-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexit()
936 lines (936 loc) · 84 KB
/
exit()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
[1mdiff --git a/clases/02-12 Bindings.ipynb b/clases/02-12 Bindings.ipynb[m
[1mnew file mode 100644[m
[1mindex 0000000..b72255a[m
[1m--- /dev/null[m
[1m+++ b/clases/02-12 Bindings.ipynb[m
[36m@@ -0,0 +1,221 @@[m
[32m+[m[32m{[m
[32m+[m[32m "metadata": {[m
[32m+[m[32m "language": "Julia",[m
[32m+[m[32m "name": "",[m
[32m+[m[32m "signature": "sha256:43dfc0e3b2f83ff2f0a77b0b20bc9341311cde5984a16543ef23a34f5bc5a5cf"[m
[32m+[m[32m },[m
[32m+[m[32m "nbformat": 3,[m
[32m+[m[32m "nbformat_minor": 0,[m
[32m+[m[32m "worksheets": [[m
[32m+[m[32m {[m
[32m+[m[32m "cells": [[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> x = 3\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(x) = x[1]=10\n",[m
[32m+[m[32m "f (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(x)\n",[m
[32m+[m[32m "ERROR: `setindex!` has no method matching setindex!(::Int64, ::Int64, ::Int64)\n",[m
[32m+[m[32m " in f at none:1\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> x\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> x\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> x[1]\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "~ \n",[m
[32m+[m[32m "15:17 $ clear\n",[m
[32m+[m[32m "~ \n",[m
[32m+[m[32m "15:17 $ julia\n",[m
[32m+[m[32m " _\n",[m
[32m+[m[32m " _ _ _(_)_ | A fresh approach to technical computing\n",[m
[32m+[m[32m " (_) | (_) (_) | Documentation: http://docs.julialang.org\n",[m
[32m+[m[32m " _ _ _| |_ __ _ | Type \"help()\" for help.\n",[m
[32m+[m[32m " | | | | | | |/ _` | |\n",[m
[32m+[m[32m " | | |_| | | | (_| | | Version 0.3.6-pre+43 (2015-01-22 20:39 UTC)\n",[m
[32m+[m[32m " _/ |\\__'_|_|_|\\__'_| | Commit 2dfde6b* (21 days old release-0.3)\n",[m
[32m+[m[32m "|__/ | x86_64-apple-darwin14.0.0\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> function f(x)\n",[m
[32m+[m[32m " x = 10\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m "f (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> y = 3\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(y)\n",[m
[32m+[m[32m "10\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> y\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> function g(x)\n",[m
[32m+[m[32m " x[1] = 10\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m "g (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> v = [3, 4, 5]\n",[m
[32m+[m[32m "3-element Array{Int64,1}:\n",[m
[32m+[m[32m " 3\n",[m
[32m+[m[32m " 4\n",[m
[32m+[m[32m " 5\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> g(v)\n",[m
[32m+[m[32m "10\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> v\n",[m
[32m+[m[32m "3-element Array{Int64,1}:\n",[m
[32m+[m[32m " 10\n",[m
[32m+[m[32m " 4\n",[m
[32m+[m[32m " 5\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> function h(x)\n",[m
[32m+[m[32m " x = [3, 4, 5]\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m "h (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> h(v)\n",[m
[32m+[m[32m "3-element Array{Int64,1}:\n",[m
[32m+[m[32m " 3\n",[m
[32m+[m[32m " 4\n",[m
[32m+[m[32m " 5\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> v\n",[m
[32m+[m[32m "3-element Array{Int64,1}:\n",[m
[32m+[m[32m " 10\n",[m
[32m+[m[32m " 4\n",[m
[32m+[m[32m " 5\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> ^C\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(x)\n",[m
[32m+[m[32m "ERROR: x not defined\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> function f(x)\n",[m
[32m+[m[32m " global hola\n",[m
[32m+[m[32m " hola = 100\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m "f (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> hola =3 \n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(10)\n",[m
[32m+[m[32m "100\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> hola\n",[m
[32m+[m[32m "100\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> f(x::Int) = 3x\n",[m
[32m+[m[32m "f (generic function with 2 methods)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(x::Int) = 2x\n",[m
[32m+[m[32m "duplicar (generic function with 1 method)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(2)\n",[m
[32m+[m[32m "4\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(2.5)\n",[m
[32m+[m[32m "ERROR: `duplicar` has no method matching duplicar(::Float64)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(x) = 2x\n",[m
[32m+[m[32m "duplicar (generic function with 2 methods)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(2.5)\n",[m
[32m+[m[32m "5.0\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(2+im)\n",[m
[32m+[m[32m "4 + 2im\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> abs(-3)\n",[m
[32m+[m[32m "3\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> abs(-3.5)\n",[m
[32m+[m[32m "3.5\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> abs(1+2im)\n",[m
[32m+[m[32m "2.23606797749979\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> sqrt(5)\n",[m
[32m+[m[32m "2.23606797749979\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> methods(abs)\n",[m
[32m+[m[32m "# 19 methods for generic function \"abs\":\n",[m
[32m+[m[32m "abs(x::Bool) at bool.jl:28\n",[m
[32m+[m[32m "abs(x::Unsigned) at int.jl:74\n",[m
[32m+[m[32m "abs(x::Signed) at int.jl:75\n",[m
[32m+[m[32m "abs(x::Float64) at float.jl:207\n",[m
[32m+[m[32m "abs(x::Float32) at float.jl:208\n",[m
[32m+[m[32m "abs(x::Float16) at float16.jl:130\n",[m
[32m+[m[32m "abs(x::Real) at number.jl:24\n",[m
[32m+[m[32m "abs(z::Complex{T<:Real}) at complex.jl:103\n",[m
[32m+[m[32m "abs(B::BitArray{N}) at bitarray.jl:783\n",[m
[32m+[m[32m "abs(A::SparseMatrixCSC{Tv,Ti<:Integer}) at sparse/sparsematrix.jl:481\n",[m
[32m+[m[32m "abs(f::Array{FieldValue,1}) at pkg/resolve/fieldvalue.jl:62\n",[m
[32m+[m[32m "abs{T<:Number}(::AbstractArray{T<:Number,1}) at operators.jl:359\n",[m
[32m+[m[32m "abs{T<:Number}(::AbstractArray{T<:Number,2}) at operators.jl:360\n",[m
[32m+[m[32m "abs{T<:Number}(::AbstractArray{T<:Number,N}) at operators.jl:362\n",[m
[32m+[m[32m "abs{T}(a::HierarchicalValue{T}) at pkg/resolve/versionweight.jl:66\n",[m
[32m+[m[32m "abs(a::VWPreBuildItem) at pkg/resolve/versionweight.jl:94\n",[m
[32m+[m[32m "abs(a::VWPreBuild) at pkg/resolve/versionweight.jl:131\n",[m
[32m+[m[32m "abs(a::VersionWeight) at pkg/resolve/versionweight.jl:185\n",[m
[32m+[m[32m "abs(a::FieldValue) at pkg/resolve/fieldvalue.jl:61\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(\"s\")\n",[m
[32m+[m[32m "ERROR: `*` has no method matching *(::Int64, ::ASCIIString)\n",[m
[32m+[m[32m " in duplicar at none:1\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(s::String) == string(s, s)\n",[m
[32m+[m[32m "ERROR: s not defined\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(s::String) = string(s, s)\n",[m
[32m+[m[32m "duplicar (generic function with 3 methods)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(\"Hola\")\n",[m
[32m+[m[32m "\"HolaHola\"\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(s::String) = s*s\n",[m
[32m+[m[32m "duplicar (generic function with 3 methods)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> duplicar(\"Hola\")\n",[m
[32m+[m[32m "\"HolaHola\"\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> s = \"David\"\n",[m
[32m+[m[32m "\"David\"\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> s + s\n",[m
[32m+[m[32m "ERROR: `+` has no method matching +(::ASCIIString, ::ASCIIString)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> +(s1::String, s2::String) = s1*s2\n",[m
[32m+[m[32m "+ (generic function with 118 methods)\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> s + s\n",[m
[32m+[m[32m "\"DavidDavid\"\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "julia> s1::String + s2::String = s1*s2\n",[m
[32m+[m[32m "+ (generic function with 118 methods)\n"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "metadata": {}[m
[32m+[m[32m }[m
[32m+[m[32m ][m
[32m+[m[32m}[m
\ No newline at end of file[m
[1mdiff --git a/notas/.ipynb_checkpoints/3. Caminantes aleatorios-checkpoint.ipynb b/notas/.ipynb_checkpoints/3. Caminantes aleatorios-checkpoint.ipynb[m
[1mnew file mode 100644[m
[1mindex 0000000..930ce33[m
[1m--- /dev/null[m
[1m+++ b/notas/.ipynb_checkpoints/3. Caminantes aleatorios-checkpoint.ipynb[m
[36m@@ -0,0 +1,166 @@[m
[32m+[m[32m{[m
[32m+[m[32m "metadata": {[m
[32m+[m[32m "language": "Julia",[m
[32m+[m[32m "name": "",[m
[32m+[m[32m "signature": "sha256:e9fd622367787fa36ea3d687008efe5a77da8195ae231b766a4ca5077e699b19"[m
[32m+[m[32m },[m
[32m+[m[32m "nbformat": 3,[m
[32m+[m[32m "nbformat_minor": 0,[m
[32m+[m[32m "worksheets": [[m
[32m+[m[32m {[m
