Skip to content

Latest commit

 

History

History
549 lines (445 loc) · 19.4 KB

File metadata and controls

549 lines (445 loc) · 19.4 KB
comments difficulty edit_url rating source tags
true
困难
3773
第 408 场周赛 Q4
深度优先搜索
广度优先搜索
并查集
几何
数组
数学

English Version

题目描述

给你两个正整数 xCorner 和 yCorner 和一个二维整数数组 circles ,其中 circles[i] = [xi, yi, ri] 表示一个圆心在 (xi, yi) 半径为 ri 的圆。

坐标平面内有一个左下角在原点,右上角在 (xCorner, yCorner) 的矩形。你需要判断是否存在一条从左下角到右上角的路径满足:路径 完全 在矩形内部,不会 触碰或者经过 任何 圆的内部和边界,同时  在起点和终点接触到矩形。

如果存在这样的路径,请你返回 true ,否则返回 false 。

 

示例 1:

输入:X = 3, Y = 4, circles = [[2,1,1]]

输出:true

解释:

黑色曲线表示一条从 (0, 0) 到 (3, 4) 的路径。

示例 2:

输入:X = 3, Y = 3, circles = [[1,1,2]]

输出:false

解释:

不存在从 (0, 0) 到 (3, 3) 的路径。

示例 3:

输入:X = 3, Y = 3, circles = [[2,1,1],[1,2,1]]

输出:false

解释:

不存在从 (0, 0) 到 (3, 3) 的路径。

示例 4:

输入:X = 4, Y = 4, circles = [[5,5,1]]

输出:true

解释:

 

提示:

  • 3 <= xCorner, yCorner <= 109
  • 1 <= circles.length <= 1000
  • circles[i].length == 3
  • 1 <= xi, yi, ri <= 109

解法

方法一:DFS + 数学

根据题意,我们分情况讨论:

circles 中只有一个圆时:

  1. 如果起点 $(0, 0)$ 在圆内(包括边界),或者终点 $(\textit{xCorner}, \textit{yCorner})$ 在圆内,那么无法满足“不触碰圆”的条件;
  2. 如果圆与矩形的左侧或上侧有交点,且与矩形的右侧或下侧有交点,这种情况下,圆会阻断从矩形左下角到右上角的路径,也无法满足“不触碰圆”的条件。

circles 中有多个圆时:

  1. 与上述情况类似,如果起点或终点在圆内时,无法满足“不触碰圆”的条件。
  2. 如果有多个圆,多个圆之间可能在矩形内相交,合并形成更大的障碍区域。只要这个障碍区域与矩形的左侧或上侧有交点,且与矩形的右侧或下侧有交点,那么无法满足“不触碰圆”的条件。如果相交区域不在矩形内部,不能进行合并,因为相交的区域无法阻断矩形内部路径。另外,如果相交的区域有一部分在矩形内,有一部分在矩形外,这些圆都可以作为搜索的起点或终点,可以合并,也可以不合并。我们只要任选相交的其中一个点,如果这个点在矩形内,我们就可以将这些圆合并。

根据上述分析,我们遍历所有圆,对于当前遍历到的圆,如果起点或终点在圆内,我们直接返回 false。否则,如果这个点没有被访问过,且这个圆与矩形的左侧或上侧有交点,我们就从这个圆开始进行深度优先搜索,搜索过程中,如果找到了一个圆,它与矩形的右侧或下侧有交点,说明圆形成的障碍区域阻断了从矩形左下角到右上角的路径,我们就返回 false

我们定义 $\textit{dfs}(i)$ 表示从第 $i$ 个圆开始进行深度优先搜索,如果找到了一个圆,它与矩形的右侧或下侧有交点,返回 true,否则返回 false

函数 $\textit{dfs}(i)$ 的执行过程如下:

  1. 如果当前圆与矩形的右侧或下侧有交点,返回 true
  2. 否则,我们将当前圆标记为已访问;
  3. 接下来,遍历其它所有圆,如果圆 $j$ 没被访问过,且圆 $i$ 和圆 $j$ 相交,且这两个圆的其中一个交点在矩形内,我们就继续从圆 $j$ 开始进行深度优先搜索,如果找到了一个圆,它与矩形的右侧或下侧有交点,返回 true
  4. 如果没有找到这样的圆,返回 false

上面的过程中,我们需要在圆 $O_1 = (x_1, y_1, r_1)$$O_2 = (x_2, y_2, r_2)$ 之间判断是否相交,如果两个圆相交,那么它们的圆心之间的距离不超过两个圆的半径之和,即 $(x_1 - x_2)^2 + (y_1 - y_2)^2 \le (r_1 + r_2)^2$

