Skip to content

MATLAB/Octave scripts for anisotropic mesh adaptation, topology optimization and finite element methods

License

Notifications You must be signed in to change notification settings

edofersan/trullekrul

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

# trullekrul MATLAB/Octave scripts for anisotropic mesh adaptation, topology optimization and finite element methods

Topology optimization and anisotropic mesh adaptation for optimal heat conduction in 2D and 3D:

top5000(2e-3,5e-3,0.5,false,[],[],0.1,[],1/20,300,1e-3,pi/5,'fig7c');

top5000(0.4,7e-2,0.1,true,0.75,0.7,0.5,1.5,1/10,283,1e-3,pi/4,'fig9b'):

See the WCSMO12 conference proceeding for a detailed description: https://drive.google.com/file/d/0B9uPpc2f4SZ5TnBjclJFaERSQWs/view?resourcekey=0-oBnY_Ff10qHW27DA4U164w

The same technology can be used for 2D/3D minimum compliance in linear elasticity:

top5001(7.5e2 ,2e-2,0.5 ,0.3,false,2,1, [],1/20,400   ,1e-2,'fig5b',1.025,5,false);

top5001(2e3   ,2e-2,0.1 ,0.3,2    ,2,0.5,0.25,1/10,400,1e-3,'fig8a',1.025,5,2);

For more details visit the IMR26 paper: https://drive.google.com/open?id=18DRlj6_-MzhOid0BlXC-C-sJvQAm5KnF . Note that the severe objective oscillations reported for 3D in the original IMR26 paper have been fixed.

Finally the technology can be used in Stokes flow with Darcy numbers down to 1e-9, see https://drive.google.com/file/d/1bxHijGOlWnzOBDGfP1Sx5Xk03C9_iy5s/view?usp=sharing

top5002(-1e3, 0.8  ,1e9, [1 1 0.05 0.05       ], 0.01, 141, 'No2',1);

top5002(-5e3, 0.5,  1e9, [2 3                 ], 0.01, 1e4, 'No9',5);

top5002(-1e4, 0.1,  1e7, [                    ], 0.01, 1e3, 'No15',3);

Extremely low volume fractions are also trivial to handle.

About

MATLAB/Octave scripts for anisotropic mesh adaptation, topology optimization and finite element methods

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%