-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmission_alzheimer_image_classification_cnn.py
579 lines (462 loc) · 20.6 KB
/
submission_alzheimer_image_classification_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
# -*- coding: utf-8 -*-
"""submission_alzheimer_image_classification_cnn.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/19B0ujz7fPKN-m-3Ixm7bhcSiT_WnMM54
# Alzheimer Classification
- **Nama:** Nantha Seutia
- **Email:** [email protected]
- **ID Dicoding:** [email protected]
## About Dataset
The data consists of MRI images. The data has four classes of images:
1. Mild Demented (8960)
2. Moderate Demented (6464)
3. Very Mild Demented (8960)
4. Non Demented (9600)
Link : [Alzheimer Dataset](https://www.kaggle.com/datasets/uraninjo/augmented-alzheimer-mri-dataset)
## Import Packages/Library
"""
!pip install kagglehub
!pip install tensorflowjs
import kagglehub
import os
import cv2
import shutil
import random
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, models, callbacks
from tensorflow.keras.callbacks import EarlyStopping
import tensorflowjs as tfjs
from google.colab import files
from IPython.display import display
from PIL import Image
"""## Data Preparation"""
# Tentukan dataset dan lokasi penyimpanan
target_path = "/content/alzheimer_mri_dataset"
split_dataset = "alzheimer_mri_dataset_split"
alzheimer_model = "alzheimer_model"
kaggle_dataset = "uraninjo/augmented-alzheimer-mri-dataset"
def delete_folder(folder_path):
try:
shutil.rmtree(folder_path)
print(f"Folder '{folder_path}' deleted successfully.")
except FileNotFoundError:
print(f"Folder '{folder_path}' not found.")
except Exception as e:
print(f"Error: {e}")
folder_to_delete_1 = target_path
folder_to_delete_2 = split_dataset
folder_to_delete_3 = alzheimer_model
delete_folder(folder_to_delete_1)
delete_folder(folder_to_delete_2)
delete_folder(folder_to_delete_3)
# Jika dataset sudah ada, lewati proses download
if os.path.exists(target_path) and len(os.listdir(target_path)) > 0:
print(f"✅ Dataset sudah ada di: {target_path}. Lewati proses download.")
else:
print("⬇️ Mengunduh dataset dari Kaggle...")
# Download dataset langsung ke folder penyimpanan kagglehub
dataset_path = kagglehub.dataset_download(kaggle_dataset)
print("Dataset downloaded at:", dataset_path)
# Cek isi folder dataset
subfolders = os.listdir(dataset_path)
print("Isi folder dataset:", subfolders)
# Pastikan dataset berada dalam folder yang benar
if subfolders:
dataset_main_folder = os.path.join(dataset_path, subfolders[0]) # Ambil folder pertama
else:
print("❌ Dataset tidak memiliki folder utama.")
dataset_main_folder = dataset_path # Gunakan dataset_path langsung jika tidak ada subfolder
# Pindahkan dataset ke folder target_path
shutil.move(dataset_main_folder, target_path)
print(f"✅ Dataset dipindahkan ke: {target_path}")
# Cari dan tampilkan 3 gambar dari setiap folder dalam dataset
image_extensions = (".png", ".jpg", ".jpeg")
category_images = {}
for category in os.listdir(target_path):
category_path = os.path.join(target_path, category)
if os.path.isdir(category_path):
category_images[category] = [
os.path.join(category_path, file)
for file in os.listdir(category_path)
if file.lower().endswith(image_extensions)
][:3] # Ambil maksimal 3 gambar
# Tampilkan gambar dari setiap kategori
fig, axes = plt.subplots(len(category_images), 3, figsize=(10, 3 * len(category_images)))
for row, (category, images) in enumerate(category_images.items()):
for col, img_path in enumerate(images):
img = cv2.imread(img_path) # Baca gambar
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Ubah dari BGR ke RGB untuk ditampilkan
axes[row, col].imshow(img)
axes[row, col].set_title(f"{category}") # Nama kategori dan file
axes[row, col].axis("off")
plt.tight_layout()
plt.show()
def analyze_dataset(target_path):
"""
Counts the number of images in each folder and checks image resolution variations.
