-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathtest_on_image.py
39 lines (31 loc) · 1.21 KB
/
test_on_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from models import TransformerNet
from utils import *
import torch
from torch.autograd import Variable
import argparse
import os
import tqdm
from torchvision.utils import save_image
from PIL import Image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_path", type=str, required=True, help="Path to image")
parser.add_argument("--checkpoint_model", type=str, required=True, help="Path to checkpoint model")
args = parser.parse_args()
print(args)
os.makedirs("images/outputs", exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = style_transform()
# Define model and load model checkpoint
transformer = TransformerNet().to(device)
transformer.load_state_dict(torch.load(args.checkpoint_model))
transformer.eval()
# Prepare input
image_tensor = Variable(transform(Image.open(args.image_path))).to(device)
image_tensor = image_tensor.unsqueeze(0)
# Stylize image
with torch.no_grad():
stylized_image = denormalize(transformer(image_tensor)).cpu()
# Save image
fn = args.image_path.split("/")[-1]
save_image(stylized_image, f"images/outputs/stylized-{fn}")