@@ -31,7 +31,7 @@ model_wis <- function(scoring_scale = "log", output_dir = "output") {
3131 m.data <- m.data | >
3232 mutate(Incidence = log(Incidence + 1 ))
3333 }
34- outcomes <- unique(m.data $ outcome_target )
34+ outcomes <- unique(m.data $ epi_target )
3535
3636 # --- Model formula ---
3737 # Univariate for each explanatory variable
@@ -65,7 +65,7 @@ model_wis <- function(scoring_scale = "log", output_dir = "output") {
6565 map(\(outcome ) {
6666 bam(
6767 formula = m.formula ,
68- data = m.data | > filter(outcome_target == outcome ),
68+ data = m.data | > filter(epi_target == outcome ),
6969 family = gaussian(link = " log" ),
7070 method = " fREML" ,
7171 control = gam.control(trace = TRUE ),
@@ -84,13 +84,13 @@ model_wis <- function(scoring_scale = "log", output_dir = "output") {
8484 # Extract estimates for random effects
8585 random_effects_uni <- m.fits_uni [! grepl(" horizon|incidence" , names(m.fits_uni ))] | >
8686 map_depth(.depth = 2 , ~ extract_ranef(.x )) | >
87- map(~ list_rbind(.x , names_to = " outcome_target " )) | >
87+ map(~ list_rbind(.x , names_to = " epi_target " )) | >
8888 list_rbind() | >
8989 mutate(model = " Unadjusted" )
9090
9191 random_effects_joint <- map_df(m.fits_joint ,
9292 extract_ranef ,
93- .id = " outcome_target " ) | >
93+ .id = " epi_target " ) | >
9494 mutate(model = " Adjusted" )
9595
9696 random_effects <- random_effects_joint | >
0 commit comments