Skip to content

Latest commit

 

History

History
479 lines (388 loc) · 11.6 KB

File metadata and controls

479 lines (388 loc) · 11.6 KB
comments difficulty edit_url tags
true
中等
设计
队列
数组
链表

English Version

题目描述

设计你的循环队列实现。 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。

循环队列的一个好处是我们可以利用这个队列之前用过的空间。在一个普通队列里,一旦一个队列满了,我们就不能插入下一个元素,即使在队列前面仍有空间。但是使用循环队列,我们能使用这些空间去存储新的值。

你的实现应该支持如下操作:

  • MyCircularQueue(k): 构造器,设置队列长度为 k 。
  • Front: 从队首获取元素。如果队列为空,返回 -1 。
  • Rear: 获取队尾元素。如果队列为空,返回 -1 。
  • enQueue(value): 向循环队列插入一个元素。如果成功插入则返回真。
  • deQueue(): 从循环队列中删除一个元素。如果成功删除则返回真。
  • isEmpty(): 检查循环队列是否为空。
  • isFull(): 检查循环队列是否已满。

 

示例:

MyCircularQueue circularQueue = new MyCircularQueue(3); // 设置长度为 3
circularQueue.enQueue(1);  // 返回 true
circularQueue.enQueue(2);  // 返回 true
circularQueue.enQueue(3);  // 返回 true
circularQueue.enQueue(4);  // 返回 false,队列已满
circularQueue.Rear();  // 返回 3
circularQueue.isFull();  // 返回 true
circularQueue.deQueue();  // 返回 true
circularQueue.enQueue(4);  // 返回 true
circularQueue.Rear();  // 返回 4

 

提示:

  • 所有的值都在 0 至 1000 的范围内;
  • 操作数将在 1 至 1000 的范围内;
  • 请不要使用内置的队列库。

解法

方法一:数组模拟

我们可以使用一个长度为 $k$ 的数组 $q$ 来模拟循环队列,用一个指针 $\textit{front}$ 记录队首元素的位置,初始时队列为空,而 $\textit{front}$$0$。另外,我们用一个变量 $\textit{size}$ 记录队列中元素的个数,初始时 $\textit{size}$$0$

调用 enQueue 方法时,我们首先检查队列是否已满,即 $\textit{size} = k$,如果满了则直接返回 $\textit{false}$。否则,我们将元素插入到 $(\textit{front} + \textit{size}) \bmod k$ 的位置,然后 $\textit{size} = \textit{size} + 1$,表示队列中元素的个数增加了 $1$。最后返回 $\textit{true}$

调用 deQueue 方法时,我们首先检查队列是否为空,即 $\textit{size} = 0$,如果为空则直接返回 $\textit{false}$。否则,我们将 $\textit{front} = (\textit{front} + 1) \bmod k$,表示队首元素出队,然后 $\textit{size} = \textit{size} - 1$

调用 Front 方法时,我们首先检查队列是否为空,即 $\textit{size} = 0$,如果为空则返回 $-1$。否则,返回 $q[\textit{front}]$

调用 Rear 方法时,我们首先检查队列是否为空,即 $\textit{size} = 0$,如果为空则返回 $-1$。否则,返回 $q[(\textit{front} + \textit{size} - 1) \bmod k]$

调用 isEmpty 方法时,我们只需判断 $\textit{size} = 0$ 即可。

调用 isFull 方法时,我们只需判断 $\textit{size} = k$ 即可。

时间复杂度方面,以上操作的时间复杂度均为 $O(1)$。空间复杂度为 $O(k)$

Python3

class MyCircularQueue:

    def __init__(self, k: int):
        self.q = [0] * k
        self.size = 0
        self.capacity = k
        self.front = 0

    def enQueue(self, value: int) -> bool:
        if self.isFull():
            return False
        self.q[(self.front + self.size) % self.capacity] = value
        self.size += 1
        return True

    def deQueue(self) -> bool:
        if self.isEmpty():
            return False
        self.front = (self.front + 1) % self.capacity
        self.size -= 1
        return True

    def Front(self) -> int:
        return -1 if self.isEmpty() else self.q[self.front]

    def Rear(self) -> int:
        if self.isEmpty():
            return -1
        return self.q[(self.front + self.size - 1) % self.capacity]

    def isEmpty(self) -> bool:
        return self.size == 0

    def isFull(self) -> bool:
        return self.size == self.capacity


# Your MyCircularQueue object will be instantiated and called as such:
# obj = MyCircularQueue(k)
# param_1 = obj.enQueue(value)
# param_2 = obj.deQueue()
# param_3 = obj.Front()
# param_4 = obj.Rear()
# param_5 = obj.isEmpty()
# param_6 = obj.isFull()

Java

class MyCircularQueue {
    private int[] q;
    private int front;
    private int size;
    private int capacity;

    public MyCircularQueue(int k) {
        q = new int[k];
        capacity = k;
    }

    public boolean enQueue(int value) {
        if (isFull()) {
            return false;
        }
        int idx = (front + size) % capacity;
        q[idx] = value;
        ++size;
        return true;
    }

    public boolean deQueue() {
        if (isEmpty()) {
            return false;
        }
        front = (front + 1) % capacity;
        --size;
        return true;
    }

    public int Front() {
        if (isEmpty()) {
            return -1;
        }
        return q[front];
    }

    public int Rear() {
        if (isEmpty()) {
            return -1;
        }
        int idx = (front + size - 1) % capacity;
        return q[idx];
    }

    public boolean isEmpty() {
        return size == 0;
    }

    public boolean isFull() {
        return size == capacity;
    }
}

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * MyCircularQueue obj = new MyCircularQueue(k);
 * boolean param_1 = obj.enQueue(value);
 * boolean param_2 = obj.deQueue();
 * int param_3 = obj.Front();
 * int param_4 = obj.Rear();
 * boolean param_5 = obj.isEmpty();
 * boolean param_6 = obj.isFull();
 */