我们还需要寻找两个圆的一个交点,我们取一个点 $A = (x, y)$,满足 $\frac{O_1 A}{O_1 O_2} = \frac{r_1}{r_1 + r_2}$,如果两圆相交,那么点 $A$ 一定在交集中,此时 $\frac{x - x_1}{x_2 - x_1} = \frac{r_1}{r_1 + r_2}$,解得 $x = \frac{x_1 r_2 + x_2 r_1}{r_1 + r_2}$,同理,有 $y = \frac{y_1 r_2 + y_2 r_1}{r_1 + r_2}$。只要这个点在矩形内,我们就可以继续进行深度优先搜索,即满足:

$$ \begin{cases} x_1 r_2 + x_2 r_1 < (r_1 + r_2) \times \textit{xCorner} \\ y_1 r_2 + y_2 r_1 < (r_1 + r_2) \times \textit{yCorner} \end{cases} $$

时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 为圆的数量。

Python3

class Solution:
    def canReachCorner(
        self, xCorner: int, yCorner: int, circles: List[List[int]]
    ) -> bool:
        def in_circle(x: int, y: int, cx: int, cy: int, r: int) -> int:
            return (x - cx) ** 2 + (y - cy) ** 2 <= r**2

        def cross_left_top(cx: int, cy: int, r: int) -> bool:
            a = abs(cx) <= r and 0 <= cy <= yCorner
            b = abs(cy - yCorner) <= r and 0 <= cx <= xCorner
            return a or b

        def cross_right_bottom(cx: int, cy: int, r: int) -> bool:
            a = abs(cx - xCorner) <= r and 0 <= cy <= yCorner
            b = abs(cy) <= r and 0 <= cx <= xCorner
            return a or b

        def dfs(i: int) -> bool:
            x1, y1, r1 = circles[i]
            if cross_right_bottom(x1, y1, r1):
                return True
            vis[i] = True
            for j, (x2, y2, r2) in enumerate(circles):
                if vis[j] or not ((x1 - x2) ** 2 + (y1 - y2) ** 2 <= (r1 + r2) ** 2):
                    continue
                if (
                    (x1 * r2 + x2 * r1 < (r1 + r2) * xCorner)
                    and (y1 * r2 + y2 * r1 < (r1 + r2) * yCorner)
                    and dfs(j)
                ):
                    return True
            return False

        vis = [False] * len(circles)
        for i, (x, y, r) in enumerate(circles):
            if in_circle(0, 0, x, y, r) or in_circle(xCorner, yCorner, x, y, r):
                return False
            if (not vis[i]) and cross_left_top(x, y, r) and dfs(i):
                return False
        return True

Java

class Solution {
    private int[][] circles;
    private int xCorner, yCorner;
    private boolean[] vis;

    public boolean canReachCorner(int xCorner, int yCorner, int[][] circles) {
        int n = circles.length;
        this.circles = circles;
        this.xCorner = xCorner;
        this.yCorner = yCorner;
        vis = new boolean[n];
        for (int i = 0; i < n; ++i) {
            var c = circles[i];
            int x = c[0], y = c[1], r = c[2];
            if (inCircle(0, 0, x, y, r) || inCircle(xCorner, yCorner, x, y, r)) {
                return false;
            }
            if (!vis[i] && crossLeftTop(x, y, r) && dfs(i)) {
                return false;
            }
        }
        return true;
    }

    private boolean inCircle(long x, long y, long cx, long cy, long r) {
        return (x - cx) * (x - cx) + (y - cy) * (y - cy) <= r * r;
    }

    private boolean crossLeftTop(long cx, long cy, long r) {
        boolean a = Math.abs(cx) <= r && (cy >= 0 && cy <= yCorner);
        boolean b = Math.abs(cy - yCorner) <= r && (cx >= 0 && cx <= xCorner);
        return a || b;
    }

    private boolean crossRightBottom(long cx, long cy, long r) {
        boolean a = Math.abs(cx - xCorner) <= r && (cy >= 0 && cy <= yCorner);
        boolean b = Math.abs(cy) <= r && (cx >= 0 && cx <= xCorner);
        return a || b;
    }

    private boolean dfs(int i) {
        var c = circles[i];
        long x1 = c[0], y1 = c[1], r1 = c[2];
        if (crossRightBottom(x1, y1, r1)) {
            return true;
        }
        vis[i] = true;
        for (int j = 0; j < circles.length; ++j) {
            var c2 = circles[j];
            long x2 = c2[0], y2 = c2[1], r2 = c2[2];
            if (vis[j]) {
                continue;
            }
            if ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) > (r1 + r2) * (r1 + r2)) {
                continue;
            }
            if (x1 * r2 + x2 * r1 < (r1 + r2) * xCorner && y1 * r2 + y2 * r1 < (r1 + r2) * yCorner
                && dfs(j)) {
                return true;
            }
        }
        return false;
    }
}