:param target_path: Path to the main dataset folder.
:return: Dictionary with folder names as keys and values containing image counts and unique resolutions.
"""
if not os.path.exists(target_path):
raise FileNotFoundError(f"The directory '{target_path}' does not exist.")
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp', '.gif'} # Supported image formats
folder_analysis = {}
for folder in os.listdir(target_path):
folder_path = os.path.join(target_path, folder)
if os.path.isdir(folder_path):
image_count = 0
resolutions = set()
for file in os.listdir(folder_path):
file_path = os.path.join(folder_path, file)
if os.path.splitext(file)[1].lower() in image_extensions:
img = cv2.imread(file_path)
if img is not None:
resolutions.add(img.shape[:2]) # (height, width)
image_count += 1
folder_analysis[folder] = {
"image_count": image_count,
"unique_resolutions": resolutions
}
return folder_analysis
dataset_analysis = analyze_dataset(target_path)
# Menampilkan hasil analisis
for folder, data in dataset_analysis.items():
print(f"{folder}: {data['image_count']} images, Resolutions: {data['unique_resolutions']}")
# Cek apakah dataset memiliki resolusi yang tidak seragam
dataset_has_variable_resolutions = any(len(data["unique_resolutions"]) > 1 for data in dataset_analysis.values())
if dataset_has_variable_resolutions:
print("\nDataset memiliki resolusi yang tidak seragam.")
else:
print("\nDataset memiliki resolusi yang seragam.")
"""### Split Dataset
Struktur alzheimer_mri_dataset_split dataset
* train : 'MildDemented', 'ModerateDemented', 'NonDemented', 'VeryMildDemented'
* val : 'MildDemented', 'ModerateDemented', 'NonDemented', 'VeryMildDemented'
* test : 'MildDemented', 'ModerateDemented', 'NonDemented', 'VeryMildDemented'
"""
# Splitting Ratios
VAL_SPLIT = 0.2 # 20% Validation
TEST_SPLIT = 0.1 # 10% Testing
TRAIN_SPLIT = 1 - (VAL_SPLIT + TEST_SPLIT) # Remaining 70% for Training
# Define paths
DATASET_PATH = target_path
OUTPUT_DIR = split_dataset
# Create train, val, test folders
for split in ["train", "val", "test"]:
os.makedirs(os.path.join(OUTPUT_DIR, split), exist_ok=True)
# Loop through each class and distribute images
for class_name in os.listdir(DATASET_PATH):
class_path = os.path.join(DATASET_PATH, class_name)
if not os.path.isdir(class_path):
continue # Skip non-folder files
images = os.listdir(class_path)
random.shuffle(images) # Shuffle images for randomness
# Compute split sizes
total_images = len(images)
train_size = int(TRAIN_SPLIT * total_images)
val_size = int(VAL_SPLIT * total_images)
# Assign images to folders
for i, img in enumerate(images):
src_path = os.path.join(class_path, img)
if i < train_size:
dst_path = os.path.join(OUTPUT_DIR, "train", class_name)
elif i < train_size + val_size:
dst_path = os.path.join(OUTPUT_DIR, "val", class_name)
else:
dst_path = os.path.join(OUTPUT_DIR, "test", class_name)
os.makedirs(dst_path, exist_ok=True)
shutil.move(src_path, os.path.join(dst_path, img))
print(f"✅ Processed {class_name}: {total_images} images")
print("✅ Dataset successfully split into train, validation, and test folders!")
"""## Data Loading
* Menggunakan image_dataset_from_directory() dengan struktur dataset secara langsung, tanpa perlu manual memisahkan kelas.
* Memastikan dataset memiliki label kelas otomatis dengan train_dataset.class_names.
* Menggunakan tf.data.experimental.cardinality() untuk menghitung jumlah gambar di dataset.
* Menerapkan preprocessing dan augmentasi secara benar, augment hanya untuk training.
