-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathjitinterfacex86.cpp
1203 lines (934 loc) · 41.2 KB
/
jitinterfacex86.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// ===========================================================================
// File: JITinterfaceX86.CPP
//
// ===========================================================================
// This contains JITinterface routines that are tailored for
// X86 platforms. Non-X86 versions of these can be found in
// JITinterfaceGen.cpp
#include "common.h"
#include "jitinterface.h"
#include "eeconfig.h"
#include "excep.h"
#include "comdelegate.h"
#include "field.h"
#include "ecall.h"
#include "asmconstants.h"
#include "virtualcallstub.h"
#include "eventtrace.h"
#include "threadsuspend.h"
#include <minipal/cpuid.h>
#if defined(_DEBUG) && !defined (WRITE_BARRIER_CHECK)
#define WRITE_BARRIER_CHECK 1
#endif
// To test with MON_DEBUG off, comment out the following line. DO NOT simply define
// to be 0 as the checks are for #ifdef not #if 0.
//
#ifdef _DEBUG
#define MON_DEBUG 1
#endif
class JIT_TrialAlloc
{
public:
enum Flags
{
NORMAL = 0x0,
MP_ALLOCATOR = 0x1,
SIZE_IN_EAX = 0x2,
OBJ_ARRAY = 0x4,
ALIGN8 = 0x8, // insert a dummy object to ensure 8 byte alignment (until the next GC)
ALIGN8OBJ = 0x10,
};
static void *GenAllocSFast(Flags flags);
static void *GenBox(Flags flags);
static void *GenAllocArray(Flags flags);
static void *GenAllocString(Flags flags);
private:
static void EmitAlignmentRoundup(CPUSTUBLINKER *psl,X86Reg regTestAlign, X86Reg regToAdj, Flags flags);
static void EmitDummyObject(CPUSTUBLINKER *psl, X86Reg regTestAlign, Flags flags);
static void EmitCore(CPUSTUBLINKER *psl, CodeLabel *noLock, CodeLabel *noAlloc, Flags flags);
static void EmitNoAllocCode(CPUSTUBLINKER *psl, Flags flags);
};
extern "C" LONG g_global_alloc_lock;
extern "C" void STDCALL JIT_WriteBarrierReg_PreGrow();// JIThelp.asm/JIThelp.s
extern "C" void STDCALL JIT_WriteBarrierReg_PostGrow();// JIThelp.asm/JIThelp.s
#ifdef _DEBUG
extern "C" void STDCALL WriteBarrierAssert(BYTE* ptr, Object* obj)
{
WRAPPER_NO_CONTRACT;
static BOOL fVerifyHeap = -1;
if (fVerifyHeap == -1)
fVerifyHeap = g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_GC;
if (fVerifyHeap)
{
if (obj)
{
obj->Validate(FALSE);
}
if (GCHeapUtilities::GetGCHeap()->IsHeapPointer(ptr))
{
Object* pObj = *(Object**)ptr;
_ASSERTE (pObj == NULL || GCHeapUtilities::GetGCHeap()->IsHeapPointer(pObj));
}
}
else
{
_ASSERTE((g_lowest_address <= ptr && ptr < g_highest_address) ||
((size_t)ptr < MAX_UNCHECKED_OFFSET_FOR_NULL_OBJECT));
}
}
#endif // _DEBUG
/*********************************************************************/
#ifdef FEATURE_HIJACK
extern "C" void STDCALL JIT_TailCallHelper(Thread * pThread);
void STDCALL JIT_TailCallHelper(Thread * pThread)
{
CONTRACTL {
NOTHROW;
GC_NOTRIGGER;
} CONTRACTL_END;
pThread->UnhijackThread();
}
#endif // FEATURE_HIJACK
// emit code that adds MIN_OBJECT_SIZE to reg if reg is unaligned thus making it aligned
void JIT_TrialAlloc::EmitAlignmentRoundup(CPUSTUBLINKER *psl, X86Reg testAlignReg, X86Reg adjReg, Flags flags)
{
STANDARD_VM_CONTRACT;
_ASSERTE((MIN_OBJECT_SIZE & 7) == 4); // want to change alignment
CodeLabel *AlreadyAligned = psl->NewCodeLabel();
// test reg, 7
psl->Emit16(0xC0F7 | (static_cast<unsigned short>(testAlignReg) << 8));
psl->Emit32(0x7);
// jz alreadyAligned
if (flags & ALIGN8OBJ)
{
psl->X86EmitCondJump(AlreadyAligned, X86CondCode::kJNZ);
}
else
{
