-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path-01.evaluate_raw_sensor_data.R
87 lines (61 loc) · 3.27 KB
/
-01.evaluate_raw_sensor_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
library(ggplot2)
## soil moisture data from 2017-10-17 through 2019-01-16
files1 = list.files("raw_data/knb-lter-nwt.210.1/")
## read all csvs (from first locale)
for (i in 1:length(files1)){
file1 = read.csv(paste0("/Users/Will/Desktop/knb-lter-nwt.210.1/", files1[i]))
file1 = file1[, c("date", "sensornode", "airtemp_max", "flag_airtemp_max", "time_airtemp_max",
"airtemp_min", "flag_airtemp_min", "time_airtemp_min", "airtemp_avg",
"flag_airtemp_avg", "rh_max", "flag_rh_max", "time_rh_max", "rh_min",
"flag_rh_min", "time_rh_min", "rh_avg", "flag_rh_avg", "soiltemp_5cm_avg",
"flag_soiltemp_5cm_avg", "soiltemp_30cm_avg", "flag_soiltemp_30cm_avg",
"soilmoisture_a_5cm_avg", "flag_soilmoisture_a_5cm_avg", "soilmoisture_a_30cm_avg",
"flag_soilmoisture_a_30cm_avg", "soilmoisture_b_5cm_avg", "flag_soilmoisture_b_5cm_avg",
"soilmoisture_b_30cm_avg", "flag_soilmoisture_b_30cm_avg", "soilmoisture_c_5cm_avg",
"flag_soilmoisture_c_5cm_avg", "soilmoisture_c_30cm_avg", "flag_soilmoisture_c_30cm_avg")]
print(colnames(file1))
if (i == 1){
holder1 = as.data.frame(matrix(nrow = 0, ncol = dim(file1)[2]))
colnames(holder1) = colnames(file1)
}
holder1 = rbind(holder1, file1)
}
table(holder1$sensornode)
holder1 = holder1[!is.na(holder1$date), ]
min(holder1$date)
max(holder1$date)
holder1$date = as.POSIXct(holder1$date, format ="%Y-%m-%d %H:%M:%S")
ggplot(holder1) +
geom_line(aes(y = soilmoisture_b_5cm_avg, x = date)) +
facet_wrap(facets = 'sensornode')
# soil moisture data from 2017-08-01 through 2019-12-31
files2 = list.files("/Users/Will/Desktop/knb-lter-nwt.210.2/")
for (i in 1:length(files2)){
file2 = read.csv(paste0("raw_data/knb-lter-nwt.210.2/", files2[i]), stringsAsFactors = FALSE)
file2 = file2[, c("LTER_site", "local_site", "sensornode", "date", "airtemp_max",
"airtemp_min", "airtemp_avg", "rh_max", "rh_min", "flag_rh_min",
"rh_avg", "flag_rh_avg", "soiltemp_5cm_avg", "flag_soiltemp_5cm_avg",
"soiltemp_30cm_avg", "flag_soiltemp_30cm_avg", "soilmoisture_a_5cm_avg",
"flag_soilmoisture_a_5cm_avg", "soilmoisture_a_30cm_avg", "flag_soilmoisture_a_30cm_avg",
"soilmoisture_b_5cm_avg", "flag_soilmoisture_b_5cm_avg", "soilmoisture_b_30cm_avg",
"flag_soilmoisture_b_30cm_avg", "soilmoisture_c_5cm_avg", "flag_soilmoisture_c_5cm_avg",
"soilmoisture_c_30cm_avg", "flag_soilmoisture_c_30cm_avg")]
if (i == 1){
holder2 = as.data.frame(matrix(nrow = 0, ncol = dim(file2)[2]))
colnames(holder2) = colnames(file2)
}
holder2 = rbind(holder2, file2)
}
holder2$date = as.POSIXct(holder2$date, format ="%Y-%m-%d %H:%M:%S")
str(holder2)
table(holder2$sensornode)
table(holder2$flag_soilmoisture_c_30cm_avg)
ggplot(holder2) +
geom_line(aes(y = soilmoisture_b_5cm_avg, x = date)) +
geom_line(aes(y = soilmoisture_c_5cm_avg, x = date)) +
facet_wrap(facets = 'sensornode')
holder2 = holder2[!is.na(holder2$date), ]
min(holder2$date)
max(holder2$date)
table(sensor)
write.csv(holder2, "raw_data/06.07.20.sennetdata_raw.csv", row.names = FALSE)