C++

class Solution {
public:
    bool canReachCorner(int xCorner, int yCorner, vector<vector<int>>& circles) {
        using ll = long long;
        auto inCircle = [&](ll x, ll y, ll cx, ll cy, ll r) {
            return (x - cx) * (x - cx) + (y - cy) * (y - cy) <= r * r;
        };
        auto crossLeftTop = [&](ll cx, ll cy, ll r) {
            bool a = abs(cx) <= r && (cy >= 0 && cy <= yCorner);
            bool b = abs(cy - yCorner) <= r && (cx >= 0 && cx <= xCorner);
            return a || b;
        };
        auto crossRightBottom = [&](ll cx, ll cy, ll r) {
            bool a = abs(cx - xCorner) <= r && (cy >= 0 && cy <= yCorner);
            bool b = abs(cy) <= r && (cx >= 0 && cx <= xCorner);
            return a || b;
        };

        int n = circles.size();
        vector<bool> vis(n);
        auto dfs = [&](this auto&& dfs, int i) -> bool {
            auto c = circles[i];
            ll x1 = c[0], y1 = c[1], r1 = c[2];
            if (crossRightBottom(x1, y1, r1)) {
                return true;
            }
            vis[i] = true;
            for (int j = 0; j < n; ++j) {
                if (vis[j]) {
                    continue;
                }
                auto c2 = circles[j];
                ll x2 = c2[0], y2 = c2[1], r2 = c2[2];
                if ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) > (r1 + r2) * (r1 + r2)) {
                    continue;
                }
                if (x1 * r2 + x2 * r1 < (r1 + r2) * xCorner && y1 * r2 + y2 * r1 < (r1 + r2) * yCorner
                    && dfs(j)) {
                    return true;
                }
            }
            return false;
        };

        for (int i = 0; i < n; ++i) {
            auto c = circles[i];
            ll x = c[0], y = c[1], r = c[2];
            if (inCircle(0, 0, x, y, r) || inCircle(xCorner, yCorner, x, y, r)) {
                return false;
            }
            if (!vis[i] && crossLeftTop(x, y, r) && dfs(i)) {
                return false;
            }
        }
        return true;
    }
};

Go

func canReachCorner(xCorner int, yCorner int, circles [][]int) bool {
	inCircle := func(x, y, cx, cy, r int) bool {
		dx, dy := x-cx, y-cy
		return dx*dx+dy*dy <= r*r
	}

	crossLeftTop := func(cx, cy, r int) bool {
		a := abs(cx) <= r && cy >= 0 && cy <= yCorner
		b := abs(cy-yCorner) <= r && cx >= 0 && cx <= xCorner
		return a || b
	}

	crossRightBottom := func(cx, cy, r int) bool {
		a := abs(cx-xCorner) <= r && cy >= 0 && cy <= yCorner
		b := abs(cy) <= r && cx >= 0 && cx <= xCorner
		return a || b
	}

	vis := make([]bool, len(circles))

	var dfs func(int) bool
	dfs = func(i int) bool {
		c := circles[i]
		x1, y1, r1 := c[0], c[1], c[2]
		if crossRightBottom(x1, y1, r1) {
			return true
		}
		vis[i] = true
		for j, c2 := range circles {
			if vis[j] {
				continue
			}
			x2, y2, r2 := c2[0], c2[1], c2[2]
			if (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2) > (r1+r2)*(r1+r2) {
				continue
			}
			if x1*r2+x2*r1 < (r1+r2)*xCorner && y1*r2+y2*r1 < (r1+r2)*yCorner && dfs(j) {
				return true
			}
		}
		return false
	}

	for i, c := range circles {
		x, y, r := c[0], c[1], c[2]
		if inCircle(0, 0, x, y, r) || inCircle(xCorner, yCorner, x, y, r) {
			return false
		}
		if !vis[i] && crossLeftTop(x, y, r) && dfs(i) {
			return false
		}
	}
	return true
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

