Skip to content

Latest commit

 

History

History
204 lines (171 loc) · 5.74 KB

File metadata and controls

204 lines (171 loc) · 5.74 KB
comments difficulty edit_url rating source tags
true
Hard
2175
Weekly Contest 185 Q4
Dynamic Programming
Prefix Sum

中文文档

Description

You are given three integers n, m and k. Consider the following algorithm to find the maximum element of an array of positive integers:

You should build the array arr which has the following properties:

  • arr has exactly n integers.
  • 1 <= arr[i] <= m where (0 <= i < n).
  • After applying the mentioned algorithm to arr, the value search_cost is equal to k.

Return the number of ways to build the array arr under the mentioned conditions. As the answer may grow large, the answer must be computed modulo 109 + 7.

 

Example 1:

Input: n = 2, m = 3, k = 1
Output: 6
Explanation: The possible arrays are [1, 1], [2, 1], [2, 2], [3, 1], [3, 2] [3, 3]

Example 2:

Input: n = 5, m = 2, k = 3
Output: 0
Explanation: There are no possible arrays that satisfy the mentioned conditions.

Example 3:

Input: n = 9, m = 1, k = 1
Output: 1
Explanation: The only possible array is [1, 1, 1, 1, 1, 1, 1, 1, 1]

 

Constraints:

  • 1 <= n <= 50
  • 1 <= m <= 100
  • 0 <= k <= n

Solutions

Solution 1

Python3

class Solution:
    def numOfArrays(self, n: int, m: int, k: int) -> int:
        if k == 0:
            return 0
        dp = [[[0] * (m + 1) for _ in range(k + 1)] for _ in range(n + 1)]
        mod = 10**9 + 7
        for i in range(1, m + 1):
            dp[1][1][i] = 1
        for i in range(2, n + 1):
            for c in range(1, min(k + 1, i + 1)):
                for j in range(1, m + 1):
                    dp[i][c][j] = dp[i - 1][c][j] * j
                    for j0 in range(1, j):
                        dp[i][c][j] += dp[i - 1][c - 1][j0]
                        dp[i][c][j] %= mod
        ans = 0
        for i in range(1, m + 1):
            ans += dp[n][k][i]
            ans %= mod
        return ans

Java

class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int numOfArrays(int n, int m, int k) {
        if (k == 0) {
            return 0;
        }
        long[][][] dp = new long[n + 1][k + 1][m + 1];
        for (int i = 1; i <= m; ++i) {
            dp[1][1][i] = 1;
        }
        for (int i = 2; i <= n; ++i) {
            for (int c = 1; c <= Math.min(i, k); ++c) {
                for (int j = 1; j <= m; ++j) {
                    dp[i][c][j] = (dp[i - 1][c][j] * j) % MOD;
                    for (int j0 = 1; j0 < j; ++j0) {
                        dp[i][c][j] = (dp[i][c][j] + dp[i - 1][c - 1][j0]) % MOD;
                    }
                }
            }
        }
        long ans = 0;
        for (int i = 1; i <= m; ++i) {
            ans = (ans + dp[n][k][i]) % MOD;
        }
        return (int) ans;
    }
}

C++

class Solution {
public:
    int numOfArrays(int n, int m, int k) {
        if (k == 0) return 0;
        int mod = 1e9 + 7;
        using ll = long long;
        vector<vector<vector<ll>>> dp(n + 1, vector<vector<ll>>(k + 1, vector<ll>(m + 1)));
        for (int i = 1; i <= m; ++i) dp[1][1][i] = 1;
        for (int i = 2; i <= n; ++i) {
            for (int c = 1; c <= min(i, k); ++c) {
                for (int j = 1; j <= m; ++j) {
                    dp[i][c][j] = (dp[i - 1][c][j] * j) % mod;
                    for (int j0 = 1; j0 < j; ++j0) {
                        dp[i][c][j] = (dp[i][c][j] + dp[i - 1][c - 1][j0]) % mod;
                    }
                }
            }
        }
        ll ans = 0;
        for (int i = 1; i <= m; ++i) ans = (ans + dp[n][k][i]) % mod;
        return (int) ans;
    }
};

Go

func numOfArrays(n int, m int, k int) int {
	if k == 0 {
		return 0
	}
	mod := int(1e9) + 7
	dp := make([][][]int, n+1)
	for i := range dp {
		dp[i] = make([][]int, k+1)
		for j := range dp[i] {
			dp[i][j] = make([]int, m+1)
		}
	}
	for i := 1; i <= m; i++ {
		dp[1][1][i] = 1
	}
	for i := 2; i <= n; i++ {
		for c := 1; c <= k && c <= i; c++ {
			for j := 1; j <= m; j++ {
				dp[i][c][j] = (dp[i-1][c][j] * j) % mod
				for j0 := 1; j0 < j; j0++ {
					dp[i][c][j] = (dp[i][c][j] + dp[i-1][c-1][j0]) % mod
				}
			}
		}
	}
	ans := 0
	for i := 1; i <= m; i++ {
		ans = (ans + dp[n][k][i]) % mod
	}
	return ans
}