C++

class MyCircularQueue {
private:
    int front;
    int size;
    int capacity;
    vector<int> q;

public:
    MyCircularQueue(int k) {
        capacity = k;
        q = vector<int>(k);
        front = size = 0;
    }

    bool enQueue(int value) {
        if (isFull()) return false;
        int idx = (front + size) % capacity;
        q[idx] = value;
        ++size;
        return true;
    }

    bool deQueue() {
        if (isEmpty()) return false;
        front = (front + 1) % capacity;
        --size;
        return true;
    }

    int Front() {
        if (isEmpty()) return -1;
        return q[front];
    }

    int Rear() {
        if (isEmpty()) return -1;
        int idx = (front + size - 1) % capacity;
        return q[idx];
    }

    bool isEmpty() {
        return size == 0;
    }

    bool isFull() {
        return size == capacity;
    }
};

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * MyCircularQueue* obj = new MyCircularQueue(k);
 * bool param_1 = obj->enQueue(value);
 * bool param_2 = obj->deQueue();
 * int param_3 = obj->Front();
 * int param_4 = obj->Rear();
 * bool param_5 = obj->isEmpty();
 * bool param_6 = obj->isFull();
 */

Go

type MyCircularQueue struct {
	front    int
	size     int
	capacity int
	q        []int
}

func Constructor(k int) MyCircularQueue {
	q := make([]int, k)
	return MyCircularQueue{0, 0, k, q}
}

func (this *MyCircularQueue) EnQueue(value int) bool {
	if this.IsFull() {
		return false
	}
	idx := (this.front + this.size) % this.capacity
	this.q[idx] = value
	this.size++
	return true
}

func (this *MyCircularQueue) DeQueue() bool {
	if this.IsEmpty() {
		return false
	}
	this.front = (this.front + 1) % this.capacity
	this.size--
	return true
}

func (this *MyCircularQueue) Front() int {
	if this.IsEmpty() {
		return -1
	}
	return this.q[this.front]
}

func (this *MyCircularQueue) Rear() int {
	if this.IsEmpty() {
		return -1
	}
	idx := (this.front + this.size - 1) % this.capacity
	return this.q[idx]
}

func (this *MyCircularQueue) IsEmpty() bool {
	return this.size == 0
}

func (this *MyCircularQueue) IsFull() bool {
	return this.size == this.capacity
}

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * obj := Constructor(k);
 * param_1 := obj.EnQueue(value);
 * param_2 := obj.DeQueue();
 * param_3 := obj.Front();
 * param_4 := obj.Rear();
 * param_5 := obj.IsEmpty();
 * param_6 := obj.IsFull();
 */

TypeScript

class MyCircularQueue {
    private queue: number[];
    private left: number;
    private right: number;
    private capacity: number;

    constructor(k: number) {
        this.queue = new Array(k);
        this.left = 0;
        this.right = 0;
        this.capacity = k;
    }

    enQueue(value: number): boolean {
        if (this.isFull()) {
            return false;
        }
        this.queue[this.right % this.capacity] = value;
        this.right++;
        return true;
    }

    deQueue(): boolean {
        if (this.isEmpty()) {
            return false;
        }
        this.left++;
        return true;
    }

    Front(): number {
        if (this.isEmpty()) {
            return -1;
        }
        return this.queue[this.left % this.capacity];
    }

    Rear(): number {
        if (this.isEmpty()) {
            return -1;
        }
        return this.queue[(this.right - 1) % this.capacity];
    }

    isEmpty(): boolean {
        return this.right - this.left === 0;
    }

    isFull(): boolean {
        return this.right - this.left === this.capacity;
    }
}

/**
 * Your MyCircularQueue object will be instantiated and called as such:
 * var obj = new MyCircularQueue(k)
 * var param_1 = obj.enQueue(value)
 * var param_2 = obj.deQueue()
 * var param_3 = obj.Front()
 * var param_4 = obj.Rear()
 * var param_5 = obj.isEmpty()
 * var param_6 = obj.isFull()
 */

Rust

struct MyCircularQueue {
    q: Vec<i32>,
    size: usize,
    capacity: usize,
    front: usize,
}

impl MyCircularQueue {
    fn new(k: i32) -> Self {
        MyCircularQueue {
            q: vec![0; k as usize],
            size: 0,
            capacity: k as usize,
            front: 0,
        }
    }

    fn en_queue(&mut self, value: i32) -> bool {
        if self.is_full() {
            return false;
        }
        let rear = (self.front + self.size) % self.capacity;
        self.q[rear] = value;
        self.size += 1;
        true
    }

    fn de_queue(&mut self) -> bool {
        if self.is_empty() {
            return false;
        }
        self.front = (self.front + 1) % self.capacity;
        self.size -= 1;
        true
    }

    fn front(&self) -> i32 {
        if self.is_empty() {
            -1
        } else {
            self.q[self.front]
        }
    }

    fn rear(&self) -> i32 {
        if self.is_empty() {
            -1
        } else {
            let rear = (self.front + self.size - 1) % self.capacity;
            self.q[rear]
        }
    }

    fn is_empty(&self) -> bool {
        self.size == 0
    }

    fn is_full(&self) -> bool {
        self.size == self.capacity
    }
}