psl->X86EmitCondJump(AlreadyAligned, X86CondCode::kJZ);
}
psl->X86EmitAddReg(adjReg, MIN_OBJECT_SIZE);
// AlreadyAligned:
psl->EmitLabel(AlreadyAligned);
}
// if 'reg' is unaligned, then set the dummy object at EAX and increment EAX past
// the dummy object
void JIT_TrialAlloc::EmitDummyObject(CPUSTUBLINKER *psl, X86Reg alignTestReg, Flags flags)
{
STANDARD_VM_CONTRACT;
CodeLabel *AlreadyAligned = psl->NewCodeLabel();
// test reg, 7
psl->Emit16(0xC0F7 | (static_cast<unsigned short>(alignTestReg) << 8));
psl->Emit32(0x7);
// jz alreadyAligned
if (flags & ALIGN8OBJ)
{
psl->X86EmitCondJump(AlreadyAligned, X86CondCode::kJNZ);
}
else
{
psl->X86EmitCondJump(AlreadyAligned, X86CondCode::kJZ);
}
// Make the fake object
// mov EDX, [g_pObjectClass]
psl->Emit16(0x158B);
psl->Emit32((int)(size_t)&g_pObjectClass);
// mov [EAX], EDX
psl->X86EmitOffsetModRM(0x89, kEDX, kEAX, 0);
// add EAX, MIN_OBJECT_SIZE
psl->X86EmitAddReg(kEAX, MIN_OBJECT_SIZE);
// AlreadyAligned:
psl->EmitLabel(AlreadyAligned);
}
void JIT_TrialAlloc::EmitCore(CPUSTUBLINKER *psl, CodeLabel *noLock, CodeLabel *noAlloc, Flags flags)
{
STANDARD_VM_CONTRACT;
// Upon entry here, ecx contains the method we are to try allocate memory for
// Upon exit, eax contains the allocated memory, edx is trashed, and ecx undisturbed
if (flags & MP_ALLOCATOR)
{
if (flags & (ALIGN8 | SIZE_IN_EAX | ALIGN8OBJ))
{
if (flags & ALIGN8OBJ)
{
// mov eax, [ecx]MethodTable.m_BaseSize
psl->X86EmitIndexRegLoad(kEAX, kECX, offsetof(MethodTable, m_BaseSize));
}
psl->X86EmitPushReg(kEBX); // we need a spare register
}
else
{
// mov eax, [ecx]MethodTable.m_BaseSize
psl->X86EmitIndexRegLoad(kEAX, kECX, offsetof(MethodTable, m_BaseSize));
}
assert( ((flags & ALIGN8)==0 || // EAX loaded by else statement
(flags & SIZE_IN_EAX) || // EAX already comes filled out
(flags & ALIGN8OBJ) ) // EAX loaded in the if (flags & ALIGN8OBJ) statement
&& "EAX should contain size for allocation and it doesnt!!!");
// Fetch current thread into EDX, preserving EAX and ECX
psl->X86EmitCurrentThreadAllocContextFetch(kEDX, (1 << kEAX) | (1 << kECX));
// Try the allocation.
if (flags & (ALIGN8 | SIZE_IN_EAX | ALIGN8OBJ))
{
// MOV EBX, [edx]alloc_context.m_GCAllocContext.alloc_ptr
psl->X86EmitOffsetModRM(0x8B, kEBX, kEDX, ee_alloc_context::getAllocPtrFieldOffset());
// add EAX, EBX
psl->Emit16(0xC303);
if (flags & ALIGN8)
EmitAlignmentRoundup(psl, kEBX, kEAX, flags); // bump EAX up size by 12 if EBX unaligned (so that we are aligned)
}
else
{
// add eax, [edx]alloc_context.m_GCAllocContext.alloc_ptr
psl->X86EmitOffsetModRM(0x03, kEAX, kEDX, ee_alloc_context::getAllocPtrFieldOffset());
}
// cmp eax, [edx]alloc_context.m_CombinedLimit
psl->X86EmitOffsetModRM(0x3b, kEAX, kEDX, ee_alloc_context::getCombinedLimitFieldOffset());
// ja noAlloc
psl->X86EmitCondJump(noAlloc, X86CondCode::kJA);
// Fill in the allocation and get out.
// mov [edx]alloc_context.m_GCAllocContext.alloc_ptr, eax
psl->X86EmitIndexRegStore(kEDX, ee_alloc_context::getAllocPtrFieldOffset(), kEAX);
if (flags & (ALIGN8 | SIZE_IN_EAX | ALIGN8OBJ))
{
// mov EAX, EBX
psl->Emit16(0xC38B);
// pop EBX
psl->X86EmitPopReg(kEBX);
if (flags & ALIGN8)
EmitDummyObject(psl, kEAX, flags);
}
else
{
// sub eax, [ecx]MethodTable.m_BaseSize
psl->X86EmitOffsetModRM(0x2b, kEAX, kECX, offsetof(MethodTable, m_BaseSize));
}
// mov dword ptr [eax], ecx
psl->X86EmitIndexRegStore(kEAX, 0, kECX);
}
else
{
// Take the GC lock (there is no lock prefix required - we will use JIT_TrialAllocSFastMP on an MP System).
