small_size < self.large_size:
            heappush(self.small, -heappop(self.large))
            self.large_size -= 1
            self.small_size += 1
            self.prune(self.large)


class Solution:
    def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
        finder = MedianFinder(k)
        for x in nums[:k]:
            finder.add_num(x)
        ans = [finder.find_median()]
        for i in range(k, len(nums)):
            finder.add_num(nums[i])
            finder.remove_num(nums[i - k])
            ans.append(finder.find_median())
        return ans

Java

class MedianFinder {
    private PriorityQueue<Integer> small = new PriorityQueue<>(Comparator.reverseOrder());
    private PriorityQueue<Integer> large = new PriorityQueue<>();
    private Map<Integer, Integer> delayed = new HashMap<>();
    private int smallSize;
    private int largeSize;
    private int k;

    public MedianFinder(int k) {
        this.k = k;
    }

    public void addNum(int num) {
        if (small.isEmpty() || num <= small.peek()) {
            small.offer(num);
            ++smallSize;
        } else {
            large.offer(num);
            ++largeSize;
        }
        rebalance();
    }

    public double findMedian() {
        return (k & 1) == 1 ? small.peek() : ((double) small.peek() + large.peek()) / 2;
    }

    public void removeNum(int num) {
        delayed.merge(num, 1, Integer::sum);
        if (num <= small.peek()) {
            --smallSize;
            if (num == small.peek()) {
                prune(small);
            }
        } else {
            --largeSize;
            if (num == large.peek()) {
                prune(large);
            }
        }
        rebalance();
    }

    private void prune(PriorityQueue<Integer> pq) {
        while (!pq.isEmpty() && delayed.containsKey(pq.peek())) {
            if (delayed.merge(pq.peek(), -1, Integer::sum) == 0) {
                delayed.remove(pq.peek());
            }
            pq.poll();
        }
    }

    private void rebalance() {
        if (smallSize > largeSize + 1) {
            large.offer(small.poll());
            --smallSize;
            ++largeSize;
            prune(small);
        } else if (smallSize < largeSize) {
            small.offer(large.poll());
            --largeSize;
            ++smallSize;
            prune(large);
        }
    }
}

class Solution {
    public double[] medianSlidingWindow(int[] nums, int k) {
        MedianFinder finder = new MedianFinder(k);
        for (int i = 0; i < k; ++i) {
            finder.addNum(nums[i]);
        }
        int n = nums.length;
        double[] ans = new double[n - k + 1];
        ans[0] = finder.findMedian();
        for (int i = k; i < n; ++i) {
            finder.addNum(nums[i]);
            finder.removeNum(nums[i - k]);
            ans[i - k + 1] = finder.findMedian();
        }
        return ans;
    }
}

C++

class MedianFinder {
public:
    MedianFinder(int k) {
        this->k = k;
    }

    void addNum(int num) {
        if (small.empty() || num <= small.top()) {
            small.push(num);
            ++smallSize;
        } else {
            large.push(num);
            ++largeSize;
        }
        reblance();
    }

    void removeNum(int num) {
        ++delayed[num];
        if (num <= small.top()) {
            --smallSize;
            if (num == small.top()) {
                prune(small);
            }
        } else {
            --largeSize;
            if (num == large.top()) {
                prune(large);
            }
        }
        reblance();
    }

    double findMedian() {
        return k & 1 ? small.top() : ((double) small.top() + large.top()) / 2.0;
    }

private:
    priority_queue<int> small;
    priority_queue<int, vector<int>, greater<int>> large;
    unordered_map<int, int> delayed;
    int smallSize = 0;
    int largeSize = 0;
    int k;

    template <typename T>
    void prune(T& pq) {
        while (!pq.empty() && delayed[pq.top()]) {
            if (--delayed[pq.top()] == 0) {
                delayed.erase(pq.top());
            }
            pq.pop();
        }
    }

    void reblance() {
        if (smallSize > largeSize + 1) {
            large.push(small.top());
            small.pop();
            --smallSize;
            ++largeSize;
            prune(small);
        } else if (smallSize < largeSize) {
            small.push(large.top());
            large.pop();
            ++smallSize;
            --largeSize;
            prune(large);
        }
    }
};

class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        MedianFinder finder(k);
        for (int i = 0; i < k; ++i) {
            finder.addNum(nums[i]);
        }
        vector<double> ans = {finder.findMedian()};
        for (int i = k; i < nums.size(); ++i) {
            finder.addNum(nums[i]);
            finder.removeNum(nums[i - k]);
            ans.push_back(finder.findMedian());
        }
        return ans;
    }
};