* Menerapkan shuffle, batch, dan prefetch setelah preprocessing untuk efisiensi training.
"""
# Define paths
DATASET_PATH = split_dataset
IMG_SIZE = (224, 224)
# Load dataset WITHOUT batch_size (Preprocessing akan menanganinya)
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
os.path.join(DATASET_PATH, "train"),
image_size=IMG_SIZE,
batch_size=None, # Jangan batch dulu
shuffle=True,
seed=42
)
val_dataset = tf.keras.preprocessing.image_dataset_from_directory(
os.path.join(DATASET_PATH, "val"),
image_size=IMG_SIZE,
batch_size=None,
shuffle=True,
seed=42
)
test_dataset = tf.keras.preprocessing.image_dataset_from_directory(
os.path.join(DATASET_PATH, "test"),
image_size=IMG_SIZE,
batch_size=None,
shuffle=False # Jangan shuffle test set
)
# Cek label kelas yang dikenali TensorFlow
# Memastikan dataset memiliki label kelas otomatis
class_names = train_dataset.class_names
print(f"📌 Dataset Labels: {class_names}")
# Check total images using cardinality()
train_size = tf.data.experimental.cardinality(train_dataset).numpy()
val_size = tf.data.experimental.cardinality(val_dataset).numpy()
test_size = tf.data.experimental.cardinality(test_dataset).numpy()
print(f"✅ Dataset Loaded!")
print(f"Train: {train_size} images, Validation: {val_size} images, Test: {test_size} images")
"""#### Preprocessing Data
1. Resize ke Ukuran Seragam (224x224) agar gambar memiliki dimensi sama untuk diproses CNN.
2. Normalisasi Pixel (ke [0,1] atau [-1,1]). CNN lebih stabil jika nilai pixel dinormalisasi.
3. Shuffle Data, agar model tidak belajar pola berurutan dari data.
4. Batching & Prefetching untuk mempercepat proses loading saat training.
"""
# Define Preprocessing Function (Resize + Normalize + Augmentation for Training)
BATCH_SIZE = 32
BUFFER_SIZE = 1000 # Buffer size for shuffling
# =====================================================
# ✅ PREPROCESSING: Resize, Normalize, and Augment
# =====================================================
def preprocess_image(image, label, augment=False):
image = tf.image.convert_image_dtype(image, tf.float32) # Normalize to [0,1]
# Data Augmentation (hanya untuk training)
# if augment:
# image = tf.image.random_brightness(image, max_delta=0.1)
return image, label
# ✅ Apply Preprocessing
train_dataset = train_dataset.map(lambda x, y: preprocess_image(x, y, augment=True))
val_dataset = val_dataset.map(preprocess_image)
test_dataset = test_dataset.map(preprocess_image)
# =====================================================
# ✅ Optimisasi: Batch & Prefetch
# =====================================================
train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
val_dataset = val_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
test_dataset = test_dataset.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
# Final Output
print("✅ Dataset is ready for training!")
print(f"Total Images: {train_size + val_size + test_size}")
print(f"Train: {train_size}, Validation: {val_size}, Test: {test_size}")
# Verifikasi ukuran gambar setelah preprocessing
for image, label in train_dataset.take(1): # Ambil 1 batch pertama
print(f"📏 Sample Train Image Shape: {image.shape}") # Seharusnya (batch_size, 224, 224, 3)
for image, label in val_dataset.take(1): # Ambil 1 batch pertama
print(f"📏 Sample Validation Image Shape: {image.shape}") # Seharusnya (batch_size, 224, 224, 3)
for image, label in test_dataset.take(1): # Ambil 1 batch pertama
print(f"📏 Sample Test Image Shape: {image.shape}") # Seharusnya (batch_size, 224, 224, 3)
"""## Modelling
* Conv2D + BatchNormalization + ReLU Activation: Ekstraksi fitur dari MRI dengan normalisasi untuk stabilisasi training.
* MaxPooling2D: Mengurangi dimensi fitur, mempercepat komputasi, dan mencegah overfitting.
* 5 Convolution Layers: Jaringan lebih dalam untuk menangkap pola yang lebih kompleks.