// inc dword ptr [g_global_alloc_lock]
psl->Emit16(0x05ff);
psl->Emit32((int)(size_t)&g_global_alloc_lock);
// jnz NoLock
psl->X86EmitCondJump(noLock, X86CondCode::kJNZ);
if (flags & SIZE_IN_EAX)
{
// mov edx, eax
psl->Emit16(0xd08b);
}
else
{
// mov edx, [ecx]MethodTable.m_BaseSize
psl->X86EmitIndexRegLoad(kEDX, kECX, offsetof(MethodTable, m_BaseSize));
}
// mov eax, dword ptr [g_global_alloc_context.m_GCAllocContext.alloc_ptr]
psl->Emit8(0xA1);
psl->Emit32((int)(size_t)&g_global_alloc_context + ee_alloc_context::getAllocPtrFieldOffset());
// Try the allocation.
// add edx, eax
psl->Emit16(0xd003);
if (flags & (ALIGN8 | ALIGN8OBJ))
EmitAlignmentRoundup(psl, kEAX, kEDX, flags); // bump up EDX size by 12 if EAX unaligned (so that we are aligned)
// cmp edx, dword ptr [g_global_alloc_context.m_CombinedLimit]
psl->Emit16(0x153b);
psl->Emit32((int)(size_t)&g_global_alloc_context + ee_alloc_context::getCombinedLimitFieldOffset());
// ja noAlloc
psl->X86EmitCondJump(noAlloc, X86CondCode::kJA);
// Fill in the allocation and get out.
// mov dword ptr [g_global_alloc_context.m_GCAllocContext.alloc_ptr], edx
psl->Emit16(0x1589);
psl->Emit32((int)(size_t)&g_global_alloc_context + ee_alloc_context::getAllocPtrFieldOffset());
if (flags & (ALIGN8 | ALIGN8OBJ))
EmitDummyObject(psl, kEAX, flags);
// mov dword ptr [eax], ecx
psl->X86EmitIndexRegStore(kEAX, 0, kECX);
// mov dword ptr [g_global_alloc_lock], 0FFFFFFFFh
psl->Emit16(0x05C7);
psl->Emit32((int)(size_t)&g_global_alloc_lock);
psl->Emit32(0xFFFFFFFF);
}
#ifdef INCREMENTAL_MEMCLR
// <TODO>We're planning to get rid of this anyhow according to Patrick</TODO>
_ASSERTE(!"NYI");
#endif // INCREMENTAL_MEMCLR
}
void JIT_TrialAlloc::EmitNoAllocCode(CPUSTUBLINKER *psl, Flags flags)
{
STANDARD_VM_CONTRACT;
if (flags & MP_ALLOCATOR)
{
if (flags & (ALIGN8|SIZE_IN_EAX))
psl->X86EmitPopReg(kEBX);
}
else
{
// mov dword ptr [g_global_alloc_lock], 0FFFFFFFFh
psl->Emit16(0x05c7);
psl->Emit32((int)(size_t)&g_global_alloc_lock);
psl->Emit32(0xFFFFFFFF);
}
}
FCDECL1(Object*, JIT_New, CORINFO_CLASS_HANDLE typeHnd_);
void *JIT_TrialAlloc::GenAllocSFast(Flags flags)
{
STANDARD_VM_CONTRACT;
CPUSTUBLINKER sl;
CodeLabel *noLock = sl.NewCodeLabel();
CodeLabel *noAlloc = sl.NewCodeLabel();
// Emit the main body of the trial allocator, be it SP or MP
EmitCore(&sl, noLock, noAlloc, flags);
// Here we are at the end of the success case - just emit a ret
sl.X86EmitReturn(0);
// Come here in case of no space
sl.EmitLabel(noAlloc);
// Release the lock in the uniprocessor case
EmitNoAllocCode(&sl, flags);
// Come here in case of failure to get the lock
sl.EmitLabel(noLock);
// Jump to the framed helper
sl.X86EmitNearJump(sl.NewExternalCodeLabel((LPVOID)JIT_New));
Stub *pStub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetExecutableHeap(), NEWSTUB_FL_NONE, "AllocSFast");
return (void *)pStub->GetEntryPoint();
}
void *JIT_TrialAlloc::GenBox(Flags flags)
{
STANDARD_VM_CONTRACT;
CPUSTUBLINKER sl;
CodeLabel *noLock = sl.NewCodeLabel();
CodeLabel *noAlloc = sl.NewCodeLabel();
CodeLabel *nullRef = sl.NewCodeLabel();
// Save address of value to be boxed
sl.X86EmitPushReg(kEBX);
sl.Emit16(0xda8b);
// Check for null ref
// test edx, edx
sl.X86EmitR2ROp(0x85, kEDX, kEDX);
// je nullRef
sl.X86EmitCondJump(nullRef, X86CondCode::kJE);
// Emit the main body of the trial allocator
EmitCore(&sl, noLock, noAlloc, flags);
// Here we are at the end of the success case
// Check whether the object contains pointers
