Skip to content

Commit 0e66b18

Browse files
committed
formatting and leniency
1 parent a1a29d9 commit 0e66b18

File tree

1 file changed

+20
-16
lines changed

1 file changed

+20
-16
lines changed

tests/test_slise.py

+20-16
Original file line numberDiff line numberDiff line change
@@ -131,27 +131,33 @@ def test_slise_reg():
131131
# S = (Y - Yp) ** 2 < reg1.epsilon ** 2
132132
# Sn = (Yn - Ynp) ** 2 < reg1.epsilon_orig ** 2
133133
assert np.allclose(
134-
Ypn, Ynp,
134+
Ypn, Ynp
135135
), f"The predicted Y's are not the same {np.max(np.abs(Ynp - Ypn))}"
136-
assert (
137-
reg1.score() <= 0
138-
), f"SLISE loss should be negative ({reg1.score():.2f}, {reg1.subset().mean():.2f})"
139-
assert 1.0 >= reg1.subset().mean() > 0.75
136+
assert reg1.score() <= 0, f"SLISE loss should be negative ({reg1.score()})"
137+
assert 1.0 >= reg1.subset().mean() > 0.7
140138
reg2 = regression(
141-
X, Y, epsilon=0.1, lambda1=1e-4, lambda2=1e-4, intercept=True, normalise=False,
139+
X,
140+
Y,
141+
epsilon=0.1,
142+
lambda1=1e-4,
143+
lambda2=1e-4,
144+
intercept=True,
145+
normalise=False,
142146
)
143147
reg2.print()
144-
assert (
145-
reg2.score() <= 0
146-
), f"SLISE loss should be negative ({reg2.score():.2f}, {reg2.subset().mean():.2f})"
148+
assert reg2.score() <= 0, f"SLISE loss should be negative ({reg2.score()})"
147149
assert 1.0 >= reg2.subset().mean() > 0.5
148150
reg3 = regression(
149-
X, Y, epsilon=0.1, lambda1=0, lambda2=0, intercept=True, normalise=False,
151+
X,
152+
Y,
153+
epsilon=0.1,
154+
lambda1=0,
155+
lambda2=0,
156+
intercept=True,
157+
normalise=False,
150158
)
151159
reg3.print()
152-
assert (
153-
reg3.score() <= 0
154-
), f"SLISE loss should be negative ({reg3.score():.2f}, {reg3.subset().mean():.2f})"
160+
assert reg3.score() <= 0, f"SLISE loss should be negative ({reg3.score()})"
155161
assert 1.0 >= reg3.subset().mean() > 0.5
156162
reg4 = regression(
157163
X,
@@ -164,9 +170,7 @@ def test_slise_reg():
164170
weight=w,
165171
)
166172
reg4.print()
167-
assert (
168-
reg4.score() <= 0
169-
), f"SLISE loss should be negative ({reg4.score():.2f}, {reg4.subset().mean():.2f})"
173+
assert reg4.score() <= 0, f"SLISE loss should be negative ({reg4.score()})"
170174
assert 1.0 >= reg4.subset().mean() > 0.4
171175

172176

0 commit comments

Comments
 (0)