Skip to content

Commit 4aea896

Browse files
committed
Update Supplement.Rmd
1 parent ff07167 commit 4aea896

File tree

1 file changed

+27
-13
lines changed

1 file changed

+27
-13
lines changed

report/supplement/Supplement.Rmd

Lines changed: 27 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -48,6 +48,16 @@ Forecast and observed data were sourced from the European COVID-19 Forecast Hub,
4848

4949
Data for this work were downloaded on 30th May 2023. These data are available in the Github repository for this paper at: <https://github.com/epiforecasts/eval-by-method/tree/main/data>
5050

51+
```{r load-data}
52+
# Load data
53+
scores <- process_data(scoring_scale = "log")
54+
ensemble <- scores |>
55+
filter(grepl("EuroCOVIDhub-ensemble", Model))
56+
scores <- scores |>
57+
filter(!grepl("EuroCOVIDhub-ensemble", Model))
58+
n_forecasts <- nrow(scores)
59+
```
60+
5161
\newpage
5262

5363
# Model characteristics
@@ -62,16 +72,6 @@ knitr::include_graphics(here("output", "plots", "flowchart.png"))
6272

6373
## Model characteristics
6474

65-
```{r load-data}
66-
# Load data
67-
scores <- process_data(scoring_scale = "log")
68-
ensemble <- scores |>
69-
filter(grepl("EuroCOVIDhub-ensemble", Model))
70-
scores <- scores |>
71-
filter(!grepl("EuroCOVIDhub-ensemble", Model))
72-
n_forecasts <- nrow(scores)
73-
```
74-
7575
```{r metadata}
7676
table_metadata(scores) |>
7777
select(-Description) |>
@@ -103,14 +103,14 @@ We retrospectively categorised each week as “Stable”, “Decreasing”, or
103103

104104
```{r trends,fig.cap="Trends (cases)", fig.height = 8, fig.width = 10}
105105
scores |>
106-
filter(outcome_target == "Cases") |>
106+
filter(epi_target == "Cases") |>
107107
trends_plot() +
108108
ggtitle("Cases")
109109
```
110110

111111
```{r death-trends,fig.cap="Trends (deaths)", fig.height = 8, fig.width = 10}
112112
scores |>
113-
filter(outcome_target == "Deaths") |>
113+
filter(epi_target == "Deaths") |>
114114
trends_plot() +
115115
ggtitle("Deaths")
116116
```
@@ -120,7 +120,8 @@ scores |>
120120
## Variant phase identification
121121

122122
```{r variant-phases, fig.cap="Variant phases identified by dominant variant in each location and week"}
123-
variant_phases <- classify_variant_phases() # see: R/utils-variants.R
123+
# see: R/utils-variants.R
124+
variant_phases <- classify_variant_phases()
124125
variant_phases |>
125126
ggplot(aes(x = target_end_date, y = location, fill = VariantPhase)) +
126127
geom_tile() +
@@ -166,3 +167,16 @@ knitr::include_graphics(here("output", "plots", "check_Deaths.pdf"))
166167
plot_effects(results$effects,
167168
variables = c("Trend", "Location", "VariantPhase"))
168169
```
170+
171+
### Results on the natural scale
172+
173+
We present results from scoring forecast error on the natural scale (difference between observation and prediction in count of case or death incidence), from which the WIS is calculated.
174+
175+
```{r scores-natural}
176+
scores <- process_data(scoring_scale = "natural")
177+
ensemble <- scores |>
178+
filter(grepl("EuroCOVIDhub-ensemble", Model))
179+
scores <- scores |>
180+
filter(!grepl("EuroCOVIDhub-", Model))
181+
print_table1(scores)
182+
```

0 commit comments

Comments
 (0)