@@ -4,6 +4,7 @@ use crypto_bigint::{Integer, Limb, Monty, NonZero as CTNonZero, Odd, PowBoundedE
4
4
use rand_core:: CryptoRng ;
5
5
6
6
use super :: {
7
+ equals_primitive,
7
8
float:: { floor_sqrt, two_powf_upper_bound, two_powi} ,
8
9
Primality ,
9
10
} ;
@@ -107,25 +108,30 @@ impl<T: Integer + RandomMod> MillerRabin<T> {
107
108
self . test ( & T :: from_limb_like ( Limb :: from ( 2u32 ) , & self . candidate ) )
108
109
}
109
110
110
- /// Perform a Miller-Rabin check with a random base (in the range `[3 , candidate-2]`)
111
- /// drawn using the provided RNG.
111
+ /// Perform a Miller-Rabin check with a random base (in the range `[2 , candidate-2]`,
112
+ /// because the test holds trivially for bases 1 or `candidate-1`) drawn using the provided RNG.
112
113
///
113
- /// Note: panics if `candidate == 3` (so the range above is empty).
114
+ /// *Note:* if `candidate == 1` or `candidate == 3` (which would make the above range contain no numbers)
115
+ /// no check is actually performed, since we already know the result
116
+ /// ([`Primality::Composite`] for 1, [`Primality::Prime`] for 3).
114
117
pub fn test_random_base < R : CryptoRng + ?Sized > ( & self , rng : & mut R ) -> Primality {
115
- // We sample a random base from the range `[3, candidate-2]`:
116
- // - we have a separate method for base 2;
117
- // - the test holds trivially for bases 1 or `candidate-1`.
118
- if self . candidate . bits ( ) < 3 {
119
- panic ! ( "No suitable random base possible when `candidate == 3`; use the base 2 test." )
118
+ if equals_primitive ( & self . candidate , 1 ) {
119
+ // As per standard convention
120
+ return Primality :: Composite ;
120
121
}
121
122
122
- let range = self . candidate . wrapping_sub ( & T :: from ( 4u32 ) ) ;
123
- // Can unwrap here since `candidate` is odd, and `candidate >= 4` (as checked above)
123
+ if equals_primitive ( & self . candidate , 3 ) {
124
+ // As per standard convention
125
+ return Primality :: Prime ;
126
+ }
127
+
128
+ // The candidate is odd, so by now it is guaranteed to be >= 5.
129
+ let range = self . candidate . wrapping_sub ( & T :: from ( 3u32 ) ) ;
124
130
let range_nonzero = CTNonZero :: new ( range) . expect ( "the range should be non-zero by construction" ) ;
125
131
// This should not overflow as long as `random_mod()` behaves according to the contract
126
132
// (that is, returns a number within the given range).
127
133
let random = T :: random_mod ( rng, & range_nonzero)
128
- . checked_add ( & T :: from ( 3u32 ) )
134
+ . checked_add ( & T :: from ( 2u32 ) )
129
135
. expect ( "addition should not overflow by construction" ) ;
130
136
self . test ( & random)
131
137
}
@@ -236,7 +242,7 @@ mod tests {
236
242
use num_prime:: nt_funcs:: is_prime64;
237
243
238
244
use super :: { minimum_mr_iterations, MillerRabin } ;
239
- use crate :: hazmat:: { primes, pseudoprimes, random_odd_integer, SetBits , SmallPrimesSieve } ;
245
+ use crate :: hazmat:: { primes, pseudoprimes, random_odd_integer, Primality , SetBits , SmallPrimesSieve } ;
240
246
241
247
#[ test]
242
248
fn miller_rabin_derived_traits ( ) {
@@ -246,10 +252,12 @@ mod tests {
246
252
}
247
253
248
254
#[ test]
249
- #[ should_panic( expected = "No suitable random base possible when `candidate == 3`; use the base 2 test." ) ]
250
- fn random_base_range_check ( ) {
255
+ fn random_base_corner_cases ( ) {
256
+ let mr = MillerRabin :: new ( Odd :: new ( U64 :: from ( 1u32 ) ) . unwrap ( ) ) ;
257
+ assert ! ( mr. test_random_base( & mut OsRng . unwrap_err( ) ) == Primality :: Composite ) ;
258
+
251
259
let mr = MillerRabin :: new ( Odd :: new ( U64 :: from ( 3u32 ) ) . unwrap ( ) ) ;
252
- mr. test_random_base ( & mut OsRng . unwrap_err ( ) ) ;
260
+ assert ! ( mr. test_random_base( & mut OsRng . unwrap_err( ) ) == Primality :: Prime ) ;
253
261
}
254
262
255
263
fn is_spsp ( num : u32 ) -> bool {
0 commit comments