comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2091 |
Biweekly Contest 112 Q4 |
|
You are given a string s
and an integer k
.
A k-subsequence is a subsequence of s
, having length k
, and all its characters are unique, i.e., every character occurs once.
Let f(c)
denote the number of times the character c
occurs in s
.
The beauty of a k-subsequence is the sum of f(c)
for every character c
in the k-subsequence.
For example, consider s = "abbbdd"
and k = 2
:
f('a') = 1
,f('b') = 3
,f('d') = 2
- Some k-subsequences of
s
are:"abbbdd"
->"ab"
having a beauty off('a') + f('b') = 4
"abbbdd"
->"ad"
having a beauty off('a') + f('d') = 3
"abbbdd"
->"bd"
having a beauty off('b') + f('d') = 5
Return an integer denoting the number of k-subsequences whose beauty is the maximum among all k-subsequences. Since the answer may be too large, return it modulo 109 + 7
.
A subsequence of a string is a new string formed from the original string by deleting some (possibly none) of the characters without disturbing the relative positions of the remaining characters.
Notes
f(c)
is the number of times a characterc
occurs ins
, not a k-subsequence.- Two k-subsequences are considered different if one is formed by an index that is not present in the other. So, two k-subsequences may form the same string.
Example 1:
Input: s = "bcca", k = 2
Output: 4
Explanation: From s we have f('a') = 1, f('b') = 1, and f('c') = 2.
The k-subsequences of s are:
bcca having a beauty of f('b') + f('c') = 3
bcca having a beauty of f('b') + f('c') = 3
bcca having a beauty of f('b') + f('a') = 2
bcca having a beauty of f('c') + f('a') = 3
bcca having a beauty of f('c') + f('a') = 3
There are 4 k-subsequences that have the maximum beauty, 3.
Hence, the answer is 4.
Example 2:
Input: s = "abbcd", k = 4 Output: 2 Explanation: From s we have f('a') = 1, f('b') = 2, f('c') = 1, and f('d') = 1. The k-subsequences of s are: abbcd having a beauty of f('a') + f('b') + f('c') + f('d') = 5 abbcd having a beauty of f('a') + f('b') + f('c') + f('d') = 5 There are 2 k-subsequences that have the maximum beauty, 5. Hence, the answer is 2.
Constraints:
1 <= s.length <= 2 * 105
1 <= k <= s.length
s
consists only of lowercase English letters.
First, we use a hash table
Since a
Otherwise, to maximize the beauty value of the
We denote the occurrence of the $k$th character in the array
Then we first find out the characters with occurrences greater than
Note that we need to use fast power and modulo operations here.
The time complexity is
class Solution:
def countKSubsequencesWithMaxBeauty(self, s: str, k: int) -> int:
f = Counter(s)
if len(f) < k:
return 0
mod = 10**9 + 7
vs = sorted(f.values(), reverse=True)
val = vs[k - 1]
x = vs.count(val)
ans = 1
for v in vs:
if v == val:
break
k -= 1
ans = ans * v % mod
ans = ans * comb(x, k) * pow(val, k, mod) % mod
return ans
class Solution {
private final int mod = (int) 1e9 + 7;
public int countKSubsequencesWithMaxBeauty(String s, int k) {
int[] f = new int[26];
int n = s.length();
int cnt = 0;
for (int i = 0; i < n; ++i) {
if (++f[s.charAt(i) - 'a'] == 1) {
++cnt;
}
}
if (cnt < k) {
return 0;
}
Integer[] vs = new Integer[cnt];
for (int i = 0, j = 0; i < 26; ++i) {
if (f[i] > 0) {
vs[j++] = f[i];
}
}
Arrays.sort(vs, (a, b) -> b - a);
long ans = 1;
int val = vs[k - 1];
int x = 0;
for (int v : vs) {
if (v == val) {
++x;
}
}
for (int v : vs) {
if (v == val) {
break;
}
--k;
ans = ans * v % mod;
}
int[][] c = new int[x + 1][x + 1];
for (int i = 0; i <= x; ++i) {
c[i][0] = 1;
for (int j = 1; j <= i; ++j) {
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
}
ans = ((ans * c[x][k]) % mod) * qpow(val, k) % mod;
return (int) ans;
}
private long qpow(long a, int n) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
}
}
class Solution {
public:
int countKSubsequencesWithMaxBeauty(string s, int k) {
int f[26]{};
int cnt = 0;
for (char& c : s) {
if (++f[c - 'a'] == 1) {
++cnt;
}
}
if (cnt < k) {
return 0;
}
vector<int> vs(cnt);
for (int i = 0, j = 0; i < 26; ++i) {
if (f[i]) {
vs[j++] = f[i];
}
}
sort(vs.rbegin(), vs.rend());
const int mod = 1e9 + 7;
long long ans = 1;
int val = vs[k - 1];
int x = 0;
for (int v : vs) {
x += v == val;
}
for (int v : vs) {
if (v == val) {
break;
}
--k;
ans = ans * v % mod;
}
int c[x + 1][x + 1];
memset(c, 0, sizeof(c));
for (int i = 0; i <= x; ++i) {
c[i][0] = 1;
for (int j = 1; j <= i; ++j) {
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
}
}
auto qpow = [&](long long a, int n) {
long long ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return ans;
};
ans = (ans * c[x][k] % mod) * qpow(val, k) % mod;
return ans;
}
};
func countKSubsequencesWithMaxBeauty(s string, k int) int {
f := [26]int{}
cnt := 0
for _, c := range s {
f[c-'a']++
if f[c-'a'] == 1 {
cnt++
}
}
if cnt < k {
return 0
}
vs := []int{}
for _, x := range f {
if x > 0 {
vs = append(vs, x)
}
}
sort.Slice(vs, func(i, j int) bool {
return vs[i] > vs[j]
})
const mod int = 1e9 + 7
ans := 1
val := vs[k-1]
x := 0
for _, v := range vs {
if v == val {
x++
}
}
for _, v := range vs {
if v == val {
break
}
k--
ans = ans * v % mod
}
c := make([][]int, x+1)
for i := range c {
c[i] = make([]int, x+1)
c[i][0] = 1
for j := 1; j <= i; j++ {
c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod
}
}
qpow := func(a, n int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
ans = (ans * c[x][k] % mod) * qpow(val, k) % mod
return ans
}
function countKSubsequencesWithMaxBeauty(s: string, k: number): number {
const f: number[] = new Array(26).fill(0);
let cnt = 0;
for (const c of s) {
const i = c.charCodeAt(0) - 97;
if (++f[i] === 1) {
++cnt;
}
}
if (cnt < k) {
return 0;
}
const mod = BigInt(10 ** 9 + 7);
const vs: number[] = f.filter(v => v > 0).sort((a, b) => b - a);
const val = vs[k - 1];
const x = vs.filter(v => v === val).length;
let ans = 1n;
for (const v of vs) {
if (v === val) {
break;
}
--k;
ans = (ans * BigInt(v)) % mod;
}
const c: number[][] = new Array(x + 1).fill(0).map(() => new Array(k + 1).fill(0));
for (let i = 0; i <= x; ++i) {
c[i][0] = 1;
for (let j = 1; j <= Math.min(i, k); ++j) {
c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % Number(mod);
}
}
const qpow = (a: bigint, n: number): bigint => {
let ans = 1n;
for (; n; n >>>= 1) {
if (n & 1) {
ans = (ans * a) % BigInt(mod);
}
a = (a * a) % BigInt(mod);
}
return ans;
};
ans = (((ans * BigInt(c[x][k])) % mod) * qpow(BigInt(val), k)) % mod;
return Number(ans);
}