comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1391 |
Weekly Contest 158 Q2 |
|
On a 0-indexed 8 x 8
chessboard, there can be multiple black queens and one white king.
You are given a 2D integer array queens
where queens[i] = [xQueeni, yQueeni]
represents the position of the ith
black queen on the chessboard. You are also given an integer array king
of length 2
where king = [xKing, yKing]
represents the position of the white king.
Return the coordinates of the black queens that can directly attack the king. You may return the answer in any order.
Example 1:
Input: queens = [[0,1],[1,0],[4,0],[0,4],[3,3],[2,4]], king = [0,0] Output: [[0,1],[1,0],[3,3]] Explanation: The diagram above shows the three queens that can directly attack the king and the three queens that cannot attack the king (i.e., marked with red dashes).
Example 2:
Input: queens = [[0,0],[1,1],[2,2],[3,4],[3,5],[4,4],[4,5]], king = [3,3] Output: [[2,2],[3,4],[4,4]] Explanation: The diagram above shows the three queens that can directly attack the king and the three queens that cannot attack the king (i.e., marked with red dashes).
Constraints:
1 <= queens.length < 64
queens[i].length == king.length == 2
0 <= xQueeni, yQueeni, xKing, yKing < 8
- All the given positions are unique.
First, we store all the positions of the queens in a hash table or a two-dimensional array
Next, starting from the position of the king, we search in the eight directions: up, down, left, right, upper left, upper right, lower left, and lower right. If there is a queen in a certain direction, we add its position to the answer and stop continuing to search in that direction.
After the search is over, we return the answer.
The time complexity is
class Solution:
def queensAttacktheKing(
self, queens: List[List[int]], king: List[int]
) -> List[List[int]]:
n = 8
s = {(i, j) for i, j in queens}
ans = []
for a in range(-1, 2):
for b in range(-1, 2):
if a or b:
x, y = king
while 0 <= x + a < n and 0 <= y + b < n:
x, y = x + a, y + b
if (x, y) in s:
ans.append([x, y])
break
return ans
class Solution {
public List<List<Integer>> queensAttacktheKing(int[][] queens, int[] king) {
final int n = 8;
var s = new boolean[n][n];
for (var q : queens) {
s[q[0]][q[1]] = true;
}
List<List<Integer>> ans = new ArrayList<>();
for (int a = -1; a <= 1; ++a) {
for (int b = -1; b <= 1; ++b) {
if (a != 0 || b != 0) {
int x = king[0] + a, y = king[1] + b;
while (x >= 0 && x < n && y >= 0 && y < n) {
if (s[x][y]) {
ans.add(List.of(x, y));
break;
}
x += a;
y += b;
}
}
}
}
return ans;
}
}
class Solution {
public:
vector<vector<int>> queensAttacktheKing(vector<vector<int>>& queens, vector<int>& king) {
int n = 8;
bool s[8][8]{};
for (auto& q : queens) {
s[q[0]][q[1]] = true;
}
vector<vector<int>> ans;
for (int a = -1; a <= 1; ++a) {
for (int b = -1; b <= 1; ++b) {
if (a || b) {
int x = king[0] + a, y = king[1] + b;
while (x >= 0 && x < n && y >= 0 && y < n) {
if (s[x][y]) {
ans.push_back({x, y});
break;
}
x += a;
y += b;
}
}
}
}
return ans;
}
};
func queensAttacktheKing(queens [][]int, king []int) (ans [][]int) {
n := 8
s := [8][8]bool{}
for _, q := range queens {
s[q[0]][q[1]] = true
}
for a := -1; a <= 1; a++ {
for b := -1; b <= 1; b++ {
if a != 0 || b != 0 {
x, y := king[0]+a, king[1]+b
for 0 <= x && x < n && 0 <= y && y < n {
if s[x][y] {
ans = append(ans, []int{x, y})
break
}
x += a
y += b
}
}
}
}
return
}
function queensAttacktheKing(queens: number[][], king: number[]): number[][] {
const n = 8;
const s: boolean[][] = Array.from({ length: n }, () => Array.from({ length: n }, () => false));
queens.forEach(([x, y]) => (s[x][y] = true));
const ans: number[][] = [];
for (let a = -1; a <= 1; ++a) {
for (let b = -1; b <= 1; ++b) {
if (a || b) {
let [x, y] = [king[0] + a, king[1] + b];
while (x >= 0 && x < n && y >= 0 && y < n) {
if (s[x][y]) {
ans.push([x, y]);
break;
}
x += a;
y += b;
}
}
}
}
return ans;
}