-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecimpute.py
448 lines (341 loc) · 18.1 KB
/
recimpute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
"""
RecImpute - A Recommendation System of Imputation Techniques for Missing Values in Time Series,
eXascale Infolab, University of Fribourg, Switzerland
***
recimpute.py
@author: @chacungu
"""
#!/usr/bin/env python
import numpy as np
from os.path import normpath as normp
import pandas as pd
from pprint import pprint
import re
import scipy
from statsmodels.stats.weightstats import ztest
import sys
import warnings
from Clustering.ShapeBasedClustering import ShapeBasedClustering
from Datasets.Dataset import Dataset
from Datasets.TrainingSet import TrainingSet
from FeaturesExtraction.KiviatFeaturesExtractor import KiviatFeaturesExtractor
from FeaturesExtraction.TSFreshFeaturesExtractor import TSFreshFeaturesExtractor
from FeaturesExtraction.TopologicalFeaturesExtractor import TopologicalFeaturesExtractor
from FeaturesExtraction.Catch22FeaturesExtractor import Catch22FeaturesExtractor
from FeaturesExtraction.KatsFeaturesExtractor import KatsFeaturesExtractor
from Labeling.ImputationTechniques.ImputeBenchLabeler import ImputeBenchLabeler
from Labeling.ImputationTechniques.KiviatRulesLabeler import KiviatRulesLabeler
from Training.ClfPipeline import ClfPipeline
from Training.ModelsTrainer import ModelsTrainer
from Training.TrainResults import TrainResults
from Utils.Utils import Utils
SYSTEM_INPUTS_DIR = normp('./Datasets/SystemInputs/')
SYSTEM_OUTPUTS_DIR = normp('./Datasets/Recommendations/')
LABELERS = { # maps the argument name to the actual class name
'ImputeBench': ImputeBenchLabeler,
# 'KiviatRules': KiviatRulesLabeler,
}
FEATURES_EXTRACTORS = { # maps the argument name to the actual class name
# 'Kiviat': KiviatFeaturesExtractor,
'TSFresh': TSFreshFeaturesExtractor,
'Topological': TopologicalFeaturesExtractor,
'Catch22': Catch22FeaturesExtractor,
# 'Kats': KatsFeaturesExtractor,
}
# create necessary directories if not there yet
Utils.create_dirs_if_not_exist([SYSTEM_INPUTS_DIR])
Utils.create_dirs_if_not_exist([SYSTEM_OUTPUTS_DIR])
def init_training_set(labeler, labeler_properties, true_labeler, true_labeler_properties, features_extractors):
print('######### RecImpute - loading training dataset #########')
# init clusterer
clusterer = ShapeBasedClustering()
# init data sets
datasets = Dataset.instantiate_from_dir(clusterer)
print('Loaded data sets:', ''.join(['\n- %s' % d for d in datasets]))
if any(isinstance(fe, KiviatFeaturesExtractor) for fe in features_extractors):
warnings.warn('You are using a KiviatFeaturesExtractor. This features extractor can only compute features for clusters' \
+ '(and not individual time series). If you use the resulting models in production, since those time series' \
+ 'won\'t be clustered, its features will have to be imputed (or set to 0). This may impact the system\'s' \
+ 'performances.')
