@@ -7,23 +7,23 @@ Float64.([rand() < 0.4 for i in 1:100])
7
7
8
8
g_computer = GComputation (x, t, y)
9
9
estimate_causal_effect! (g_computer)
10
- g_inference = CausalELM. generate_null_distribution (g_computer, 100 )
10
+ g_inference = CausalELM. generate_null_distribution (g_computer, 1000 )
11
11
p1, stderr1 = CausalELM. p_value_and_std_err (g_inference, CausalELM. mean (g_inference))
12
12
lb1, ub1 = CausalELM. confidence_interval (g_inference)
13
13
p11, stderr11, lb11, ub11 = CausalELM. quantities_of_interest (g_computer, 100 )
14
14
summary1 = summarize (g_computer, n= 100 , inference= true )
15
15
16
16
dm = DoubleMachineLearning (x, t, y)
17
17
estimate_causal_effect! (dm)
18
- dm_inference = CausalELM. generate_null_distribution (dm, 100 )
18
+ dm_inference = CausalELM. generate_null_distribution (dm, 1000 )
19
19
p2, stderr2 = CausalELM. p_value_and_std_err (dm_inference, CausalELM. mean (dm_inference))
20
20
lb2, ub2 = CausalELM. confidence_interval (dm_inference)
21
21
summary2 = summarize (dm, n= 100 )
22
22
23
23
# With a continuous treatment variable
24
24
dm_continuous = DoubleMachineLearning (x, t, rand (1 : 4 , 100 ))
25
25
estimate_causal_effect! (dm_continuous)
26
- dm_continuous_inference = CausalELM. generate_null_distribution (dm_continuous, 100 )
26
+ dm_continuous_inference = CausalELM. generate_null_distribution (dm_continuous, 1000 )
27
27
p3, stderr3 = CausalELM. p_value_and_std_err (
28
28
dm_continuous_inference, CausalELM. mean (dm_continuous_inference)
29
29
)
@@ -37,7 +37,7 @@ summary4 = summarize(its, n=100)
37
37
summary4_inference = summarize (its, n= 100 , inference= true )
38
38
39
39
# Null distributions for the mean and cummulative changes
40
- its_inference1 = CausalELM. generate_null_distribution (its, 100 , true )
40
+ its_inference1 = CausalELM. generate_null_distribution (its, 1000 , true )
41
41
its_inference2 = CausalELM. generate_null_distribution (its, 10 , false )
42
42
lb4, ub4 = CausalELM. confidence_interval (its_inference1)
43
43
p4, stderr4 = CausalELM. p_value_and_std_err (its_inference1, CausalELM. mean (its_inference1))
@@ -49,7 +49,7 @@ summary5 = summarize(slearner, n=100)
49
49
50
50
tlearner = TLearner (x, t, y)
51
51
estimate_causal_effect! (tlearner)
52
- tlearner_inference = CausalELM. generate_null_distribution (tlearner, 100 )
52
+ tlearner_inference = CausalELM. generate_null_distribution (tlearner, 1000 )
53
53
lb6, ub6 = CausalELM. confidence_interval (tlearner_inference)
54
54
p6, stderr6 = CausalELM. p_value_and_std_err (
55
55
tlearner_inference, CausalELM. mean (tlearner_inference)
@@ -59,7 +59,7 @@ summary6 = summarize(tlearner, n=100)
59
59
60
60
xlearner = XLearner (x, t, y)
61
61
estimate_causal_effect! (xlearner)
62
- xlearner_inference = CausalELM. generate_null_distribution (xlearner, 100 )
62
+ xlearner_inference = CausalELM. generate_null_distribution (xlearner, 1000 )
63
63
lb7, ub7 = CausalELM. confidence_interval (xlearner_inference)
64
64
p7, stderr7 = CausalELM. p_value_and_std_err (
65
65
xlearner_inference, CausalELM. mean (xlearner_inference)
