Skip to content

TinyML and Efficient Deep Learning Computing | MIT 6.S965/6.5940

License

Notifications You must be signed in to change notification settings

erectbranch/MIT-Efficient-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TinyML and Efficient Deep Learning Computing

MIT 6.S965/6.5940 • Fall • 2022-2024
Instructor : Song Han(Associate Professor, MIT EECS)


Lecture notes for courses MIT 6.S965, Fall 2022 | MIT 6.5940, Fall 2023•2024

Courses

Course Video Slide Note Homework
MIT 6.5940 • 2024 • Fall Videos Slides Notes Lab 1 / Lab 2 / Lab 3 / Lab 4 / Lab 5
MIT 6.5940 • 2023 • Fall Videos Slides Notes -
MIT 6.S965 • 2022 • Fall Videos Slides Notes Lab 4: Deployment on MCU

Lecture Notes

📖 Basics of Deep Learning

  • Basic Terminologies, Shape of Tensors

    Synapse(weight), Neuron(activation), Cell body

    Fully-Connected layer, Convolution layer(padding, stride, receptive field, grouped convolution), Pooling layer

  • Efficiency Metrics

    Metrics(latency, storage, energy)

    Memory-Related(#parameters, model size, #activations), Computation(MACs, FLOP)

📙 Efficient Inference

  • Pruning Granularity, Pruning Critertion

    Unstructured/Structured pruning(Fine-grained/Pattern-based/Vector-level/Kernel-level/Channel-level)

    Pruning Criterion: Magnitude(L1-norm, L2-norm), Sensitivity and Saliency(SNIP), Loss Change(First-Order, Second-Order Taylor Expansion)

    Data-Aware Pruning Criterion: Average Percentage of Zero(APoZ), Reconstruction Error, Entropy

  • Automatic Pruning, Lottery Ticket Hypothesis

    Finding Pruning Ratio: Reinforcement Learning based, Rule based, Regularization based, Meta-Learning based

    Lottery Ticket Hypothesis(Winning Ticket, Iterative Magnitude Pruning, Scaling Limitation)

    Pruning at Initialization(Connection Sensitivity, Gradient Flow)

  • System & Hardware Support for Fine-grained Sparsity

    Efficient Inference Engine(EIE format: relative index, column pointer)

  • Sparse Matrix-Matrix Multiplication, GPU Support for Sparsity

    Sparse Matrix-Matrix Multiplication(SpMM), CSR format

    GPU Support for Sparsity: Hierarchical 1-Dimensional Tiling, Row Swizzle, M:N Sparsity, Block SpMM(Blocked-ELL format), PatDNN(FKW format)


  • Basic Concepts of Quantization

    Numeric Data Types: Integer, Fixed-Point, Floating-Point(IEEE FP32/FP16, BF16, NVIDIA FP8), INT4 and FP4

    Uniform vs Non-uniform quantization, Symmetric vs Asymmetric quantization

    Linear Quantization: Integer-Arithmetic-Only Quantization, Sources of Quantization Error(clipping, rounding, scaling factor, zero point)

  • Vector Quantization

    Vector Quantization(Deep compression: iterative pruning, K-means based quantization, Huffman encoding), Product Quantization

  • Post Training Quantization

    Weight Quantiztion: Per-Tensor Activation Per-Channel Activation, Group Quantization(Per-Vector, MX), Weight Equalization, Adative Rounding

    Activation Quantization: During training(EMA), Calibration(Min-Max, KL-divergence, Mean Squared Error)

    Bias Correction, Zero-Shot Quantization(ZeroQ)

  • Quantization-Aware Training, Low bit-width quantization

    Fake quantization, Straight-Through Estimator

    Binary Quantization(Deterministic, Stochastic, XNOR-Net), Ternary Quantization


  • Neural Architecture Search: basic concepts & manually-designed neural networks

    input stem, stage, head

    AlexNet, VGGNet, SqueezeNet(fire module), ResNet(bottleneck block, residual connection), ResNeXt(grouped convolution)

    MobileNet(depthwise-separable convolution, width/resolution multiplier), MobileNetV2(inverted bottleneck block), ShuffleNet(channel shuffle), SENet(squeeze-and-excitation block), MobileNetV3(h-swish)

