-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathloss_functions.py
41 lines (29 loc) · 1.02 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import division
import numpy as np
from mlfromscratch.utils import accuracy_score
from mlfromscratch.deep_learning.activation_functions import Sigmoid
class Loss(object):
def loss(self, y_true, y_pred):
return NotImplementedError()
def gradient(self, y, y_pred):
raise NotImplementedError()
def acc(self, y, y_pred):
return 0
class SquareLoss(Loss):
def __init__(self): pass
def loss(self, y, y_pred):
return 0.5 * np.power((y - y_pred), 2)
def gradient(self, y, y_pred):
return -(y - y_pred)
class CrossEntropy(Loss):
def __init__(self): pass
def loss(self, y, p):
# Avoid division by zero
p = np.clip(p, 1e-15, 1 - 1e-15)
return - y * np.log(p) - (1 - y) * np.log(1 - p)
def acc(self, y, p):
return accuracy_score(np.argmax(y, axis=1), np.argmax(p, axis=1))
def gradient(self, y, p):
# Avoid division by zero
p = np.clip(p, 1e-15, 1 - 1e-15)
return - (y / p) + (1 - y) / (1 - p)