Skip to content

replace code from interpretation lines for explicit credible intervals #160

@avallecam

Description

@avallecam

+ From the summary of our analysis we see that the expected change in reports is `r summary(estimates)$estimate[summary(estimates)$measure=="Expected change in reports"]` with the estimated new infections `r summary(estimates)$estimate[summary(estimates)$measure=="New infections per day"]`.
+ The effective reproduction number $R_t$ estimate (on the last date of the data) is `r summary(estimates)$estimate[summary(estimates)$measure=="Effective reproduction no."]`.
+ The exponential growth rate of case numbers is `r summary(estimates)$estimate[summary(estimates)$measure=="Rate of growth"]`.
+ The doubling time (the time taken for case numbers to double) is `r summary(estimates)$estimate[summary(estimates)$measure=="Doubling/halving time (days)"]`.

#| echo: false
estimates_summary <- estimates$summary %>% as_tibble() %>% filter(!stringr::str_detect(measure,"change")) %>% unnest(numeric_estimate)

Interpretation

+ From the summary of our analysis we see that the expected change in reports is 
`r estimates$summary %>% as_tibble() %>% filter(stringr::str_detect(measure,"change")) %>% pull(estimate)` 
with the estimated new infections of
`r estimates_summary %>% filter(stringr::str_detect(measure,"infections")) %>% dplyr::select(median) %>% pull()`
with 90% credible interval of
`r estimates_summary %>% filter(stringr::str_detect(measure,"infections")) %>% dplyr::select(lower_90) %>% pull()` to `r estimates_summary %>% filter(stringr::str_detect(measure,"infections")) %>% dplyr::select(upper_90) %>% pull()`.

+ The effective reproduction number $R_t$ estimate (on the last date of the data),
or the number of new infections caused by one infectious individual, on average, is
`r estimates_summary %>% filter(stringr::str_detect(measure,"reproduction")) %>% dplyr::select(median) %>% pull()`,
with a 90% credible interval of
`r estimates_summary %>% filter(stringr::str_detect(measure,"reproduction")) %>% dplyr::select(lower_90) %>% pull()` to `r estimates_summary %>% filter(stringr::str_detect(measure,"reproduction")) %>% dplyr::select(upper_90) %>% pull()`.

+ The exponential growth rate of case reports is `r summary(estimates)$estimate[summary(estimates)$measure=="Rate of growth"]`.

+ The doubling time (the time taken for case reports to double) is `r summary(estimates)$estimate[summary(estimates)$measure=="Doubling/halving time (days)"]`.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions