Skip to content

Latest commit

 

History

History
178 lines (143 loc) · 5 KB

File metadata and controls

178 lines (143 loc) · 5 KB
comments difficulty edit_url tags
true
困难
数据库

English Version

题目描述

表:user_content

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| content_id  | int     |
| content_text| varchar |
+-------------+---------+
content_id 是这张表的唯一主键。
每一行包含一个不同的 ID 以及对应的文本内容。

编写一个解决方案来通过应用以下规则来转换 content_text 列中的文本:

  • 把每个单词的首字母变成大写
  • 其它字母保持小写
  • 保留所有现有空格

注意:content_text 中没有特殊字符。

返回结果表,同时包含原来的 content_text 以及将所有单词首字母变成大写的修改后文本。

结果格式如下所示。

 

示例:

输入:

user_content 表:

+------------+-----------------------------------+
| content_id | content_text                      |
+------------+-----------------------------------+
| 1          | hello world of Sql                |
| 2          | the QUICK brown fox               |
| 3          | data science AND machine learning |
| 4          | TOP rated programming BOOKS       |
+------------+-----------------------------------+

输出:

+------------+-----------------------------------+-----------------------------------+
| content_id | original_text                     | converted_text                    |
+------------+-----------------------------------+-----------------------------------+
| 1          | hello world of Sql                | Hello World Of Sql                |
| 2          | the QUICK brown fox               | The Quick Brown Fox               |
| 3          | data science AND machine learning | Data Science And Machine Learning |
| 4          | TOP rated programming BOOKS       | Top Rated Programming Books       |
+------------+-----------------------------------+-----------------------------------+

解释:

  • 对于 content_id = 1:
    • 每个单词的首字母都已经大写:Hello World Of Sql
  • 对于 content_id = 2:
    • 原来混合大小写的文本变为首字母大写:The Quick Brown Fox
  • 对于 content_id = 3:
    • 单词 AND 被转换为 "And":"Data Science And Machine Learning"
  • 对于 content_id = 4:
    • 正确处理单词 TOP rated:Top Rated
    • 将 BOOKS 从全大写改为首字母大写:Books

解法

方法一

MySQL

WITH RECURSIVE
    capitalized_words AS (
        SELECT
            content_id,
            content_text,
            SUBSTRING_INDEX(content_text, ' ', 1) AS word,
            SUBSTRING(
                content_text,
                LENGTH(SUBSTRING_INDEX(content_text, ' ', 1)) + 2
            ) AS remaining_text,
            CONCAT(
                UPPER(LEFT(SUBSTRING_INDEX(content_text, ' ', 1), 1)),
                LOWER(SUBSTRING(SUBSTRING_INDEX(content_text, ' ', 1), 2))
            ) AS processed_word
        FROM user_content
        UNION ALL
        SELECT
            c.content_id,
            c.content_text,
            SUBSTRING_INDEX(c.remaining_text, ' ', 1),
            SUBSTRING(c.remaining_text, LENGTH(SUBSTRING_INDEX(c.remaining_text, ' ', 1)) + 2),
            CONCAT(
                c.processed_word,
                ' ',
                CONCAT(
                    UPPER(LEFT(SUBSTRING_INDEX(c.remaining_text, ' ', 1), 1)),
                    LOWER(SUBSTRING(SUBSTRING_INDEX(c.remaining_text, ' ', 1), 2))
                )
            )
        FROM capitalized_words c
        WHERE c.remaining_text != ''
    )
SELECT
    content_id,
    content_text AS original_text,
    MAX(processed_word) AS converted_text
FROM capitalized_words
GROUP BY 1, 2;

Pandas

import pandas as pd


def process_text(user_content: pd.DataFrame) -> pd.DataFrame:
    user_content["converted_text"] = user_content["content_text"].apply(
        lambda text: " ".join(word.capitalize() for word in text.split(" "))
    )
    return user_content[["content_id", "content_text", "converted_text"]].rename(
        columns={"content_text": "original_text"}
    )