Skip to content

Latest commit

 

History

History
226 lines (184 loc) · 7.29 KB

File metadata and controls

226 lines (184 loc) · 7.29 KB
comments difficulty edit_url rating source tags
true
中等
1873
第 377 场周赛 Q2
数组
哈希表
枚举

English Version

题目描述

有一个大型的 (m - 1) x (n - 1) 矩形田地,其两个对角分别是 (1, 1)(m, n) ,田地内部有一些水平栅栏和垂直栅栏,分别由数组 hFencesvFences 给出。

水平栅栏为坐标 (hFences[i], 1)(hFences[i], n),垂直栅栏为坐标 (1, vFences[i])(m, vFences[i])

返回通过 移除 一些栅栏(可能不移除)所能形成的最大面积的 正方形 田地的面积,或者如果无法形成正方形田地则返回 -1

由于答案可能很大,所以请返回结果对 109 + 7 取余 后的值。

注意:田地外围两个水平栅栏(坐标 (1, 1)(1, n) 和坐标 (m, 1)(m, n) )以及两个垂直栅栏(坐标 (1, 1)(m, 1) 和坐标 (1, n)(m, n) )所包围。这些栅栏 不能 被移除。

 

示例 1:

输入:m = 4, n = 3, hFences = [2,3], vFences = [2]
输出:4
解释:移除位于 2 的水平栅栏和位于 2 的垂直栅栏将得到一个面积为 4 的正方形田地。

示例 2:

输入:m = 6, n = 7, hFences = [2], vFences = [4]
输出:-1
解释:可以证明无法通过移除栅栏形成正方形田地。

 

提示:

  • 3 <= m, n <= 109
  • 1 <= hFences.length, vFences.length <= 600
  • 1 < hFences[i] < m
  • 1 < vFences[i] < n
  • hFencesvFences 中的元素是唯一的。

解法

方法一:枚举

我们可以枚举 $\textit{hFences}$ 中的任意两条水平栅栏 $a$$b$,计算 $a$$b$ 之间的距离 $d$,记录在哈希表 $hs$ 中,然后枚举 $\textit{vFences}$ 中的任意两条垂直栅栏 $c$$d$,计算 $c$$d$ 之间的距离 $d$,记录在哈希表 $vs$ 中,最后遍历哈希表 $hs$,如果 $hs$ 中的某个距离 $d$ 在哈希表 $vs$ 中也存在,那么说明存在一个正方形田地,其边长为 $d$,面积为 $d^2$,我们只需要取最大的 $d$,求 $d^2 \bmod 10^9 + 7$ 即可。

时间复杂度 $O(h^2 + v^2)$,空间复杂度 $O(h^2 + v^2)$。其中 $h$$v$ 分别是 $\textit{hFences}$$\textit{vFences}$ 的长度。

Python3

class Solution:
    def maximizeSquareArea(
        self, m: int, n: int, hFences: List[int], vFences: List[int]
    ) -> int:
        def f(nums: List[int], k: int) -> Set[int]:
            nums.extend([1, k])
            nums.sort()
            return {b - a for a, b in combinations(nums, 2)}

        mod = 10**9 + 7
        hs = f(hFences, m)
        vs = f(vFences, n)
        ans = max(hs & vs, default=0)
        return ans**2 % mod if ans else -1

Java

class Solution {
    public int maximizeSquareArea(int m, int n, int[] hFences, int[] vFences) {
        Set<Integer> hs = f(hFences, m);
        Set<Integer> vs = f(vFences, n);
        hs.retainAll(vs);
        int ans = -1;
        final int mod = (int) 1e9 + 7;
        for (int x : hs) {
            ans = Math.max(ans, x);
        }
        return ans > 0 ? (int) (1L * ans * ans % mod) : -1;
    }

    private Set<Integer> f(int[] nums, int k) {
        int n = nums.length;
        nums = Arrays.copyOf(nums, n + 2);
        nums[n] = 1;
        nums[n + 1] = k;
        Arrays.sort(nums);
        Set<Integer> s = new HashSet<>();
        for (int i = 0; i < nums.length; ++i) {
            for (int j = 0; j < i; ++j) {
                s.add(nums[i] - nums[j]);
            }
        }
        return s;
    }
}

C++

class Solution {
public:
    int maximizeSquareArea(int m, int n, vector<int>& hFences, vector<int>& vFences) {
        auto f = [](vector<int>& nums, int k) {
            nums.push_back(k);
            nums.push_back(1);
            sort(nums.begin(), nums.end());
            unordered_set<int> s;
            for (int i = 0; i < nums.size(); ++i) {
                for (int j = 0; j < i; ++j) {
                    s.insert(nums[i] - nums[j]);
                }
            }
            return s;
        };
        auto hs = f(hFences, m);
        auto vs = f(vFences, n);
        int ans = 0;
        for (int h : hs) {
            if (vs.count(h)) {
                ans = max(ans, h);
            }
        }
        const int mod = 1e9 + 7;
        return ans > 0 ? 1LL * ans * ans % mod : -1;
    }
};

Go

func maximizeSquareArea(m int, n int, hFences []int, vFences []int) int {
	f := func(nums []int, k int) map[int]bool {
		nums = append(nums, 1, k)
		sort.Ints(nums)
		s := map[int]bool{}
		for i := 0; i < len(nums); i++ {
			for j := 0; j < i; j++ {
				s[nums[i]-nums[j]] = true
			}
		}
		return s
	}
	hs := f(hFences, m)
	vs := f(vFences, n)
	ans := 0
	for h := range hs {
		if vs[h] {
			ans = max(ans, h)
		}
	}
	if ans > 0 {
		return ans * ans % (1e9 + 7)
	}
	return -1
}

TypeScript

function maximizeSquareArea(m: number, n: number, hFences: number[], vFences: number[]): number {
    const f = (nums: number[], k: number): Set<number> => {
        nums.push(1, k);
        nums.sort((a, b) => a - b);
        const s: Set<number> = new Set();
        for (let i = 0; i < nums.length; ++i) {
            for (let j = 0; j < i; ++j) {
                s.add(nums[i] - nums[j]);
            }
        }
        return s;
    };
    const hs = f(hFences, m);
    const vs = f(vFences, n);
    let ans = 0;
    for (const h of hs) {
        if (vs.has(h)) {
            ans = Math.max(ans, h);
        }
    }
    return ans ? Number(BigInt(ans) ** 2n % 1000000007n) : -1;
}