Skip to content

Latest commit

 

History

History
364 lines (294 loc) · 8.47 KB

File metadata and controls

364 lines (294 loc) · 8.47 KB
comments difficulty edit_url rating source tags
true
简单
1408
第 35 场双周赛 Q1
数组
数学
前缀和

English Version

题目描述

给你一个正整数数组 arr ,请你计算所有可能的奇数长度子数组的和。

子数组 定义为原数组中的一个连续子序列。

请你返回 arr 中 所有奇数长度子数组的和

 

示例 1:

输入:arr = [1,4,2,5,3]
输出:58
解释:所有奇数长度子数组和它们的和为:
[1] = 1
[4] = 4
[2] = 2
[5] = 5
[3] = 3
[1,4,2] = 7
[4,2,5] = 11
[2,5,3] = 10
[1,4,2,5,3] = 15
我们将所有值求和得到 1 + 4 + 2 + 5 + 3 + 7 + 11 + 10 + 15 = 58

示例 2:

输入:arr = [1,2]
输出:3
解释:总共只有 2 个长度为奇数的子数组,[1] 和 [2]。它们的和为 3 。

示例 3:

输入:arr = [10,11,12]
输出:66

 

提示:

  • 1 <= arr.length <= 100
  • 1 <= arr[i] <= 1000

 

进阶:

你可以设计一个 O(n) 时间复杂度的算法解决此问题吗?

解法

方法一:动态规划

我们定义两个长度为 $n$ 的数组 $f$$g$,其中 $f[i]$ 表示以 $\textit{arr}[i]$ 结尾的长度为奇数的子数组的和,而 $g[i]$ 表示以 $\textit{arr}[i]$ 结尾的长度为偶数的子数组的和。初始时 $f[0] = \textit{arr}[0]$,而 $g[0] = 0$。答案即为 $\sum_{i=0}^{n-1} f[i]$

$i &gt; 0$ 时,考虑 $f[i]$$g[i]$ 如何进行状态转移:

对于状态 $f[i]$,元素 $\textit{arr}[i]$ 可以与前面的 $g[i-1]$ 组成一个长度为奇数的子数组,一共可以组成的子数组个数为 $(i / 2) + 1$ 个,因此 $f[i] = g[i-1] + \textit{arr}[i] \times ((i / 2) + 1)$

对于状态 $g[i]$,当 $i = 0$ 时,没有长度为偶数的子数组,因此 $g[0] = 0$;当 $i &gt; 0$ 时,元素 $\textit{arr}[i]$ 可以与前面的 $f[i-1]$ 组成一个长度为偶数的子数组,一共可以组成的子数组个数为 $(i + 1) / 2$ 个,因此 $g[i] = f[i-1] + \textit{arr}[i] \times ((i + 1) / 2)$

最终答案即为 $\sum_{i=0}^{n-1} f[i]$

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $\textit{arr}$ 的长度。

Python3

class Solution:
    def sumOddLengthSubarrays(self, arr: List[int]) -> int:
        n = len(arr)
        f = [0] * n
        g = [0] * n
        ans = f[0] = arr[0]
        for i in range(1, n):
            f[i] = g[i - 1] + arr[i] * (i // 2 + 1)
            g[i] = f[i - 1] + arr[i] * ((i + 1) // 2)
            ans += f[i]
        return ans

Java

class Solution {
    public int sumOddLengthSubarrays(int[] arr) {
        int n = arr.length;
        int[] f = new int[n];
        int[] g = new int[n];
        int ans = f[0] = arr[0];
        for (int i = 1; i < n; ++i) {
            f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
            g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
            ans += f[i];
        }
        return ans;
    }
}

C++

class Solution {
public:
    int sumOddLengthSubarrays(vector<int>& arr) {
        int n = arr.size();
        vector<int> f(n, arr[0]);
        vector<int> g(n);
        int ans = f[0];
        for (int i = 1; i < n; ++i) {
            f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
            g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
            ans += f[i];
        }
        return ans;
    }
};

Go

func sumOddLengthSubarrays(arr []int) (ans int) {
	n := len(arr)
	f := make([]int, n)
	g := make([]int, n)
	f[0] = arr[0]
	ans = f[0]
	for i := 1; i < n; i++ {
		f[i] = g[i-1] + arr[i]*(i/2+1)
		g[i] = f[i-1] + arr[i]*((i+1)/2)
		ans += f[i]
	}
	return
}

