-
Notifications
You must be signed in to change notification settings - Fork 0
Closed
Labels
Description
library(mapineqr)
mi_source_filters("ghs_smod", year = 2020, level = "3")# A tibble: 10 × 4
field field_label label value
<chr> <chr> <chr> <chr>
1 indicator indicator DENSE URBAN CLUSTER GRID CELL DENSE URBAN CLUSTER GRID CELL
2 indicator indicator WATER GRID CELL WATER GRID CELL
3 indicator indicator SUBURBAN OR PERI-URBAN GRID CELL SUBURBAN OR PERI-URBAN GRID CELL
4 indicator indicator SEMI-DENSE URBAN CLUSTER GRID CELL SEMI-DENSE URBAN CLUSTER GRID CELL
5 indicator indicator VERY LOW DENSITY RURAL GRID CELL VERY LOW DENSITY RURAL GRID CELL
6 indicator indicator LOW DENSITY RURAL GRID CELL LOW DENSITY RURAL GRID CELL
7 indicator indicator RURAL CLUSTER GRID CELL RURAL CLUSTER GRID CELL
8 indicator indicator URBAN CENTRE GRID CELL URBAN CENTRE GRID CELL
9 freq freq 5 year 5 year
10 unit unit km2 km2
As we can see, there are many different indicators we can (and should) choose to get the data.
If we do not set any filters:
x <- mi_data("ghs_smod", year = 2020, level = "3", limit = 50000)
x |> filter(geo == "AL011")We get values for all those indicators such as "DENSE URBAN CLUSTER GRID CELL", "WATER GRID CELL", etc.
# A tibble: 8 × 4
best_year geo geo_name x
<chr> <chr> <chr> <int>
1 2018 AL011 Dibër 4
2 2018 AL011 Dibër 6
3 2018 AL011 Dibër 27
4 2018 AL011 Dibër 538
5 2018 AL011 Dibër 4
6 2018 AL011 Dibër 0
7 2018 AL011 Dibër 14
8 2018 AL011 Dibër 2525
Only by specifying the filter, we can find out which values is which:
mi_data("ghs_smod", year = 2020, level = "3",
x_filters = list(indicator = "DENSE URBAN CLUSTER GRID CELL"), limit = 50000) |>
filter(geo == "AL011")# A tibble: 1 × 4
best_year geo geo_name x
<chr> <chr> <chr> <int>
1 2018 AL011 Dibër 6
So in this case we know that we got the x value for "DENSE URBAN CLUSTER GRID CELL"