[32m+[m[32m "cells": [[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 1,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Caminatas aleatorias"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Uno de los procesos estoc\u00e1sticos m\u00e1s fundamentales e importantes en la f\u00edsica es el *movimiento Browniano*. Un acercamiento inicial a este p|roblema se da a trav\u00e9s de las *caminatas aleatorias*, que modela una part\u00edcula que recibe impactos al azar, que hacen que brinque en direcciones aleatorias."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[1] Piensa en una caminata aleatoria en una dimensi\u00f3n. Vive en los enteros, y en cada paso de tiempo brinca a la derecha con probabilidad $\\frac{1}{2}$ y a la izquierda con probabilidad $\\frac{1}{2}$.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "Escribe una funci\u00f3n que genere el tama\u00f1o del brinco: $+1$ o $-1$, cada uno con probabilidad $\\frac{1}{2}$."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "function tamano_brinco(t)\n",[m
[32m+[m[32m " brinco = 0\n",[m
[32m+[m[32m " for i in 1:t\n",[m
[32m+[m[32m " if rand()>0.5\n",[m
[32m+[m[32m " brinco+=1\n",[m
[32m+[m[32m " else\n",[m
[32m+[m[32m " brinco-=1\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " return brinco\n",[m
[32m+[m[32m "end\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "tamano_brinco(500)"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 6,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "8"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 6[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[2] Haz una funci\u00f3n que calcule la trayectoria de una caminata aleatoria que empiece en $0$ y toma $n$ pasos al azar. Regresa la trayectoria.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(a) Dibuja varias trayectorias en una misma gr\u00e1fica, como funci\u00f3n del tiempo. \u00bfQu\u00e9 observas?\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(b) Dibuja *muchas* trayectorias en una misma gr\u00e1fica. \u00bfQu\u00e9 observas?\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(c) Dibuja distintas curvas encima para intentar adivinar c\u00f3mo se comporta la mancha en el tiempo.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(d) En lugar de dibujar muchas curvas, s\u00f3lo dibuja los l\u00edmites inferiores y superiores de la mancha. \u00bfC\u00f3mo cambian en el tiempo? Dib\u00fajalos de otra forma para verificar esto."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "function trayectoria(n)\n",[m
[32m+[m[32m " x=zeros(n)\n",[m
[32m+[m[32m " for i 1:n\n",[m
[32m+[m[32m " if i==0\n",[m
[32m+[m[32m " x[i] = rand()>0.5 ? 1 : -1\n",[m
[32m+[m[32m " else\n",[m
[32m+[m[32m " x[i] = rand()>0.5 ? x[i]+1: x[i]-1\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " return x\n",[m
[32m+[m[32m "end\n",[m
[32m+[m[32m "\n"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "a = true ? 1 :0"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 7,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "1"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 7[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[3] Modifica tu funci\u00f3n para que brinque a la derecha con probabilidad $p$ y a la izquierda con probabilidad $q := 1-p$. Para varios valores de $p$, dibuja varias trayectorias en una sola gr\u00e1fica (una gr\u00e1fica por valor de $p$). \u00bfQu\u00e9 observas? \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "[Puedes crear nuevas figuras en `PyPlot` con `figura()`.]"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[4] Piensa en un tiempo final $n$ dado. \u00bfC\u00f3mo puedes caracterizar a la colecci\u00f3n de posiciones de la colecci\u00f3n de las posiciones de un n\u00famero grande $M$ de caminantes aleatorios en este tiempo? Dibuja varias caracterizaciones como funci\u00f3n del tiempo final $n$."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[5] Modifica tu caminante para que tenga una probabilidad $r$ de quedarse en el mismo lugar. \u00bfC\u00f3mo cambian los resultados?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[6] Haz lo mismo para caminantes en 2D y caminantes en 3D. [Aqu\u00ed ya no dibujes las trayectorias como funci\u00f3n del tiempo, sino dibuja las trayectorias en el espacio.]"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "metadata": {}[m
[32m+[m[32m }[m
[32m+[m[32m ][m
[32m+[m[32m}[m
\ No newline at end of file[m
[1mdiff --git a/notas/1. Numeros aleatorios y probabilidad.ipynb b/notas/1. Numeros aleatorios y probabilidad.ipynb[m
[1mnew file mode 100644[m
[1mindex 0000000..c0a688c[m
[1m--- /dev/null[m
[1m+++ b/notas/1. Numeros aleatorios y probabilidad.ipynb[m
[36m@@ -0,0 +1,243 @@[m
[32m+[m[32m{[m
[32m+[m[32m "metadata": {[m
[32m+[m[32m "language": "Julia",[m
[32m+[m[32m "name": "",[m
[32m+[m[32m "signature": "sha256:0de8fa8d27bed9097013da87f85bf7bdef95ec71dd387038cfadc76e4768ff79"[m
[32m+[m[32m },[m
[32m+[m[32m "nbformat": 3,[m
[32m+[m[32m "nbformat_minor": 0,[m
[32m+[m[32m "worksheets": [[m
[32m+[m[32m {[m
[32m+[m[32m "cells": [[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 1,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "El generador de n\u00fameros aleatorios"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Julia incluye un *generador de n\u00fameros (seudo-)aleatorios* (RNG, \"Random Number Generator\"). Cada vez que llamamos a la funci\u00f3n `rand()`, regresa un n\u00famero aleatorio distinto. El generador de Julia es (actualmente) uno llamado *Mersenne Twister*. Utiliza ideas complejas de teor\u00eda de n\u00fameros para asegurarse que los n\u00fameros aleatorios son \"suficientemente aleatorios\"."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[1] Teclea \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " rand()\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "en el REPL o en IJulia (por ejemplo, en [JuliaBox](http://juliabox.org)). En IJulia, utiliza `Shift-Enter` para ejecutar el comando y crear una nueva celda, o `Ctrl-Enter` para ejecutar el comando y quedarse en la misma celda.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "Hazlo varias veces. \u00bfQu\u00e9 tipo de n\u00fameros regresa? Utiliza la funci\u00f3n `typeof` para verificar tu respuesta. El \u00faltimo valor se obtiene con `ans`. \u00bfEntre d\u00f3nde y d\u00f3nde est\u00e1n acotados los n\u00fameros?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[2] \u00bfQu\u00e9 pasa si tecleas `rand` sin las par\u00e9ntesis?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[3] Utiliza `?rand` para obtener ayuda sobre la funci\u00f3n."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[4] \u00bfC\u00f3mo se pueden generar varios n\u00fameros aleatorios a la vez, usando `rand`? \u00bfY una matriz aleatoria? \u00bfQu\u00e9 tipos tienen las respuestas obtenidas?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 1,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Graficar"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Hay varios paquetes disponibles para graficar en Julia. Comenzaremos con uno llamado `PyPlot`, que es un interfaz de Julia a la librer\u00eda `matplotlib` de Python. Para asegurarte de tener instalado el paquete en tu sistema, haz\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " Pkg.add(\"PyPlot\")\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "Necesitas estar conectado a internet. Esto se hace una sola vez para cada instalaci\u00f3n de Julia.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "Luego en cada notebook, utiliza\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " using PyPlot\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "para hacer disponible la funcionalidad del paquete."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[5] Genera un n\u00famero grande de n\u00fameros aleatorios usando `rand`. Asigna la respuesta obtenida a una variable `x`.\n",[m
[32m+[m[32m "Usa `plot(x)` para dibujar los resultados. Puedes agregar una opci\u00f3n `\"o\"` a la funci\u00f3n `plot` para dibujar con puntos."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[6] Define una variable entera `N`. Genera dos colecciones de n\u00fameros aleatorios `x` y `y`, las dos de longitud `N`. Dibuja los pares $(x,y)$ con\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " plot(x, y)\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "con puntos. Utiliza\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " axis(\"equal\")\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "para que la raz\u00f3n de aspecto se vea mejor. \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "\u00bfQu\u00e9 observas? \u00bfQu\u00e9 tipo de distribuci\u00f3n tienen los n\u00fameros aleatorios?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[7] Genera una colecci\u00f3n de n\u00fameros aleatorios `x`. Genera otra colecci\u00f3n `y` con el mismo tama\u00f1o que `x` pero con puros ceros, usando la funci\u00f3n `zeros`. Dibuja el resultado para ver c\u00f3mo se distribuyen los n\u00fameros aleatorios en una sola dimensi\u00f3n."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 1,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Usando los n\u00fameros aleatorios: caminatas aleatorias"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "\u00bfPara qu\u00e9 utilizamos los n\u00fameros aleatorios? A menudo, es para llevar a cabo una operaci\u00f3n *con cierta probabilidad*."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[8] Pensando en c\u00f3mo se distribuyen los n\u00fameros aleatorios, \u00bfc\u00f3mo se puede llevar a cabo una operaci\u00f3n con probabilidad 0.5? \u00bfCon probabilidad $p$ tal que $0 < p < 1$?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[9] Define una funci\u00f3n que genera un paso de una *caminata aleatoria*, que toma pasos a la izquierda con probabilidad 0.5 y a la derecha con probabilidad 0.5. La funci\u00f3n regresa el paso escogido."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[10] Generaliza tu funci\u00f3n para aceptar un argumento `p` que corresponde a la probabilidad $p$ de brincar a la derecha, y $1-p$ a la izquierda."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "[11] Haz una funci\u00f3n que genera una trayectoria de una caminata aleatoria con $N$ pasos y probabilidad $p$."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "function f(p,n)\n",[m