// test [ecx]MethodTable.m_dwFlags,MethodTable::enum_flag_ContainsGCPointers
sl.X86EmitOffsetModRM(0xf7, (X86Reg)0x0, kECX, offsetof(MethodTable, m_dwFlags));
sl.Emit32(MethodTable::enum_flag_ContainsGCPointers);
CodeLabel *pointerLabel = sl.NewCodeLabel();
// jne pointerLabel
sl.X86EmitCondJump(pointerLabel, X86CondCode::kJNE);
// We have no pointers - emit a simple inline copy loop
// mov ecx, [ecx]MethodTable.m_BaseSize
sl.X86EmitOffsetModRM(0x8b, kECX, kECX, offsetof(MethodTable, m_BaseSize));
// sub ecx,12
sl.X86EmitSubReg(kECX, 12);
CodeLabel *loopLabel = sl.NewCodeLabel();
sl.EmitLabel(loopLabel);
// mov edx,[ebx+ecx]
sl.X86EmitOp(0x8b, kEDX, kEBX, 0, kECX, 1);
// mov [eax+ecx+4],edx
sl.X86EmitOp(0x89, kEDX, kEAX, 4, kECX, 1);
// sub ecx,4
sl.X86EmitSubReg(kECX, 4);
// jg loopLabel
sl.X86EmitCondJump(loopLabel, X86CondCode::kJGE);
sl.X86EmitPopReg(kEBX);
sl.X86EmitReturn(0);
// Arrive at this label if there are pointers in the object
sl.EmitLabel(pointerLabel);
// Do call to CopyValueClassUnchecked(object, data, pMT)
#ifdef UNIX_X86_ABI
#define STACK_ALIGN_PADDING 12
// Make pad to align esp
sl.X86EmitSubEsp(STACK_ALIGN_PADDING);
#endif // UNIX_X86_ABI
// Pass pMT (still in ECX)
sl.X86EmitPushReg(kECX);
// Pass data (still in EBX)
sl.X86EmitPushReg(kEBX);
// Save the address of the object just allocated
// mov ebx,eax
sl.Emit16(0xD88B);
// Pass address of first user byte in the newly allocated object
sl.X86EmitAddReg(kEAX, 4);
sl.X86EmitPushReg(kEAX);
// call CopyValueClass
sl.X86EmitCall(sl.NewExternalCodeLabel((LPVOID) CopyValueClassUnchecked), 12);
#ifdef UNIX_X86_ABI
// Make pad to align esp
sl.X86EmitAddEsp(STACK_ALIGN_PADDING);
#undef STACK_ALIGN_PADDING
#endif // UNIX_X86_ABI
// Restore the address of the newly allocated object and return it.
// mov eax,ebx
sl.Emit16(0xC38B);
sl.X86EmitPopReg(kEBX);
sl.X86EmitReturn(0);
// Come here in case of no space or null ref
sl.EmitLabel(noAlloc);
sl.EmitLabel(nullRef);
// Release the lock in the uniprocessor case
EmitNoAllocCode(&sl, flags);
// Come here in case of failure to get the lock
sl.EmitLabel(noLock);
// Restore the address of the value to be boxed
// mov edx,ebx
sl.Emit16(0xD38B);
// pop ebx
sl.X86EmitPopReg(kEBX);
// Jump to the slow version of JIT_Box
sl.X86EmitNearJump(sl.NewExternalCodeLabel((LPVOID) JIT_Box));
Stub *pStub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetExecutableHeap(), NEWSTUB_FL_NONE, "Box");
return (void *)pStub->GetEntryPoint();
}
void *JIT_TrialAlloc::GenAllocArray(Flags flags)
{
STANDARD_VM_CONTRACT;
CPUSTUBLINKER sl;
CodeLabel *noLock = sl.NewCodeLabel();
CodeLabel *noAlloc = sl.NewCodeLabel();
// We were passed a (shared) method table in RCX, which contains the element type.
// If this is the allocator for use from unmanaged code, ECX contains the
// element type descriptor, or the CorElementType.
// We need to save ECX for later
// push ecx
sl.X86EmitPushReg(kECX);
// The element count is in EDX - we need to save it for later.
// push edx
sl.X86EmitPushReg(kEDX);
// Do a conservative check here. This is to avoid doing overflow checks within this function. We'll
// still have to do a size check before running through the body of EmitCore. The way we do the check
// against the allocation quantum there requires that we not overflow when adding the size to the
// current allocation context pointer. There is exactly LARGE_OBJECT_SIZE of headroom there, so do that
// check before we EmitCore.