true_labeler_info = {'true_labeler': true_labeler, 'true_labeler_properties': true_labeler_properties} \
if true_labeler is not None else {}
# create a training set
training_set = TrainingSet(
datasets,
clusterer,
features_extractors,
labeler, labeler_properties,
**true_labeler_info,
force_generation=False,
)
return training_set
def select(training_set, MODELSTRAINER_CONF):
print('######### RecImpute - models\' selection #########')
significance_tests = {
'ttest_rel': scipy.stats.ttest_rel,
'friedmanchisquare': scipy.stats.friedmanchisquare,
'chisquare': scipy.stats.chisquare,
'ztest': ztest,
}
pipelines, all_pipelines_txt = ClfPipeline.generate(N=MODELSTRAINER_CONF['NB_PIPELINES'])
# most promising pipelines' selection
trainer = ModelsTrainer(training_set)
with warnings.catch_warnings():
warnings.simplefilter('ignore')
selected_pipes = trainer.select(
pipelines, all_pipelines_txt,
S=MODELSTRAINER_CONF['S'],
selection_len=MODELSTRAINER_CONF['SELECTION_LEN'],
score_margin=MODELSTRAINER_CONF['SCORE_MARGIN'],
n_splits=MODELSTRAINER_CONF['NB_CV_SPLITS'],
test_method=significance_tests[MODELSTRAINER_CONF['TEST_METHOD']],
p_value=MODELSTRAINER_CONF['P_VALUE'],
alpha=MODELSTRAINER_CONF['ALPHA'],
beta=MODELSTRAINER_CONF['BETA'],
gamma=MODELSTRAINER_CONF['GAMMA'],
allow_early_eliminations=MODELSTRAINER_CONF['ALLOW_EARLY_ELIMINATIONS'],
early_break=False,
)
print('Finished models\' selection with %i remaining candidates.' % len(selected_pipes)) # TODO tmp print
models = list(map(lambda p: p.rm, selected_pipes))
return models
def train(models, training_set, train_for_production):
print('######### RecImpute - training #########')
# training & cross-validation evaluation
trainer = ModelsTrainer(training_set)
tr = trainer.train(models, train_for_production=train_for_production)
print('\n\n=================== Cross-validation results (averaged) ===================')
print(tr.results[tr.metrics_measured].to_markdown())
return tr, training_set, models
def eval(models, all_test_data_info, print_avg=True, print_details=False):
print('######### RecImpute - evaluation #########')
X_test = all_test_data_info.iloc[:, ~all_test_data_info.columns.isin(['Data Set Name', 'Cluster ID', 'Label'])].to_numpy().astype('float32')
X_test = np.nan_to_num(X_test)
y_test = all_test_data_info['Label'].to_numpy().astype('str')
DATASETS_CONF = Utils.read_conf_file('datasets')
categories = np.array(list(map(lambda ds_name: DATASETS_CONF['CATEGORIES'][ds_name], all_test_data_info['Data Set Name'].tolist())))
all_scores, all_scores_per_category = {}, {}
for model in models:
if print_details:
print(model)
used_tp, y_pred = model.predict(X_test, compute_proba=model.labels_info['type']=='monolabels', use_pipeline_prod=False)
scores, cm, scores_per_category = model.eval(y_test, y_pred, used_tp.classes_, categories=categories, plot_cm=True)
for k,v in scores.items():
if k in all_scores:
all_scores[k].append(v)
else:
all_scores[k] = [v]
for category in scores_per_category.keys():
if category not in all_scores_per_category:
all_scores_per_category[category] = {}
for k,v in scores_per_category[category][0].items():
if k in all_scores_per_category[category]:
all_scores_per_category[category][k].append(v)
else:
all_scores_per_category[category][k] = [v]
if print_details:
print('\n# %s - %s' % (model.id, model.pipe))
pprint(scores, width=1)
print(np.array_str(cm[1], precision=3, suppress_small=False))
pprint(scores_per_category, width=1)
fig = cm[0]
fig.canvas.draw()
renderer = fig.canvas.renderer
fig.draw(renderer)
if print_avg:
print('\nAverage results:')
pprint(dict(map(lambda i: (i[0], np.mean(i[1])), all_scores.items())))
pprint({k1: {k2: np.mean(v2) for k2,v2 in v1.items()} for k1,v1 in all_scores_per_category.items()})
return all_scores, all_scores_per_category
def use(timeseries, model, features_name, fes_names, use_pipeline_prod=True):
print('######### RecImpute - use a model #########')
# get an instance of each FeaturesExtractor
features_extractors = []
for fe_name in fes_names:
if fe_name != 'KiviatFeaturesExtractor':
assert any(fe_name2.__name__ == fe_name for fe_name2 in FEATURES_EXTRACTORS.values())
fe_class = getattr(sys.modules[__name__], fe_name)
features_extractors.append(fe_class.get_instance())
# for each FeaturesExtractor: call fe.extract_from_timeseries()
nb_timeseries, timeseries_length = timeseries.shape
all_ts_features = []
for features_extractor in features_extractors:
args = (timeseries.T, nb_timeseries, timeseries_length) if isinstance(features_extractor, TSFreshFeaturesExtractor) else (timeseries.T,)