[32m+[m[32m " x=[0.0]\n",[m
[32m+[m[32m " for i in 2:n\n",[m
[32m+[m[32m " if rand()<=p\n",[m
[32m+[m[32m " push!(x,x[i-1]+0.5)\n",[m
[32m+[m[32m " else\n",[m
[32m+[m[32m " push!(x,x[i-1]-0.5)\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " return x\n",[m
[32m+[m[32m "end"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 1,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "f (generic function with 1 method)"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 1[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "using PyPlot"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [],[m
[32m+[m[32m "prompt_number": 2[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "plot(f(0.5,100))"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "display_data",[m
[32m+[m[32m "png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAIVCAYAAADConfoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmQHmd9J/Dv3BqNbml0jTSau9sBm2ABIWzWLnvBOHHAOLuEUgEF8S5s2aFSJpuYbLFO1pUNCakk66TYHODspmoxAuyEGLKxncDKC2HXOF7jDXHcrTl1jI7RSBqdM6O59o8fj9+ed/p4ut/ut6/vp0olzUz32z3d6u7f8+vn+T0NKysrKyAiIiIiyqHGtHeAiIiIiCgqBrNERERElFsMZomIiIgotxjMEhEREVFuMZglIiIiotxiMEtEREREucVgloiIiIhyi8EsEREREeVW4sHs1atX8fDDD+Ouu+5CZ2cnGhsb8eijjya9WSIiIiIqgcSD2enpaXzhC1/AwsIC7rvvPgBAQ0ND0pslIiIiohJoTnoDPT09uHjxIgDg/PnzePzxx5PeJBERERGVRF37zK6srNRzc0RERERUcIlnZsOYnp7Gc889h56eHrS3t6e9O0REREQU0ezsLCYmJvDud78bO3bsSGw7mQpmn3vuOXzoQx9KezeIiIiIKCZf/OIX8cEPfjCxz89UMNvb2wtAfumbbrop5b2henrooYfw2GOPpb0bVGc87+XE815OPO/l89prr+FDH/rQ6/FdUjIVzK5btw4AcNNNN+HWW29NeW+onrZs2cJzXkI87+XE815OPO/lpeK7pHDSBCIiIiLKLQazRERERJRbdelm8Mwzz+DatWu4cuUKAODVV1/FU089BQC45557WLmAiIiIiCKpSzD74IMP4tixYwBk9q8nn3wSTz75JBoaGjA+Po7u7u567AZl2KFDh9LeBUoBz3s58byXE887JaUuwez4+Hg9NkM5xptcOfG8lxPPeznxvFNS2GeWiIiIiHKLwSwRERER5RaDWSIiIiLKLQazRERERJRbDGaJiIiIKLcYzBIRERFRbjGYJSIiIqLcYjBLRERERLnFYJaIiIiIcovBLBERERHlFoNZIiIiIsotBrNERERElFsMZomIiIgotxjMEhEREVFuMZglIiIiotxiMEtEREREucVgloiIiIhyi8EsEREREeUWg1kiIiIiyi0Gs0RERESUWwxmiYiIiCi3GMwSERERUW4xmCUiIiKi3GIwS0RERES5xWCWiIiIiHKLwSwRERER5RaDWSIiIiLKLQazRERERJRbDGaJiIiIKLcYzBIRERFRbjGYJSIiIqLcYjBLRERERLnFYJaIiIiIcovBLBERERG97vJl4Pnnw63z5S8Df/d3iexOIAazRERERPS6//pfgXe+E5id1V/nkUeAr30tuX3yw2CWiIiIiF73T/8ELC0Bw8N6y8/PA+PjgGEku19eGMwSERER0essa/XfQUZHJfg1zeT2yQ+DWSIiIiJ6nW2v/lt3eWZmiYiIiChVFy8CU1Pyb93MrGUBW7YAO3cmt19+GMwSEREREYBKlvXgwXCZWcMAGhqS2y8/DGaJiIiICEAlG/ue90iQurKit05a/WUBBrNERERE9EO2DXR3A29+M3D1KnDqlP/yKyuVzGxaGMwSEREREYBKllVlWoO6GkxNATMzzMwSERERUQaoLGtvL9DcHDwILO1KBgCDWSIiIiICsLgIjIxIlrWlBRgYCM7MWhbQ1AT099dnH90wmCUiIiIijI8DCwuVLKth6GVme3uBtrbk988Lg1kiIiIiej0Lq/q/mqZeZjbN/rIAg1kiIiIiggSmGzYAe/fK14YBHDsGXL/uvU7alQwABrNEREREhLWTH6iM6/Cw+/Lz89I1gZlZIiIiIkqdZa3Osqp/e/WbHRkBlpeZmSUiIiKiDLDt1VnWbduAzk7vfrMqyGUwS0RERESpunABOHdubWDqV9HAtoGtWyXgTRODWSIiIqKSq65koPhVNFDdElQf27QwmCUiIiIqOcuSoHRwcPX3DUOC2ZWVtetUd0tIC4NZIiIiopKzbaC7G2hvX/190wSuXQMmJ1d/f2Vl7YCxtDCYJSIiIio5r8kPvCoanD0LXL7MzCwRERERZYDX5Ae9vUBLy9p+s1mpZAAwmCUiIiIqtYUFqRnrlmVtbgYGBtZmZm0baGoC+vvrs49+GMwSERERldj4OLC46J1ldatoYFlAXx/Q2pr8/gVhMEtERERUYirr6tX/VVU0cMpKJQOAwSwRERFRqdk2sGEDsGeP+89NEzh+XKoaKFmpZAAwmCUiIiIqNVXJwGvyAxW0Dg/L33NzwMQEM7NERERElAFelQyU6vJcw8NSZ5aZWSIiIiJKnVeNWWXrVmDnzkq/Wa+pb9PCYJaIiIiopKangfPng7OsplnJzFoWsG0bsGNH8vung8EsERERUUnpZlmdFQ2yVMkAYDBLREREVFq2LQO/Bgb8l1O1ZpeXs1XJAGAwS0RERFRalgX09ADt7f7LGQZw/Tpw8iQzs0RERESUEUGVDBQVvD7/PHDlSskys1evXsVDDz2Erq4utLe3481vfjO+8pWvJL1ZIiIiIgqgm2Xt6ZGpa59+Wr7OUjDbnPQGfuZnfgYvvfQSPvvZz2JoaAhPPPEEDh06hOXlZRw6dCjpzRMRERGRi4UFYHRULzBtagIGB4FnnwWam4H+/uT3T1eiwexf//Vf45vf/CYOHz6MD3zgAwCA22+/HceOHcMv//Iv4wMf+AAaG9nTgYiIiKjexsaAxUX9LKthAK++CgwNAS0tye5bGIlGkl/72tewceNGvP/971/1/Z/7uZ/DqVOn8L3vfS/JzRMRERGRB1U3Vncwl1ouS4O/gISD2X/8x3/ETTfdtCb7evPNNwMAXn311SQ3T0REREQebBvYuBHYvVtveZXBzVJ/WSDhbgbnz5/HgEvhsm3btr3+czf33PMQbrllC9raKt87dOiQZx/bF18Ezp4F3vMevf1aWQH+8A+Bf/kv9U9gmY2NAf/rfwE/93P663zlK8Ab3gC88Y16y1+9CvzRHwG/+IvSL4eIiKjMnngCOHgw2Syomsa2oUFveb/M7OHDh3H48OFV35uZmalxD/UkPgAsijNnHsOXvnQr7rhDb/nPfhb4wQ/0g9npaeATnwDm5yV4In9/+qdyjD/4QRnJGGRlBXjwQWksfP7zett45hng4YeBf/EvgFtvrW1/iYiI8mx5Gfi3/xa4/37gD/4gue3oluVSbr4Z+JmfAd75zrU/c0s6vvzyyzh48GCNexks0W4G27dvd82+Xrhw4fWfu2lqqvTj0GFZkj28cUN/eaAyLRv5syxgaUlGPOqYngYuXAh3fHlOiIiIxOQkcO1a8s9ElZnV1d4O/PmfA93dye1TFIkGs7fccgtee+01LC8vr/r+D37wAwDAGz3eQe/bp38CFxeBkREJtsbG9NZxzi1MwcIeryjHl+eEiIhI1OOZqBJPWev/GkWiwex9992Hq1ev4qmnnlr1/T/7sz9DV1cXfuzHfsx1vQMH9DOzExOVjKzuOmq5MNnfslpaAoaH5d9hj+/Zs4BudxmeEyIiIqGehceOyRSySW4ja5UJoki0z+zdd9+Nd73rXXjggQdw+fJl9Pf34/Dhw/ibv/kbPPHEE2jw6HHc0wN8+9t621CtlqamcJnDpqZKsLVli956ZaQaC1GO79KS/NujzfK6lZXKOszMEhFR2Tmfo8PDwJvelMw2GhoAl3H6uZP4jAV/8Rd/gQ9/+MP41V/9VfzkT/4k/v7v/x5f/vKXfWf/6umR1sjsbPDnWxbQ0QG8+c3hMoe33Sb/ZvDkTx3T224Ld3x/4idWr+/n1CmpZnDbbXI+qnqlEBERlYozTknqjaVlAb29wLp1yXx+PSUezHZ0dOCxxx7DqVOnMDc3h+9///v42Z/9Wd91enokW6deb/tRI/FuukkvMJ2fB8bHK5UPGMz6s21pLNx5p/x7ZUVvnYMHgf379Y6vWubee6UBc/JkbftMRESUZ7YN/PiPA52dycUpYSsZZFkm55I9cED+1mmNWJacDMOQfwcFW6OjkrY/eFAGmrGPpj/LkmnrbroJuHgROHfOf/kbN2QgnvOc6GyjpQW4++7K10RERGV07Rpw4kS452gUYSsZZFkmg9ktW4AdO/SzeoYhJ+TiRRmdF7Q8UFmHmVl/zuOrvvajGgthjq9tA/390m+ntZXnhIiIyuvoUfk7yTjFmXgqgkwGs4Bea+TiRWBqSk62OiFB61iWBMs7dybb4ikK1XIbGAAaG/WOL1A5J8PDUj5NZxtNTcDgIM8JERGVl3oGqsysbhe/MFTiiZnZhOm0RpxZVhVs6axjGDKCzzSlRm1QsFVWqrFgGEBbm3QU1zm+mzdLY8E0gYUFqYgQtI5qjDBbTkREZWbbwK5dkngzTel2MDkZ/zYAZmYTp9MaUa2XoSEZjdfTo5c5VC0Rw5BUe1CwVVbqP7vzeOke34YGvWz59etSuSLMNoiIiIqqOk5R34t7G5s3S9BcBJkNZk1TyjWdOuW9jG3LlGrr11fW8cvqqXqmziyg+hxaSx2XwUH5Wzdbro5vV5dUQvBbR1WscJ6TyUngypXo+01ERJRXzudob68MkI47TnG+pS6CzAaz6kT6ncDqkXgqm+tlakomSVDrdHVJIMxMoDvLksZCR4d8bRhS1mx+3n35lZXV56SxUbLmQedQfbbzb9UBnoiIqCyWl+WZqZ6jzc3SjTKJzGxR+ssCGQ5mVWvE7wRW10gzTRmdp6a3dVseqKzT2BgcAJeZ2/FdWpKO427OnZPGQvU6QeewsxPYtk2+1mnEEBERFdHJk1Jvvfo5GuczsfotdRFkNphtaZFyTV4ncHFRBm9VZ2b9gi3LkhHz/f2r12Hg5M7ZOgSCA023eZ6Djm9163DzZmD3bp4TIiIqn+qxKkD8ccr0tAzwZma2TvyyeuPjMlK+uvUCeK9j25LxbWvT20aZLS5Kf1bn8d25U0ZX+h3fxsbVjQXTlO4dFy96r1PdOuQ5ISKiMrIsiVHU5FGAPBOPH5eqBnFtA2Bmtm78WiNuWcCdOyWz57dOdUvEMPyDrbKamJDGgvN4qQoFfse3r291Y8Evm6tedbidE2ZmiYiobGxbBl03NVW+p56jasB0HNtobJS+uEWR6WDWNKVs0/Xra39m28CGDcDevZXvqdqxfplDtyyg+hlVeLXcwh7foaHVn+c0OSktTbdtHD0qHeGJiIjKwrLWPhPjLs9lWWvfUuddpoNZv9aIOuHVZSW8snrz89I1oToLqMpOMZhdzbalikFX1+rv+9X/dct8r18vFRHcjq9bdl1tY3ZW5qYmIiIqC7e3lVu3ypvnuOKUog3+AnISzLq1RrxOhsocVgdbIyOS6atep6NDgi320VzNq7FgmlKxYGpq9fdVY8HvnFSzbRno19Ozdnm1D0RERGVw9apUMwjzHI2iaGW5gIwHs9u2Sdkmr6ye28kwDAm2zp1buzzgvQ4zs6u5tQ4B7z6wqrEQ5vhalmTGm5tXf7+7W15/8JwQEVFZqPrqScYpfomnPMt0MAu4t0bOn5fSEl6tF2DtOrYtqfodO/S2UXZu/XYAqVTQ1OR+fAHvczIyIhUSqtdxW76pSfra8pwQEVFZ+FUZULVmax1LMjoqJUyZma0zt9aIWx02pb9fRulVr6MyuW5TtxmGe7BVVhcuSGbb7fi2tUnHcbfju3WrZNKrGYZURhgfX7uO1wXFbDkREZWJbQN79gCbNq39mWHIYPjJydq3oT6vSDIfzKrWiLMPrG1LUKoGbzm1tUl5KLfModfJM033YKusgv6zu2Wy/eZ5dsuWX7smA7zCbIOIiKiovN6IAvGNJbEsqRe/c2dtn5M1mQ9mDUMCH2drxLKkX2V7u/c6zqzeyor/fxJOobqaOg5ujQXAPWvqd3z37pUyas51VN8gv3Ny6hRw5Yr+fhMREeWVX9Ktpwdoba09TvFLPOVZ5oNZt9aI1+Ak5zrO5c+eBS5f9l6nq0uqGjATKCxLZh9Zv97956YpWez5efnaa/IDRU22UH0OgeBWKBsYRERUdMvLkuTxeo42NUmCKY7MbNH6ywI5CGZ7eqR8kzOo8csCAvIzZ7AVNHVb0MxWZRNUg84w5MIbGZGvz54FLl0KXqf6HO7cKf1s3ajJFnhOiIio6E6ckPrqYZ6jYanEU9H6ywI5CGabm6U1ok7gwoKMxgvKzC4vy3KArNvUJIPD/NZhZlYEtdyqs6Z+A/Kc6zgvwqDs+qZN0j2B54SIiIrOr3yoUmucMjUlpUuZmU2J8xX12JhUHQhqvQCVdSxLBoW1tvqvwyxgpbHgd3x37JCMqvP4BjUWDEMqJFy4UFknqHXIc0JERGVg2zKAvbvbexnDkEkVrl6Nvg31OUWTm2A2TBaws1OCLec6QS0R01wdbJXV+LgEtH7Hq6FhdabVtoMbC85sblDfIOc6zMwSEVHRWZZ0r2tq8l5GPTPVAOoo2whKPOVVLoJZ0wSOH5eqBpYlI+P37PFevnrAkW4WEGAmULflFvb4Dg7KebEsaVlev663jeFhKfBMRERUVDp9WWuNU2xb6sS3tUVbP8tyEcyqEzg8XMmyBpWVUJnDuTlgYiI4C+gMtspMNRb27vVfzln/Vyfz3d4uFRJsWy+7rn4+NycNGSIioqLSqTKweTOwe3f0OKWolQyAnAWzlqWXBVTrWJYEwCsrweusXy99VZiZ1atBZxhSweD4cf15ntU5sSzpktDTE7y82iciIqIiunJF6qrrPkdrycwWsb8skJNgdutWKeOksno6LQvTlGDr29+ufK2zTtkDpzDHFwD+6q+ksRDm+Nq2ZML9+gYB0rhYt47nhIiIikv1gU0yTpmfl8QTM7MpM03gu98Fzp/Xb70AwNNPA9u2yQh8nXXYzUDv+Pb1STD69NPyte45GRkB/vEf9ZZvbJQO8WU/J0REVFzqGafqq/tRmdnl5XDbGBmRdZiZTZlhAEeOyL91Whb9/RJsHTmi3xIxTSlLtbAQfT/z