You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This notebook details how to use the data in `Python` and `R`: http://nbviewer.jupyter.org/github/dpeerlab/Palantir/blob/master/notebooks/manuscript_data.ipynb
56
55
57
56
## Comparison to trajectory detection algorithms
58
57
Notebooks detailing the generation of results comparing Palantir to trajectory detection algorithms are available [here](https://github.com/dpeerlab/Palantir/blob/master/notebooks/comparisons)
@@ -73,6 +72,24 @@ ____
73
72
74
73
Release Notes
75
74
-------------
75
+
### Version 1.4.0
76
+
* Made pygam an optional dependency that can be installed with `pip install palantir[gam]` or `pip install palantir[full]`
77
+
* Added proper conditional imports and improved error handling for pygam
78
+
* Enhanced `run_magic_imputation` to return appropriate data types for different inputs
79
+
* Updated code to use direct AnnData imports for newer compatibility
80
+
* Improved version detection using `importlib.metadata` with graceful fallbacks
81
+
* Fixed Series indexing deprecation warnings in early cell detection functions
82
+
* Expanded and standardized documentation with NumPy-style docstrings throughout the codebase
83
+
* Added comprehensive type hints to improve code quality and IDE support
84
+
* Remove dependency from `_` methods in scanpy for plotting.
85
+
86
+
#### Testing and Quality Improvements
87
+
* Added comprehensive tests for optional pygam dependency
88
+
* Improved test coverage for run_magic_imputation with various input/output types
89
+
* Added integration tests against expected results
90
+
* Enhanced test infrastructure to work with newer library versions
91
+
* Expanded test coverage to catch edge cases in data processing
92
+
76
93
### Version 1.3.6
77
94
*`run_magic_imputation` now has a boolean parameter `sparse` to control output sparsity
78
95
***bugfix**: `run_local_variability` for dense expression arrays now runs much faster and more accurate
@@ -88,15 +105,15 @@ Release Notes
88
105
* compatibility with `scanpy>=1.10.0`
89
106
90
107
### Version 1.3.2
91
-
* require `python>=3.8`
108
+
* require `python>=3.9`
92
109
* implement CI for testing
93
-
* fixes for edge cases discoverd through extended testing
110
+
* fixes for edge cases discovered through extended testing
94
111
* implement `plot_trajectory` function to show trajectory on the umap
95
-
* scale pseudotime to unit intervall in anndata
112
+
* scale pseudotime to unit interval in anndata
96
113
97
114
### Version 1.3.1
98
-
* implemented `palantir.plot.plot_stats` to plot arbitray cell-wise statistics as x-/y-positions.
99
-
* reduce memory usgae of `palantir.presults.compute_gene_trends`
115
+
* implemented `palantir.plot.plot_stats` to plot arbitrary cell-wise statistics as x-/y-positions.
116
+
* reduce memory usage of `palantir.presults.compute_gene_trends`
100
117
* removed seaborn dependency
101
118
* refactor `run_diffusion_maps` to split out `compute_kernel` and `diffusion_maps_from_kernel`
102
119
* remove unused dependencies `tables`, `Cython`, `cmake`, and `tzlocal`.
@@ -107,49 +124,49 @@ Release Notes
107
124
#### New Features
108
125
* Enable an AnnData-centric workflow for improved usability and interoperability with other single-cell analysis tools.
109
126
* Introduced new utility functions
110
-
*`palantir.utils.early_cell` To automate fining an early cell based on cell type and diffusion components.
127
+
*`palantir.utils.early_cell` To automate finding an early cell based on cell type and diffusion components.
111
128
*`palantir.utils.find_terminal_states` To automate finding terminal cell states based on cell type and diffusion components.
112
129
*`palantir.presults.select_branch_cells` To find cells associated to each branch based on fate probability.
113
130
*`palantir.plot.plot_branch_selection` To inspect the cell to branch association.
114
131
*`palantir.utils.run_local_variability` To compute local gene expression variability.