Go

type MedianFinder struct {
	small                hp
	large                hp
	delayed              map[int]int
	smallSize, largeSize int
	k                    int
}

func Constructor(k int) MedianFinder {
	return MedianFinder{hp{}, hp{}, map[int]int{}, 0, 0, k}
}

func (this *MedianFinder) AddNum(num int) {
	if this.small.Len() == 0 || num <= -this.small.IntSlice[0] {
		heap.Push(&this.small, -num)
		this.smallSize++
	} else {
		heap.Push(&this.large, num)
		this.largeSize++
	}
	this.rebalance()
}

func (this *MedianFinder) FindMedian() float64 {
	if this.k&1 == 1 {
		return float64(-this.small.IntSlice[0])
	}
	return float64(-this.small.IntSlice[0]+this.large.IntSlice[0]) / 2
}

func (this *MedianFinder) removeNum(num int) {
	this.delayed[num]++
	if num <= -this.small.IntSlice[0] {
		this.smallSize--
		if num == -this.small.IntSlice[0] {
			this.prune(&this.small)
		}
	} else {
		this.largeSize--
		if num == this.large.IntSlice[0] {
			this.prune(&this.large)
		}
	}
	this.rebalance()
}

func (this *MedianFinder) prune(pq *hp) {
	sign := 1
	if pq == &this.small {
		sign = -1
	}
	for pq.Len() > 0 && this.delayed[sign*pq.IntSlice[0]] > 0 {
		this.delayed[sign*pq.IntSlice[0]]--
		if this.delayed[sign*pq.IntSlice[0]] == 0 {
			delete(this.delayed, sign*pq.IntSlice[0])
		}
		heap.Pop(pq)
	}
}

func (this *MedianFinder) rebalance() {
	if this.smallSize > this.largeSize+1 {
		heap.Push(&this.large, -heap.Pop(&this.small).(int))
		this.smallSize--
		this.largeSize++
		this.prune(&this.small)
	} else if this.smallSize < this.largeSize {
		heap.Push(&this.small, -heap.Pop(&this.large).(int))
		this.smallSize++
		this.largeSize--
		this.prune(&this.large)
	}
}

func medianSlidingWindow(nums []int, k int) []float64 {
	finder := Constructor(k)
	for _, num := range nums[:k] {
		finder.AddNum(num)
	}
	ans := []float64{finder.FindMedian()}
	for i := k; i < len(nums); i++ {
		finder.AddNum(nums[i])
		finder.removeNum(nums[i-k])
		ans = append(ans, finder.FindMedian())
	}
	return ans
}

type hp struct{ sort.IntSlice }

func (h hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v any)        { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
	a := h.IntSlice
	v := a[len(a)-1]
	h.IntSlice = a[:len(a)-1]
	return v
}

方法二:有序集合

我们可以用两个有序集合来维护当前窗口中的元素,其中有序集合 $l$ 存储当前窗口中较小的一半元素,有序集合 $r$ 存储当前窗口中较大的一半元素。

遍历数组 $\textit{nums}$,对于每个元素 $x$,我们将其加入有序集合 $r$,然后将有序集合 $r$ 的最小值加入有序集合 $l$。如果有序集合 $l$ 的大小比有序集合 $r$ 的大小大于 $1$,我们将有序集合 $l$ 的最大值加入有序集合 $r$

如果当前窗口元素总数为 $k$,大小为奇数,则有序集合 $l$ 的最大值就是中位数;如果当前窗口的大小为偶数,则有序集合 $l$ 的最大值和有序集合 $r$ 的最小值的平均值就是中位数。然后,我们将窗口的最左边元素移除,继续遍历数组。