7Px5YHpa73i1tsoxPnJEv7FgmlJW7bvfDXdOmJklIqKism0Zp7JpU/CypimTK5w8GX4bav0iyk0wqwKhhgZgYCB4+dZWyR4G1aR1MgwJZMfHa9vXvApbg84wKsdXZ55n9blhzwkzs0REVFS6b0SBtXX0w2xj61a9xFMe5SaYVSewp0dGxutQLZAwWUCgvJlA25agdHBQb/mwx3fPHmDjxnDrmCZw+jRw+bLe8kRERHmiO1YFkKpAbW3h4xTdSlB5lZtgVp3oMP091LK66+zZI2WpypoJtCy5UHQbC2GPr6r/G2YdVjQgIqKiUpMI6T4Tm5ok4RQlM1vU/rJAjoLZnh7pOpBkMFs92UJSvvUt4D/9p3DrfOpTwIsvJrM/StiyHWGPr1p21y6pl6dDdYgPc04sC3jwQamyQEREFEWUZ8kf/AHwta/pL3/8uNRTD/scDfNMVPXgGcxmQFMT8NhjwL/+1/rr3Hsv8Gu/pjdCUKnHgKP//t+Bz35W/wK5fh347d8GvvrVZPcrbMvtbW8DPv1p4J3v1F/nE5+Q30XXxo1AV1e4c/KXfwn80R8Bk5P66xARETlFeZb83u8Bf/qn+suroDTMszdsnHL2rJQqLXIw25z2DoTxwAPhlu/sBP7jfwy3jmEAzz0Xbp2wbBu4elWKJHd1BS8/PFxZLykLC1LJIcxIx9bW8Bnmt79d/oQRtki0Wta2gX37wm2LiIgICP8suX5dMq0tLeG2sW6ddPHTZRgSYF+5UhmHErQNoLiVDIAcZWbrxTSlPNX588l8/spKpSWm+5og7PJRjI1JlYEs/mc3zfDdDJx/ExERhRX2WaJmHB0bk0kKdLcxNCR11XWp57SabEFnG01NUk6zqBjMVkl6wNG5c8DMTLhtqOXGx/UvkLDCluWqJ8OQm8TSUvCyqm8QwEFjREQUTZRniVpueVnedOquE/a5GzZOsW0pVdraGm47ecJgtsrgoAwESyqrpz533bpwmdl16ySY071AouzXxo1S0SFrTFOC+GPHgpc9dw64eDHc8SUiInKK8ixRz2r1b911wr4R3bRJntVJbiNvGMxWaW+XvitJZfVsW9L9d9wRrlV1112Vfye1X7qTH9RbmFaoWuauu5iZJSKiaKI8S2wbeMtbgC1b9Na5fFnqqEd5IxpmLEnRKxkADGZdhe2jGYZlAb29wC236G1Dveq47TYpZ5XkfmW15bZ/vzQydH53y5K+R/fcIx3xr11Lfv+IiKhYojxL1HNUt3RWLQOzdOOUuTnpopjV53tcGMy6CDt6Pgw1C4dpygVy/br/8pOTchGpdZLOzGZRY6N0kNfNzPb1SWMBqFSCICIi0hX2WaIST2Ge1WqZMOVDFcOQAWDLy/7LjYzIvmX1+R4XBrMuTFP6pi4sxP/Zqpar+o8VNBrRWYMuqQkdVPWGLLfcdFuh1ceX/WaJiCissM8SlXhyPquDaslblpTn1CmvVc00Jet6/HjwNtTyRcZg1oVhSJmqsbF4P3d+vpLu1+0HatsyArGnp9Lai3tmqyxXMlB0s+WqZbx1K7BzJ/vNEhFReGGfJc4uA6YpkxRMTQWvE/W5GyaG2LYN2LEj2nbygsGsC9WCiTurNzIirwQMQ/5zdXYGb8OygIEBoLlZ1puZCb5AwrIsGfg1OBjv58bJNIEzZ+QG4WV+Xhogzml2mZklIqIwojxLLEsmS+jp0c/m1jJWpbtbr9JClsfDxInBrIvduyXtH3dWr7qzt06/GtU6dK6XxH719FRKimSRTit0dFQaC2GOLxERkVOUZ4ltS0KouVkmJ2hq8l9naUn64UbNzDY1yfZ09ivLb13jwmDWRUNDMhUNLEteWah0v86rc9VvB5ALpLExmf3KestNdZD3O17Vc1yr4xvUQZ6IiEiJ8ixxPqvb2qRqkd/z6tgxyQDX8uwNCrLVjKNZf77HgcGshyQqGlTXcg3qA3vtGnDixOoLpK8vuf3Ksg0bZG5sv0DetqW+X2enfG2aUi1icrI++0hERPkX5VlS/RwNSojFMVYlqPvDmTPAlSvZf77HgcGsh6Qys84WkmFIwOp1gahKB9XrxLlfN27IK5U8tNyCWqHq+KrGAisaEBFRWF7PEq/nz7VrUlWg+lkd9Lxqb5c66lGZJnDqlASsXttQyxUdg1kPhgFcuCBlq+KgatBVt9wA72DLreUWdz/QsTHpu5OHlltQIF99fHt6pBIE+80SEZEur2eJ1/NH1aCtflaPj0tXAq9tDA1J18GogoJs25Y+vH190beRFwxmPcQ92GpqSkbiO1tIPT0y+tFrG5YF7NolrzsUw/C/QMKqZQaSejNNuWksLa39mVvfoOZmqQTBYJaIiHQ4Jz9Qgp4l1X1s1b+Xl6WKkdc6tT53g4JZy5KxNi0ttW0nDxjMehgYkFcMcb2idvvP3twsoxH9MrPVGVPT9L9AouzXpk0SNGedYUi3iImJtT9TjQW348VuBkREpGNqSkpghnmW2LbUot26dfXyQLjne1gbNwJ79ya7jbxgMOth3brg0Yhh2LaU0ujvX/19v341bi033ULJYfbL2Tcoy/yy5V59g5KcmpiIiIrF621l2Gf1jh0S3Lqtc+mSDM6K442oX9fDslQyABjM+opzsJVlSb+V1tbV3/dq7S0vywCw6lZVZ6dcIHHuV15abl1dwPr17r+7V2PBNKUixLVr9dlHIiLKL8sK/yxxy4D6lfiMc9ZNrzhldlbKf+Xl+V4rBrM+4hxsVd0HRzEM9wvk5EkpBVK9TkNDfNnGvNWga2z0/t29GgvqQlaVIYiIiLzYdrhnyfKy//Pd702iqp9eC6+xJMPD8ozPy/O9VgxmfRiGlK26caP2z/LKgKr/aNUXiF/LLa5+oNPTwMWL+Wq5ebVCvfoGsTwXERHp8npWez1LJicl8eT3rK6uJW/bUjd9w4ba99cwgLk5KQ1WvQ3nfhcdg1kfpimtnbGx2j5nbk4GLXm13IC1rTfLkpZhT4/7On6TLejKUyUDxStb7pVh3rJFBrex3ywREQXxyrJ6PUv8arkaBnD5MnD27Np14nrueo0lsSzpt7t9ezzbyToGsz7iyuqNjMirCLcWkrpAqreh5nlualq7jmlKB/LqCyQsy5JX9wMDtX1OPRmG/N4zM5XvqcaCVwuUFQ2IiCjI/LyUvgzzLLFt78STV0WDOKsM7N8vky8kuY08YDDrY9cuKVtVa1YvKAPq1q/Gr+UWV0UD25YLsK2tts+pJ7ffXTUWwhxfIiIipyjPEsvyTjz19cn3nessLUl/1rgCzcZG2b7bfjGYJQD+oxHDsCxg2zZJ+bvxau15/Ufs75cLJI79ylMXA6DSYd75uwf1DVJdE5aXk903IiLKL7d68E5uzxK/Z3Vrqzyvnc+riQkZhxPns7c6hnCb+KHoGMwGiCOrF/SfyjBkAJi6QK5elWoGXuu0tkqLL479ylvLraNDXqs4f/egxoJhSJmSkyfrs49ERJQ/th3+WRKUFKqOIYIC5iiqt3HqlMQReXu+14LBbACv0YhhBKX7TVNGQ05OyteqskHQOrVkZm/ckIFteWy5VQ8CU0G518QPQTOxEBERqWd10LNEPX9U4inoWV39vFq/XqoZxMU0gdOnZbCZc//y+HyPisFsAMOQ8lXT09HWV+l+v//s1QPNdFputWaMR0el704eW27V5bmCGgsHDki/YPabJSIiL0HPavUsUc8fncSTYcigsrk5+dqypLtcY4zRV/VYEssCmptlFtOyYDAboNas3pkz0lryayH19EjXAfUf0baB3buBzZv998t5gYTlV04k60xTOuovLur1DWpqkg7yzMwSEZEbnUmE1LPE+awGgjOzKyvyzFLrxP3crQ5mbVuqFLW0xLudLGMwG2BgQFpQUbN6Ov/Zq4MtnVGIhrH6AomyX5s3Azt3Rls/TYYh3SQmJiqNBZ3jxcwsERG5OXtW/1nifFbv2iUlNv2WV8uqv+N+I7phg0z3nuQ2so7BbIC2NknVR83qqXR/9TzP1Zz9anRabrVmjFWMJbSFAAAgAElEQVQL1KtvUJY5+y3p9g1irVkiIvKi+7Yy7LNaTVxg29JlcWoqmTeiYferaBjMaqglq6fmeQ5K96vW3vKy9MMJalXt2CGjLmvZr7y23Lq6pKqBZcmfpiY5xn4MQwbYXblSn30kIqL8sG39Z8nJkzL4SzcDqp7vSU4xq7Zx/Tpw7Fh+n+9RMZjVUEtWT7eWq2nKBfLaa1L6Q3edKPul0zcoyxoaKg0M25asd2ur/zrqd1Ud9omIiBTLCvcssSx5nug+q51vElW99DiZpkzGkOfxMLVgMKtBjUacnw+/rm4GVC3zjW+s/jponSiZ2XPnZDrYPLfcVCs0TMsYYL9ZIiJaK+yz+pvflMRTmMysZUmd9I6O2vbVaxvz88Df/M3q/SyLRIPZq1ev4uGHH8Zdd92Fzs5ONDY24tFHH01yk4kwTSljNToabr3ZWRmkpNNCUv/xnn5a+ukeOKC3X1Fq4Bah5eZs6er8Hps2AXv2sN8sERGtpfu2Uj1Lnn5avtbNzF65Ajz/fHLPXfW5Tz8NdHZKN8QySTSYnZ6exhe+8AUsLCzgvvvuAwA05HDEUdSs3siIBJo6LaTNm6Uc1wsveM/z7LZfV67IiP4wbFsqNAQNSssyw5CO9OPj+i1QVjQgIqJqc3OSeArzLHnhBf3Ek/rcF15ILmO6bx/Q3p7sNrIs0WC2p6cHFy9exJEjR/Cbv/mbSW4qUTt3SumNsFm9sBlQtVzY5aPsV1+fXIh55TxGYY4XM7NEROQ0PCyJp7DPXt3EU1+fVDVyrhu3xsZKEJvnt65R1a3P7Eot88GmzDngKAzblpIc27frLa/+I+q2qtQFEmW/8t5yGxys/DtMa3p4WCpGEBERAeGrDIR9Vre0VN6EJvnsDbtfRcIBYJqq51fWEbbWW9jMrLpAkt6vLFq/Xl7vbN8uZcp0mKb0Yz5xItl9IyKi/FCJpzDPEuffSa0TVj22kVXNae+Am4ceeghbqqbUOHToEA4dOpTSHklL5+mn5VWEbrdfywJuuUV/G1H+IzpnI9ExPw+MjRWj5WaaUutPl3MmFp1+Tln26KPyeus//Ie094SIKN/CzpgVNZj91rekTnpS0g5mDx8+jMOHD6/63szMTF22rR3MPv/887jzzju1ln3llVdwS5gorspjjz2GW2+9NfL6STBNKWd17pzeFLArK9La+9mf1d/GO98JfOlLwMGD4fbrySf1lx8dldfsRWi5/c7vAAsL+st3dwPr1sl5efe7k9uvevjzP5cuJgxmiYhqY9vAzTfrL9/TA3z1q8BP/7T+Or/wC/KMT3IM/PveB3zlK8DAQHLb8OOWdHz55ZdxMExQE5F2MGuaJh5//HGtZffv3x95h7LKmdXTCWZPn5ZKA2Fae83NQNjks2HIKMzZWRnJGERlcYuQmX3jG8Mt39QkfW3zPghsaUmKdTc1ScOkkZ2FiIgiUZMI/at/FW69978/3PJ798qfJK1bFy6BViTawezu3btx//33J7kvmdbfL8GDbQO33Ra8vOrHmnQG1DTlYhwZ0WtZ2jawdavUoSujKH2fs+b48coEHpOTUoSbiIjCO3NGEk9FeFtZZszpaGprA3p79bN6liWZ1t7eZPfLmTHWofoG5bDcbyzC9jHOIuf+5/13ISJKU5HeVpZZ4gPAnnnmGVy7dg1XrlwBALz66qt46qmnAAD33HMP2nXejWdEmKyebUu/lZaWZPdJjcAMs1833ZTsPmWZaQKnTklLfOPGtPcmGtuWLiVLS/Lvd70r7T0iIson25bEU19f2ntCtUg8mH3wwQdx7NgxADL715NPPoknn3wSDQ0NGB8fR3d3d9K7EBvDAP7yL/WWDTs6sha62UbVN+h970t+n7LKOZvbW96S7r5EZVnA0JAMfmNmlogoOsuSboRJJ54oWYl3MxgfH8fy8jKWl5extLS06t95CmQBCYTGxyv9Ff3Uc2IC3QkdpqaAS5fK/TplaEj+znO/WVUnuAj9f4mI0lSESYSIfWZDMU0ZPT4y4r/c7Cxw7Fj9OpSraVqDJlkLO71uEW3aJCNK85zRVFn/IvT/JSJKk2WV+5lYFAxmQ3C+ovaj5nmuZ2b26lUpB+bHtqUig5pWr6yiTE2cFZcuyehblZk9eTLcxBFERCRU4omZ2fxjMBtCZ6eUtQrKhtV7dKRqVersV18f0Nqa/D5lmcpk55FzDnH1/+vo0fT2h4gor1TiiZnZ/GMwG0JDg15Wz7alwsD27fXZr95eGY2ps19sgcoxGB6WagB5o87x0JD+mwIiIlrLmRygfGMwG5JOVq/efXBaWqQMWNb2K6tME5ibk8kH8saygH37gA0bgC1bgF278ptlJiJKk2XVN/FEyWEwG5LKzPoNtkojAxqUMZ6bk2lv2QLNd0az+v8WKxoQEUXDt5XFwWA2JNOUQThnz7r/fGWlUjqp3vvll6EbGZFKDMzMAt3dMod1HjOa1dl1VjQgIoqGbyuLg8FsSEFZvVOnZHR5GpnZ48dldKYb9g2qaGyUPqd5y2guLUlf3+rM7NGj0lAhIiI9KvHEZ2IxMJgNqb9fylt5BUJp1XI1Tbk4h4fdf25ZwLZt0j+I8lnRYGICuHFjbWZ2dhY4cSK13SIiyh2VeGJmthgYzIbU2irlrbwCIduWAVm9vfXdL9W69Nsvw5CKDJTPWrNu2XV1I87b70JElCa+rSwWBrMR+A26sSypLNDcXN992rZN6uD67RdboBWmKZNMXL6c9p7osyxg/XqpZqAcOAC0teUvy0xElCbLSifxRMlgMBuB36CbNPvgeO0X+watlceKBrYtfX0bHVdtUxMwOJiv34OIKG22Ld0GW1rS3hOKA4PZCExT+i/Oza39WZoZUK+M8ZkzkoFkZrYiqFtGFnn932JFAyKicPi2slgYzEZgGDJ6fGRk9fevX5eKAmlmZt1q4LJv0FobNgBdXfnKaHpl11lrlogoHL6tLBYGsxF4Dbo5enT1z+vNNGV05qlTq79vWdKHt78/nf3KqjxVNJiZkdrGXpnZyUngypX67xcRUd5cvw4cO8bMbJEwmI1gxw4ZcFUdCKWdAfV6dW7bUoGBfYNWy1NFA7//W+qGrBpTRETkTZWwZGa2OBjMRuT2ateygJ07ga1b09mn3l4JWN32iy3QtUxTbmpLS2nvSTB1ToeG1v4sj4PZiIjSknbiieLHYDYit0E3affBaW6WsmBZ26+sMgxgfl5eN2WdZQH79wMdHWt/tmkTsGdPfrpMEBGlybKklOW2bWnvCcWFwWxEboOtLCv9oLH61fnsrFReSHu/sihPGU3b9s+u56nLBBFRmpjgKR4GsxGZppS7OnNGvl5eDg446rVfzgzdyIgE3GnvVxbt3w+0t+cjoxnUUMrTYDYiojSx613xMJiNqDqrNzkpIyTTbu0ZhpQHu35dvlYBTtr7lUWNjdIHNesZzcVFaZQEZWaPHpVGFRERueMkQsXEYDai/n7po6qCRRUQpd3aqx7ZbtvA9u1SgYHWykNGc2ICuHEjODM7NycNGSIicjc5CVy7lv6zmuLFYDailhYpd6WCWDXPc09Pqru1JmOchX68WZaHvqY6I2/z1P+XiCgtrGRQTAxma+DM6tk2MDgo2do0bd0q5cGc+8UWqDfTlH7Ply6lvSfeLEuqGHR1eS/T3Q2sW5f9LDMRUZpU4qm3N+09oTgxmK2BM6uXpQyos9JClvYri/KQ0bRt6dvb6HO1NjVJYyrLvwcRUdpsW0pYpp14ongxmK2BaUp/xrm5bGVA1YQOp0/L9LZZ2a8sUpMQZDmjqTvyNg/9f4mI0sRKBsXEYLYGhiHZz1deAU6cyE4GVGVmX3ut8jW527AB2Lcv2xlN3ZG3eej/S0SUJlYyKCYGszVQrbtvfGP112kzTRmt+T//p7xK6etLe4+yLcsZzYsXgakp/czsqVNS/5iIiFa7dk0qvmTlWU3xYTBbg+3b5c/TT8vXWWntqf14+mkpIdbSku7+ZF2WM5phRt6qZVRZNiIiqhgelr+z8qym+DCYrZFpAq++CuzaBWzZkvbeiJ4eoLVV9ost0GCmKTe5paW092QtlTFWfXv9qBt0VrPMRERp4iRCxcVgtkbqosjSxdHcLKM1gWztV1YZhkxKMDGR9p6sZdtSdmv9+uBlN24E9u7NbpaZiChNti2lK7duTXtPKG4MZmukMp9Zy4Bmdb+ySB2jLGY0w468zXL/XyKiNLGSQXExmK1RFjOzQHb3K4u6uiTzGTajubyczP44hR15G6X/78qK/CmjKL97Pc47Udlk8X5K+cFgtkZvfKP8ffPN6e5HtZtvlkL6bIUGa2yUG1yYjOb4uLzWVwMKkrC4CIyMhLv5mqYMAAvT//euu4BHHw2/f0Vw223AZz+rv/w//AOwaZPUcCaieJw8KffTV19NbhvLywxmi4zBbI36+qTO7DvfmfaerPb+9wPf/z6wbVvae5IPYTOaL70EXL8ufydlfBxYWAjXIDEMYH5eys/oWF4G/vf/Bv7P/4m2j3m2uAh873vhfvfvfU/K+7zySnL7RVQ23/++3E9ffDG5bUxOyjaY4CkmBrMxeNObgIaGtPditebm7GWLsyxsX1O1bJL9U9Vnh+0z61w3iLrBl7GfrWosZO28E5VNVu+nlB8MZokgGc2pKWBmRm95lcVNsnKAbcsMZXv36q+zfz/Q3q6/X2q548clqC0T9buPjUlQG2YdVowgik+97qetrVK6koqHwSwRKq113ZtpvTIJhhEu69/YKDVpw/4eQPkmW1C/++KiBLRh1mFmlig+9bqfDg7KWBIqHgazRJCbHKB3M11ZkWBx714JAJMahRt1sEKYwWzq91D/LhPn765zvObnpWsCa/kSxUtdi6Oj+m9JomyDg7+Ki8EsEYCODnlFrxOknDoFXL0KvPe9wOysjMRNQi3BbJjM7NvfDnR2li9As23g9ttlFLXO7z4yIg2X974XOHMGuHQp+X0kKrrz54HpabmuFhelwZgEBrPFxmCW6Id0B4GpwOfee+XvJF6NXbgAnDsXbbCCaUrpqMuXg5dVN/iwpcmKQBVQ1/3dq8972YJ/oiTU43567Rpw4gQHfxUZg1miH9LNaFoW0NIC3HGHDChIIqhRnxk1M+v8DC/OG7xplis4czYWdH93y5JpMP/ZP5Ovy3S8iJJi2zIu4LbbZMBrEteVGg/AzGxxMZgl+iHTlEkQFhf9l7NtoL8faGuTvrZJZBIsS27wqi9vGOqGHbRfzhu8CuTLMhOYs7EQJjNrGNItoaurfJlsoiRYFnDggMzCmNQbIvWZDGaLi8Es0Q8Zhgw+mJjwX845v3dSGU3bBrq75QYf1oYNEmwF7ZfzBm+akqmdnAy/vTxS2aDBQfndL1yQfnt+6nHeicrGtutzP921C9iyJf7PpmxgMEv0Q7oTDjgHEiSZSailf5dO/1/nDV43m1sUllVpLOj87qqCRdLnnahsVAlCILv3U8o+BrNEP9TVJVUN/DID168Dx46tziRMTgJXrsS7L7WOvNXp/+u8wff2Sj/gsmQbndmgwUHJ0vr97mfPSvUC53kfHgaWlpLfV6KiWliQclzO60pVN4gTKxkUH4NZoh9qaAjODAwPy9/OTAIQ74QDCwtSBqrWzGxQsOW8wTc3AwMD5ck2OrNB69bJrEB+v3v1gDzDAG7cCO6SQkTexsZkjEL1/TTORvXy8urGKxUTg1kih6CMZvVAgiRuvuPjq2/wURiGFPk/dsz95243+LL0A63OBgHBv7tlycxB/f2V5YFyHC+ipKjrJ8xbkrBOnpR64MzMFhuDWSKHoL6mti0TDGzbJl9v3gzs3h1vRlN9Vq2ZWednVXO7wZelH+j4uAS0YX532wb6+qQUGwDs2we0t5fjeBElxbKkOsju3fJ1e7tUNsja/ZSyj8EskYNhSP3RCxfcf+42kCDujKZtS0WCPXuif4YKtrz2y+0Gb5pSd/batejbzYPqbJD699iYdB1wU33eGxvDzbRGRGupt0MNDZXvJXE/bWuTIJmKi8EskUPQ62O3gQRxZzRV4OS8wYelgi2v/XK7wSfR/zeLLGttY8EwpH/x6Kj7OvU470Rl4+y7riRxPx0clG5CVFwMZokc1CQFbsFsdXkmxTQlAFxejmcf4hp565c5tCwZ8OW8wSfR/zeL1PGtzgapn1Wbm5OuCW7nvejHiihJXvfTsTHpCpTUNqh4GMwSOaxf791na3JSXsFXdzMwDAl4jh+PZx/iqono1//XbXTv1q3Azp3Fzza6Hd9du4BNm9x/95ERaci4nfezZ4GZmeT2laiopqelDJfbdbW46P2WJCzWmC0HBrNEVbwyml5TIsY5sl3d4OPKzKr6qNXcXu8B5cg2umVqGhq8f/d6nHeisqkud6fEeV1duSJJCGZmi4/BLFEVr6DGtmVigd7e1d/v7pb+p3FkNN0GJ0Xl9VBQN3i3bRS9H6gqyO71u3ud923bgB07Vn9/aEj+LvLxIkqKZVWmlHbavVsqHMRxXan+/8zMFh+DWaIqhiGvlhcXV39f9TNtbl79/aYmCWziyCTYttzgBwZq/yyvYEvd4L0ys3H2/80ar2wQUOmWsbKy+vsqi109IK+jA9i/n5lZoihsWyYrWbdu9ff93pJE2QbAzGwZMJglqmKaMvhgfHz19/1mkYkro2lZcoNvb6/9s7yCLb8bvGHIlL0nT9a+/SzyygYB8rtfvLh2Ks16nHeisvHryxrn/XTPHukPT8XGYJaoigryqm+mXv1MgXgzCXFmEdweCpYlr/I2b167fNH7gdq2DPBzayy4TTSxslKf805UNn73uqzeTym7GMwSVdm7V+qQOm+m167JhAJ+mYRTp6Q/ai3inkPc7aHgt42eHpnlqqgBmt/vPjAg9Xmdv/uZM3JO/c67W5cUIvK2sCDlt/yuqwsX1r4lCSvu+yllF4NZoioNDWszmn79TIF4MpoLC1KOJu7M7PCwTAig+GUam5rkFXxRX537/e5tbTK4z/m7e1UyUExTZg2bmIh1N4kKbXRUGoBB99Na7kPLy3LfZma2HBjMErmozmgGDSRQg61qCWbHxuQGH3dm1hlsqRu83zaKOk2raiyE+d1tWwb89fd7L6+WIyI9QVVbBgYkqVDLdXXiBDA7y8xsWTCYJXJRnZm1LJlQYOtW9+U3bZLuCbVkEoKygFFU9/89flwmePDbht9kC3mmGgthfnfLAvr6pCSbm64uGWhXxONFlBTLknvmrl3uP1+3bu1bkijbAJiZLQsGs0QuDKMygQGg1/eq1oymbUt9xd27o39Gta4umdVM7ZdOHVvDkGoGV6/Gtx9ZoPu7j48D8/OVdfyWb2yMrywbUVmo66q63J1THPfTtjapA07Fx2CWyEV1H1idUbG1ZjRVqRq/G3xYjY2rs8w6N3j1u6t+wkVhWcGNBdOU/sVqKs16nHeisvHru67EcT8dGpJxAFR8DGaJXAwOVvpsLS/rZ2arB1uFkVQZGWeGQ+cGX9R+oLrZILXs7Kz0NU46I09UJqrcnc51NTYmff6jYFmucmEwS+SivV3qkVqWTP16/bpeJmFuTvqlRqFzg4/CmeHQucFv3izZy6JlG3WyQTt3Alu2yLIjI/Lg1TnvU1My4QIR+ZuelmtF57pyviUJK6n7KWUTg1kiDyrjpjuQoJaM5vS01FVMKjOrgi2dgE6tU7Rso04gr8qy1eu8E5WN7hSztVxXV65I3W9mZsuDwSyRB5XRtG2ZSKCnx3/57m4ZhRslo6nWSSozCwAvvSQ3eJ1tFK0fqBrMF+Z3t21g+3Zgxw7/5VVZtiIdL6KkWJb05R8Y8F9u1y55SxTlutIZ7EnFkmgw+61vfQsf+chHMDQ0hI6ODuzbtw/ve9/78PLLLye5WaJYGIa84vrBD+TG29zsv3wtI9ttW7KCQTf4KAYH5e+vf13+1s3MHj0q/YWLQDcbpJZRmVmd5devl4YMM7NEwWxbEgPr1vkv53xLEmUbQKWhScWXaDD7J3/yJzh+/Dg++clP4plnnsHv//7vY2pqCm9/+9tx5MiRJDdNVDPTlLqkzz6r38KPmtG0LKmrGHSDj6KjQ4KtMMGsacoAqBMn4t+fNFiWPBxVYO/HNIGZGeA730n+vBOVTZi+rLXcT/fulVq2VA4BuabafO5zn8POnTtXfe/uu+/GwMAAPvOZz+COO+5IcvNENVFB3/HjwAc/qL/Od74TfltJj7w1DOBv/xbYs0fvBu/sr3bgQHL7VS+62SBg9XnXPSeGAXzzm5F3j6g0bBv46Z/WW9YwgG98QwZihilZyEoG5ZNoZrY6kAWAjo4O3HTTTTh58mSSmyaq2Z49UpcUCJdJOH0auHw53LaSHnmrPlt3GwcOSD3aomQbwxzf/v5K6bIw531kRDL5ROTuxg0ptxXmurp4ETh3Ltx2WMmgfOo+AOzSpUt4+eWX8YY3vKHemyYKRfXZAsJl6IBw/bzUDT7pzKzz7yBNTfJKvij9QMNkatrapMsHEO68LyzI7GFE5G50VMptJXk/XVqSet/MzJZLot0M3Pz8z/88Zmdn8elPf9pzmYceeghbtmxZ9b1Dhw7h0KFDSe8e0SqmKVUAwt58LQt461v11lE3+CxlZtWyRcjM3rghxzjs7z4xAfT16S8PyPHS6ZdL4U1NSf1n9baE8ids1ZaBARlYa1nAP//neuscPy71vpmZrb/Dhw/j8OHDq743MzNTl21rB7PPP/887rzzTq1lX3nlFdxyyy1rvv/II4/gS1/6Ej73uc/hzW9+s+f6jz32GG699VbdXSNKzNveBrz4ohTS17FhA9DVFS4IDDPSPqqbb5b+oroBttqf//bfktunehkbC5cNAuS8T00BLS16y+/dK+fesoD3vCfafpK/974XeMtbgM99Lu09oahsW8ptufRAdKXekmTtfkru3JKOL7/8Mg4ePJj4trWDWdM08fjjj2stu3///jXfe/TRR/Ebv/Eb+MxnPoMHH3xQfw+JUvTgg8C/+Tfh1jHNcK/FLEtu8Lt2hdtOGDt3Sq3Vjg79dUxT6tJeuZLvbFiUGr7//t8Dv/zL+svXUkaIgi0vA//wD8Hl8SjbVF/WMIO5otxP162TCi5UHtq3ht27d+P++++PtJFHH3309T+/8iu/EukziNLQ1CSvNsMwDODb39ZfXvXnDHODjyJMIAtUMhtHjwJ1aFgnxralgkOYxkJzc/jAicFsck6ckFJxPL75FqXKgGFUygrqbmNoSLonUHkkfrp//dd/HY8++igeeeQRPPLII0lvjih1pikDEJaW9JbP6shbZ//fPIuSDYqiKH2Ms0gdVzWTG+XPykq0e51pysDK+Xm95bN6P6VkJRrM/u7v/i5+7dd+DXfffTd+6qd+Ci+88MKqP0RFZBhy4z12LHjZlZXs1kTctEnKk+U9G1av42sYEmxduJD8tsrG+X8w7/8fy+rcOZmMJEpmdmlJBnHqyOr9lJKVaA+kv/qrv0JDQwOeffZZPPvss6t+1tDQgCXd1BVRjqisgG0Hj4Y/d07qKGY1kxC2v1rWqGyQbpH2WjjP+4//ePLbKxPblpHto6Py73e8I+09orDUfSRKZlat/yM/4r/s5ctS5zur91NKTqKZ2SNHjmBpaQnLy8tr/jCQpaLat0/62eq8cs76yFvDyPer8+lpaSzU4/gODkpXhjwfr6yyLOBHf1QG9fD45pNlST/W/v5w63V2SjWZItxPKTnsIk0Us8ZG/cFA6gY/MJD8fkVhmjIAbHk57T2JJmo2KIr2dpk5Lc+Z7KyybTmHeX9TUGbqTVVbW7j1Ghr0z7sKeBnMlg+DWaIE6GY0bVvqKIa9wdeLYUgB8uPH096TaOrdWMh7JjuLrlwBJifl2PL45pdlRQ8yw9xPu7qk5jOVC4NZogSEySRkuX+Xs79aHtW7scDMYfyOHpW/VWZ2dFSmDqZ8Udn1KNR1tbLiv1zW76eUHAazRAkwDODMGeDSJf/lsj7ytrtbCpDnNRtWSzYoCsMARkYYbMVJ/d8bGpLju7gos7pRfszPyzmrJTM7MyOz8vnJ+v2UksNgligBOhlNdYPPciahsVGCiLxmG2vJBkVhmhJsjY/Xb5tFZ9syXfCmTfl/U1BWo6PS776WzCzgf96XlqS+d5bvp5QcBrNECRgakr/9MprqBp/1TEJe+yneuFFbNiiKokw0kSXO7PqePdIfksc3X2odmNXfL7Mx+p33Y8ckQZD1+yklg8EsUQI6OqREl18mIS8jb/M6TevoqGRr6nl8VbCVx+OVVc7sepiR7ZQdti3ltTo7o63f2ip934twP6VkMJglSkjQ9KbqBr9zZ/32KQrTBE6dkoLkeaKOfT1fO6pgi5nDeCwvywAwZ4CS1zcFZRbHlNI699P2dmD//ujboPxiMEuUkKCMpnp9WssNvh5UIKFGleeFbQObN9e/sZDXTHYWHT8upeGcDRJmZvMnjoFZOvfToSHp50/lw9NOlBDTlAEJXpPd1XtwUlR57QcaRzYoCmZm4+P26tgwgPPnZXY3yj41pXSt9zrTlIGV8/PuP8/L/ZSSwWCWKCGGIYOQJibW/kzd4PPQv2vjRhlNnrdsWFplehhsxce2pTRcd3fle6xokC9TU1KiMI7M7PKylL5zk5f7KSWDwSxRQtRD1y1Lp27weckk5C3bGFc2KAoGW/Fxe3U8MCDZ9jz9fyyzuPqu+91PZ2aAs2fzcz+l+DGYJUpIVxewfr17UJO3kbd56wd67pw84NI4virYytPxyiq3V8ft7UBPD49vXti2lNXq76/tc3bsALZudT/v6nt5uZ9S/BjMEiWksdE7CIzrBl8vpikDwLz6/2ZNGpUMFBVsMXNYO69Xx6xokB+WBfT1SXmtWviVZVPfU/W9qXwYzBIlyOuha1lSN7Gtrf77FIVhyMCL48fT3hM9ti2NibQaC3nLZOkPH/gAACAASURBVGfR5cvA6dPuwSwrGuRHnH3X/e6n+/ZJjWcqJwazRAnyyyTkqX+XX3+1LFLZoLQaC3nrY5xF6rpxu04MQybFuHGjvvtE4cXZd13dT1dWVn8/b/dTih+DWaIEGYYMTJiZWf39vI283b9fXp/nJRuWViUDxTBkKt2FhfT2Ie/8Xh2bpnR5GRur7z5ROHNzUs0lzszspUtyT3XK2/2U4sdglihBbiPb5+flBp+nTEJjowQVeck2plXJQDFNYHFRsocUjWXJIMqNG9f+LK+1j8tmZETKacWZmQVW30+XlmQ7ebqfUvwYzBIlaHBQ/nY+dNUNPm+ZhLz0A52fl+LqaWdmgXwcr6zyy67v3g1s2sTjm3VxVxno65OBs8776cSEdDfJ2/2U4sVglihBHR1S8N350E1zpH0t8tIPNO5sUBQq2MrD8coqv+x6QwMrGuSBZQHbtklZrTi0tsqgziLcTyleDGaJElb90LVtqZcY1w2+XgwDOHNGRplnWRZqTqpgi5nDaJaWZCpov3PIigbZp7LrcU4p7XY/Xb9euqRQeTGYJUpY9UNXZZzivMHXQ15mtlKNhc7OdPeDwVZ0x49LdxG/bJsKaqpHtlN2JFFlwO1+ahirZ4mj8uHpJ0qYYUiWaXFRvk57pH1UalR51l/tqodb2o0FvgaPTmeGPNMELl4Epqfrs08UjppSOu57nWFIn/i5Ofk6r/dTiheDWaKEmaaUaJqYqNzg89i/a8MGKUye9WxjVmpOmiZw4QKDrShsW0rB7d/vvQwH2WXb2bPSJSmJzOzKivSNB/J7P6V4MZglSpizjJC6wec1k5D1bGNS2aAoWD4qOsuSNwF+r44HBuTnPL7ZpJNdj8J5XV28CExNZeN6p3QxmCVKWFeXVDWw7fyPvM16P9CpKSmqnoXjq4KtLB+vrNLJrq9bB/T08PhmlW0Dzc3xTym9Ywewfbt8vt8scVQuDGaJEuYsI2TbUiexry/tvYpG9f9dWkp7T9wllQ2KQgVbzByGp5tdz0u5uDJSU0q3tMT/2c77KVCp503lxWCWqA5URtOyJFPR2pr2HkVjmjLK/NixtPfEnWosxJ0NiirrmewsunRJSsDpZNtY/iy7kuy77ryfdnfLmy8qNwazRHXgzCRkIWsYVdb7gapsUFYaC1nvY5xFYeoEmyYwNiYzQFG2JNl3XV1XWekfT+ljMEtUB4YBnDsHvPhivm+++/bJKPOsZsOy1lgwDAZbYan/W6oUnB/DkC4vo6PJ7hOFMzcn1VuSDGavXAG+851sXe+UHgazRHWgXredP5/vwQqNjdnONmatTI9pMtgKy7Kk0bRhQ/Cy6lxn9f9jWQ0PS2WRJLsZAPm/n1J8GMwS1YFzgELeMwlZ7aeYdDYoCtZCDS9Mdn3nTmDzZh7frEl6Sum+PqmUkOQ2KF8YzBLVwfr1wIED8u+8ZxKyOoJ8ZARYXs7W8d21S4KtLB6vrAqTXW9oyO7/xzKzLCmftWNHMp/f0lIZ5Jml653Sw2CWqE4MA9i2LbkbfL0Yhkz+MDOT7Ha++U3g+nX95ZPOBkWhyrIxc6hnaUleUYc5hzy+4fzd38nMdLrm5oC//dtw26hH33XDkCoGXV3JbofygcEsUZ3cfTfwnvekvRe1U5mQJAOICxeAd70LeOIJ/XUsC9i6NXuNBWYO9U1MyGC5MIGQOr4rK4ntVmEsLQF33QX8l/+iv86XvyzrTE3pr1OPKgPvfrfcTxsakt0O5QODWaI6+eQngT/7s7T3onZqlHmSwawK/l57TX8dVdcyaw83lTlksBUsyoxOhiFvCc6dS2afiuTYMWB2Ntx19U//JH/rNshWVpKtMas8+CBw+HCy26D8YDBLRKF0dAD79yebbVSfHWYbWatkoJimzCHPYCuYZUn/8n379NdhRQN9Ua+rMOucPi1ls7J4LVJxMZglotCS7qeoPlt3GyoblKX+sgorGuizbcn8N4Z4MvX3y/I8vsGc19Xycvh1wiyfxWuRiovBLBGFlnQ/UPXZ4+MyACXImTPA5cvZzAYNDEiwxcxhsCjZ9bY2KdXE4xtMHaPr14HJyeDlb9yo1EjWPb6WJWWz+vqi7SNRFAxmiSg0w5BSWIuLyXy+bQMHD0rGdWREb3m1X1nT1gb09jJzqCNqdp0VDfSo60r9O8jYmAwaO3gwXGa2v1/KZxHVC4NZIgrNNCVrMzER/2cvLEg26N575WudjJDKBqnak1nDigbBZmak5FuU7DqPrx7LkqoqLS361xUg1+L4ODA/r7dOFt+QULExmCWi0JLsBzo2Jhnfn/gJKbWlsw3blteaWc0GMXMYrJbsumHoB1tlpRoLb3iDdH3Rva42bQJuv1362Oq+JcniGxIqNgazRBRaV5dUNUgiG6Y+0zTlj85DN+vZINOUIJ3Bljd13lXptzBMUz/YKitn2bOw15VubenZWSn/leVrkYqJwSwRhdbYKEFHEtlG2wY2bgR275YMj07AnPVskGFIsKUG09Bati0l3zo6wq/LihHB1LEZGgp/XXV2Alu2BK8zPCz93LN8LVIxMZglokiS6qeoskENDZUMkt+EA7Oz0nc3y9kg1kINVkt2vbNTuqTw+HqzrEpjwTSBEyeAa9e8l19Zcb8Wg7YBMJil+mMwS0SRJNUP1JllNQwpuXXmjPfyIyPZzwapzBYzh95qya43NLBfcpDq6woAjh71Xn56Wib7cK4T1FiwbZlOevv22veXKAwGs0QUiWnKfO0XL8b7uc6pMHX66jn72GaVbmarrBYXpVFSyznk8fXnvK50umVUX1c6b0my3nediovBLBFFkkQ/xelp4Pz5ymf39QFNTf4ZIduWTFDWs0G6/RTLaGJCSr3Vkl1Xx9cv2CqrpSXpz6qO79atwM6dwddVY6NUPgBk3UuXpCKC3zpZfkNCxcVglogiUaPO4wxmnSOuAaC1VWrHBmWQ8pAN0slslVX1eY/CNCXYmpqKZ5+KRDUWnMc3KJNtWTLZR1tbZXnAex01pXQerkUqHgazRBTJ+vVAd3e82UbLklfyKhsEBGc085INMgyp9clgay3LkoFJXV3RP0P9H2D2ey23gVlhr6v+fv+3JKdOAVev5uNapOJhMEtEkcU96Ma2JRu0bl3le34ZJDXiOg8PUJaP8mbbkulvaIj+GSrY4vFdy7bXNhZMUwaALS+7r1P9xqO1Vbr9eB1fVjKgNDGYJaLI4i7P5RaYGoa8Jp2dXbv86dOSDcrDq82gzFaZxdFVRAVbPL5rWZY0FhodT3zDAK5fB06eXLv8/LzMqOZ2LXodX9uWGfh6e+PbbyJdDGaJKDLDkFHoi4vxfJ5bnzvTlAys2+xOecoGtbXJg56Zw7Xi6irC8lzuvK4r9bNqo6MyaMxtHb/MbH9/dqeUpmJjMEtEkZkmsLAgWZxa3bghD1G3bBDgnhGybaC5WTJyeZDURBN5dvGi9COOI7vO4+vO7Y1HT49ks72uK8D9WhwfB+bm3NfJwxsSKiYGs0QUWZz9QMfGJBtU/QBVRdjdtpG3bBAzh2t5BU5RqC4pbsFWWanGQvXxbWoCBge9r6vNm6V8l1PQW5I8vCGhYmIwS0SRdXXJwJI4smF+kx949dXLWzbINCWzNT+f9p5khzqvqtRbLUxTBjS5BVtl5Vf2LOi6qh6Q5/WW5Pp14PjxfF2LVCwMZokosjinEbVtYNMmYNeutT/z6quXt2yQYTDYqmbbUuJt/fraP4sVI9ZSx2JwcO3Pwl5XO3YA27atXUdNi5una5GKhcEsEdUkrn6KakS7W3kmt9md8pgNUvvKfp0VcU56oYItHt8Ky5LGQkfH2p8ZhlQzuHq18j2/yQ9U47X6+MbZVYQoCgazRFSTODOzXg9D05QH7unTle8ND8uDN08P0B07ZCpRZg4r4pz0Is43BUURdF0BlcwqIP1rZ2b816k+vpYFdHZKQ4IoDQxmiagmpgmcOwdcuBD9M9TkB14ZOrfXx3nMBjU0cMS90+KidLmIM7vO47ta1OvKb53qaZnz1nediofBLBHVJI5+itPTMuraKzDt65MSXM4gxbIqlQ7yhJnDivFxKe0WZ4PELdgqK9VY8Dq+mzcDu3evva4aG6VKiBvTBC5fBs6cWb1OnhqVVDwMZomoJoODknGsJRvmV8kAkNJb/f1rM0h5zAapzCGDreDzHoVbsFVWqrHgd3yrG1e2LY3Htjbv5dVygAxozOu1SMXBYJaIarJ+vQwwqSXbaNuSDRoY8F6m+vVxXrNBhiHB1tmzae9J+mwb2LAB2Ls3vs9kRYMKna44Ya+r/v7Vb0kmJ2UwZh6vRSoOBrNEVLNa+ylalkz16pUNAlZnkPxGXGcdKxpUqMDJrYJFVNXBVplZllQx6OryXsYwZADY8rJ8HXRdtbRI5lZdi0F9bInqgcEsEdWs1n6gOiPaTRM4dgyYnZVs0LVr+cwG9fXJ7EvMHMZbyUCpDrbKTB1fv8aCaco1deKETOYxPq53LarGgmXJMe/piW23iUJjMEtENTNNGWiysBBtfZ1ao4YhGdnh4Xxng1pbJXvIzGG8NWadWNFA6F5XgFxTIyOSodVZx5mZHRyUbDhRWhjMElHNDENGTo+Ph19XNxvknEpTZYN6e8NvLwtY0QA4f16qWCSRXefxFTqZ7wMHpHuPuq4AvczsxIRkdPPad52KhcEsEdWsln6go6PA0lJwNmj7dinFZdvyZ2Agv9kgZg6Tza47g62yunBB6j8HHd+mJsmsqutq61aZAMGPeksyMpLfvutULAxmiahme/bIqPQo2bAwkx+oIDDv2SDDkGBrbi7tPUmPbUtfzsHB+D/bGWyVVS3XVdCAPBW8/t//K31t83wtUjEkGsy+8soruOeee3DgwAGsX78e27dvxzve8Q488cQTSW6WiOqslmlEbRvYsgXYuTN4WbWNJAYO1RODLTmH3d1Ae3v8n83yXOEaC87rSifLun27/PnGNyrrE6Up0Zd0ly5dQnd3Nz74wQ+iq6sLV69exRNPPIEPf/jDmJiYwKc//ekkN09EdRT11XmY8kymCXzpS/L6OM+vNp3dMt74xnT3JS1JDf4CKjPDlbkrh2VJY2H9+uBlTVMqhFy8CNx3n97nmybw7LPybwazlLZEg9nbb78dt99++6rv3XPPPRgfH8fnP/95BrNEBWIYwHPPhV8vTJbVMCr9IPP8AN2xA9i2jZnDu+5K7vPLPggs7HUFhJv8wDCA735X3qhs3RptH4nikkqf2e3bt6M5ryM3iMiVacro9PPn9ddZWQmXoXMul+dgFij3ILCFBelikWR2vczHFwh3XTmvpbDXYp7fkFBx1CWYXVlZweLiIs6dO4c//MM/xHPPPYdf+qVfqsemiahOovRTPHcOmJnRD0x7e6UkV2enZDbzrMyZw/FxKeWWZINEHd+VleS2kVULC1IlRPf4btokgzibmqQGsg712XlvVFIx1CU9+sADD+Dzn/88AKCpqQm/8zu/gwceeMBz+YceeghbtmxZ9b1Dhw7h0KFDie4nEUU3OCj9Xi0LeMc79NZRmTPd7E5zs5Tk2rEj2j5miWkCTz0lwZbudK7/439IX9C3v11v+YUF4D//Z+AXfgFYt05vnZdflpnWdPtORhH2vEdhmsCVK8Dp08DevcltJ4vGx+Xchzm+pikVSVpb9Zd3/k10+PBhHD58eNX3ZmZm6rJt7WD2+eefx5133qm17CuvvIJbbrnl9a8//elP4+Mf/zimpqbw9a9/Hb/4i7+Iubk5fOpTn3Jd/7HHHsOtt96qu2tElAHt7VKAPcyrXdsGGhv1s0EA8LGPAZs3h9+/rDGM8MHWww/Lsfr61/WWf+EF4FOfkkFmP/VTeuv87u8C3/lOssGsbUvgtGdPcttwTrJRtmA2TFku5SMfkTcluvr6gA98QP//FRWfW9Lx5ZdfxsGDBxPftnYwa5omHn/8ca1l9+/fv+Zr9b27774bAPDII4/g/vvvR2dQdWYiyg3TDPfq3LLkodjWpr/OJz8Zfr+ySGW0bFsv2FpclKl8Fxf1t6EaFratH3RYltQOvXYN6OjQ31YYqj+nbkY6ir4+yeTbNqCZhykMy5LGQpgg/iMfCbeN5mbgy18Otw5RUrSD2d27d+P++++PZaNvfetb8cd//McYHx9nMEtUIIZRKdejI+/1YmvhDLbuuCN4+YkJeXU8NiZ/t7QEr6MaFroNjJWVyrLDw8CP/qjeemHV47y3tEgWu4z9ktXxTbKxQJQlqVQzOHLkCJqamtAf5t0iEWWeacrAk4UFveWTrDWadSrY0u2WoZZbXJRjHGYd3W1MTkpGNsw6UdTrvJe1okGZrysqp0QHgH384x/H5s2b8da3vhW7du3C9PQ0nnzySXz1q1/Fww8/jO3btye5eSKqM8OQYGtsLDjzNj8vA1XKmpkFwlU0sG0Zbb60pD9Tk1onzDaAcOuEpcq31eO8Gwbw1a8mv52ssW3g3e9Oey+I6ifRzOw73vEOvPjii/jEJz6Bd73rXfjYxz6GqakpfPGLX8Rv/dZvJblpIkqBc2arICMjwPJyuTNIYTKHlgW86U3Axo1668zPS6PittuAM2eAS5f0ttHSAvzYjyWX0VRBcr0ys8eOVSbaKIPz56XBUObrison0czsRz/6UXz0ox9NchNElCG7d0uwpZPVizLiumgMoxJstbf7L6uysbpZ09FRaSzcey9w5Iis87a3BW9jcBB4wxuAl17S/z3CsG3pyzkwkMznOxmG9AMeHgYcBXYKjdcVlVEqfWaJqJgaGvSzjZYl02CWeQyoaVaCrSCWJQGKYegfXwB473tXf627DduWYDhulgX09AQH73FwlucqC8uS63BwMO09IaofBrNEFCvdfqAcca0/a9qFC1ID1DAqjYWgma1sG9iyRQLHffvCnRPTBK5flwFhcatnBYvt22WCjTJVNLBtqfdcj8YCUVYwmCWiWIXJzJa9X58KtoKOl7OfqWEAFy9Kv0g/zlquOtnca9eA48cr21CfEbd6n/eyVTTgdUVlxGCWiGJlGJJJ9Au2VD1T9uvTy2Srnw8Orp5sIWgddXx1JrNQXR0MQ7K5ra3xZzRVndx6nvcwFSOKgNcVlRGDWSKKlU5Fg7NnZXQ9M0h6mUPLklfH69fLwKmGBv91VlZWZ+gMQ4LVpSX/bahlm5tlO3FnNEdHpXRbvTOzth3cLaMIFhbkGPO6orJhMEtEsVLBll82jCOuK1Tm0C/Ycmbb1q0Denv9j+/UlDQWnJnZGzdkFjG/bezcKYPy1DpxZzTTOO+GAVy9Cpw6Vb9tpmVsTBoLvK6obBjMElGsdIIty5ISU5wEUILGq1eB06e9l6nuBxn06lxlVJ2ZWSB4neptxJ2ZtSxg0yYp4VYvYWof5131eScqCwazRBS7oEDItoG+PumXWXZBg63Uq2Nnti2oa4Ka+Us1Fvbtky4KQetUb+Pkycr0tnFIo4JFb69MBFGGfrO2LXWe69lYIMoCBrNEFLugV9QccV0RFGyNj0tAW501HRuTrgNuLGt1Y6GxERga8t7G8vLaKXJVYHv0aLjfx4/uNLxxUv1/yxLMqgoWRGXCYJaIYmcYkk30CrY44rqipUUyqF5ZU7d+pqYpg7lGR73XqT6+ftncyUmpK+tcJ4nyXGpShnpLostEFqV1fInSxmCWiGJnGBJsjY2t/dncnGQb+dCt8OsDa1nAhg3A3r2rlwf816nOgAZtA1i9zpYtwK5d8WU0p6elZFtawWxZMrO8rqiMGMwSUez8Bt2MjMjIfXYzqPDLmrr1M921C9i82X2duTmpWuCWmT17FpiZcd9Ga6vUl9Xdr7DSHJxkmsCxY5J9LqrpaeD8eV5XVE4MZokodrt2yah1t2yYs54pCcOQ2bfcgi23LKua1cvt+I6MSB9Yt8ws4H1OBgdl0Fj1OnFlNG1b9ntgIJ7PC0P97mpiiCJiuTsqMwazRBS7hgbvrJ5tA9u2yTSuJExTstVuwZbXq2O/4wusXWdoSP72WsdrG7YtwXGtLEsGu61bV/tnhZXk9LxZYVly3Q0Opr0nRPXHYJaIEuGV1VODVDjiusIra3r+vLw+dnt17DXZgmW5NxY6OoD9+73Pidc2ZmelRFet0uzPuW0b0NlZ7H6zti3dRNJoLBCljcEsESVCZQ6rg600yjNlnQq2qjOHfq+OTRO4eBE4d27tOl6NBbds7tWrEqx6bQOIJ6OZdjm2OPv/ZlHax5coTQxmiSgRhiHB1vR05XsrKywf5MUtk+336tgrm+sX1LhtQ9WRdVvnwAGgra32jOaNG1LZIs3zXvSKBqxkQGXGYJaIEuGW1TtzBrhyhRkkN26ZQ9uWgLK9fe3yAwMyGYJznZUV/6DGNKVf7uLi6m0A7us0NUkgXWtGc3RUSrWlnZl165ZRBDduyDHmdUVlxWCWiBKhgi1nNoyVDLy59YH1y2K3tcmAKufxPXMGuHzZex3DkNnEJiZWb0OV+vLbr1pkYaS9YcjUvJOT6e1DUsbGpLHA64rKisEsESVCBVvOrJ5ty/Si/f3p7VdWmebaYCuof3F1NlcFjV7ruGXLw24jCsuSYHnXrto+pxZx9v/NmjRr+BJlAYNZIkpMdVbPsoC+PpnClVar7gO7sCCvjv2ybW7Ht6lJjrGbri6palC9TtA2Jiele0hUfoPS6qWnR/7fFbHfrG1LXec0GwtEaWIwS0SJUf0UFVYy8NbbuzrYGhuTvq1BWdPxcWB+Xr62bcl6t7a6L1892cLysgwAC9oGUBkoFkUWRto3N8fT/zeL1PFluTsqKwazRJQYw5Cg7MYN+ZqVDLw1N0s/YxVs6fQvNgzpKzk6Wlkn6PgaRuWzT5yQOrJB2wCiZzSDBqXVU1ErGmTl+BKlhcEsESXGNCvB1uwscOxY+hm6LHNmsm0b2LgR2LPHf3m1rPo76PhWb8P5OW42bZJ9iJrRPHdOSrRl4bwXsdasKneXheNLlBYGs0SUGOc0osPD8uBlBsmbM2uqM1NaZyewZYssOzsrVQp0MrNTUxJgWpYM1DtwIHidqBnNLFQyUAxDstHXrqW9J/GZnpZzmYXjS5QWBrNElJidOyXYsm29LGDZmSZw/Dhw/bpelrWhoZJpHRmRxoJOZhaonJPBQRk0FrRO1IymZUmJtoGBaOvHKY7+v1nDSgZEDGaJKEFqwJFlyZ/t2+UPuVPZtaNH9fsXO4+v8zO8qNnE1Dq62xgelgFjYdm2DG5rawu/btxq7f+bRbadncYCUVoYzBJRolTmkJUMgqlg67vfBS5c0Dte6viqxsKOHf7Lr18v3QrCnBPTlG4MJ04EL1stS+d9yxYpX1W0YDYrjQWitDCYJaJEOTOH7Nfnb+tW6Zrx9NPytW7WdGYG+M539I+vYQAvvST1Y3W3AUTrapC18+7sl1wEWTu+RGlgMEtEiTJNCbb+3//LToYuy0wTOHJEumioLgFBywOyju7xNU3g+edXr++nuxtYty58RnN+XurgZum8V9c+zrssZb6J0sJglogSpbJGi4vMIOkwDDlWPT0SQAbp75cBXGGOr9qG+neQpqZoEw6Mjkpptiydd1WZIUr/36y5cUPqOGfp+BKlgcEsESVKBVsAM0g61DHSPVatrZXpa8NkZgGpH7tpk/46YTOaWaxgYZpSLWJyMu09qZ1qLGTp+BKlgcEsESWqrU0GqDQ3y9/kT2XZwmTbwq4TdRthM7OWJYOuOjvDrZekWvr/Zo1uBQuiomMwS0SJMwzJ0La0pL0n2Rc10GxurmRog+zdC2zYEH4bp04Bly/rr6OmWfWb+KHeenokm12EYNa2gc2bZdAgUZk1p70DRFR8/+7fyUxFFKyvD3j0UeC++/TXuf9+CdJ0GwsNDcDv/R7wlrfob8M54YDuelkcaa/6/xZhEJjOLHFEZcBglogSd8cdae9BfjQ2Ar/6q+HW+ZEfkT9hfOxj4ZYfGpK/bVsvmF1ZkWXvvTfcduqhlul5s4SVDIgEuxkQEVGgTZuke4Lu6/n/3969B0dV3n8c/+wmkIQQQy5ASJAigeyKQFFrrb96AUuB+hPlUh0Z2wrMdATj2HRGxZFhxiggo3TG2vKHlVGGIkhhsP2VmzpI1M5oOxWwgO4SkLsCBkhIIOGW5/fH6QnZZLM5i+zlbN6vmUzI2efkebIPl8/58pznHD9ubcmWjGHruzyeN1kYY/0Myfj+AvFGmAUAOBJNRdNul2zLDCRrTIcPSw0NiR7Jlfv2W+tiIRnfXyDeCLMAAEeiqWgGAtb61NLS2I7pSrRe/+tW9jxQmQUIswAAh3w+qbra2tu0M8GgtRVbRkbsxxUtu5rp5nWzwaC1vjoZLxaAeCPMAgAc8fulpibp4MHO2ybzes7cXKmoyN3rZgMBa+eLZLxYAOKNMAsAcCSaiqa9x2yycvuOBsn+/gLxRJgFADgyYICUmdl5RfPcOWnfvuStzEru39EgmSvfQLwRZgEAjni91n6znVU09+yRmpuTu3Lo81k3gDU3J3ok0bMvFpL5/QXiiTALAHDMSUXTDXfa+/1SY6N06FCiRxI9+2Ihmd9fIJ4IswAAx5ysNQ0Gpbw8qbAwPmO6Em7e0SCZ9/AFEoEwCwBwzO+XvvlGOn264zb2ek6PJ37jitb3vmftBODGdbOBgHWx0Lt3okcCJAfCLADAMScVTTfcaZ+WJg0Z4t7KrM+X3BcLQDwRZgEAjnUWZo1xz532bt3RwC3vLxAvhFkAgGM9e0olJR2HwGPHrCUIyV6Zldy516wx7qh8A/FEmAUARMXv7zgEumEnA5vfLx05ItXXJ3okzh0/LtXVueP9BeKFMAsAiIrP13FlNhi01qMOGhTfMV0Ju7q5e3dixxEN+32nMgtcRpgFAETF75eqq6VLl9q/FghIpaVS9+7xH1e03Lg9l32xUFqa6JEAyYMwCwCIis9nPYXqwIH25380CQAAFqxJREFUr7lpPec110j9+rnrJrBAwKp6u+FiAYgXwiwAICr2es1wFU233Wkfaf1vMgoG3fX+AvFAmAUARKV/fykrq31Fs6lJ2r/fPZVZKfL632QUCLjr/QXigTALAIiK1xt+W6vqamvrKDdVDv1+6waw5uZEj6Rz9sWCm95fIB4IswCAqIWraNrh1k2VQ5/PCokHDyZ6JJ3bs8cK3W56f4F4IMwCAKIWrjIbCEj5+VJhYWLGdCXctKOBGy8WgHggzAIAoub3S0ePWhv429x4c9KAAVJmpjvWzbrxYgGIB8IsACBq4Sqabrw5KS1NGjLEPZVZn0/yeBI9EiC5EGYBAFErK7M+2yHQGHdWZiVrzG6pzLrx/QVijTALAIhaz57WFl12CPzmG6m+3n2VWSn8+t9kY18suPH9BWKNMAsAuCKtHzhgf3Zj5dDvl77+Wjp9OtEj6djRo9b43Pj+ArFGmAUAXJHW23MFAlJ6uvWoVbexq527dyd2HJGwkwHQMcIsAOCK+P3WgxIuXbLCVmmp1K1bokcVPTsgJvO6WftiobQ00SMBkg9hFgBwRXw+6fx566lUbtzJwJaTIxUXJ/e62WDQqnq78WIBiDXCLADgitjrN4NB9+5kYEv2HQ3YyQDoGGEWAHBFSkqkHj2kbdukAwfcW5mVkn9HA3YyADoW1zC7ZMkSeb1e5eTkxLNbAEAMeL1WwFq3zto6ys2VQ7/fugHs0qVEj6S9xkZrKYeb318gluIWZo8cOaInn3xSxcXF8vD4EgBICT6f9Omnl3/tVj6fdO6cdPBgokfS3p491sWCm99fIJbiFmZnzpyp0aNH66c//amMMfHqFgAQQ3a1sLBQKihI7Fi+C/vnSMZ1s/aYqMwC4cUlzC5fvlwff/yxFi9eTJAFgBRiVwvdXjW89lopKys5180Gg9aFgpsvFoBYinmYPXbsmCoqKrRw4UIVFxfHujsAQBzZ1UK3Vw29XqmsLHnDrNvfXyCW0mPdQXl5uYYOHaqZM2c6PqeiokK9evUKOTZ16lRNnTr1ag8PAPAdlJVJHk9qhK3WTzRz4tIl6Sc/kV58UbrtNmfnbN4svfSStGmT9b45EQhII0Y4HxeQCCtXrtTKlStDjtXW1salb8dhtqqqSnfffbejttu3b9eIESO0Zs0arVu3Tp9//nlUg3rllVd00003RXUOACD+evSQ/u//pP/5n0SP5Lvz+6WPP3be/sAB6cMPpfffdx5m331Xeu896dtvpT59Om9vjFWZffBB5+MCEiFc0XHr1q26+eabY9634zDr9/u1ZMkSR20HDBighoYGPf7443riiSfUt2/flnR+/vx5SVJdXZ3S09OVnZ19BcMGACSLe+9N9AiuDp9P+uYb6fRp6ZprOm9vV3Gjqea2PsdJmP3mG6m+3v1rkoFYchxmi4qKNGPGDMffeP/+/Tp+/LgWLVqkRYsWtXs9Ly9PEydO1Nq1ax1/TwAAYqX1E81uuaXz9vb62mjW2bY+5847nbdPhWUcQKzEbM1sv379tGXLlpA9ZY0xWrhwoT788ENt2rRJhYWFseoeAIColJVZnwMBZ2HWrrIGg9ZygM7WwJ4/L+3dG3qukz7S06XrrnPWHuiKYhZmMzIydNddd7U7/uabbyotLU13OrkkBQAgTnr2lPr3d15pDQalXr2k2lrpyBHr3Ei++sq6aaxXr+j6GDxY6tbNWXugK4rr42wlyePx8AQwAEBSimZHg0BA+t//vfxrJ+0l65xo+mC9LBBZ3MPsm2++qdOnT8e7WwAAOuXzOaua1tZKx45J48dbVVMn5wSDUm6utVZ23z7r8blOziHMApHFPcwCAJCs/H6putpaDhCJHV5vuMFaBuC0MuvzWX00N0t79kRu39hobf/FzV9AZIRZAAD+y+ezKqYHDkRuZ4fZsjIrbDqtzPr9obsmRFJdbd1YRmUWiIwwCwDAf9lBs7NKayAgXXutlJ3tbJ2tMZcrs717WzeBOelDIswCnSHMAgDwX/37S1lZnVdN7SqrZH0+dEg6c6bj9jU10qlTVlv78b9O+igslAoKovsZgK6GMAsAwH95vc4qra13GbA/794duX3rtk77YL0s0DnCLAAArXS2o8HFi9bNW23DbKRzgkErKA8ebH1tV2aNiXwOSwyAzhFmAQBoxe+PXDXdv996mpddNc3Lk/r0iXxOIGA9xSsjw/ra55Pq6qztvcIxJnQpA4COEWYBAGjF57NCZl1d+NftCmzrqmlna2DbVlk729Hg66+lhgYqs4AThFkAAFrpLGgGAtYuBiUll491tjSh7frX0lIpLS1yH63HAqBjhFkAAFopK7M+d7RsIBi02nhb/QtqV2abm9u3P3fOeuJX6ypr9+7SoEGR++jWzVqaACAywiwAAK1kZ1t7yEaqmratmPp80tmz0pEj7dvv3Ws9USzcOZH6GDxYSk+PfvxAV0OYBQCgjUhbZ4XbZSDSwxbCrbG1z4mmDwDhEWYBAGijoxu6Tp2Sjh9vX2UdONBaOhDunEDAeuJXnz6hx30+a2eEpqbw57BeFnCGMAsAQBs+n1RdbS0PaK2jKmtamjRkSMeVWZ/PevJXa36/tcZ2z57Q42fPSgcPUpkFnCLMAgDQht9v7SW7f3/ocTus2jeJtdbRGtiOqqwdPWzBfpIYlVnAGcIsAABt2EGzbaU1GJQGDJB69Gh/Trg1sPbDD8JVWQsLpfz88H20HgOAyAizAAC0UVJi7WrQtmoaaS2rzycdPmw97MB2/LhUWxv+HI8nfDU3ELDW1+blfbefAegqCLMAALTh9VpLCcJVTTuqmNqB1V4mYLeXIp8TTR8A2iPMAgAQRtuq6cWL1s1akSqzUug5gYB1c1hpaeQ+jAk9hzALOEeYBQAgjLZV0337pAsXOg6aublSUVHoOcGg9RSvjIyO+zh9Wjp61Pq6udk6h5u/AOcIswAAhOHzWWteT52yvrZDaqSg2baa29l+sW2ruUeOWFtzUZkFnCPMAgAQhh1C7aAZDEo9e0rFxZHPaVuZjRRMS0utR9ba59h9UZkFnCPMAgAQxpAh1mc7YAYC1k1hbR9+0JrPZ90A1twsnTtnLU2IFGa7dZMGDQrto1s364liAJxJT/QAAABIRtnZ1p6yraumnVVM/X6psVE6dMjaoqu52dk5rfsYMsSq1gJwhsosAAAdaL0G1skuA63XwNoB1ck50fQBIBRhFgCADvj9VtA8cUKqqem8yvq971k7FwSD1kdentS7d+d97N8vNTWxkwFwJQizAAB0wOeTqqulL764/HUkaWnWMoFA4HKVNdIaW/t7GiNt324tT6AyC0SHVTkAAHTA77f2lt20yQql9k1hnZ0TDEr19dLQoc7aS9Lf/x76NQBnqMwCANABu0r6t79ZN4P16OHsnNaV2c4UFFgff/tbaJ8AnCHMAgDQgZISa1eDXbucV0z9fuvhB6dPR3fOrl1S375Sr15XPl6gKyLMAgDQAY/ncqXUacW0dbtoz6EqC0SPMAsAQAR2ddVpldUOpGlp1hO+YtEHgMu4AQwAgAiirZpec43Ur5/16Nvu3WPTB4DLCLMAAEQwfLjk9TrbmaD1OT17Om8/bNjl8wBEhzALAEAE998vbdsmFRU5P+fNN61lBk4NGmTtMztiRPTjA7o6wiwAABF4vdGHzOLi6Pv5/vejPwcAN4ABAADAxQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMAsAAADXIswCAADAtQizAAAAcC3CLAAAAFyLMIuksHLlykQPAQnAvHdNzHvXxLwjVmIaZquqquT1esN+/Otf/4pl13AZ/pLrmpj3rol575qYd8RKejw6efHFFzV69OiQYzfccEM8ugYAAEAKi0uYHTJkiH74wx/GoysAAAB0IXFZM2uMiUc3AAAA6GLiUpktLy/XQw89pB49eui2227T3Llz9eMf/7hdu6amJknSl19+GY9hIYnU1tZq69atiR4G4ox575qY966Jee967DzX2NgY0348JoZl0+3bt2vZsmUaNWqUCgoKVF1drZdfflm7d+/W+vXrNXbs2JD2b731ln7xi1/EajgAAACIs+XLl+vhhx+O2fd3HGarqqp09913O/qm27dv14gRI8K+VldXp+HDh6ugoEDbtm0Lea2mpkbvvvuuBg4cqKysLEd9AQAAIPk0NTVp3759GjdunAoLC2PWj+Mwe/ToUW3YsMHRN500aZLy8vI6fH3WrFl67bXX1NjYqIyMDGcjBQAAANpwvGa2qKhIM2bMuKqdezyeq/r9AAAA0LXEdM1sOKdOndLw4cPVt29fffbZZ/HsGgAAACkmprsZPPzww7ruuut00003KT8/X9XV1frd736nb7/9VsuWLYtl1wAAAOgCYhpmR4wYoVWrVmnx4sVqaGhQfn6+7rjjDr311lu6+eabY9k1AAAAuoCYPjRh9uzZ2rp1q06dOqULFy7o2LFjWrNmTdgg29DQoIqKCpWUlCgrK0s33nijVq1aFcvhIU42b96sRx55RGVlZcrOzlb//v01ceLEsPsNbt26VWPGjFFOTo7y8vI0ZcoU7du3LwGjRiwsWbJEXq9XOTk57V5j7lPLP/7xD91zzz3Kz89Xjx49VFZWpnnz5oW0Yc5Ty7///W/df//9Ki4uVnZ2tq6//nq98MIL7fYYZd7dqaGhQU8//bTGjh2r3r17y+v1qrKyMmzbaOb4D3/4g/x+vzIzMzVo0CA9//zzunjxYlRji8sTwJyYPHmyli1bpueee06bNm3SLbfcoqlTp2rlypWJHhq+o9dee00HDx7Ub3/7W23cuFG///3vdfz4cf3oRz/Sli1bWtoFAgGNGjVKFy9e1OrVq/XGG29o9+7duuOOO1RTU5PAnwBXw5EjR/Tkk0+quLi43c2fzH1qWbFihUaNGqW8vDz9+c9/1saNGzV79uyQNsx5atmxY4duv/12HTp0SK+++qrWr1+vhx56SM8//7ymTp3a0o55d6+amhq9/vrrunDhgiZNmiQp/I380czx/PnzVVFRoZ///Od677339Nhjj2nBggUqLy+PbnAmCaxfv954PB7z9ttvhxwfO3asKSkpMZcuXUrQyHA1HDt2rN2xhoYGU1RUZMaMGdNy7IEHHjB9+vQx9fX1LccOHDhgunfvbmbPnh2XsSJ27r33XjNx4kQzbdo007Nnz5DXmPvUcfjwYZOdnW3Ky8sjtmPOU8uzzz5rPB6P2bt3b8jxRx991Hg8HlNbW2uMYd5TRU1NjfF4PKaysrLda07nuKamxmRmZpqZM2eGnL9gwQLj9XrNF1984Xg8SVGZfeedd5STk6MHHngg5Pj06dP19ddf65///GeCRoaroU+fPu2O2f8FdfjwYUnSxYsXtW7dOk2ZMkU9e/ZsaTdgwACNHj1a77zzTtzGi6tv+fLl+vjjj7V48WKZNhuoMPepZcmSJTp79my7SmxrzHnqyczMlCTl5uaGHM/NzVVaWpq6d+/OvKeQtn+P26KZ402bNuncuXOaPn16yPeYPn26jDH661//6ng8SRFmd+7cqeuvv15eb+hwhg8fLknatWtXIoaFGKqrq9PWrVt1ww03SJL27t2rpqamsE+OGz58uPbs2aPz58/He5i4Co4dO6aKigotXLhQxcXF7V5n7lPLRx99pIKCAn3xxRcaOXKkunXrpr59+2rWrFmqr6+XxJynounTp6t3796aNWuW9u3bp/r6eq1bt05/+tOfVF5erqysLOa9C4hmjnfu3NlyvLWioiIVFhZGlf2SIsyeOHFC+fn57Y7bx06cOBHvISHGysvL1djYqDlz5ki6PMcd/T4wxujUqVNxHSOujvLycg0dOlQzZ84M+zpzn1qOHDmiM2fO6MEHH9TUqVO1efNmPfXUU1q2bJnuueceScx5Kurfv7+qqqq0bds2lZaWKjc3V/fdd5+mTZumV155RRLz3hVEM8cnTpxQRkaGsrKy2rXNy8uLKvvFdGsuIJy5c+dqxYoV+uMf/6gbb7wx0cNBDK1Zs0br1q3T559/nuihIE6am5vV1NSk5557Tk8//bQk6c4771T37t1VUVGhDz74oOW/pJE6gsGgxowZo9LSUr300kvq3bu3Pv30U82bN0/19fVasmRJooeIFJYUYbagoCBsAj958mTL60gNlZWVmj9/vhYsWKDHHnus5bg9x/act3by5El5PB7l5eXFbZz47hoaGvT444/riSeeUN++fVVbWytJLf/FVFdXp/T0dOY+xRQUFGjPnj0aN25cyPHx48dLkrZt26YJEyZIYs5TybPPPqvm5ma9++67LZW222+/XYWFhZoxY4Z+9atfqW/fvpKY91QWzd/nBQUFOnfunJqamtpd4J48eVK33HKL436TYpnBiBEj9OWXX6q5uTnk+I4dOyRJw4YNS8SwcJVVVla2fDzzzDMhr5WWliorK0v/+c9/2p23Y8cODRkyRN27d4/XUHEV1NTU6Pjx41q0aJHy8/NbPt5++22dOXNGeXl5+uUvf6nBgwcz9ylk5MiREV/3eDz8eU9Bu3bt0tChQ9v9l/EPfvCDltf5s576ovmzba+rbdv26NGjOnHiRFTZLynC7KRJk9TQ0KA1a9aEHF+6dKlKSkp06623JmhkuFpeeOEFVVZWau7cuZo7d26719PT0zVhwgStXbtWDQ0NLccPHjyoLVu2aPLkyfEcLq6Cfv36acuWLaqqqmr52LJli8aNG6fMzExVVVVp3rx5SktLY+5TyJQpUyRJGzZsCDm+fv16SdKtt97KnKega6+9Vjt37tSZM2dCjn/yySeSrDW1zHvqi+bf8vHjxyszM1NLly4N+R5Lly6Vx+PRxIkTnXccxbZiMTV27FiTn59vXn/9dfPBBx+YX//618bj8ZgVK1Ykemj4jhYtWmQ8Ho/52c9+Zj799FPzySefhHzYAoGAycnJMXfddZfZuHGjWbt2rRk2bJjp37+/qampSeBPgKvpkUceabfPLHOfWiZMmGAyMzPNvHnzzPvvv29efPFFk5WVZe67776WNsx5alm/fr3xer3mtttuM3/5y1/M5s2bzfz5801OTo4ZNmyYuXDhgjGGeXe7DRs2mNWrV5s33njDeDwe8+CDD5rVq1eb1atXm7Nnzxpjopvj+fPnG6/Xa+bMmWOqqqrMyy+/bDIzM82jjz4a1biSJsw2NDSY3/zmN6Zfv34mIyPDjBw50qxatSrRw8JVMGrUKOP1eo3H42n34fV6Q9p+9tlnZsyYMSY7O9vk5uaayZMnm6+++ipBI0csTJs2zeTk5LQ7ztynjsbGRvPMM8+YAQMGmG7dupmBAweaOXPmmPPnz4e0Y85Ty0cffWTGjx9viouLTY8ePYzf7zdPPfWUOXnyZEg75t29Bg4cGPLvd+tfHzhwoKVdNHP86quvGp/PZzIyMszAgQNNZWWluXjxYlTj8hjTwc63AAAAQJJLijWzAAAAwJUgzAIAAMC1CLMAAABwLcIsAAAAXIswCwAAANcizAIAAMC1CLMAAABwLcIsAAAAXIswCwAAANf6f5UgX07U48JsAAAAAElFTkSuQmCC",[m
[32m+[m[32m "text": [[m
[32m+[m[32m "PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0xe6c4550>)"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 4,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "1-element Array{Any,1}:\n",[m
[32m+[m[32m " PyObject <matplotlib.lines.Line2D object at 0x54b27d0>"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 4[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "metadata": {}[m
[32m+[m[32m }[m
[32m+[m[32m ][m
[32m+[m[32m}[m
\ No newline at end of file[m
[1mdiff --git a/notas/2 b/notas/2[m
[1mnew file mode 100644[m
[1mindex 0000000..ff349b5[m
[1m--- /dev/null[m
[1m+++ b/notas/2[m
[36m@@ -0,0 +1,537 @@[m
[32m+[m[32m{[m
[32m+[m[32m "metadata": {[m
[32m+[m[32m "kernelspec": {[m
[32m+[m[32m "codemirror_mode": "julia",[m
[32m+[m[32m "display_name": "Julia",[m
[32m+[m[32m "language": "julia",[m
[32m+[m[32m "name": "julia"[m
[32m+[m[32m },[m
[32m+[m[32m "language": "Julia",[m
[32m+[m[32m "name": "",[m
[32m+[m[32m "signature": "sha256:da4136dd77a3eaa3b79e175afe018820ca5586edbafbad78697f8ee78379b638"[m
[32m+[m[32m },[m
[32m+[m[32m "nbformat": 3,[m
[32m+[m[32m "nbformat_minor": 0,[m
[32m+[m[32m "worksheets": [[m
[32m+[m[32m {[m
[32m+[m[32m "cells": [[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 1,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "\u00bfQu\u00e9 es una distribuci\u00f3n de probabilidad?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "[1:6],[1:6]"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 9,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "([1,2,3,4,5,6],[1,2,3,4,5,6])"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 9[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "El concepto de *distribuci\u00f3n de probabilidad* es fundamental. Describe c\u00f3mo se reparte la probabilidad de una *variable aleatoria*. \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "Le damos el nombre *variable aleatoria* a una cantidad que toma distintos valores cada vez que lo medimos. (El nombre no es bueno.) Ciertos valores pueden ser *m\u00e1s probables* y otros menos probables."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "heading",[m