tmp_ts_features = features_extractor.extract_from_timeseries(*args)
tmp_ts_features.set_index('Time Series ID', inplace=True)
tmp_ts_features.columns = map(
lambda col_name: col_name + features_extractor.FEATURES_FILENAMES_ID if col_name not in ['Time Series ID'] else col_name,
tmp_ts_features.columns
)
all_ts_features.append(tmp_ts_features)
timeseries_features = pd.concat(all_ts_features, axis=1) # concat features dataframes
# remove unwanted features (those not listed in features_name)
timeseries_features = timeseries_features.loc[:, timeseries_features.columns.isin(features_name)]
if not (list(timeseries_features.columns) == list(features_name)):
# some features were not computed for the new data: impute those missing values
missing_features_l = list(set(features_name) - set(timeseries_features.columns))
missing_features = dict(zip(missing_features_l, [list(features_name).index(f) for f in missing_features_l]))
for feature, feature_index in dict(sorted(missing_features.items(), key=lambda item: item[1])).items():
imputed_feature_values = np.zeros(nb_timeseries)
timeseries_features.insert(feature_index, feature, imputed_feature_values)
perc_missing_features = len(missing_features_l) / len(features_name)
warning_text = '/!\ An important number of features' if perc_missing_features > 0.20 else 'Some feature(s)'
warning_text += ' (%i) could not be computed and their values have been set to 0.' % len(missing_features_l) \
+ ' This may impact the system\'s performances.'
warnings.warn(warning_text)
# verify the features are the same and in the same order as when the system was trained
assert list(timeseries_features.columns) == list(features_name)
# use the model to get recommendation(s) for each time series
X = timeseries_features.to_numpy().astype('float32')
recommendations = model.get_recommendations(X, use_pipeline_prod=use_pipeline_prod)
return recommendations
def load_models_from_tr(id, model_ids=None):
# loads all models if model_ids is None
# otherwise loads the models which id is listed in model_ids
tr = TrainResults.load(id)
single_model = False
if type(model_ids) == str:
single_model = True
model_ids = [model_ids]
selected_models = []
for model in tr.models:
if model_ids is None or str(model.id) in model_ids:
selected_models.append(model)
assert model_ids is None or len(model_ids) == len(selected_models)
return tr, selected_models[0] if single_model else selected_models
def get_recommendations_filename(timeseries_filename):
labels_filename = '.'.join(timeseries_filename.split('.')[:-1]) + '__recommendations.csv'
labels_filename = normp(SYSTEM_OUTPUTS_DIR + '/' + labels_filename)
return labels_filename
# --------------------------------------------------------------------------------------------
def main(args):
_valid_args = {
'-mode': ['cluster', 'label', 'extract_features', 'train', 'eval', 'use'],
# *train* args
# '-lbl': LABELERS.keys(),
# '-true_lbl': LABELERS.keys(),
'-fes': [*FEATURES_EXTRACTORS.keys(), 'all'],
'-train_for_production': ['True', 'False'],
# *eval* args
'-id': None,
# *use* args
'-id': None,
'-ts': None,
'-model_id': None,
'-use_prod_model': ['True', 'False'],
}
args = dict(zip(args[1::2], args[2::2]))
assert '-mode' in args and args['-mode'] in _valid_args['-mode'] # verify the -mode arg has been specified correctly
assert all(k in _valid_args.keys() for k in args.keys()) # verify that all args keys are valid
assert all(_valid_args[k] is None \
or (v in _valid_args[k] if not ',' in v else (v_ in _valid_args[k] for v_ in v.split(','))) \
for k, v in args.items()) # verify that all args values are valid
if args['-mode'] == 'cluster':
NON_OPTIONAL_ARGS = ['-mode']
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# CLUSTER ALL DATA SETS
# init clusterer
clusterer = ShapeBasedClustering()
# init data sets
datasets = Dataset.instantiate_from_dir(clusterer)
clusterer.cluster_all_datasets_seq(datasets)
print('Done.')
elif args['-mode'] == 'label':
NON_OPTIONAL_ARGS = ['-mode'] # , '-lbl'
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# LABEL ALL DATA SETS
# set up the labeler
labeler = ImputeBenchLabeler.get_instance() #LABELERS[args['-lbl']].get_instance()
# init clusterer
clusterer = ShapeBasedClustering()
# init data sets
datasets = Dataset.instantiate_from_dir(clusterer)
# label the datasets' clusters
updated_datasets = labeler.label_all_datasets(datasets)
# if '-true_lbl' in args:
# true_labeler = LABELERS[args['-true_lbl']].get_instance()
# true_labeler.label_all_datasets(updated_datasets)
print('Done.')