* Dense(128) + BatchNormalization + ReLU Activation: Fully connected layer untuk belajar representasi fitur.
* Dropout(0.5): Regularisasi untuk mengurangi overfitting.
* Dense(4, activation='softmax'): Menghasilkan probabilitas dari 4 kelas Alzheimer.
* Adam Optimizer: Algoritma adaptive learning yang stabil dan cepat.
* Sparse Categorical Crossentropy: Digunakan karena label berupa integer (bukan one-hot encoded).
* Early Stopping & Reduce LR: Menghentikan training jika tidak ada peningkatan setelah 5 epoch.
* Tambahan: Callback StopAtAccuracy menghentikan training jika akurasi validasi mencapai 95%.
"""
# =====================================================
# ✅ CALLBACKS: Early Stopping & Reduce LR
# =====================================================
early_stop_loss = callbacks.EarlyStopping(
monitor='val_loss', patience=5, restore_best_weights=True
)
reduce_lr = callbacks.ReduceLROnPlateau(
monitor='val_loss', factor=0.2, patience=3, min_lr=1e-6
)
# Callback untuk menghentikan training
# jika tidak ada peningkatan setelah 5 epoch
early_stop_acc = callbacks.EarlyStopping(
monitor='val_accuracy', # Pantau akurasi validasi
patience=5, # Tunggu 5 epoch jika belum stabil
min_delta=0.001, # Perbedaan minimal untuk dianggap meningkat
mode='max', # Karena kita ingin memaksimalkan accuracy
verbose=1, # Tampilkan log jika berhenti
restore_best_weights=True # Kembalikan model ke bobot terbaik
)
# Callback untuk menghentikan training jika val_accuracy >= 95%
class StopAtAccuracy(tf.keras.callbacks.Callback):
def __init__(self, target_accuracy=0.95):
super(StopAtAccuracy, self).__init__()
self.target_accuracy = target_accuracy
def on_epoch_end(self, epoch, logs=None):
if logs.get('val_accuracy') >= self.target_accuracy:
print(f"\n✅ Target val_accuracy {self.target_accuracy * 100:.1f}% tercapai, menghentikan training!")
self.model.stop_training = True
stop_at_96 = StopAtAccuracy(target_accuracy=0.95)
# =====================================================
# ✅ MODEL CNN: Sequential API
# =====================================================
model = keras.Sequential([
layers.Conv2D(32, (3,3), activation=None, input_shape=(224, 224, 3)),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPooling2D(2,2),
layers.Conv2D(64, (3,3), activation=None),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPooling2D(2,2),
layers.Conv2D(128, (3,3), activation=None),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPooling2D(2,2),
layers.Conv2D(256, (3,3), activation=None),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPooling2D(2,2),
layers.Conv2D(512, (3,3), activation=None),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.MaxPooling2D(2,2),
layers.Flatten(),
layers.Dense(128, activation=None),
layers.BatchNormalization(),
layers.Activation('relu'),
layers.Dropout(0.5),
layers.Dense(4, activation='softmax')
])
# =====================================================
# ✅ KOMPILE MODEL
# =====================================================
model.compile(
optimizer=keras.optimizers.Adam(learning_rate=0.001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# =====================================================
# ✅ TRAINING MODEL
# =====================================================
EPOCHS = 50
history = model.fit(
train_dataset,
validation_data=val_dataset,
epochs=EPOCHS,
callbacks=[early_stop_acc, early_stop_loss, reduce_lr, stop_at_96]
)
"""## Evaluasi dan Visualisasi"""
# =====================================================
# ✅ EVALUASI MODEL
# =====================================================
test_loss, test_accuracy = model.evaluate(test_dataset)
print(f"Test Accuracy: {test_accuracy:.4f}, Test Loss: {test_loss:.4f}")
# =====================================================
# ✅ PLOT AKURASI & LOSS
# =====================================================
def plot_history(history):
plt.figure(figsize=(12, 5))
# Plot Akurasi
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.title('Training & Validation Accuracy')
# Plot Loss
plt.subplot(1, 2, 2)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.title('Training & Validation Loss')
plt.grid(True)
plt.show()
# Pastikan history ada sebelum memanggil fungsi
if 'history' in locals():
plot_history(history)
else:
print("History belum tersedia. Pastikan model telah dilatih.")
