-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_acc.py
260 lines (206 loc) · 11 KB
/
evaluate_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
import torchvision
from torchvision import datasets, transforms
import torch.nn as nn
import torch.optim as optim
import os, sys
import argparse
import pickle
import pandas as pd
from datetime import datetime
import json
from torch.utils.data import Dataset, DataLoader
from torchvision import models
from core.model_generator import wideresnet, preact_resnet, resnet
from core.training import Trainer, TrainingDynamicsLogger
from core.data import CoresetSelection, IndexDataset, CIFARDataset, SVHNDataset, CINIC10Dataset
from core.utils import print_training_info, StdRedirect
model_names = ['resnet18', 'wrn-34-10', 'preact_resnet18']
parser = argparse.ArgumentParser(description='PyTorch CIFAR10,CIFAR100 Training')
######################### Training Setting #########################
parser.add_argument('--epochs', type=int, metavar='N',
help='The number of epochs to train a model.')
parser.add_argument('--iterations', type=int, metavar='N',
help='The number of iteration to train a model; conflict with --epoch.')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--network', type=str, default='resnet18', choices=['resnet18', 'resnet50'])
parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100', 'svhn', 'cinic10'])
######################### Print Setting #########################
parser.add_argument('--iterations-per-testing', type=int, default=800, metavar='N',
help='The number of iterations for testing model')
######################### Path Setting #########################
parser.add_argument('--data-dir', type=str, default='../data/',
help='The dir path of the data.')
parser.add_argument('--base-dir', type=str,
help='The base dir of this project.')
parser.add_argument('--task-name', type=str, default='tmp',
help='The name of the training task.')
######################### Coreset Setting #########################
parser.add_argument('--coreset', action='store_true', default=False)
parser.add_argument('--coreset-mode', type=str, choices=['random', 'coreset', 'stratified', 'swav', 'badge'])
parser.add_argument('--data-score-path', type=str)
parser.add_argument('--coreset-key', type=str)
parser.add_argument('--data-score-descending', type=int, default=0,
help='Set 1 to use larger score data first.')
parser.add_argument('--class-balanced', type=int, default=0,
help='Set 1 to use the same class ratio as to the whole dataset.')
parser.add_argument('--coreset-ratio', type=float)
#### Double-end Pruning Setting ####
parser.add_argument('--mis-key', type=str)
parser.add_argument('--mis-data-score-descending', type=int, default=0,
help='Set 1 to use larger score data first.')
parser.add_argument('--mis-ratio', type=float)
#### Reversed Sampling Setting ####
parser.add_argument('--reversed-ratio', type=float,
help="Ratio for the coreset, not the whole dataset.")
######################### GPU Setting #########################
parser.add_argument('--gpuid', type=str, default='0',
help='The ID of GPU.')
################### Load Pseudo Labels from DL models ###################
parser.add_argument('--load_pseudo', action='store_true', default=False)
parser.add_argument('--pseudo_train_label_path', type=str, help='Path for the pseudo train labels')
parser.add_argument('--pseudo_test_label_path', type=str, help='Path for the pseudo test')
######################### Setting for Future Use #########################
# parser.add_argument('--ckpt-name', type=str, default='model.ckpt',
# help='The name of the checkpoint.')
# parser.add_argument('--lr-scheduler', choices=['step', 'cosine'])
# parser.add_argument('--network', choices=model_names, default='resnet18')
# parser.add_argument('--pretrained', action='store_true')
# parser.add_argument('--augment', choices=['cifar10', 'rand'], default='cifar10')
args = parser.parse_args()
start_time = datetime.now()
assert args.epochs is None or args.iterations is None, "Both epochs and iterations are used!"
