Skip to content

Latest commit

 

History

History
223 lines (178 loc) · 5.96 KB

File metadata and controls

223 lines (178 loc) · 5.96 KB
comments difficulty edit_url rating source tags
true
中等
2078
第 222 场周赛 Q3
数组
双指针
二分查找
前缀和

English Version

题目描述

我们称一个分割整数数组的方案是 好的 ,当它满足:

  • 数组被分成三个 非空 连续子数组,从左至右分别命名为 left , mid , right 。
  • left 中元素和小于等于 mid 中元素和,mid 中元素和小于等于 right 中元素和。

给你一个 非负 整数数组 nums ,请你返回 好的 分割 nums 方案数目。由于答案可能会很大,请你将结果对 10+ 7 取余后返回。

 

示例 1:

输入:nums = [1,1,1]
输出:1
解释:唯一一种好的分割方案是将 nums 分成 [1] [1] [1] 。

示例 2:

输入:nums = [1,2,2,2,5,0]
输出:3
解释:nums 总共有 3 种好的分割方案:
[1] [2] [2,2,5,0]
[1] [2,2] [2,5,0]
[1,2] [2,2] [5,0]

示例 3:

输入:nums = [3,2,1]
输出:0
解释:没有好的分割方案。

 

提示:

  • 3 <= nums.length <= 105
  • 0 <= nums[i] <= 104

解法

方法一:前缀和 + 二分查找

我们先预处理出数组 $nums$ 的前缀和数组 $s$,其中 $s[i]$ 表述数组 $nums$$i+1$ 个元素之和。

由于数组 $nums$ 的元素都是非负整数,因此前缀和数组 $s$ 是一个单调递增数组。

我们在 $[0,..n-2)$ 的范围内枚举 left 子数组所能到达的下标 $i$,然后利用前缀和数组单调递增的特性,通过二分查找的方式找到 mid 子数组分割的合理范围,记为 $[j, k)$,累加方案数 $k-j$

二分细节上,子数组分割必须满足 $s[j] \geq s[i]$,并且 $s[n - 1] - s[k] \geq s[k] - s[i]$。即 $s[j] \geq s[i]$,且 $s[k] \leq \frac{s[n - 1] + s[i]}{2}$

最后,将方案数对 $10^9+7$ 取模后返回即可。

时间复杂度 $O(n \times \log n)$。其中 $n$ 为数组 $nums$ 的长度。

Python3

class Solution:
    def waysToSplit(self, nums: List[int]) -> int:
        mod = 10**9 + 7
        s = list(accumulate(nums))
        ans, n = 0, len(nums)
        for i in range(n - 2):
            j = bisect_left(s, s[i] << 1, i + 1, n - 1)
            k = bisect_right(s, (s[-1] + s[i]) >> 1, j, n - 1)
            ans += k - j
        return ans % mod

Java

class Solution {
    private static final int MOD = (int) 1e9 + 7;

    public int waysToSplit(int[] nums) {
        int n = nums.length;
        int[] s = new int[n];
        s[0] = nums[0];
        for (int i = 1; i < n; ++i) {
            s[i] = s[i - 1] + nums[i];
        }
        int ans = 0;
        for (int i = 0; i < n - 2; ++i) {
            int j = search(s, s[i] << 1, i + 1, n - 1);
            int k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1);
            ans = (ans + k - j) % MOD;
        }
        return ans;
    }

    private int search(int[] s, int x, int left, int right) {
        while (left < right) {
            int mid = (left + right) >> 1;
            if (s[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

C++

class Solution {
public:
    const int mod = 1e9 + 7;

    int waysToSplit(vector<int>& nums) {
        int n = nums.size();
        vector<int> s(n, nums[0]);
        for (int i = 1; i < n; ++i) s[i] = s[i - 1] + nums[i];
        int ans = 0;
        for (int i = 0; i < n - 2; ++i) {
            int j = lower_bound(s.begin() + i + 1, s.begin() + n - 1, s[i] << 1) - s.begin();
            int k = upper_bound(s.begin() + j, s.begin() + n - 1, (s[n - 1] + s[i]) >> 1) - s.begin();
            ans = (ans + k - j) % mod;
        }
        return ans;
    }
};

Go

func waysToSplit(nums []int) (ans int) {
	const mod int = 1e9 + 7
	n := len(nums)
	s := make([]int, n)
	s[0] = nums[0]
	for i := 1; i < n; i++ {
		s[i] = s[i-1] + nums[i]
	}
	for i := 0; i < n-2; i++ {
		j := sort.Search(n-1, func(h int) bool { return h > i && s[h] >= (s[i]<<1) })
		k := sort.Search(n-1, func(h int) bool { return h >= j && s[h] > (s[n-1]+s[i])>>1 })
		ans = (ans + k - j) % mod
	}
	return
}

JavaScript

/**
 * @param {number[]} nums
 * @return {number}
 */
var waysToSplit = function (nums) {
    const mod = 1e9 + 7;
    const n = nums.length;
    const s = new Array(n).fill(nums[0]);
    for (let i = 1; i < n; ++i) {
        s[i] = s[i - 1] + nums[i];
    }
    function search(s, x, left, right) {
        while (left < right) {
            const mid = (left + right) >> 1;
            if (s[mid] >= x) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
    let ans = 0;
    for (let i = 0; i < n - 2; ++i) {
        const j = search(s, s[i] << 1, i + 1, n - 1);
        const k = search(s, ((s[n - 1] + s[i]) >> 1) + 1, j, n - 1);
        ans = (ans + k - j) % mod;
    }
    return ans;
};