@@ -131,27 +131,33 @@ def test_slise_reg():
131
131
# S = (Y - Yp) ** 2 < reg1.epsilon ** 2
132
132
# Sn = (Yn - Ynp) ** 2 < reg1.epsilon_orig ** 2
133
133
assert np .allclose (
134
- Ypn , Ynp ,
134
+ Ypn , Ynp
135
135
), f"The predicted Y's are not the same { np .max (np .abs (Ynp - Ypn ))} "
136
- assert (
137
- reg1 .score () <= 0
138
- ), f"SLISE loss should be negative ({ reg1 .score ():.2f} , { reg1 .subset ().mean ():.2f} )"
139
- assert 1.0 >= reg1 .subset ().mean () > 0.75
136
+ assert reg1 .score () <= 0 , f"SLISE loss should be negative ({ reg1 .score ()} )"
137
+ assert 1.0 >= reg1 .subset ().mean () > 0.7
140
138
reg2 = regression (
141
- X , Y , epsilon = 0.1 , lambda1 = 1e-4 , lambda2 = 1e-4 , intercept = True , normalise = False ,
139
+ X ,
140
+ Y ,
141
+ epsilon = 0.1 ,
142
+ lambda1 = 1e-4 ,
143
+ lambda2 = 1e-4 ,
144
+ intercept = True ,
145
+ normalise = False ,
142
146
)
143
147
reg2 .print ()
144
- assert (
145
- reg2 .score () <= 0
146
- ), f"SLISE loss should be negative ({ reg2 .score ():.2f} , { reg2 .subset ().mean ():.2f} )"
148
+ assert reg2 .score () <= 0 , f"SLISE loss should be negative ({ reg2 .score ()} )"
147
149
assert 1.0 >= reg2 .subset ().mean () > 0.5
148
150
reg3 = regression (
149
- X , Y , epsilon = 0.1 , lambda1 = 0 , lambda2 = 0 , intercept = True , normalise = False ,
151
+ X ,
152
+ Y ,
153
+ epsilon = 0.1 ,
154
+ lambda1 = 0 ,
155
+ lambda2 = 0 ,
156
+ intercept = True ,
157
+ normalise = False ,
150
158
)
151
159
reg3 .print ()
152
- assert (
153
- reg3 .score () <= 0
154
- ), f"SLISE loss should be negative ({ reg3 .score ():.2f} , { reg3 .subset ().mean ():.2f} )"
160
+ assert reg3 .score () <= 0 , f"SLISE loss should be negative ({ reg3 .score ()} )"
155
161
assert 1.0 >= reg3 .subset ().mean () > 0.5
156
162
reg4 = regression (
157
163
X ,
@@ -164,9 +170,7 @@ def test_slise_reg():
164
170
weight = w ,
165
171
)
166
172
reg4 .print ()
167
- assert (
168
- reg4 .score () <= 0
169
- ), f"SLISE loss should be negative ({ reg4 .score ():.2f} , { reg4 .subset ().mean ():.2f} )"
173
+ assert reg4 .score () <= 0 , f"SLISE loss should be negative ({ reg4 .score ()} )"
170
174
assert 1.0 >= reg4 .subset ().mean () > 0.4
171
175
172
176
0 commit comments