|
1 | 1 | """
|
2 |
| - SLISE - Sparse Linear Subset Explanations |
3 |
| - ----------------------------------------- |
4 |
| -
|
5 |
| - The SLISE algorithm can be used for both robust regression and to explain outcomes from black box models. |
6 |
| - See [slise.slise.regression][] and [slise.slise.explain][] for referense. |
7 |
| -
|
8 |
| -
|
9 |
| - In robust regression we fit regression models that can handle data that |
10 |
| - contains outliers. SLISE accomplishes this by fitting a model such that |
11 |
| - the largest possible subset of the data items have an error less than a |
12 |
| - given value. All items with an error larger than that are considered |
13 |
| - potential outliers and do not affect the resulting model. |
14 |
| -
|
15 |
| - SLISE can also be used to provide local model-agnostic explanations for |
16 |
| - outcomes from black box models. To do this we replace the ground truth |
17 |
| - response vector with the predictions from the complex model. Furthermore, we |
18 |
| - force the model to fit a selected item (making the explanation local). This |
19 |
| - gives us a local approximation of the complex model with a simpler linear |
20 |
| - model. In contrast to other methods SLISE creates explanations using real |
21 |
| - data (not some discretised and randomly sampled data) so we can be sure that |
22 |
| - all inputs are valid (i.e. in the correct data manifold, and follows the |
23 |
| - constraints used to generate the data, e.g., the laws of physics). |
24 |
| -
|
25 |
| -
|
26 |
| - More in-depth details about the algorithm can be found in the papers: |
27 |
| -
|
28 |
| - Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K. |
29 |
| - Sparse Robust Regression for Explaining Classifiers. |
30 |
| - Discovery Science (DS 2019). |
31 |
| - Lecture Notes in Computer Science, vol 11828, Springer. |
32 |
| - https://doi.org/10.1007/978-3-030-33778-0_27 |
33 |
| -
|
34 |
| - Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K. |
35 |
| - Robust regression via error tolerance. |
36 |
| - Data Mining and Knowledge Discovery (2022). |
37 |
| - https://doi.org/10.1007/s10618-022-00819-2 |
38 |
| -
|
| 2 | +SLISE - Sparse Linear Subset Explanations |
| 3 | +----------------------------------------- |
| 4 | +
|
| 5 | +The SLISE algorithm can be used for both robust regression and to explain outcomes from black box models. |
| 6 | +See [slise.slise.regression][] and [slise.slise.explain][] for referense. |
| 7 | +
|
| 8 | +
|
| 9 | +In robust regression we fit regression models that can handle data that |
| 10 | +contains outliers. SLISE accomplishes this by fitting a model such that |
| 11 | +the largest possible subset of the data items have an error less than a |
| 12 | +given value. All items with an error larger than that are considered |
| 13 | +potential outliers and do not affect the resulting model. |
| 14 | +
|
| 15 | +SLISE can also be used to provide local model-agnostic explanations for |
| 16 | +outcomes from black box models. To do this we replace the ground truth |
| 17 | +response vector with the predictions from the complex model. Furthermore, we |
| 18 | +force the model to fit a selected item (making the explanation local). This |
| 19 | +gives us a local approximation of the complex model with a simpler linear |
| 20 | +model. In contrast to other methods SLISE creates explanations using real |
| 21 | +data (not some discretised and randomly sampled data) so we can be sure that |
| 22 | +all inputs are valid (i.e. in the correct data manifold, and follows the |
| 23 | +constraints used to generate the data, e.g., the laws of physics). |
| 24 | +
|
| 25 | +
|
| 26 | +More in-depth details about the algorithm can be found in the papers: |
| 27 | +
|
| 28 | +Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K. |
| 29 | +Sparse Robust Regression for Explaining Classifiers. |
| 30 | +Discovery Science (DS 2019). |
| 31 | +Lecture Notes in Computer Science, vol 11828, Springer. |
| 32 | +https://doi.org/10.1007/978-3-030-33778-0_27 |
| 33 | +
|
| 34 | +Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K. |
| 35 | +Robust regression via error tolerance. |
| 36 | +Data Mining and Knowledge Discovery (2022). |
| 37 | +https://doi.org/10.1007/s10618-022-00819-2 |
| 38 | +
|
| 39 | +Björklund A., Henelius A., Oikarinen E., Kallonen K., Puolamäki K. |
| 40 | +Explaining any black box model using real data. |
| 41 | +Frontiers in Computer Science 5:1143904 (2023). |
| 42 | +https://doi.org/10.3389/fcomp.2023.1143904 |
39 | 43 | """
|
40 | 44 |
|
41 |
| -from slise.slise import ( |
| 45 | +from slise.slise import ( # noqa: F401 |
42 | 46 | SliseRegression,
|
43 | 47 | regression,
|
44 | 48 | SliseExplainer,
|
45 | 49 | explain,
|
46 | 50 | SliseWarning,
|
47 | 51 | )
|
48 |
| -from slise.utils import limited_logit as logit |
49 |
| -from slise.data import normalise_robust |
| 52 | +from slise.utils import limited_logit as logit # noqa: F401 |
| 53 | +from slise.data import normalise_robust # noqa: F401 |
0 commit comments