//
// For reference types, we can just pick the correct value of maxElems and skip the second check.
//
// By the way, we use 258 as a "slack" value to ensure that we don't overflow because of the size of the
// array header or alignment.
sl.Emit16(0xfa81);
// The large object heap is 8 byte aligned, so for double arrays we
// want to bias toward putting things in the large object heap
unsigned maxElems = 0xffff - 256;
#ifdef FEATURE_DOUBLE_ALIGNMENT_HINT
if ((flags & ALIGN8) && g_pConfig->GetDoubleArrayToLargeObjectHeapThreshold() < maxElems)
maxElems = g_pConfig->GetDoubleArrayToLargeObjectHeapThreshold();
#endif // FEATURE_DOUBLE_ALIGNMENT_HINT
if (flags & OBJ_ARRAY)
{
//Since we know that the array elements are sizeof(OBJECTREF), set maxElems exactly here (use the
//same slack from above.
maxElems = min(maxElems, (LARGE_OBJECT_SIZE/sizeof(OBJECTREF)) - 256);
}
sl.Emit32(maxElems);
// jae noLock - seems tempting to jump to noAlloc, but we haven't taken the lock yet
sl.X86EmitCondJump(noLock, X86CondCode::kJAE);
if (flags & OBJ_ARRAY)
{
// In this case we know the element size is sizeof(void *), or 4 for x86
// This helps us in two ways - we can shift instead of multiplying, and
// there's no need to align the size either
_ASSERTE(sizeof(void *) == 4);
// mov eax, [ecx]MethodTable.m_BaseSize
sl.X86EmitIndexRegLoad(kEAX, kECX, offsetof(MethodTable, m_BaseSize));
// lea eax, [eax+edx*4]
sl.X86EmitOp(0x8d, kEAX, kEAX, 0, kEDX, 4);
}
else
{
// movzx eax, [ECX]MethodTable.m_dwFlags /* component size */
sl.Emit8(0x0f);
sl.X86EmitOffsetModRM(0xb7, kEAX, kECX, offsetof(MethodTable, m_dwFlags /* component size */));
// mul eax, edx
sl.Emit16(0xe2f7);
// add eax, [ecx]MethodTable.m_BaseSize
sl.X86EmitOffsetModRM(0x03, kEAX, kECX, offsetof(MethodTable, m_BaseSize));
// Since this is an array of value classes, we need an extra compare here to make sure we're still
// less than LARGE_OBJECT_SIZE. This is the last bit of arithmetic before we compare against the
// allocation context, so do it here.
// cmp eax, LARGE_OBJECT_SIZE
// ja noLock
sl.Emit8(0x3d);
sl.Emit32(LARGE_OBJECT_SIZE);
sl.X86EmitCondJump(noLock, X86CondCode::kJA);
}
#if DATA_ALIGNMENT == 4
if (flags & OBJ_ARRAY)
{
// No need for rounding in this case - element size is 4, and m_BaseSize is guaranteed
// to be a multiple of 4.
}
else
#endif // DATA_ALIGNMENT == 4
{
// round the size to a multiple of 4
// add eax, 3
sl.X86EmitAddReg(kEAX, (DATA_ALIGNMENT-1));
// and eax, ~3
sl.Emit16(0xe083);
sl.Emit8(~(DATA_ALIGNMENT-1));
}
flags = (Flags)(flags | SIZE_IN_EAX);
// Emit the main body of the trial allocator, be it SP or MP
EmitCore(&sl, noLock, noAlloc, flags);
// Here we are at the end of the success case - store element count
// and possibly the element type descriptor and return
// pop edx - element count
sl.X86EmitPopReg(kEDX);
// pop ecx - array method table
sl.X86EmitPopReg(kECX);
// mov dword ptr [eax]ArrayBase.m_NumComponents, edx
sl.X86EmitIndexRegStore(kEAX, offsetof(ArrayBase,m_NumComponents), kEDX);
// no stack parameters
sl.X86EmitReturn(0);
// Come here in case of no space
sl.EmitLabel(noAlloc);
// Release the lock in the uniprocessor case
EmitNoAllocCode(&sl, flags);
// Come here in case of failure to get the lock
sl.EmitLabel(noLock);
// pop edx - element count
sl.X86EmitPopReg(kEDX);
// pop ecx - array method table
sl.X86EmitPopReg(kECX);
// Jump to the framed helper
CodeLabel * target = sl.NewExternalCodeLabel((LPVOID)JIT_NewArr1);
_ASSERTE(target->e.m_pExternalAddress);
sl.X86EmitNearJump(target);
Stub *pStub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetExecutableHeap(), NEWSTUB_FL_NONE, "AllocArray");
return (void *)pStub->GetEntryPoint();
}
void *JIT_TrialAlloc::GenAllocString(Flags flags)
{
STANDARD_VM_CONTRACT;
CPUSTUBLINKER sl;
CodeLabel *noLock = sl.NewCodeLabel();
CodeLabel *noAlloc = sl.NewCodeLabel();
// We were passed the number of characters in ECX
// push ecx
sl.X86EmitPushReg(kECX);
// mov eax, ecx
sl.Emit16(0xc18b);
// we need to load the method table for string from the global
// mov ecx, [g_pStringClass]
sl.Emit16(0x0d8b);
sl.Emit32((int)(size_t)&g_pStringClass);
// Instead of doing elaborate overflow checks, we just limit the number of elements
// to (LARGE_OBJECT_SIZE - 256)/sizeof(WCHAR) or less.