elif args['-mode'] == 'extract_features':
NON_OPTIONAL_ARGS = ['-mode', '-fes']
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# EXTRACT ALL FEATURES
# set up the features extractors
if args['-fes'] == 'all':
features_extractors = [fe.get_instance() for fe in FEATURES_EXTRACTORS.values()]
else:
features_extractors = []
for fe_name in args['-fes'].split(','):
features_extractors.append(FEATURES_EXTRACTORS[fe_name].get_instance())
# init clusterer
clusterer = ShapeBasedClustering()
# init data sets
datasets = Dataset.instantiate_from_dir(clusterer)
# extract the features of the datasets' time series
for dataset in datasets:
for features_extractor in features_extractors:
features_extractor.extract(dataset)
print('Done.')
elif args['-mode'] == 'train':
NON_OPTIONAL_ARGS = ['-mode', '-fes'] # , '-lbl'
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# TRAIN and EVALUATE W/ CROSS-VAL
# set up the labeler & true_labeler
labeler = ImputeBenchLabeler.get_instance() # LABELERS[args['-lbl']].get_instance()
labeler_properties = labeler.get_default_properties()
if '-true_lbl' in args:
true_labeler = LABELERS[args['-true_lbl']].get_instance()
true_labeler_properties = true_labeler.get_default_properties()
true_labeler_properties['type'] = labeler_properties['type']
else:
true_labeler = true_labeler_properties = None
# set up the features extractors
if args['-fes'] == 'all':
features_extractors = [fe.get_instance() for fe in FEATURES_EXTRACTORS.values()]
else:
features_extractors = []
for fe_name in args['-fes'].split(','):
features_extractors.append(FEATURES_EXTRACTORS[fe_name].get_instance())
MODELSTRAINER_CONF = Utils.read_conf_file('modelstrainer')
training_set = init_training_set(labeler, labeler_properties, true_labeler, true_labeler_properties, features_extractors)
models = select(training_set, MODELSTRAINER_CONF)
tr, set, models = train(models, training_set, args['-train_for_production'] == 'True' if '-train_for_production' in args else True)
print('Done.')
print(tr.id)
return tr, set, models
elif args['-mode'] == 'eval':
NON_OPTIONAL_ARGS = ['-id']
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# load the models & test set
id = args['-id']
model_id = args['-model_id'] if '-model_id' in args else None
tr, models = load_models_from_tr(id, model_id)
all_test_data_info = tr.load_set_from_archive('test')
eval(models if isinstance(models, list) else [models], all_test_data_info)
print('Done.')
elif args['-mode'] == 'use':
NON_OPTIONAL_ARGS = ['-mode', '-id', '-model_id', '-ts']
assert all(noa in args.keys() for noa in NON_OPTIONAL_ARGS) # verify that all non-optional args are specified
# USE PRE-TRAINED MODELS
# load the model
id = args['-id']
model_id = args['-model_id']
tr, model = load_models_from_tr(id, model_id)
# load time series to label: z-normalized, 1 row = 1 ts, space separator, no header, no index
ts_filename = args['-ts']
full_ts_filename = normp(SYSTEM_INPUTS_DIR + '/' + ts_filename)
timeseries = pd.read_csv(full_ts_filename, sep=' ', header=None, index_col=None)
# read the _info.txt and get the values under "## Features extractors used:"
info_file = tr.load_info_file_from_archive()
fes_names = re.search('## Features extractors used:\n(- \w+\n)+', info_file).group(0).replace('- ', '').split('\n')[1:-1]
use_pipeline_prod = args['-use_prod_model'] == 'True' if '-use_prod_model' in args else False
# get the recommendations
preds = use(timeseries, model, model.features_name, fes_names, use_pipeline_prod=use_pipeline_prod)
print('============================= Recommendations =============================')
print(preds)
# save the recommendations to disk
preds.to_csv(get_recommendations_filename(ts_filename), sep=' ', header=True, index=True)
print('Done.')
return preds
if __name__ == '__main__':
main(sys.argv)