时间复杂度 $O(n \log k)$,空间复杂度 $O(k)$。其中 $n$ 为数组 $\textit{nums}$ 的长度。

Python3

class Solution:
    def medianSlidingWindow(self, nums: List[int], k: int) -> List[float]:
        l = SortedList()
        r = SortedList()
        ans = []
        for i, x in enumerate(nums):
            r.add(x)
            l.add(r.pop(0))
            while len(l) - len(r) > 1:
                r.add(l.pop())
            j = i - k + 1
            if j >= 0:
                ans.append(l[-1] if k & 1 else (l[-1] + r[0]) / 2)
                if nums[j] in l:
                    l.remove(nums[j])
                else:
                    r.remove(nums[j])
        return ans

Java

class Solution {
    public double[] medianSlidingWindow(int[] nums, int k) {
        TreeMap<Integer, Integer> l = new TreeMap<>();
        TreeMap<Integer, Integer> r = new TreeMap<>();
        int n = nums.length;
        double[] ans = new double[n - k + 1];
        int lSize = 0, rSize = 0;
        for (int i = 0; i < n; ++i) {
            r.merge(nums[i], 1, Integer::sum);
            int x = r.firstKey();
            if (r.merge(x, -1, Integer::sum) == 0) {
                r.remove(x);
            }
            l.merge(x, 1, Integer::sum);
            ++lSize;
            while (lSize - rSize > 1) {
                x = l.lastKey();
                if (l.merge(x, -1, Integer::sum) == 0) {
                    l.remove(x);
                }
                r.merge(x, 1, Integer::sum);
                --lSize;
                ++rSize;
            }
            int j = i - k + 1;
            if (j >= 0) {
                ans[j] = k % 2 == 1 ? l.lastKey() : ((double) l.lastKey() + r.firstKey()) / 2;
                if (l.containsKey(nums[j])) {
                    if (l.merge(nums[j], -1, Integer::sum) == 0) {
                        l.remove(nums[j]);
                    }
                    --lSize;
                } else {
                    if (r.merge(nums[j], -1, Integer::sum) == 0) {
                        r.remove(nums[j]);
                    }
                    --rSize;
                }
            }
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<double> medianSlidingWindow(vector<int>& nums, int k) {
        multiset<int> l, r;
        int n = nums.size();
        vector<double> ans;
        for (int i = 0; i < n; ++i) {
            r.insert(nums[i]);
            l.insert(*r.begin());
            r.erase(r.begin());
            while (l.size() - r.size() > 1) {
                r.insert(*l.rbegin());
                l.erase(prev(l.end()));
            }
            int j = i - k + 1;
            if (j >= 0) {
                ans.push_back(k % 2 ? *l.rbegin() : ((double) *l.rbegin() + *r.begin()) / 2);
                auto it = l.find(nums[j]);
                if (it != l.end()) {
                    l.erase(it);
                } else {
                    r.erase(r.find(nums[j]));
                }
            }
        }
        return ans;
    }
};

Go

func medianSlidingWindow(nums []int, k int) (ans []float64) {
	l := redblacktree.New[int, int]()
	r := redblacktree.New[int, int]()
	merge := func(st *redblacktree.Tree[int, int], x, v int) {
		c, _ := st.Get(x)
		if c+v == 0 {
			st.Remove(x)
		} else {
			st.Put(x, c+v)
		}
	}
	lSize, rSize := 0, 0
	for i, x := range nums {
		merge(r, x, 1)
		x = r.Left().Key
		merge(r, x, -1)
		merge(l, x, 1)
		lSize++
		for lSize-rSize > 1 {
			x = l.Right().Key
			merge(l, x, -1)
			merge(r, x, 1)
			lSize--
			rSize++
		}
		if j := i - k + 1; j >= 0 {
			if k%2 == 1 {
				ans = append(ans, float64(l.Right().Key))
			} else {
				ans = append(ans, float64(l.Right().Key+r.Left().Key)/2)
			}
			if x = nums[j]; x <= l.Right().Key {
				merge(l, x, -1)
				lSize--
			} else {
				merge(r, x, -1)
				rSize--
			}
		}
	}
	return
}