// This will avoid all overflow problems, as well as making sure
// big string objects are correctly allocated in the big object heap.
_ASSERTE(sizeof(WCHAR) == 2);
// cmp edx,(LARGE_OBJECT_SIZE - 256)/sizeof(WCHAR)
sl.Emit16(0xf881);
sl.Emit32((LARGE_OBJECT_SIZE - 256)/sizeof(WCHAR));
// jae noLock - seems tempting to jump to noAlloc, but we haven't taken the lock yet
sl.X86EmitCondJump(noLock, X86CondCode::kJAE);
// Calculate the final size to allocate.
// We need to calculate baseSize + cnt*2, then round that up by adding 3 and anding ~3.
// lea eax, [basesize+(alignment-1)+eax*2]
sl.Emit16(0x048d);
sl.Emit8(0x45);
sl.Emit32(StringObject::GetBaseSize() + (DATA_ALIGNMENT-1));
// and eax, ~3
sl.Emit16(0xe083);
sl.Emit8(~(DATA_ALIGNMENT-1));
flags = (Flags)(flags | SIZE_IN_EAX);
// Emit the main body of the trial allocator, be it SP or MP
EmitCore(&sl, noLock, noAlloc, flags);
// Here we are at the end of the success case - store element count
// and possibly the element type descriptor and return
// pop ecx - element count
sl.X86EmitPopReg(kECX);
// mov dword ptr [eax]ArrayBase.m_StringLength, ecx
sl.X86EmitIndexRegStore(kEAX, offsetof(StringObject,m_StringLength), kECX);
// no stack parameters
sl.X86EmitReturn(0);
// Come here in case of no space
sl.EmitLabel(noAlloc);
// Release the lock in the uniprocessor case
EmitNoAllocCode(&sl, flags);
// Come here in case of failure to get the lock
sl.EmitLabel(noLock);
// pop ecx - element count
sl.X86EmitPopReg(kECX);
// Jump to the framed helper
CodeLabel * target = sl.NewExternalCodeLabel((LPVOID)FramedAllocateString);
sl.X86EmitNearJump(target);
Stub *pStub = sl.Link(SystemDomain::GetGlobalLoaderAllocator()->GetExecutableHeap(), NEWSTUB_FL_NONE, "AllocString");
return (void *)pStub->GetEntryPoint();
}
#define NUM_WRITE_BARRIERS 6
static const BYTE c_rgWriteBarrierRegs[NUM_WRITE_BARRIERS] = {
0, // EAX
1, // ECX
3, // EBX
6, // ESI
7, // EDI
5, // EBP
};
static const void * const c_rgWriteBarriers[NUM_WRITE_BARRIERS] = {
(void *)JIT_WriteBarrierEAX,
(void *)JIT_WriteBarrierECX,
(void *)JIT_WriteBarrierEBX,
(void *)JIT_WriteBarrierESI,
(void *)JIT_WriteBarrierEDI,
(void *)JIT_WriteBarrierEBP,
};
#ifdef WRITE_BARRIER_CHECK
static const void * const c_rgDebugWriteBarriers[NUM_WRITE_BARRIERS] = {
(void *)JIT_DebugWriteBarrierEAX,
(void *)JIT_DebugWriteBarrierECX,
(void *)JIT_DebugWriteBarrierEBX,
(void *)JIT_DebugWriteBarrierESI,
(void *)JIT_DebugWriteBarrierEDI,
(void *)JIT_DebugWriteBarrierEBP,
};
#endif // WRITE_BARRIER_CHECK
/*********************************************************************/
// Initialize the part of the JIT helpers that require very little of
// EE infrastructure to be in place.
