comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
Hard |
2598 |
Weekly Contest 419 Q4 |
|
You are given an array nums
of n
integers and two integers k
and x
.
The x-sum of an array is calculated by the following procedure:
- Count the occurrences of all elements in the array.
- Keep only the occurrences of the top
x
most frequent elements. If two elements have the same number of occurrences, the element with the bigger value is considered more frequent. - Calculate the sum of the resulting array.
Note that if an array has less than x
distinct elements, its x-sum is the sum of the array.
Return an integer array answer
of length n - k + 1
where answer[i]
is the x-sum of the subarray nums[i..i + k - 1]
.
Example 1:
Input: nums = [1,1,2,2,3,4,2,3], k = 6, x = 2
Output: [6,10,12]
Explanation:
- For subarray
[1, 1, 2, 2, 3, 4]
, only elements 1 and 2 will be kept in the resulting array. Hence,answer[0] = 1 + 1 + 2 + 2
. - For subarray
[1, 2, 2, 3, 4, 2]
, only elements 2 and 4 will be kept in the resulting array. Hence,answer[1] = 2 + 2 + 2 + 4
. Note that 4 is kept in the array since it is bigger than 3 and 1 which occur the same number of times. - For subarray
[2, 2, 3, 4, 2, 3]
, only elements 2 and 3 are kept in the resulting array. Hence,answer[2] = 2 + 2 + 2 + 3 + 3
.
Example 2:
Input: nums = [3,8,7,8,7,5], k = 2, x = 2
Output: [11,15,15,15,12]
Explanation:
Since k == x
, answer[i]
is equal to the sum of the subarray nums[i..i + k - 1]
.
Constraints:
nums.length == n
1 <= n <= 105
1 <= nums[i] <= 109
1 <= x <= k <= nums.length
We use a hash table
We maintain a variable
The time complexity is
Similar problems:
class Solution:
def findXSum(self, nums: List[int], k: int, x: int) -> List[int]:
def add(v: int):
if cnt[v] == 0:
return
p = (cnt[v], v)
if l and p > l[0]:
nonlocal s
s += p[0] * p[1]
l.add(p)
else:
r.add(p)
def remove(v: int):
if cnt[v] == 0:
return
p = (cnt[v], v)
if p in l:
nonlocal s
s -= p[0] * p[1]
l.remove(p)
else:
r.remove(p)
l = SortedList()
r = SortedList()
cnt = Counter()
s = 0
n = len(nums)
ans = [0] * (n - k + 1)
for i, v in enumerate(nums):
remove(v)
cnt[v] += 1
add(v)
j = i - k + 1
if j < 0:
continue
while r and len(l) < x:
p = r.pop()
l.add(p)
s += p[0] * p[1]
while len(l) > x:
p = l.pop(0)
s -= p[0] * p[1]
r.add(p)
ans[j] = s
remove(nums[j])
cnt[nums[j]] -= 1
add(nums[j])
return ans
class Solution {
private TreeSet<int[]> l = new TreeSet<>((a, b) -> a[0] == b[0] ? a[1] - b[1] : a[0] - b[0]);
private TreeSet<int[]> r = new TreeSet<>(l.comparator());
private Map<Integer, Integer> cnt = new HashMap<>();
private long s;
public long[] findXSum(int[] nums, int k, int x) {
int n = nums.length;
long[] ans = new long[n - k + 1];
for (int i = 0; i < n; ++i) {
int v = nums[i];
remove(v);
cnt.merge(v, 1, Integer::sum);
add(v);
int j = i - k + 1;
if (j < 0) {
continue;
}
while (!r.isEmpty() && l.size() < x) {
var p = r.pollLast();
s += 1L * p[0] * p[1];
l.add(p);
}
while (l.size() > x) {
var p = l.pollFirst();
s -= 1L * p[0] * p[1];
r.add(p);
}
ans[j] = s;
remove(nums[j]);
cnt.merge(nums[j], -1, Integer::sum);
add(nums[j]);
}
return ans;
}
private void remove(int v) {
if (!cnt.containsKey(v)) {
return;
}
var p = new int[] {cnt.get(v), v};
if (l.contains(p)) {
l.remove(p);
s -= 1L * p[0] * p[1];
} else {
r.remove(p);
}
}
private void add(int v) {
if (!cnt.containsKey(v)) {
return;
}
var p = new int[] {cnt.get(v), v};
if (!l.isEmpty() && l.comparator().compare(l.first(), p) < 0) {
l.add(p);
s += 1L * p[0] * p[1];
} else {
r.add(p);
}
}
}
class Solution {
public:
vector<long long> findXSum(vector<int>& nums, int k, int x) {
using pii = pair<int, int>;
set<pii> l, r;
long long s = 0;
unordered_map<int, int> cnt;
auto add = [&](int v) {
if (cnt[v] == 0) {
return;
}
pii p = {cnt[v], v};
if (!l.empty() && p > *l.begin()) {
s += 1LL * p.first * p.second;
l.insert(p);
} else {
r.insert(p);
}
};
auto remove = [&](int v) {
if (cnt[v] == 0) {
return;
}
pii p = {cnt[v], v};
auto it = l.find(p);
if (it != l.end()) {
s -= 1LL * p.first * p.second;
l.erase(it);
} else {
r.erase(p);
}
};
vector<long long> ans;
for (int i = 0; i < nums.size(); ++i) {
remove(nums[i]);
++cnt[nums[i]];
add(nums[i]);
int j = i - k + 1;
if (j < 0) {
continue;
}
while (!r.empty() && l.size() < x) {
pii p = *r.rbegin();
s += 1LL * p.first * p.second;
r.erase(p);
l.insert(p);
}
while (l.size() > x) {
pii p = *l.begin();
s -= 1LL * p.first * p.second;
l.erase(p);
r.insert(p);
}
ans.push_back(s);
remove(nums[j]);
--cnt[nums[j]];
add(nums[j]);
}
return ans;
}
};