TypeScript

function medianSlidingWindow(nums: number[], k: number): number[] {
    const l = new TreapMultiSet<number>((a, b) => a - b);
    const r = new TreapMultiSet<number>((a, b) => a - b);
    const n = nums.length;
    const ans: number[] = [];
    for (let i = 0; i < n; ++i) {
        r.add(nums[i]);
        l.add(r.shift()!);
        while (l.size - r.size > 1) {
            r.add(l.pop()!);
        }
        const j = i - k + 1;
        if (j >= 0) {
            ans[j] = k % 2 ? l.last()! : (l.last()! + r.first()!) / 2;
            if (nums[j] <= l.last()!) {
                l.delete(nums[j]);
            } else {
                r.delete(nums[j]);
            }
        }
    }
    return ans;
}

type CompareFunction<T, R extends 'number' | 'boolean'> = (
    a: T,
    b: T,
) => R extends 'number' ? number : boolean;

interface ITreapMultiSet<T> extends Iterable<T> {
    add: (...value: T[]) => this;
    has: (value: T) => boolean;
    delete: (value: T) => void;

    bisectLeft: (value: T) => number;
    bisectRight: (value: T) => number;

    indexOf: (value: T) => number;
    lastIndexOf: (value: T) => number;

    at: (index: number) => T | undefined;
    first: () => T | undefined;
    last: () => T | undefined;

    lower: (value: T) => T | undefined;
    higher: (value: T) => T | undefined;
    floor: (value: T) => T | undefined;
    ceil: (value: T) => T | undefined;

    shift: () => T | undefined;
    pop: (index?: number) => T | undefined;

    count: (value: T) => number;

    keys: () => IterableIterator<T>;
    values: () => IterableIterator<T>;
    rvalues: () => IterableIterator<T>;
    entries: () => IterableIterator<[number, T]>;

    readonly size: number;
}

class TreapNode<T = number> {
    value: T;
    count: number;
    size: number;
    priority: number;
    left: TreapNode<T> | null;
    right: TreapNode<T> | null;

    constructor(value: T) {
        this.value = value;
        this.count = 1;
        this.size = 1;
        this.priority = Math.random();
        this.left = null;
        this.right = null;
    }

    static getSize(node: TreapNode<any> | null): number {
        return node?.size ?? 0;
    }

    static getFac(node: TreapNode<any> | null): number {
        return node?.priority ?? 0;
    }

    pushUp(): void {
        let tmp = this.count;
        tmp += TreapNode.getSize(this.left);
        tmp += TreapNode.getSize(this.right);
        this.size = tmp;
    }

    rotateRight(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const left = node.left;
        node.left = left?.right ?? null;
        left && (left.right = node);
        left && (node = left);
        node.right?.pushUp();
        node.pushUp();
        return node;
    }

    rotateLeft(): TreapNode<T> {
        // eslint-disable-next-line @typescript-eslint/no-this-alias
        let node: TreapNode<T> = this;
        const right = node.right;
        node.right = right?.left ?? null;
        right && (right.left = node);
        right && (node = right);
        node.left?.pushUp();
        node.pushUp();
        return node;
    }
}

class TreapMultiSet<T = number> implements ITreapMultiSet<T> {
    private readonly root: TreapNode<T>;
    private readonly compareFn: CompareFunction<T, 'number'>;
    private readonly leftBound: T;
    private readonly rightBound: T;

    constructor(compareFn?: CompareFunction<T, 'number'>);
    constructor(compareFn: CompareFunction<T, 'number'>, leftBound: T, rightBound: T);
    constructor(
        compareFn: CompareFunction<T, any> = (a: any, b: any) => a - b,
        leftBound: any = -Infinity,
        rightBound: any = Infinity,
    ) {
        this.root = new TreapNode<T>(rightBound);
        this.root.priority = Infinity;
        this.root.left = new TreapNode<T>(leftBound);
        this.root.left.priority = -Infinity;
        this.root.pushUp();