@@ -73,29 +73,29 @@ summary9 = summarize(rlearner, n=100)
73
73
74
74
dr_learner = DoublyRobustLearner (x, t, y)
75
75
estimate_causal_effect! (dr_learner)
76
- dr_learner_inference = CausalELM. generate_null_distribution (dr_learner, 100 )
76
+ dr_learner_inference = CausalELM. generate_null_distribution (dr_learner, 1000 )
77
77
lb8, ub8 = CausalELM. confidence_interval (dr_learner_inference)
78
78
p8, stderr8 = CausalELM. p_value_and_std_err (
79
79
dr_learner_inference, CausalELM. mean (dr_learner_inference)
80
80
)
81
81
summary10 = summarize (dr_learner, n= 100 )
82
82
83
83
@testset " Generating Null Distributions" begin
84
- @test size (g_inference, 1 ) === 100
84
+ @test size (g_inference, 1 ) === 1000
85
85
@test g_inference isa Array{Float64}
86
- @test size (dm_inference, 1 ) === 100
86
+ @test size (dm_inference, 1 ) === 1000
87
87
@test dm_inference isa Array{Float64}
88
- @test size (dm_continuous_inference, 1 ) === 100
88
+ @test size (dm_continuous_inference, 1 ) === 1000
89
89
@test dm_continuous_inference isa Array{Float64}
90
- @test size (its_inference1, 1 ) === 100
90
+ @test size (its_inference1, 1 ) === 1000
91
91
@test its_inference1 isa Array{Float64}
92
92
@test size (its_inference2, 1 ) === 10
93
93
@test its_inference2 isa Array{Float64}
94
- @test size (tlearner_inference, 1 ) === 100
94
+ @test size (tlearner_inference, 1 ) === 1000
95
95
@test tlearner_inference isa Array{Float64}
96
- @test size (xlearner_inference, 1 ) === 100
96
+ @test size (xlearner_inference, 1 ) === 1000
97
97
@test xlearner_inference isa Array{Float64}
98
- @test size (dr_learner_inference, 1 ) === 100
98
+ @test size (dr_learner_inference, 1 ) === 1000
99
99
@test dr_learner_inference isa Array{Float64}
100
100
end
101
101
@@ -117,23 +117,23 @@ end
117
117
end
118
118
119
119
@testset " Confidence Intervals" begin
120
- @test lb1 != = NaN && ub1 != = NaN
121
- @test lb2 != = NaN && ub2 != = NaN
122
- @test lb3 != = NaN && ub3 != = NaN
123
- @test lb4 != = NaN && ub4 != = NaN
124
- @test lb6 != = NaN && ub6 != = NaN
125
- @test lb7 != = NaN && ub7 != = NaN
126
- @test lb8 != = NaN && ub8 != = NaN
120
+ @test lb1 < g_computer . causal_effect < ub1
121
+ @test lb2 < dm . causal_effect < ub2
122
+ @test lb3 < dm_continuous . causal_effect < ub3
123
+ @test lb4 < CausalELM . mean (its . causal_effect) < ub4
124
+ @test lb6 < CausalELM . mean (tlearner . causal_effect) < ub6
125
+ @test lb7 < CausalELM . mean (xlearner . causal_effect) < ub7
126
+ @test lb8 < CausalELM . mean (dr_learner . causal_effect) < ub8
127
127
end
128
128
129
129
@testset " All Quantities of Interest" begin
130
- @test lb11 != = NaN && ub11 != = NaN
130
+ @test lb11 < g_computer . causal_effect < ub11
131
131
@test 1 >= p11 >= 0
132
132
@test stderr11 > 0
133
- @test lb44 != = NaN && ub44 != = NaN
133
+ @test lb44 < CausalELM . mean (its . causal_effect) < ub44
134
134
@test 1 >= p44 >= 0
135
135
@test stderr44 > 0
136
- @test lb66 != = NaN && ub66 != = NaN
136
+ @test lb66 < CausalELM . mean (tlearner . causal_effect) < ub66
137
137
@test 1 >= p66 >= 0
138
138
@test stderr66 > 0
139
139
end
0 commit comments