"""## Konversi Model"""
# =====================================================
# ✅ SIMPAN MODEL DALAM FORMAT SavedModel, TF-Lite, & TFJS
# =====================================================
# Simpan sebagai Keras Native Format (.keras)
model.save("alzheimer_model_native.keras")
# Simpan sebagai SavedModel (untuk TFLite dan TFServing)
model.export("alzheimer_model")
# Simpan sebagai TF-Lite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
with open("alzheimer_model.tflite", "wb") as f:
f.write(tflite_model)
# Simpan sebagai TensorFlow.js
tfjs.converters.save_keras_model(model, "alzheimer_tfjs_model")
"""## Inference (Optional)"""
# =====================================================
# ✅ LOAD MODEL
# =====================================================
MODEL_PATH = "alzheimer_model_native.keras"
model = tf.keras.models.load_model(MODEL_PATH)
# Kelas sesuai dengan dataset
CLASS_NAMES = ['MildDemented', 'ModerateDemented', 'NonDemented', 'VeryMildDemented']
# =====================================================
# ✅ GUNAKAN PREPROCESS_IMAGE DARI TRAINING
# Preprocessing gambar agar sesuai dengan training pipeline
# Normalisasi ke [0,1] menggunakan tf.float32
# =====================================================
def preprocess_image(image):
image = tf.image.convert_image_dtype(image, tf.float32)
return image
# =====================================================
# ✅ PREDIKSI GAMBAR (Menggunakan Preprocessing dari Training)
# =====================================================
def predict_image(image_path):
# Load gambar dan konversi ke RGB
image = Image.open(image_path).convert('RGB')
image = image.resize((224, 224)) # Resize agar sesuai dengan input model
# Konversi ke Tensor
image = tf.keras.preprocessing.image.img_to_array(image)
image = preprocess_image(image) # Gunakan preprocessing yang sama
image = tf.expand_dims(image, axis=0) # Tambahkan batch dimension
# Prediksi dengan model
predictions = model(image, training=False) # Pastikan dalam mode inference
predicted_class = CLASS_NAMES[tf.argmax(predictions, axis=-1).numpy()[0]]
confidence = tf.reduce_max(predictions).numpy() * 100 # Convert ke persen
return predicted_class, confidence
# =====================================================
# ✅ UPLOAD GAMBAR & PREDIKSI : MildDemented
# =====================================================
uploaded = files.upload()
for file_name in uploaded.keys():
image = Image.open(file_name)
display(image)
predicted_class, confidence = predict_image(file_name)
print(f"\n🔍 **Prediksi:** {predicted_class} ({confidence:.2f}%)\n")
# =====================================================
# ✅ UPLOAD GAMBAR & PREDIKSI : ModerateDemented
# =====================================================
uploaded = files.upload()
for file_name in uploaded.keys():
image = Image.open(file_name)
display(image)
predicted_class, confidence = predict_image(file_name)
print(f"\n🔍 **Prediksi:** {predicted_class} ({confidence:.2f}%)\n")
# =====================================================
# ✅ UPLOAD GAMBAR & PREDIKSI : NonDemented
# =====================================================
uploaded = files.upload()
for file_name in uploaded.keys():
image = Image.open(file_name)
display(image)
predicted_class, confidence = predict_image(file_name)
print(f"\n🔍 **Prediksi:** {predicted_class} ({confidence:.2f}%)\n")
# =====================================================
# ✅ UPLOAD GAMBAR & PREDIKSI : VeryMildDemented
# =====================================================
uploaded = files.upload()
for file_name in uploaded.keys():
image = Image.open(file_name)
display(image)
predicted_class, confidence = predict_image(file_name)
print(f"\n🔍 **Prediksi:** {predicted_class} ({confidence:.2f}%)\n")