        this.leftBound = leftBound;
        this.rightBound = rightBound;
        this.compareFn = compareFn;
    }

    get size(): number {
        return this.root.size - 2;
    }

    get height(): number {
        const getHeight = (node: TreapNode<T> | null): number => {
            if (node == null) return 0;
            return 1 + Math.max(getHeight(node.left), getHeight(node.right));
        };

        return getHeight(this.root);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns true if value is a member.
     */
    has(value: T): boolean {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): boolean => {
            if (node == null) return false;
            if (compare(node.value, value) === 0) return true;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Add value to sorted set.
     */
    add(...values: T[]): this {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;
            if (compare(node.value, value) === 0) {
                node.count++;
                node.pushUp();
            } else if (compare(node.value, value) > 0) {
                if (node.left) {
                    dfs(node.left, value, node, 'left');
                } else {
                    node.left = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.left) > node.priority) {
                    parent[direction] = node.rotateRight();
                }
            } else if (compare(node.value, value) < 0) {
                if (node.right) {
                    dfs(node.right, value, node, 'right');
                } else {
                    node.right = new TreapNode(value);
                    node.pushUp();
                }

                if (TreapNode.getFac(node.right) > node.priority) {
                    parent[direction] = node.rotateLeft();
                }
            }
            parent.pushUp();
        };

        values.forEach(value => dfs(this.root.left, value, this.root, 'left'));
        return this;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Remove value from sorted set if it is a member.
     * If value is not a member, do nothing.
     */
    delete(value: T): void {
        const compare = this.compareFn;
        const dfs = (
            node: TreapNode<T> | null,
            value: T,
            parent: TreapNode<T>,
            direction: 'left' | 'right',
        ): void => {
            if (node == null) return;

            if (compare(node.value, value) === 0) {
                if (node.count > 1) {
                    node.count--;
                    node?.pushUp();
                } else if (node.left == null && node.right == null) {
                    parent[direction] = null;
                } else {
                    // 旋到根节点
                    if (
                        node.right == null ||
                        TreapNode.getFac(node.left) > TreapNode.getFac(node.right)
                    ) {
                        parent[direction] = node.rotateRight();
                        dfs(parent[direction]?.right ?? null, value, parent[direction]!, 'right');
                    } else {
                        parent[direction] = node.rotateLeft();
                        dfs(parent[direction]?.left ?? null, value, parent[direction]!, 'left');
                    }
                }
            } else if (compare(node.value, value) > 0) {
                dfs(node.left, value, node, 'left');
            } else if (compare(node.value, value) < 0) {
                dfs(node.right, value, node, 'right');
            }

            parent?.pushUp();
        };

        dfs(this.root.left, value, this.root, 'left');
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the left of) any existing values.
     */
    bisectLeft(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns an index to insert value in the sorted set.
     * If the value is already present, the insertion point will be before (to the right of) any existing values.
     */
    bisectRight(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                return TreapNode.getSize(node.left) + node.count;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        return dfs(this.root, value) - 1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the first occurrence of a value in the set, or -1 if it is not present.
     */
    indexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left);
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };
        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the index of the last occurrence of a value in the set, or -1 if it is not present.
     */
    lastIndexOf(value: T): number {
        const compare = this.compareFn;
        let isExist = false;

        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;

            if (compare(node.value, value) === 0) {
                isExist = true;
                return TreapNode.getSize(node.left) + node.count - 1;
            } else if (compare(node.value, value) > 0) {
                return dfs(node.left, value);
            } else if (compare(node.value, value) < 0) {
                return dfs(node.right, value) + TreapNode.getSize(node.left) + node.count;
            }

            return 0;
        };

        const res = dfs(this.root, value) - 1;
        return isExist ? res : -1;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Returns the item located at the specified index.
     * @param index The zero-based index of the desired code unit. A negative index will count back from the last item.
     */
    at(index: number): T | undefined {
        if (index < 0) index += this.size;
        if (index < 0 || index >= this.size) return undefined;

