-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
271 lines (208 loc) · 7.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import json
from math import sqrt
from multiprocessing import Pool
import os
import random
from colorama import Fore, Style
from shapely import geometry, wkb
import sqlite3
from lib import logger
from lib.utils import pairwise
from pfds import pfds
from visualize import visualize
LOG = logger.getLogger()
def connect_to_db(db_name):
db_name = os.path.join('data', db_name)
db = sqlite3.connect(db_name, isolation_level=None)
db.enable_load_extension(True)
db.load_extension('libspatialite')
return db.cursor()
def load_graph(cur):
# Graph definition
G = {} # Graph
G_reversed = {} # Graph with reversed edges - for A* landmarks heuristic
P = {} # Geographical points
#L = {} # Roads geometries,
# Load graph vertices
node_qr = "SELECT node_id, AsBinary(geometry) AS point FROM roads_nodes;"
cur.execute(node_qr)
nodes = cur.fetchall()
for i, g in nodes:
G_reversed[i] = {}
G[i] = {}
#L[i] = {}
P[i] = wkb.loads(str(g))
# Load graph edges
# road_qr = ("SELECT node_from, node_to, oneway_fromto, oneway_tofrom, "
# "length, AsBinary(geometry) as line FROM roads;")
road_qr = ("SELECT node_from, node_to, oneway_fromto, oneway_tofrom, "
"length FROM roads;")
cur.execute(road_qr)
roads = cur.fetchall()
for node_from, node_to, fromto, tofrom, length in roads:
if fromto:
G[node_from][node_to] = length
G_reversed[node_to][node_from] = length
#L[node_from][node_to] = wkb.loads(str(g))
if tofrom:
G[node_to][node_from] = length
G_reversed[node_from][node_to] = length
#L[node_to][node_from] = wkb.loads(str(g))
# Get node closest to the center
# Get boundary and center of it
mp = geometry.MultiPoint(P.values())
center_query = ("SELECT node_id, "
"Distance(MakePoint(%f, %f), geometry) as dist "
"FROM roads_nodes ORDER BY dist LIMIT 1;" %
(mp.centroid.x, mp.centroid.y))
cur.execute(center_query)
center, _ = cur.fetchone()
return G, G_reversed, P, center
def get_pairs(G, filename, rand_num, save):
pairs = []
if filename:
with open(filename) as f:
json_pairs = json.load(f)
for pair in json_pairs:
pairs.append((pair['src'], pair['dest']))
while len(pairs) < rand_num:
src = random.choice(G.keys())
dest = random.choice(G.keys())
if src != dest:
pairs.append((src, dest))
if save:
json_pairs = []
for src, dest in pairs:
json_pairs.append({'src': src, 'dest': dest})
with open(filename, 'w') as f:
json.dump(json_pairs, f)
return pairs
def baseline_query(G, P, pairs, pfd):
baseline = {}
for src, dest in pairs:
path, visited = pfd.calc(src, dest)
cost = 0.0
for i in range(1, len(path)):
cost += G[path[i - 1]][path[i]]
baseline['%d-%d' % (src, dest)] = len(visited), cost
return baseline
def query(G, P, pairs, pfd, runs, baseline):
results = {}
i = 0
while i < runs:
results[i] = {}
for src, dest in pairs:
try:
path, visited = pfd.calc(src, dest)
except Exception as e:
# Okay, this probably won't be useful result...
LOG.error(str(e))
i -= 1
break
cost = 0.0
for j in range(1, len(path)):
cost += G[path[j - 1]][path[j]]
if cost != baseline['%d-%d' % (src, dest)][1]:
LOG.error(Fore.RED + "Paths doesn't match!" + Fore.RESET)
LOG.error(Fore.RED + ("%f != %f" % (cost,
baseline['%d-%d' % (src, dest)][1])) + Fore.RESET)
p = (float(len(visited)) /
float(baseline['%d-%d' % (src, dest)][0])) * 100
results[i]['%d-%d' % (src, dest)] = p
if runs > 1 and i != runs - 1:
try:
pfd.calculate_landmarks()
except:
# FIXME: Naive way of trying again
pfd.calculate_landmarks()
i += 1
# We need to flatten the results using average
flat_results = {}
for src, dest in pairs:
k = '%d-%d' % (src, dest)
avg = 0.
for i in xrange(runs):
avg += results[i][k]
flat_results[k] = avg / runs
std_dev = {}
for src, dest in pairs:
k = '%d-%d' % (src, dest)
s = 0.
for i in xrange(runs):
s += (results[i][k] - flat_results[k]) ** 2
std_dev[k] = sqrt(s / runs)
return flat_results, std_dev
def worker(pfd_info, pairs, alg, G, P, center, G_reversed, lm_num, baseline):
LOG.info(Fore.RED + 'Starting %s tests.' + Style.RESET_ALL, alg)
try:
if not pfd_info['lm_picker']:
pfd = pfd_info['class'](G, P)
else:
pfd = pfd_info['class'](G, P, center, G_reversed,
pfd_info['lm_picker'], lm_num)
return alg, query(G, P, pairs, pfd, pfd_info['runs'], baseline)
except:
import traceback
traceback.print_exc()
def main(pool, db_name, lm_num, tests, filename, results_file, baseline_file,
save_pairs):
# Connecting to the database
cur = connect_to_db(db_name)
# Load the graph
G, G_reversed, P, center = load_graph(cur)
# Decide on vertex pairs for the tests
pairs = get_pairs(G, filename, tests, save_pairs)
results = {}
# A* as baseline first
LOG.info('Baselining with A*.')
astar_info = pfds.pop('A*')
astar = astar_info['class'](G, P)
baseline = baseline_query(G, P, pairs, astar)
with open(baseline_file, 'w') as f:
json.dump(baseline, f)
# And now test on per-algorithm basis
for alg, pfd_info in pfds.iteritems():
def callback(res):
alg, res = res
results[alg] = res
pool.apply_async(worker, args=(pfd_info, pairs, alg, G, P, center,
G_reversed, lm_num, baseline),
callback=callback)
pool.close()
pool.join()
# Let's calculate averages
avgs = {k: 0. for k in pfds.keys()}
avg_sd = {k: 0. for k in pfds.keys()}
for alg in pfds.keys():
for p in results[alg][0].values():
avgs[alg] += p
for std in results[alg][1].values():
avg_sd[alg] += std
avgs[alg] /= tests
avg_sd[alg] /= tests
LOG.info('Average results:')
for alg, avg in avgs.iteritems():
LOG.info('%25s: %.2f (std_dev: %.2f)', alg, avg, avg_sd[alg])
with open(results_file, 'w') as f:
json.dump(results, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ALT-Tester')
parser.add_argument('--db', action="store", default='gdansk_cleaned.sqlite')
parser.add_argument('--landmarks', action="store", type=int, default=16)
parser.add_argument('--random-pairs', action="store", type=int, default=50)
parser.add_argument('--pairs-file', action="store")
parser.add_argument('--processes', action="store", type=int, default=1)
parser.add_argument('--baseline-file', action="store",
default='baseline.json')
parser.add_argument('--results-file', action="store",
default='results.json')
parser.add_argument('--save-pairs', action="store_true", default=False)
arguments = parser.parse_args()
# Create a process pool
LOG.info('Creating %d processes.', arguments.processes)
pool = Pool(processes=arguments.processes)
# Run the program
main(pool, arguments.db, arguments.landmarks, arguments.random_pairs,
arguments.pairs_file, arguments.results_file, arguments.baseline_file,
arguments.save_pairs)