[32m+[m[32m "level": 2,[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Lanzar un dado"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Como primer ejemplo, pensemos en un dado. Cuando lanzamos un dado, puede caer en uno de los lados $1$ a $6$. Si el dado no tiene sesgo, esperamos que caer\u00e1 con \"igual probabilidad\" $\\frac{1}{6}$ en cada lado. Pero, \u00bfqu\u00e9 queremos decir con esta aseveraci\u00f3n?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "En una interpretaci\u00f3n \"frecuentista\" de la probabilidad, nos referimos a que si lanzamos el dado un n\u00famero muy grande $N$ de veces, caer\u00e1 en cada lado $N/6$ veces. [Otra interpretaci\u00f3n, m\u00e1s favorecida hoy d\u00eda, es la Bayesiana.]"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "La colecci\u00f3n de todas las probabilidades de todos los valores posibles de la variable aleatoria $X$, \"el valor que arroja el dado\", se llama la *distribuci\u00f3n de probabilidad* de $X$. Escribimos $P(X=1) = \\frac{1}{6}$, etc."[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "Si las probabilidades son iguales, decimos que la distribuci\u00f3n es *uniforme*. Pero si realmente hacemos el experimento, \u00bfqu\u00e9 tan uniformes salen las frecuencias?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "markdown",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "source": [[m
[32m+[m[32m "**Ejercicio 1**:\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(a) Genera un n\u00famero aleatorio uniforme entero entre 1 y 6 con\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m " rand(1:6)\n",[m
[32m+[m[32m " \n",[m
[32m+[m[32m "[Checa cu\u00e1l es el tipo del objeto `1:6`.] \n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(b) \u00bfC\u00f3mo se pueden generar $N$ tales n\u00fameros? Haz una funci\u00f3n para hacerlo.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(c) Cuenta el n\u00famero de veces que dio $1$, $2$, $\\ldots$, $6$ y as\u00ed calcula las frecuencias al normalizarlos con el n\u00famero total.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(d) Dibuja el resultado. \u00bfQu\u00e9 observas? Hazlo varias veces con el mismo valor de $N$.\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(e) Repite el c\u00e1lculo con n\u00fameros $N$ mayores. \u00bfQu\u00e9 observas?\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "(f) Calcula para cada $N$ cu\u00e1nto *desv\u00eda* el valor observado del valor te\u00f3rico esperado. Dibuja esto en funci\u00f3n de $N$. \u00bfC\u00f3mo se comporta esta desviaci\u00f3n?"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "a=rand(1:6)\n",[m
[32m+[m[32m "typeof(a)"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 1,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "Int64"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 1[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "n=30000\n",[m
[32m+[m[32m "x=rand(1:6,n);"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [],[m
[32m+[m[32m "prompt_number": 2[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "y=zeros(6)\n",[m
[32m+[m[32m "for i in x\n",[m
[32m+[m[32m " for j in 1:6\n",[m
[32m+[m[32m " if i==j\n",[m
[32m+[m[32m " y[j]+=1\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m "end\n",[m
[32m+[m[32m "y/n"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "pyout",[m
[32m+[m[32m "prompt_number": 3,[m
[32m+[m[32m "text": [[m
[32m+[m[32m "6-element Array{Float64,1}:\n",[m
[32m+[m[32m " 0.165333\n",[m
[32m+[m[32m " 0.166 \n",[m
[32m+[m[32m " 0.165467\n",[m
[32m+[m[32m " 0.166767\n",[m
[32m+[m[32m " 0.1654 \n",[m
[32m+[m[32m " 0.171033"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 3[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": true,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "using PyPlot"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "output_type": "stream",[m
[32m+[m[32m "stream": "stderr",[m
[32m+[m[32m "text": [[m
[32m+[m[32m "INFO: Loading help data...\n"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 27[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": true,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "function dados(n,caras,exps)\n",[m
[32m+[m[32m " ys=Array[[0]]\n",[m
[32m+[m[32m " for i in 1:exps\n",[m
[32m+[m[32m " x=rand(1:caras,n)\n",[m
[32m+[m[32m " y=zeros(caras)\n",[m
[32m+[m[32m " for j in x\n",[m
[32m+[m[32m " for k in 1:caras\n",[m
[32m+[m[32m " if j==k\n",[m
[32m+[m[32m " y[k]+=1\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " println(y/n)\n",[m
[32m+[m[32m " ys[i]=y/n\n",[m
[32m+[m[32m " println(ys)\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " return ys\n",[m
[32m+[m[32m "end\n",[m
[32m+[m[32m "dados(100,6,10)"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "output_type": "stream",[m
[32m+[m[32m "stream": "stdout",[m
[32m+[m[32m "text": [[m
[32m+[m[32m "[0.14,0.09,0.13,0.18,0.27,0.19]\n",[m
[32m+[m[32m "Array[[0.14,0.09,0.13,0.18,0.27,0.19]]\n",[m
[32m+[m[32m "[0.14,0.16,0.23,0.1,0.18,0.19]\n"[m
[32m+[m[32m ][m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "ename": "LoadError",[m
[32m+[m[32m "evalue": "BoundsError()\nwhile loading In[6], in expression starting on line 19",[m
[32m+[m[32m "output_type": "pyerr",[m
[32m+[m[32m "traceback": [[m
[32m+[m[32m "BoundsError()\nwhile loading In[6], in expression starting on line 19",[m
[32m+[m[32m "",[m
[32m+[m[32m " in dados at In[6]:14"[m
[32m+[m[32m ][m
[32m+[m[32m }[m
[32m+[m[32m ],[m
[32m+[m[32m "prompt_number": 6[m
[32m+[m[32m },[m
[32m+[m[32m {[m
[32m+[m[32m "cell_type": "code",[m
[32m+[m[32m "collapsed": false,[m
[32m+[m[32m "input": [[m
[32m+[m[32m "function dados(n,caras) \n",[m
[32m+[m[32m " x=rand(1:caras,n)\n",[m
[32m+[m[32m " y=zeros(caras)\n",[m
[32m+[m[32m " for j in x\n",[m
[32m+[m[32m " for k in 1:caras\n",[m
[32m+[m[32m " if j==k\n",[m
[32m+[m[32m " y[k]+=1\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " end\n",[m
[32m+[m[32m " return y/n\n",[m
[32m+[m[32m "end\n",[m
[32m+[m[32m "\n",[m
[32m+[m[32m "exps=10\n",[m
[32m+[m[32m "caras=6\n",[m
[32m+[m[32m "n=1000000\n",[m
[32m+[m[32m "for i in 1:exps\n",[m
[32m+[m[32m " plot(1:caras,dados(n,caras))\n",[m
[32m+[m[32m "end"[m
[32m+[m[32m ],[m
[32m+[m[32m "language": "python",[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "outputs": [[m
[32m+[m[32m {[m
[32m+[m[32m "metadata": {},[m
[32m+[m[32m "output_type": "display_data",[m
[32m+[m[32m "png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAIQCAYAAABg07P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XdYFFcXBvB3l7IUKYKiNCt2aRp7FCGCLTYsiL0mlkRNrDEWYokx+UxMosZG7AJGxV6wgIoFFRuW2LAhWFHpdc/3xw0oUgRZGGDP73n2QWdnZ85S371751wZEREYY4wxxhhTI3KpC2CMMcYYY6y4cQhmjDHGGGNqh0MwY4wxxhhTOxyCGWOMMcaY2uEQzBhjjDHG1A6HYMYYY4wxpnY4BDPGGGOMMbXDIZgxxhhjjKkdDsGMMcYYY0ztFCgEx8XFYcKECbC0tISuri4cHR3h5+f3wcdFRERgwoQJcHJygrGxMeRyOdatW5fr/vHx8Zg1axZq164NHR0dVKhQAS4uLrhz506W/W7duoX+/fujSpUq0NPTg42NDSZOnIjo6OhsxwwPD4e7uzvKly8PAwMDuLm54eLFiwV5+owxxhhjrIzQLMjO7u7uOH/+PBYuXIjatWtj06ZN8PT0hFKphKenZ66Pu3PnDjZv3gxHR0d07twZPj4+kMlkOe4bFxcHZ2dnPHnyBNOmTYOdnR1ev36N06dPIyEhIXO/J0+eoHnz5jAxMcH8+fNRpUoVXLhwAbNnz0ZgYCBCQ0Mzz/H8+XO0bt0apqamWLNmDRQKBRYsWIC2bdvi3LlzqF27dkE+DYwxxhhjrLSjfNq7dy/JZDLy9fXNst3NzY0sLS0pPT0918cqlcrMf58/f55kMhmtW7cux33Hjx9PBgYGdO/evTzrWblyJclkMjpy5EiW7QsWLCCZTEaXLl3K3DZ58mRSKBT08OHDzG0xMTFUsWJF8vDwyPM8jDHGGGOs7Mn3dAh/f38YGBigd+/eWbYPHToUkZGRCAkJyfWx7476ElGu+yUkJGD16tXo3bs3qlWrlmc9Ojo6AAAjI6Ms2zP+n3F/Ru0uLi6wtrbO3GZgYAB3d3fs3r0bSqUyz3MxxhhjjLGyJd8h+OrVq6hXrx7k8qwPsbW1BQBcu3at0MWEhoYiISEBNjY2GD16NExMTKBQKNCkSRPs27cvy77u7u6oVasWJk6ciOvXryMuLg7Hjx/HwoUL0bVrV9SpUwcAkJiYiPDwcNjZ2WU7n62tbeb9jDHGGGNMfeQ7BL98+RImJibZtmdse/nyZaGLefz4MQBg4cKFuHbtGjZs2AB/f38YGhqiS5cuCAgIyNxXX18fQUFBiI+PR8OGDWFoaIi2bduiefPm2LJlS+Z+r169AhEVee2MMcYYY6z0KNCFcUUtY1qCQqHA/v37oa+vDwBwdnZGrVq1MG/ePLi5uQEAnj17BhcXF2hpaWHz5s2wtrZGWFgY5s6di65du2Lv3r3Q0NAodE1RUVGIiooq9HEYY4wxxljRMDc3h7m5eYEek+8QbGpqmuOIaUY7MlNT0wKdOLdzAEDLli0zAzAA6Orqok2bNti1a1fmtoULFyI8PBwPHjxA5cqVAQCtWrVC3bp14eLigk2bNmHQoEEoX748ZDJZjm3TPlR7VFQUPvnkE0RGRhb6uTHGGGOMsaJhYWGB8+fPFygI5zsE29nZwcfHB0qlMsu84LCwMABAw4YNC1Bq7ufIy7vnvXbtGqysrDIDcIZPPvkk835ABGgbGxtcuXIl2/HCwsKgp6eHGjVq5Hi+qKgoREZGYuPGjahXr16BngsrnSZMmIDFixdLXQYrJvz1Vi/89VYv/PVWHzdu3MCAAQMQFRVVNCG4R48eWLVqFbZu3Yo+ffpkbl+7di0sLS3RrFmzglWcA3Nzc7Rs2RLBwcGIjY2FgYEBANE1IigoKMs5rK2tcfToUURGRsLCwiJz++nTpwEAVlZWWWpfvHgxIiIiMrfHxsZi+/bt6Nq1a7aL/d5Xr149NGrUqNDPj5V8xsbG/LVWI/z1Vi/89VYv/PVmH5LvENyhQwe4urpi9OjRiImJQc2aNeHj44OAgABs2rQpsw3a8OHDsX79eoSHh2dpSbZ161YAyOzEcO7cOejp6QEAevXqlbnfL7/8AmdnZ7Rv3x5Tp04FACxatAjR0dGYO3du5n5jx47Fxo0b4erqimnTpsHKygpXr17FvHnzULlyZfTv3z9z30mTJmHDhg3o3Lkz5syZA21tbfz0009ISUmBl5dXQT9njDHGGGOslCvQhXHbt2/H999/j1mzZiE6Ohr16tWDr69vlpFhpVIJpVKZrR/wu/vIZDIsXboUS5cuhUwmQ3p6euZ9LVq0wJEjRzBjxozMINuiRQsEBQWhefPmmfs5ODggJCQEc+bMwYwZM/Ds2TNYWlqie/fumDVrVpZuEBUqVMCJEycwadIkDB48GGlpaWjZsiWCgoJ4tTjGGGOMMTVUoBCsr6+PxYsX5znHZs2aNVizZk227QVZkKJVq1YIDAz84H52dnaZI8wfUqNGDWzfvj3fNTDGGGOMsbIr332CGVMHnp6eUpfAihF/vdULf73VC3+92YdwCGbsHfxLU73w11u98NdbvfDXm30Ih2DGGGOMMaZ2OAQzxhhjjDG1wyGYMcYYY4ypHQ7BjDHGGGNM7XAIZowxxhhjaodDMGOMMcYYUzscghljjDHGmNrhEMwYY4wxxtQOh2DGGGOMMaZ2OAQz