print(f'Dataset: {args.dataset}')
######################### Set path variable #########################
task_dir = os.path.join(args.base_dir, args.task_name)
os.makedirs(task_dir, exist_ok=True)
last_ckpt_path = os.path.join(task_dir, f'ckpt-last.pt')
best_ckpt_path = os.path.join(task_dir, f'ckpt-best.pt')
td_path = os.path.join(task_dir, f'td-{args.task_name}.pickle')
log_path = os.path.join(task_dir, f'log-train-{args.task_name}.log')
######################### Print setting #########################
sys.stdout=StdRedirect(log_path)
print_training_info(args, all=True)
#########################
print(f'Last ckpt path: {last_ckpt_path}')
GPUID = args.gpuid
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPUID)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data_dir = os.path.join(args.data_dir, args.dataset)
print(f'Data dir: {data_dir}')
if args.dataset == 'cifar10':
trainset = CIFARDataset.get_cifar10_train(data_dir)
if args.load_pseudo:
#--pseudo_train_label_path example: ../datasets/cifar-10-pseudo2/training_batch_labels.txt
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CIFARDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
elif args.dataset == 'cifar100':
trainset = CIFARDataset.get_cifar100_train(data_dir)
if args.load_pseudo:
#--pseudo_train_label_path example: ../datasets/cifar-100-python/label.pt
print(f"Loading Pseudo dataset labels from {args.pseudo_train_label_path}")
trainset = CIFARDataset.load_custom_labels(trainset, args.pseudo_train_label_path)
print(f"length of train set - {len(trainset)}")
elif args.dataset == 'svhn':
trainset = SVHNDataset.get_svhn_train(data_dir)
elif args.dataset == 'cinic10':
trainset = CINIC10Dataset.get_cinic10_train(data_dir)
######################### Coreset Selection #########################
coreset_key = args.coreset_key
coreset_ratio = args.coreset_ratio
coreset_descending = (args.data_score_descending == 1)
total_num = len(trainset)
if args.coreset:
if args.coreset_mode not in ['random', 'swav', 'badge']:
print(args.coreset_mode)
with open(args.data_score_path, 'rb') as f:
data_score = pickle.load(f)
if args.coreset_mode == 'random':
coreset_index = CoresetSelection.random_selection(total_num=len(trainset), num=args.coreset_ratio * len(trainset))
if args.coreset_mode == 'coreset':
coreset_index = CoresetSelection.score_monotonic_selection(data_score=data_score, key=args.coreset_key, ratio=args.coreset_ratio, descending=(args.data_score_descending == 1), class_balanced=(args.class_balanced == 1))
if args.coreset_mode == 'stratified':
mis_num = int(args.mis_ratio * total_num)
data_score, score_index = CoresetSelection.mislabel_mask(data_score, mis_key='accumulated_margin', mis_num=mis_num, mis_descending=False, coreset_key=args.coreset_key)
coreset_num = int(args.coreset_ratio * total_num)
coreset_index, _ = CoresetSelection.stratified_sampling(data_score=data_score, coreset_key=args.coreset_key, coreset_num=coreset_num)
coreset_index = score_index[coreset_index]
print(f'Length of coreset: {len(coreset_index)}')
if args.coreset_mode == 'swav':
df = pd.read_csv(args.data_score_path)
data_score = {
'targets': torch.tensor(df['Image Index'].values),
'score': torch.tensor(df['Difficulty Score'].values)
}
coreset_index = CoresetSelection.score_monotonic_selection(data_score=data_score, key=args.coreset_key, ratio=args.coreset_ratio, descending=(args.data_score_descending == 1), class_balanced=(args.class_balanced == 1))
if args.coreset_mode == 'badge':
# Load indices from badge_selected_indices.json
with open('../distil/badge_selected_indices_1000.json', 'r') as f:
badge_data = [json.loads(line) for line in f.readlines()]
badge_data_sorted = sorted(badge_data, key=lambda x: x["round"])
aggregated_indices = []
total_num_indices_needed = int(len(trainset) * coreset_ratio)
for round_data in badge_data_sorted[1:]:
if len(aggregated_indices) >= total_num_indices_needed:
break
aggregated_indices.extend(round_data["indices"])
if len(aggregated_indices) > total_num_indices_needed:
aggregated_indices = aggregated_indices[:total_num_indices_needed]
aggregated_indices = [int(idx) for idx in aggregated_indices]
coreset_index = aggregated_indices
print(f'Selected {len(trainset)} examples using badge coreset starting from round 1.')
trainset = torch.utils.data.Subset(trainset, coreset_index)
######################### Coreset Selection end #########################
# load from best_ckpt_path
if args.dataset == 'cifar10':
testset = CIFARDataset.get_cifar10_test(data_dir)
if args.load_pseudo:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = CIFARDataset.load_custom_labels(testset, args.pseudo_test_label_path)
elif args.dataset == 'cifar100':
testset = CIFARDataset.get_cifar100_test(data_dir)
if args.load_pseudo:
print(f"Loading Pseudo dataset labels from {args.pseudo_test_label_path}")
testset = CIFARDataset.load_custom_labels(testset, args.pseudo_test_label_path)
elif args.dataset == 'svhn':
testset = SVHNDataset.get_svhn_test(data_dir)
elif args.dataset == 'cinic10':
testset = CINIC10Dataset.get_cinic10_test(data_dir)
print(f"length of test set - {len(testset)}")
testloader = torch.utils.data.DataLoader(
testset, batch_size=512, shuffle=True, num_workers=16)
if args.dataset in ['cifar10', 'svhn', 'cinic10']:
num_classes=10
else:
num_classes=100
if args.network == 'resnet18':
print('resnet18')
model = resnet('resnet18', num_classes=num_classes, device=device)
if args.network == 'resnet50':
print('resnet50')
model = resnet('resnet50', num_classes=num_classes, device=device)
if os.path.exists(best_ckpt_path):
print(f'Loading model from {best_ckpt_path}')
state = torch.load(best_ckpt_path)
model.load_state_dict(state['model_state_dict'])
model = model.to(device)
print(f'Loaded model from {best_ckpt_path}')
else: # throw error
print(f'No model found at {best_ckpt_path}')
exit()
# Print out evaluation only
print(f'Evaluate the model')
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Test ACC: {100 * correct / total}%')