TypeScript

function sumOddLengthSubarrays(arr: number[]): number {
    const n = arr.length;
    const f: number[] = Array(n).fill(arr[0]);
    const g: number[] = Array(n).fill(0);
    let ans = f[0];
    for (let i = 1; i < n; ++i) {
        f[i] = g[i - 1] + arr[i] * ((i >> 1) + 1);
        g[i] = f[i - 1] + arr[i] * ((i + 1) >> 1);
        ans += f[i];
    }
    return ans;
}

Rust

impl Solution {
    pub fn sum_odd_length_subarrays(arr: Vec<i32>) -> i32 {
        let n = arr.len();
        let mut f = vec![0; n];
        let mut g = vec![0; n];
        let mut ans = arr[0];
        f[0] = arr[0];
        for i in 1..n {
            f[i] = g[i - 1] + arr[i] * ((i as i32) / 2 + 1);
            g[i] = f[i - 1] + arr[i] * (((i + 1) as i32) / 2);
            ans += f[i];
        }
        ans
    }
}

C

int sumOddLengthSubarrays(int* arr, int arrSize) {
    int n = arrSize;
    int f[n];
    int g[n];
    int ans = f[0] = arr[0];
    g[0] = 0;
    for (int i = 1; i < n; ++i) {
        f[i] = g[i - 1] + arr[i] * (i / 2 + 1);
        g[i] = f[i - 1] + arr[i] * ((i + 1) / 2);
        ans += f[i];
    }
    return ans;
}

方法二:动态规划(空间优化)

我们注意到,状态 $f[i]$$g[i]$ 的值只与 $f[i - 1]$$g[i - 1]$ 有关,因此我们可以使用两个变量 $f$$g$ 分别记录 $f[i - 1]$$g[i - 1]$ 的值,从而优化空间复杂度。

时间复杂度 $O(n)$,空间复杂度 $O(1)$

Python3

class Solution:
    def sumOddLengthSubarrays(self, arr: List[int]) -> int:
        ans, f, g = arr[0], arr[0], 0
        for i in range(1, len(arr)):
            ff = g + arr[i] * (i // 2 + 1)
            gg = f + arr[i] * ((i + 1) // 2)
            f, g = ff, gg
            ans += f
        return ans

Java

class Solution {
    public int sumOddLengthSubarrays(int[] arr) {
        int ans = arr[0], f = arr[0], g = 0;
        for (int i = 1; i < arr.length; ++i) {
            int ff = g + arr[i] * (i / 2 + 1);
            int gg = f + arr[i] * ((i + 1) / 2);
            f = ff;
            g = gg;
            ans += f;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int sumOddLengthSubarrays(vector<int>& arr) {
        int ans = arr[0], f = arr[0], g = 0;
        for (int i = 1; i < arr.size(); ++i) {
            int ff = g + arr[i] * (i / 2 + 1);
            int gg = f + arr[i] * ((i + 1) / 2);
            f = ff;
            g = gg;
            ans += f;
        }
        return ans;
    }
};

Go

func sumOddLengthSubarrays(arr []int) (ans int) {
	f, g := arr[0], 0
	ans = f
	for i := 1; i < len(arr); i++ {
		ff := g + arr[i]*(i/2+1)
		gg := f + arr[i]*((i+1)/2)
		f, g = ff, gg
		ans += f
	}
	return
}

TypeScript

function sumOddLengthSubarrays(arr: number[]): number {
    const n = arr.length;
    let [ans, f, g] = [arr[0], arr[0], 0];
    for (let i = 1; i < n; ++i) {
        const ff = g + arr[i] * (Math.floor(i / 2) + 1);
        const gg = f + arr[i] * Math.floor((i + 1) / 2);
        [f, g] = [ff, gg];
        ans += f;
    }
    return ans;
}

Rust

impl Solution {
    pub fn sum_odd_length_subarrays(arr: Vec<i32>) -> i32 {
        let mut ans = arr[0];
        let mut f = arr[0];
        let mut g = 0;
        for i in 1..arr.len() {
            let ff = g + arr[i] * ((i as i32) / 2 + 1);
            let gg = f + arr[i] * (((i + 1) as i32) / 2);
            f = ff;
            g = gg;
            ans += f;
        }
        ans
    }
}

C

int sumOddLengthSubarrays(int* arr, int arrSize) {
    int ans = arr[0], f = arr[0], g = 0;
    for (int i = 1; i < arrSize; ++i) {
        int ff = g + arr[i] * (i / 2 + 1);
        int gg = f + arr[i] * ((i + 1) / 2);
        f = ff;
        g = gg;
        ans += f;
    }
    return ans;
}