115
132
*`palantir.utils.run_density` A wrapper for [mellon.DensityEstimator](https://mellon.readthedocs.io/en/latest/model.html#mellon.model.DensityEstimator).
116
133
*`palantir.utils.run_density_evaluation` Evaluate computed density on a different dataset.
117
134
*`palantir.utils.run_low_density_variability`. To aggregate local gene expression variability in low density.
118
-
*`palantir.plot.plot_branch`. To plot branch-selected cells over pseudotime in arbitrary y-postion and coloring.
119
-
*`palantir.plot.plot_trend`. To plot the gene trend ontop of `palantir.plot.plot_branch`.
135
+
*`palantir.plot.plot_branch`. To plot branch-selected cells over pseudotime in arbitrary y-position and coloring.
136
+
*`palantir.plot.plot_trend`. To plot the gene trend on top of `palantir.plot.plot_branch`.
120
137
* Added input validation for better error handling and improved user experience.
121
138
* Expanded documentation within docstrings, providing additional clarity for users and developers.
122
139
123
140
#### Enhancements
124
141
* Updated tutorial notebook to reflect the new workflow, guiding users through the updated processes.
125
142
* Implemented gene trend computation using [Mellon](https://github.com/settylab/Mellon), providing more robust and efficient gene trend analysis.
126
-
* Enable annotation in `palantir.plot.highight_cells_on_umap`.
143
+
* Enable annotation in `palantir.plot.highlight_cells_on_umap`.
127
144
128
145
#### Changes
129
146
* Replaced PhenoGraph dependency with `scanpy.tl.leiden` for gene trend clustering.
130
-
* Deprecated the `run_tsne`, `determine_cell_clusters`, and `plot_cell_clusters` functions. Use corresponding implementations from [Scanpy](https://scanpy.readthedocs.io/en/stable/), widely used single-cell analysis library and direct dependecy of Palantir.
131
-
* Rename `palantir.plot.highight_cells_on_tsne` to `palantir.plot.highight_cells_on_umap`
147
+
* Deprecated the `run_tsne`, `determine_cell_clusters`, and `plot_cell_clusters` functions. Use corresponding implementations from [Scanpy](https://scanpy.readthedocs.io/en/stable/), widely used single-cell analysis library and direct dependency of Palantir.
148
+
* Rename `palantir.plot.highlight_cells_on_tsne` to `palantir.plot.highlight_cells_on_umap`
132
149
* Depend on `anndata>=0.8.0` to avoid issues writing dataframes in `ad.obsm`.
133
150
134
151
#### Fixes
135
152
* Addressed the issue of variability when reproducing results ([issue#64](https://github.com/dpeerlab/Palantir/issues/64)), enhancing the reproducibility and reliability of Palantir.
136
153
137
154
138
155
### Version 1.1.0
139
-
* Replaced rpy2 with pyGAM for computing gene expression trends.
140
-
* Updated tutorial and plotting functions
156
+
* Replaced rpy2 with pyGAM for computing gene expression trends.
157
+
* Updated tutorial and plotting functions
141
158
142
159
143
160
### Version 1.0.0
144
161
145
-
* A fix to [issue#41](https://github.com/dpeerlab/Palantir/issues/41)
162
+
* A fix to [issue#41](https://github.com/dpeerlab/Palantir/issues/41)
146
163
* A fix to [issue#42](https://github.com/dpeerlab/Palantir/issues/42)
147
164
* Revamped tutorial with support for Anndata and force directed layouts
148
165
149
166
### Version 0.2.6
150
167
151
168
* A fix to [issue#33](https://github.com/dpeerlab/Palantir/issues/33) and [issue#31](https://github.com/dpeerlab/Palantir/issues/31)
152
-
169
+
153
170
### Version 0.2.5
154
171
155
172
* A fix related to [issue#28](https://github.com/dpeerlab/Palantir/issues/28). When identifying terminal states, duplicate values were generated instead of unique ones.
0 commit comments