  • Neural Architecture Search: Search Space

    Search Space: Macro, Chain-Structured, Cell-based(NASNet), Hierarchical(Auto-DeepLab, NAS-FPN)

    design search space: Cumulative Error Distribution, FLOPs distribution, zero-cost proxy

  • Neural Architecture Search: Performance Estimation & Hardware-Aware NAS

    Weight Inheritance, HyperNetwork, Weight Sharing(super-network, sub-network)

    Performance Estimation Heuristics: Zen-NAS, GradSign


  • Knowledge Distillation

    Knowledge Distillation(distillation loss, softmax temperature)

    What to Match?: intermediate weights, features(attention maps), sparsity pattern, relational information

    Distillation Scheme: Offline Distillation, Online Distillation, Self-Distillation

  • Distillation for Applications

    Applications: Object Detection, Semantic Segmentation, GAN, NLP

    Tiny Neural Network: NetAug


  • MCUNet

    MCUNetV1: TinyNAS, TinyEngine

    MCUNetV2: MCUNetV2 architecture(MobileNetV2-RD), patch-based inference, joint automated search

⚙️ Efficient Training and System Support

  • TinyEngine

    Memory Hierarchy of Microcontroller, Primary Memory Format(NCHW, NHWC, CHWN)

    Parallel Computing Techniques: Loop Unrolling, Loop Reordering, Loop Tiling, SIMD programming

    Inference Optimization: Im2col, In-place depthwise convolution, appropriate data layout(pointwise, depthwise convolution), Winograd convolution


🔧 Domain-Specific Optimizations

  • Transformer

    NLP Task(Discriminative, Generative), Pre-Transformer Era(RNN/LSTM, CNN)

    Transformer: Tokenizer, Embedding, Multi-Head Attention(self-attention), Feed-Forward Network, Layer Normalization(Pre-Norm, Post-Norm), Positional Encoding

  • Transformer Design Variants

    Types of Transformer-based Models: Encoder-Decoder(T5), Encoder-only(BERT), Decoder-only(GPT)

    Relative Positional Encoding(ALiBi, RoPE, interpolating RoPE), KV cache optimization(Multi-query Attention, Grouped-query Attention), Gated Linear Unit


  • LLM Quantization

    Quantization Difficulty of LLMs, Bottleneck of edge LLM Inference(Memory-bounded, Memory footprint of Weights)

    Weight-activation Quantization: SmoothQuant(Activation Smoothing)

    Weight-only Quantization: AWQ(1% Salient Weights, Activation-aware Scaling)

  • Efficient System Support for LLM Quantization

    System for Edge: TinyChat(Hardware-aware Weight Packing, Kernel Fusion)

    System for Cloud: Overhead in Quantized GEMM, QServe(SmoothAttention, Dequantization with Reg-Level Parallelism)

  • LLM Pruning & Sparsity

    Weight Sparsity: Wanda

    Contextual Sparsity: Deja Vu, Mixture-of-Experts

    Attention Sparsity: SpAtten, H2O


  • LLM Post Training

    Supervised Fine-Tuning, Reinforcement Learning from Human Feedback, Direct Preference Optimization

    Parameter-Efficient Fine-Tuning: Additive(Adapter, Prompt/Prefix Tuning) Selective(BitFit), Reparameterized(LoRA)

    PEFT Quantization: QLoRA, BitDelta


  • Vision Transformer

    Vision Transformer, High-Resolution Dense Prediction, Segment Anything

    Window Attention(Swin Transformer, FlatFormer), ReLU Linear Attention(EfficientViT), Sparse Attention(SparseViT)

  • Efficient Video Understanding

    2D CNNs for Video Understanding, 3D CNNs for Video Understanding(I3D), Temporal Shift Module(TSM)

    Other Efficient Methods: Kernel Decomposition, Multi-Scale Modeling, Neural Architecture Search(X3D), Skipping Redundant Frames/Clips, Utilizing Spatial Redundancy

  • Generative Adversarial Networks (GANs)

    GANs(Generator, Discriminator), Conditional/Unconditional GANs, Difficulties in GANs

    Compress Generator(GAN Compression), Dynamic Cost GANs(Anycost GANs), Data-Efficient GANs(Differentiable Augmenatation)

About

TinyML and Efficient Deep Learning Computing | MIT 6.S965/6.5940

Topics

Resources

License

Stars

Watchers

Forks