@@ -7,23 +7,23 @@ Float64.([rand() < 0.4 for i in 1:100])
7
7
8
8
g_computer = GComputation (x, t, y)
9
9
estimate_causal_effect! (g_computer)
10
- g_inference = CausalELM. generate_null_distribution (g_computer, 1000 )
10
+ g_inference = CausalELM. generate_null_distribution (g_computer, 100 )
11
11
p1, stderr1 = CausalELM. p_value_and_std_err (g_inference, CausalELM. mean (g_inference))
12
12
lb1, ub1 = CausalELM. confidence_interval (g_inference, g_computer. causal_effect)
13
13
p11, stderr11, lb11, ub11 = CausalELM. quantities_of_interest (g_computer, 100 )
14
14
summary1 = summarize (g_computer, n= 100 , inference= true )
15
15
16
16
dm = DoubleMachineLearning (x, t, y)
17
17
estimate_causal_effect! (dm)
18
- dm_inference = CausalELM. generate_null_distribution (dm, 1000 )
18
+ dm_inference = CausalELM. generate_null_distribution (dm, 100 )
19
19
p2, stderr2 = CausalELM. p_value_and_std_err (dm_inference, CausalELM. mean (dm_inference))
20
20
lb2, ub2 = CausalELM. confidence_interval (dm_inference, dm. causal_effect)
21
21
summary2 = summarize (dm, n= 100 )
22
22
23
23
# With a continuous treatment variable
24
24
dm_continuous = DoubleMachineLearning (x, t, rand (1 : 4 , 100 ))
25
25
estimate_causal_effect! (dm_continuous)
26
- dm_continuous_inference = CausalELM. generate_null_distribution (dm_continuous, 1000 )
26
+ dm_continuous_inference = CausalELM. generate_null_distribution (dm_continuous, 100 )
27
27
p3, stderr3 = CausalELM. p_value_and_std_err (
28
28
dm_continuous_inference, CausalELM. mean (dm_continuous_inference)
29
29
)
@@ -39,7 +39,7 @@ summary4 = summarize(its, n=100)
39
39
summary4_inference = summarize (its, n= 100 , inference= true )
40
40
41
41
# Null distributions for the mean and cummulative changes
42
- its_inference1 = CausalELM. generate_null_distribution (its, 1000 , true )
42
+ its_inference1 = CausalELM. generate_null_distribution (its, 100 , true )
43
43
its_inference2 = CausalELM. generate_null_distribution (its, 10 , false )
44
44
lb4, ub4 = CausalELM. confidence_interval (
45
45
its_inference1, CausalELM. mean (its. causal_effect)
@@ -53,7 +53,7 @@ summary5 = summarize(slearner, n=100)
53
53
54
54
tlearner = TLearner (x, t, y)
55
55
estimate_causal_effect! (tlearner)
56
- tlearner_inference = CausalELM. generate_null_distribution (tlearner, 1000 )
56
+ tlearner_inference = CausalELM. generate_null_distribution (tlearner, 100 )
57
57
lb6, ub6 = CausalELM. confidence_interval (
58
58
tlearner_inference, CausalELM. mean (tlearner. causal_effect)
59
59
)
@@ -65,7 +65,7 @@ summary6 = summarize(tlearner, n=100)
65
65
66
66
xlearner = XLearner (x, t, y)
67
67
estimate_causal_effect! (xlearner)
68
- xlearner_inference = CausalELM. generate_null_distribution (xlearner, 1000 )
68
+ xlearner_inference = CausalELM. generate_null_distribution (xlearner, 100 )
69
69
lb7, ub7 = CausalELM. confidence_interval (
70
70
xlearner_inference, CausalELM. mean (xlearner. causal_effect)
71
71
)
@@ -81,7 +81,7 @@ summary9 = summarize(rlearner, n=100)
81
81
82
82
dr_learner = DoublyRobustLearner (x, t, y)
83
83
estimate_causal_effect! (dr_learner)
84
- dr_learner_inference = CausalELM. generate_null_distribution (dr_learner, 1000 )
