-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
126 lines (96 loc) · 5.38 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import torch
from torch import optim
import argparse
import csv
from hyperspn.dataset_utils import load_dataset
from hyperspn.model_utils import load_model
from hyperspn.inference_utils import log_density_fn, compute_parzen, timestep_config
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
print("device: ", DEVICE)
print("torch version: ", torch.__version__)
def run(train_data, valid_data, test_data, model, device):
train_data = torch.tensor(train_data).float().to(device)
valid_data = torch.tensor(valid_data).float().to(device)
test_data = torch.tensor(test_data).float().to(device)
def eval_model(it):
with torch.no_grad():
avg_train, avg_valid, avg_test = 0.0, 0.0, 0.0
# evaluate on full dataset
def get_avg(data):
avg = 0.0
split_data = torch.split(data, ARGS.batch)
for batch_data in split_data:
ld = log_density_fn(batch_data, model).item()
avg += ld
avg = avg / data.shape[0]
return avg
avg_train = get_avg(train_data)
avg_valid = get_avg(valid_data)
avg_test = get_avg(test_data)
print('step: %u, train-all: %f, valid-all: %f, test-all: %f' % (it, avg_train, avg_valid, avg_test) , flush=True)
samples = model.sample(batch=ARGS.batch)
avg_llh, std_llh = compute_parzen(test_data, samples, batch=ARGS.batch)
print("parzen : %.3f %.3f" % (avg_llh, std_llh))
return avg_train, avg_valid, avg_test, avg_llh
def sample_batch(data):
batch_indices = np.random.choice(data.shape[0], size=min(data.shape[0],ARGS.batch), replace=False)
return data[batch_indices]
weight_decay = 0.0
if ARGS.wd: weight_decay = ARGS.wd
optimizer = optim.Adam( list(model.parameters()) , lr=ARGS.lr, weight_decay=weight_decay)
infos = []
TIMESTEPS, EVAL_PERIOD = timestep_config(ARGS.dataset)
if ARGS.eval:
avg_train, avg_valid, avg_test, avg_llh = eval_model(0)
infos.append( (0, avg_train, avg_valid, avg_test, avg_llh) )
return model, infos
for i in range(TIMESTEPS+1):
batch_train_data = sample_batch(train_data)
optimizer.zero_grad()
ld = log_density_fn(batch_train_data, model)
(-ld).backward()
optimizer.step()
# log current progress
if i % 10 == 0:
batch_valid_data = sample_batch(valid_data)
ld_valid = log_density_fn(batch_valid_data, model).item()
batch_test_data = sample_batch(test_data)
ld_test = log_density_fn(batch_test_data, model).item()
avg_train = ld.item() / batch_train_data.shape[0]
avg_valid = ld_valid / batch_valid_data.shape[0]
avg_test = ld_test / batch_test_data.shape[0]
print('step: %u, train: %f, valid: %f, test: %f' % (i, avg_train, avg_valid, avg_test) , flush=True)
# eval on full dataset
if i % EVAL_PERIOD == 0:
avg_train, avg_valid, avg_test, avg_llh = eval_model(i)
infos.append( (i, avg_train, avg_valid, avg_test, avg_llh) )
return model, infos
if __name__ == "__main__":
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--dataset', type=str, required=True, help="dataset name")
parser.add_argument('--modeltype', type=str, required=True, choices=['hyperspn', 'spn'], help="type of model")
parser.add_argument('--run', type=int, default=1, help="run id")
parser.add_argument('--h', type=int, default=5, help="embedding dimension")
parser.add_argument('--N', type=int, default=5, help="each sector has size N*N")
parser.add_argument('--R', type=int, default=50, help="number of regions")
parser.add_argument('--lr', type=float, default=3e-4, help="learning rate")
parser.add_argument('--batch', type=int, default=100, help="batch size")
parser.add_argument('--wd', type=float, default=0.000, help="weight decay")
parser.add_argument('--eval', action='store_true', default=False, help="evaluate model on test set")
ARGS = parser.parse_args()
print(ARGS)
train_data, valid_data, test_data = load_dataset(ARGS.dataset)
savepath = 'output/%s_run=%u_h=%u_N=%u_%s_wd=%.5f' % (ARGS.dataset, ARGS.run, ARGS.h, ARGS.N, ARGS.modeltype, ARGS.wd)
modelpath = '%s.pt' % (savepath)
model = load_model(modelpath, train_data, ARGS, DEVICE)
model, infos = run(train_data, valid_data, test_data, model=model, device=DEVICE)
if not ARGS.eval:
torch.save({
'model_state_dict': model.state_dict(),
}, modelpath)
print('Saved\n')
with open('%s.csv' % savepath, 'a+') as csvfile:
writer = csv.writer(csvfile)
for row in infos:
writer.writerow(row)