TypeScript

function canReachCorner(xCorner: number, yCorner: number, circles: number[][]): boolean {
    const inCircle = (x: bigint, y: bigint, cx: bigint, cy: bigint, r: bigint): boolean => {
        const dx = x - cx;
        const dy = y - cy;
        return dx * dx + dy * dy <= r * r;
    };

    const crossLeftTop = (cx: bigint, cy: bigint, r: bigint): boolean => {
        const a = BigInt(Math.abs(Number(cx))) <= r && cy >= 0n && cy <= BigInt(yCorner);
        const b =
            BigInt(Math.abs(Number(cy - BigInt(yCorner)))) <= r &&
            cx >= 0n &&
            cx <= BigInt(xCorner);
        return a || b;
    };

    const crossRightBottom = (cx: bigint, cy: bigint, r: bigint): boolean => {
        const a =
            BigInt(Math.abs(Number(cx - BigInt(xCorner)))) <= r &&
            cy >= 0n &&
            cy <= BigInt(yCorner);
        const b = BigInt(Math.abs(Number(cy))) <= r && cx >= 0n && cx <= BigInt(xCorner);
        return a || b;
    };

    const n = circles.length;
    const vis: boolean[] = new Array(n).fill(false);

    const dfs = (i: number): boolean => {
        const [x1, y1, r1] = circles[i].map(BigInt);
        if (crossRightBottom(x1, y1, r1)) {
            return true;
        }
        vis[i] = true;
        for (let j = 0; j < n; j++) {
            if (vis[j]) continue;
            const [x2, y2, r2] = circles[j].map(BigInt);
            if ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) > (r1 + r2) * (r1 + r2)) {
                continue;
            }
            if (
                x1 * r2 + x2 * r1 < (r1 + r2) * BigInt(xCorner) &&
                y1 * r2 + y2 * r1 < (r1 + r2) * BigInt(yCorner) &&
                dfs(j)
            ) {
                return true;
            }
        }
        return false;
    };

    for (let i = 0; i < n; i++) {
        const [x, y, r] = circles[i].map(BigInt);
        if (inCircle(0n, 0n, x, y, r) || inCircle(BigInt(xCorner), BigInt(yCorner), x, y, r)) {
            return false;
        }
        if (!vis[i] && crossLeftTop(x, y, r) && dfs(i)) {
            return false;
        }
    }

    return true;
}

Rust

impl Solution {
    pub fn can_reach_corner(x_corner: i32, y_corner: i32, circles: Vec<Vec<i32>>) -> bool {
        let n = circles.len();
        let mut vis = vec![false; n];

        let in_circle = |x: i64, y: i64, cx: i64, cy: i64, r: i64| -> bool {
            (x - cx) * (x - cx) + (y - cy) * (y - cy) <= r * r
        };

        let cross_left_top = |cx: i64, cy: i64, r: i64| -> bool {
            let a = cx.abs() <= r && (cy >= 0 && cy <= y_corner as i64);
            let b = (cy - y_corner as i64).abs() <= r && (cx >= 0 && cx <= x_corner as i64);
            a || b
        };

        let cross_right_bottom = |cx: i64, cy: i64, r: i64| -> bool {
            let a = (cx - x_corner as i64).abs() <= r && (cy >= 0 && cy <= y_corner as i64);
            let b = cy.abs() <= r && (cx >= 0 && cx <= x_corner as i64);
            a || b
        };
        fn dfs(
            circles: &Vec<Vec<i32>>,
            vis: &mut Vec<bool>,
            i: usize,
            x_corner: i32,
            y_corner: i32,
            cross_right_bottom: &dyn Fn(i64, i64, i64) -> bool,
        ) -> bool {
            let c = &circles[i];
            let (x1, y1, r1) = (c[0] as i64, c[1] as i64, c[2] as i64);

            if cross_right_bottom(x1, y1, r1) {
                return true;
            }

            vis[i] = true;

            for j in 0..circles.len() {
                if vis[j] {
                    continue;
                }

                let c2 = &circles[j];
                let (x2, y2, r2) = (c2[0] as i64, c2[1] as i64, c2[2] as i64);

                if (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) > (r1 + r2) * (r1 + r2) {
                    continue;
                }

                if x1 * r2 + x2 * r1 < (r1 + r2) * x_corner as i64
                    && y1 * r2 + y2 * r1 < (r1 + r2) * y_corner as i64
                    && dfs(circles, vis, j, x_corner, y_corner, cross_right_bottom)
                {
                    return true;
                }
            }
            false
        }

        for i in 0..n {
            let c = &circles[i];
            let (x, y, r) = (c[0] as i64, c[1] as i64, c[2] as i64);

            if in_circle(0, 0, x, y, r) || in_circle(x_corner as i64, y_corner as i64, x, y, r) {
                return false;
            }

            if !vis[i]
                && cross_left_top(x, y, r)
                && dfs(
                    &circles,
                    &mut vis,
                    i,
                    x_corner,
                    y_corner,
                    &cross_right_bottom,
                )
            {
                return false;
            }
        }

        true
    }
}