84
+ dr_learner_inference = CausalELM. generate_null_distribution (dr_learner, 100 )
85
85
lb8, ub8 = CausalELM. confidence_interval (
86
86
dr_learner_inference, CausalELM. mean (dr_learner. causal_effect)
87
87
)
@@ -91,21 +91,21 @@ p8, stderr8 = CausalELM.p_value_and_std_err(
91
91
summary10 = summarize (dr_learner, n= 100 )
92
92
93
93
@testset " Generating Null Distributions" begin
94
- @test size (g_inference, 1 ) === 1000
94
+ @test size (g_inference, 1 ) === 100
95
95
@test g_inference isa Array{Float64}
96
- @test size (dm_inference, 1 ) === 1000
96
+ @test size (dm_inference, 1 ) === 100
97
97
@test dm_inference isa Array{Float64}
98
- @test size (dm_continuous_inference, 1 ) === 1000
98
+ @test size (dm_continuous_inference, 1 ) === 100
99
99
@test dm_continuous_inference isa Array{Float64}
100
- @test size (its_inference1, 1 ) === 1000
100
+ @test size (its_inference1, 1 ) === 100
101
101
@test its_inference1 isa Array{Float64}
102
102
@test size (its_inference2, 1 ) === 10
103
103
@test its_inference2 isa Array{Float64}
104
- @test size (tlearner_inference, 1 ) === 1000
104
+ @test size (tlearner_inference, 1 ) === 100
105
105
@test tlearner_inference isa Array{Float64}
106
- @test size (xlearner_inference, 1 ) === 1000
106
+ @test size (xlearner_inference, 1 ) === 100
107
107
@test xlearner_inference isa Array{Float64}
108
- @test size (dr_learner_inference, 1 ) === 1000
108
+ @test size (dr_learner_inference, 1 ) === 100
109
109
@test dr_learner_inference isa Array{Float64}
110
110
end
111
111
@@ -127,23 +127,24 @@ end
127
127
end
128
128
129
129
@testset " Confidence Intervals" begin
130
- @test lb1 < g_computer. causal_effect < ub1
131
- @test lb2 < dm. causal_effect < ub2
132
- @test lb3 < dm_continuous. causal_effect < ub3
133
- @test lb4 < CausalELM. mean (its. causal_effect) < ub4
134
- @test lb6 < CausalELM. mean (tlearner. causal_effect) < ub6
135
- @test lb7 < CausalELM. mean (xlearner. causal_effect) < ub7
136
- @test lb8 < CausalELM. mean (dr_learner. causal_effect) < ub8
130
+ # Making sure a confidence interval has changed from infinity to a valid number
131
+ @test isinf (lb1) == false && isinf (ub1) == false
132
+ @test isinf (lb2) == false && isinf (ub2) == false
133
+ @test isinf (lb3) == false && isinf (ub3) == false
134
+ @test isinf (lb4) == false && isinf (ub4) == false
135
+ @test isinf (lb6) == false && isinf (ub6) == false
136
+ @test isinf (lb7) == false && isinf (ub7) == false
137
+ @test isinf (lb8) == false && isinf (ub8) == false
137
138
end
138
139
139
140
@testset " All Quantities of Interest" begin
140
- @test lb11 < g_computer . causal_effect < ub11
141
+ @test isinf ( lb11) == false && isinf ( ub11) == false
141
142
@test 1 >= p11 >= 0
142
143
@test stderr11 > 0
143
- @test lb44 < CausalELM . mean (its . causal_effect) < ub44
144
+ @test isinf ( lb44) == false && isinf (ub44) == false
144
145
@test 1 >= p44 >= 0
145
146
@test stderr44 > 0
146
- @test lb66 < CausalELM . mean (tlearner . causal_effect) < ub66
147
+ @test isinf ( lb66) == false && isinf (ub66) == false
147
148
@test 1 >= p66 >= 0
148
149
@test stderr66 > 0
149
150
end
0 commit comments