        const dfs = (node: TreapNode<T> | null, rank: number): T | undefined => {
            if (node == null) return undefined;

            if (TreapNode.getSize(node.left) >= rank) {
                return dfs(node.left, rank);
            } else if (TreapNode.getSize(node.left) + node.count >= rank) {
                return node.value;
            } else {
                return dfs(node.right, rank - TreapNode.getSize(node.left) - node.count);
            }
        };

        const res = dfs(this.root, index + 2);
        return ([this.leftBound, this.rightBound] as any[]).includes(res) ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than `val`, return `undefined` if no such element found.
     */
    lower(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than `val`, return `undefined` if no such element found.
     */
    higher(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element less than or equal to `val`, return `undefined` if no such element found.
     */
    floor(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) >= 0) return dfs(node.left, value);

            const tmp = dfs(node.right, value);
            if (tmp == null || compare(node.value, tmp) > 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.leftBound ? undefined : res;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description Find and return the element greater than or equal to `val`, return `undefined` if no such element found.
     */
    ceil(value: T): T | undefined {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): T | undefined => {
            if (node == null) return undefined;
            if (compare(node.value, value) === 0) return node.value;
            if (compare(node.value, value) <= 0) return dfs(node.right, value);

            const tmp = dfs(node.left, value);

            if (tmp == null || compare(node.value, tmp) < 0) {
                return node.value;
            } else {
                return tmp;
            }
        };

        const res = dfs(this.root, value) as any;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned.
     */
    first(): T | undefined {
        const iter = this.inOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.rightBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Returns the last element from set.
     * If the set is empty, undefined is returned .
     */
    last(): T | undefined {
        const iter = this.reverseInOrder();
        iter.next();
        const res = iter.next().value;
        return res === this.leftBound ? undefined : res;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the first element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    /**
     * @complexity `O(logn)`
     * @description
     * Removes the last element from an set and returns it.
     * If the set is empty, undefined is returned and the set is not modified.
     */
    pop(index?: number): T | undefined {
        if (index == null) {
            const last = this.last();
            if (last === undefined) return undefined;
            this.delete(last);
            return last;
        }

        const toDelete = this.at(index);
        if (toDelete == null) return;
        this.delete(toDelete);
        return toDelete;
    }

    /**
     *
     * @complexity `O(logn)`
     * @description
     * Returns number of occurrences of value in the sorted set.
     */
    count(value: T): number {
        const compare = this.compareFn;
        const dfs = (node: TreapNode<T> | null, value: T): number => {
            if (node == null) return 0;
            if (compare(node.value, value) === 0) return node.count;
            if (compare(node.value, value) < 0) return dfs(node.right, value);
            return dfs(node.left, value);
        };

        return dfs(this.root, value);
    }

    *[Symbol.iterator](): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of keys in the set.
     */
    *keys(): Generator<T, any, any> {
        yield* this.values();
    }

    /**
     * @description
     * Returns an iterable of values in the set.
     */
    *values(): Generator<T, any, any> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns a generator for reversed order traversing the set.
     */
    *rvalues(): Generator<T, any, any> {
        const iter = this.reverseInOrder();
        iter.next();
        const steps = this.size;
        for (let _ = 0; _ < steps; _++) {
            yield iter.next().value;
        }
    }

    /**
     * @description
     * Returns an iterable of key, value pairs for every entry in the set.
     */
    *entries(): IterableIterator<[number, T]> {
        const iter = this.inOrder();
        iter.next();
        const steps = this.size;
        for (let i = 0; i < steps; i++) {
            yield [i, iter.next().value];
        }
    }

    private *inOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.inOrder(root.left);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.inOrder(root.right);
    }

    private *reverseInOrder(root: TreapNode<T> | null = this.root): Generator<T, any, any> {
        if (root == null) return;
        yield* this.reverseInOrder(root.right);
        const count = root.count;
        for (let _ = 0; _ < count; _++) {
            yield root.value;
        }
        yield* this.reverseInOrder(root.left);
    }
}