/*********************************************************************/
#pragma warning (disable : 4731)
void InitJITHelpers1()
{
STANDARD_VM_CONTRACT;
#define ETW_NUM_JIT_HELPERS 10
static const LPCWSTR pHelperNames[ETW_NUM_JIT_HELPERS] = {
W("@NewObject"),
W("@NewObjectAlign8"),
W("@Box"),
W("@NewArray1Object"),
W("@NewArray1ValueType"),
W("@NewArray1ObjectAlign8"),
W("@StaticBaseObject"),
W("@StaticBaseNonObject"),
W("@StaticBaseObjectNoCCtor"),
W("@StaticBaseNonObjectNoCCtor")
};
PVOID pMethodAddresses[ETW_NUM_JIT_HELPERS]={0};
_ASSERTE(g_SystemInfo.dwNumberOfProcessors != 0);
JIT_TrialAlloc::Flags flags = GCHeapUtilities::UseThreadAllocationContexts() ?
JIT_TrialAlloc::MP_ALLOCATOR : JIT_TrialAlloc::NORMAL;
if (!(TrackAllocationsEnabled()
|| LoggingOn(LF_GCALLOC, LL_INFO10)
#ifdef _DEBUG
|| (g_pConfig->ShouldInjectFault(INJECTFAULT_GCHEAP) != 0)
#endif
)
)
{
// Replace the slow helpers with faster version
pMethodAddresses[0] = JIT_TrialAlloc::GenAllocSFast(flags);
SetJitHelperFunction(CORINFO_HELP_NEWSFAST, pMethodAddresses[0]);
pMethodAddresses[1] = JIT_TrialAlloc::GenAllocSFast((JIT_TrialAlloc::Flags)(flags|JIT_TrialAlloc::ALIGN8 | JIT_TrialAlloc::ALIGN8OBJ));
SetJitHelperFunction(CORINFO_HELP_NEWSFAST_ALIGN8, pMethodAddresses[1]);
pMethodAddresses[2] = JIT_TrialAlloc::GenBox(flags);
SetJitHelperFunction(CORINFO_HELP_BOX, pMethodAddresses[2]);
pMethodAddresses[3] = JIT_TrialAlloc::GenAllocArray((JIT_TrialAlloc::Flags)(flags|JIT_TrialAlloc::OBJ_ARRAY));
SetJitHelperFunction(CORINFO_HELP_NEWARR_1_OBJ, pMethodAddresses[3]);
pMethodAddresses[4] = JIT_TrialAlloc::GenAllocArray(flags);
SetJitHelperFunction(CORINFO_HELP_NEWARR_1_VC, pMethodAddresses[4]);
pMethodAddresses[5] = JIT_TrialAlloc::GenAllocArray((JIT_TrialAlloc::Flags)(flags|JIT_TrialAlloc::ALIGN8));
SetJitHelperFunction(CORINFO_HELP_NEWARR_1_ALIGN8, pMethodAddresses[5]);
// If allocation logging is on, then we divert calls to FastAllocateString to an Ecall method, not this
// generated method. Find this workaround in Ecall::Init() in ecall.cpp.
ECall::DynamicallyAssignFCallImpl((PCODE) JIT_TrialAlloc::GenAllocString(flags), ECall::FastAllocateString);
}
ETW::MethodLog::StubsInitialized(pMethodAddresses, (PVOID *)pHelperNames, ETW_NUM_JIT_HELPERS);
// All write barrier helpers should fit into one page.
// If you hit this assert on retail build, there is most likely problem with BBT script.
_ASSERTE_ALL_BUILDS((BYTE*)JIT_WriteBarrierGroup_End - (BYTE*)JIT_WriteBarrierGroup < (ptrdiff_t)GetOsPageSize());
_ASSERTE_ALL_BUILDS((BYTE*)JIT_PatchedWriteBarrierGroup_End - (BYTE*)JIT_PatchedWriteBarrierGroup < (ptrdiff_t)GetOsPageSize());
// Copy the write barriers to their final resting place.
for (int iBarrier = 0; iBarrier < NUM_WRITE_BARRIERS; iBarrier++)
{
BYTE * pfunc = (BYTE *) JIT_WriteBarrierReg_PreGrow;
BYTE * pBuf = GetWriteBarrierCodeLocation((BYTE *)c_rgWriteBarriers[iBarrier]);
int reg = c_rgWriteBarrierRegs[iBarrier];
BYTE * pBufRW = pBuf;
ExecutableWriterHolderNoLog<BYTE> barrierWriterHolder;
if (IsWriteBarrierCopyEnabled())
{
barrierWriterHolder.AssignExecutableWriterHolder(pBuf, 34);
pBufRW = barrierWriterHolder.GetRW();
}
memcpy(pBufRW, pfunc, 34);
// assert the copied code ends in a ret to make sure we got the right length
_ASSERTE(pBuf[33] == 0xC3);
// We need to adjust registers in a couple of instructions
// It would be nice to have the template contain all zeroes for
// the register fields (corresponding to EAX), but that doesn't
// work because then we get a smaller encoding for the compares
// that only works for EAX but not the other registers.
// So we always have to clear the register fields before updating them.
