Skip to content

Latest commit

 

History

History
237 lines (192 loc) · 7.14 KB

File metadata and controls

237 lines (192 loc) · 7.14 KB
comments difficulty edit_url rating source tags
true
中等
1541
第 11 场双周赛 Q2
数组
双指针
排序

English Version

题目描述

给定两个人的空闲时间表:slots1slots2,以及会议的预计持续时间 duration,请你为他们安排 时间段最早 且合适的会议时间。

如果没有满足要求的会议时间,就请返回一个 空数组

「空闲时间」的格式是 [start, end],由开始时间 start 和结束时间 end 组成,表示从 start 开始,到 end 结束。 

题目保证数据有效:同一个人的空闲时间不会出现交叠的情况,也就是说,对于同一个人的两个空闲时间 [start1, end1] 和 [start2, end2],要么 start1 > end2,要么 start2 > end1

 

示例 1:

输入:slots1 = [[10,50],[60,120],[140,210]], slots2 = [[0,15],[60,70]], duration = 8
输出:[60,68]

示例 2:

输入:slots1 = [[10,50],[60,120],[140,210]], slots2 = [[0,15],[60,70]], duration = 12
输出:[]

 

提示:

  • 1 <= slots1.length, slots2.length <= 104
  • slots1[i].length, slots2[i].length == 2
  • slots1[i][0] < slots1[i][1]
  • slots2[i][0] < slots2[i][1]
  • 0 <= slots1[i][j], slots2[i][j] <= 109
  • 1 <= duration <= 106

解法

方法一:排序 + 双指针

我们可以将两个人的空闲时间分别排序,然后使用双指针遍历两个数组,找到两个人的空闲时间段的交集,如果交集的长度大于等于 duration,则返回交集的起始时间和起始时间加上 duration。否则,如果第一个人的空闲时间段的结束时间小于第二个人的空闲时间段的结束时间,我们就移动第一个人的指针,否则移动第二个人的指针。继续遍历,直到找到满足条件的时间段或者遍历结束。

时间复杂度 $O(m \times \log m + n \times \log n)$,空间复杂度 $O(\log m + \log n)$。其中 $m$$n$ 分别为两个数组的长度。

Python3

class Solution:
    def minAvailableDuration(
        self, slots1: List[List[int]], slots2: List[List[int]], duration: int
    ) -> List[int]:
        slots1.sort()
        slots2.sort()
        m, n = len(slots1), len(slots2)
        i = j = 0
        while i < m and j < n:
            start = max(slots1[i][0], slots2[j][0])
            end = min(slots1[i][1], slots2[j][1])
            if end - start >= duration:
                return [start, start + duration]
            if slots1[i][1] < slots2[j][1]:
                i += 1
            else:
                j += 1
        return []

Java

class Solution {
    public List<Integer> minAvailableDuration(int[][] slots1, int[][] slots2, int duration) {
        Arrays.sort(slots1, (a, b) -> a[0] - b[0]);
        Arrays.sort(slots2, (a, b) -> a[0] - b[0]);
        int m = slots1.length, n = slots2.length;
        int i = 0, j = 0;
        while (i < m && j < n) {
            int start = Math.max(slots1[i][0], slots2[j][0]);
            int end = Math.min(slots1[i][1], slots2[j][1]);
            if (end - start >= duration) {
                return Arrays.asList(start, start + duration);
            }
            if (slots1[i][1] < slots2[j][1]) {
                ++i;
            } else {
                ++j;
            }
        }
        return Collections.emptyList();
    }
}

C++

class Solution {
public:
    vector<int> minAvailableDuration(vector<vector<int>>& slots1, vector<vector<int>>& slots2, int duration) {
        sort(slots1.begin(), slots1.end());
        sort(slots2.begin(), slots2.end());
        int m = slots1.size(), n = slots2.size();
        int i = 0, j = 0;
        while (i < m && j < n) {
            int start = max(slots1[i][0], slots2[j][0]);
            int end = min(slots1[i][1], slots2[j][1]);
            if (end - start >= duration) {
                return {start, start + duration};
            }
            if (slots1[i][1] < slots2[j][1]) {
                ++i;
            } else {
                ++j;
            }
        }
        return {};
    }
};

Go

func minAvailableDuration(slots1 [][]int, slots2 [][]int, duration int) []int {
	sort.Slice(slots1, func(i, j int) bool { return slots1[i][0] < slots1[j][0] })
	sort.Slice(slots2, func(i, j int) bool { return slots2[i][0] < slots2[j][0] })
	i, j, m, n := 0, 0, len(slots1), len(slots2)
	for i < m && j < n {
		start := max(slots1[i][0], slots2[j][0])
		end := min(slots1[i][1], slots2[j][1])
		if end-start >= duration {
			return []int{start, start + duration}
		}
		if slots1[i][1] < slots2[j][1] {
			i++
		} else {
			j++
		}
	}
	return []int{}
}

TypeScript

function minAvailableDuration(slots1: number[][], slots2: number[][], duration: number): number[] {
    slots1.sort((a, b) => a[0] - b[0]);
    slots2.sort((a, b) => a[0] - b[0]);
    const [m, n] = [slots1.length, slots2.length];
    let [i, j] = [0, 0];
    while (i < m && j < n) {
        const [start1, end1] = slots1[i];
        const [start2, end2] = slots2[j];
        const start = Math.max(start1, start2);
        const end = Math.min(end1, end2);
        if (end - start >= duration) {
            return [start, start + duration];
        }
        if (end1 < end2) {
            i++;
        } else {
            j++;
        }
    }
    return [];
}

Rust

impl Solution {
    pub fn min_available_duration(mut slots1: Vec<Vec<i32>>, mut slots2: Vec<Vec<i32>>, duration: i32) -> Vec<i32> {
        slots1.sort_by_key(|slot| slot[0]);
        slots2.sort_by_key(|slot| slot[0]);

        let (mut i, mut j) = (0, 0);
        let (m, n) = (slots1.len(), slots2.len());

        while i < m && j < n {
            let (start1, end1) = (slots1[i][0], slots1[i][1]);
            let (start2, end2) = (slots2[j][0], slots2[j][1]);

            let start = start1.max(start2);
            let end = end1.min(end2);

            if end - start >= duration {
                return vec![start, start + duration];
            }

            if end1 < end2 {
                i += 1;
            } else {
                j += 1;
            }
        }

        vec![]
    }
}