@@ -21,7 +21,7 @@ lb2, ub2 = CausalELM.confidence_interval(dm_inference, dm.causal_effect)
21
21
summary2 = summarize (dm, n= 100 )
22
22
23
23
# With a continuous treatment variable
24
- dm_continuous = DoubleMachineLearning (x, t, rand (1 : 4 , 100 ))
24
+ dm_continuous = DoubleMachineLearning (x, rand (1 : 4 , 100 ), y )
25
25
estimate_causal_effect! (dm_continuous)
26
26
dm_continuous_inference = CausalELM. generate_null_distribution (dm_continuous, 100 )
27
27
p3, stderr3 = CausalELM. p_value_and_std_err (
@@ -36,6 +36,7 @@ x₀, y₀, x₁, y₁ = rand(1:100, 500, 5), randn(500), randn(100, 5), randn(1
36
36
its = InterruptedTimeSeries (x₀, y₀, x₁, y₁)
37
37
estimate_causal_effect! (its)
38
38
summary4 = summarize (its, n= 100 )
39
+ summary4_mean = summarize (its, mean_effect= true )
39
40
summary4_inference = summarize (its, n= 100 , inference= true )
40
41
41
42
# Null distributions for the mean and cummulative changes
169
170
@test ! isnothing (v)
170
171
end
171
172
173
+ # Interrupted Time Series with mean effect
174
+ for (k, v) in summary4_mean
175
+ @test ! isnothing (v)
176
+ end
177
+
172
178
# Interrupted Time Series with randomization inference
173
179
@test summary4_inference[" Standard Error" ] != = NaN
174
180
@test summary4_inference[" p-value" ] != = NaN
0 commit comments