// First instruction to patch is a mov [edx], reg
_ASSERTE(pBuf[0] == 0x89);
// Update the reg field (bits 3..5) of the ModR/M byte of this instruction
pBufRW[1] &= 0xc7;
pBufRW[1] |= reg << 3;
// Second instruction to patch is cmp reg, imm32 (low bound)
_ASSERTE(pBuf[2] == 0x81);
// Here the lowest three bits in ModR/M field are the register
pBufRW[3] &= 0xf8;
pBufRW[3] |= reg;
#ifdef WRITE_BARRIER_CHECK
// Don't do the fancy optimization just jump to the old one
// Use the slow one for write barrier checks build because it has some good asserts
if (g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_BARRIERCHECK) {
pfunc = &pBufRW[0];
*pfunc++ = 0xE9; // JMP c_rgDebugWriteBarriers[iBarrier]
*((DWORD*) pfunc) = (BYTE*) c_rgDebugWriteBarriers[iBarrier] - (&pBuf[1] + sizeof(DWORD));
}
#endif // WRITE_BARRIER_CHECK
}
#ifndef CODECOVERAGE
ValidateWriteBarrierHelpers();
#endif
// Leave the patched region writable for StompWriteBarrierEphemeral(), StompWriteBarrierResize()
}
#pragma warning (default : 4731)
// these constans are offsets into our write barrier helpers for values that get updated as the bounds of the managed heap change.
// ephemeral region
const int AnyGrow_EphemeralLowerBound = 4; // offset is the same for both pre and post grow functions
const int PostGrow_EphemeralUpperBound = 12;
// card table
const int PreGrow_CardTableFirstLocation = 16;
const int PreGrow_CardTableSecondLocation = 28;
const int PostGrow_CardTableFirstLocation = 24;
const int PostGrow_CardTableSecondLocation = 36;
#ifndef CODECOVERAGE // Deactivate alignment validation for code coverage builds
// because the instrumented binaries will not preserve alignment constraints and we will fail.
void ValidateWriteBarrierHelpers()
{
// we have an invariant that the addresses of all the values that we update in our write barrier
// helpers must be naturally aligned, this is so that the update can happen atomically since there
// are places where we update these values while the EE is running
#ifdef WRITE_BARRIER_CHECK
// write barrier checking uses the slower helpers that we don't bash so there is no need for validation
if (g_pConfig->GetHeapVerifyLevel() & EEConfig::HEAPVERIFY_BARRIERCHECK)
return;
#endif // WRITE_BARRIER_CHECK
// first validate the PreGrow helper
BYTE* pWriteBarrierFunc = GetWriteBarrierCodeLocation(reinterpret_cast<BYTE*>(JIT_WriteBarrierEAX));
// ephemeral region
DWORD* pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[AnyGrow_EphemeralLowerBound]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
// card table
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[PreGrow_CardTableFirstLocation]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[PreGrow_CardTableSecondLocation]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
// now validate the PostGrow helper
pWriteBarrierFunc = reinterpret_cast<BYTE*>(JIT_WriteBarrierReg_PostGrow);
// ephemeral region
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[AnyGrow_EphemeralLowerBound]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[PostGrow_EphemeralUpperBound]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
// card table
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[PostGrow_CardTableFirstLocation]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
pLocation = reinterpret_cast<DWORD*>(&pWriteBarrierFunc[PostGrow_CardTableSecondLocation]);
_ASSERTE_ALL_BUILDS((reinterpret_cast<DWORD>(pLocation) & 0x3) == 0);
_ASSERTE_ALL_BUILDS(*pLocation == 0xf0f0f0f0);
}
#endif //CODECOVERAGE
/*********************************************************************/
#define WriteBarrierIsPreGrow() ((GetWriteBarrierCodeLocation((BYTE *)JIT_WriteBarrierEAX))[10] == 0xc1)
/*********************************************************************/
// When a GC happens, the upper and lower bounds of the ephemeral
// generation change. This routine updates the WriteBarrier thunks
// with the new values.
int StompWriteBarrierEphemeral(bool /* isRuntimeSuspended */)
{
CONTRACTL {
NOTHROW;
GC_NOTRIGGER;
} CONTRACTL_END;
int stompWBCompleteActions = SWB_PASS;
#ifdef WRITE_BARRIER_CHECK
// Don't do the fancy optimization if we are checking write barrier
if ((GetWriteBarrierCodeLocation((BYTE *)JIT_WriteBarrierEAX))[0] == 0xE9) // we are using slow write barrier
return stompWBCompleteActions;
#endif // WRITE_BARRIER_CHECK
// Update the lower bound.
for (int iBarrier = 0; iBarrier < NUM_WRITE_BARRIERS; iBarrier++)
{
BYTE * pBuf = GetWriteBarrierCodeLocation((BYTE *)c_rgWriteBarriers[iBarrier]);