|
| 1 | +# 根据data/images中的字模图片和标签,制作字模的模板,用于后续的模板匹配 |
| 2 | + |
| 3 | +import cv2 |
| 4 | +import numpy as np |
| 5 | +import os |
| 6 | +import json |
| 7 | +import yaml |
| 8 | + |
| 9 | +class ExtractTemplate: |
| 10 | + def __init__(self, dataset_path='data\\dataset\\images', binary_path='data\\dataset\\binary', config_path='config', type_path='parts.yaml', temp_path='run\\templates'): |
| 11 | + self.dataset_path = dataset_path |
| 12 | + self.binary_path = binary_path |
| 13 | + self.config_path = config_path |
| 14 | + self.type_path = type_path |
| 15 | + self.temp_path = temp_path |
| 16 | + self.is_save = True |
| 17 | + |
| 18 | + # 获取配置信息,写入json中 |
| 19 | + def get_config(self): |
| 20 | + templates = {} |
| 21 | + with open(self.type_path, 'r') as f: |
| 22 | + type_names = yaml.load(f, Loader=yaml.FullLoader)['names'] |
| 23 | + # Create a reverse lookup dictionary |
| 24 | + type_index_dict = {v: int(k) for k, v in type_names.items()} |
| 25 | + for part_name in os.listdir(self.dataset_path): |
| 26 | + part_id = type_index_dict[part_name] |
| 27 | + part_path = os.path.join(self.dataset_path, part_name) |
| 28 | + labels_path = os.path.join(part_path, 'labels') |
| 29 | + label_names = os.listdir(labels_path) |
| 30 | + positive_label_name = label_names[0] |
| 31 | + negative_label_name = label_names[-1] |
| 32 | + positive_label_path = os.path.join(labels_path, positive_label_name) |
| 33 | + negative_label_path = os.path.join(labels_path, negative_label_name) |
| 34 | + positive_image_name = positive_label_name.split('.')[0] + '.jpg' |
| 35 | + negative_image_name = negative_label_name.split('.')[0] + '.jpg' |
| 36 | + positive_src_path = os.path.join(part_path, positive_image_name) |
| 37 | + negative_src_path = os.path.join(part_path, negative_image_name) |
| 38 | + template = { |
| 39 | + "name": part_name, |
| 40 | + "binary": { |
| 41 | + "path": "", |
| 42 | + }, |
| 43 | + "positive": { |
| 44 | + "src_path": "", |
| 45 | + "img_path": "", |
| 46 | + "bbox": [], |
| 47 | + }, |
| 48 | + "negative": { |
| 49 | + "src_path": "", |
| 50 | + "img_path": "", |
| 51 | + "bbox": [], |
| 52 | + } |
| 53 | + } |
| 54 | + # 读取二值化的模板,作为正面的bbox |
| 55 | + bin_path = os.path.join(self.binary_path, part_name, '0.png') |
| 56 | + bin_img = cv2.imread(bin_path, cv2.IMREAD_GRAYSCALE) |
| 57 | + # 二值化 |
| 58 | + _, bin_img = cv2.threshold(bin_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU) |
| 59 | + # 开操作 |
| 60 | + kernel = np.ones((9, 9), np.uint8) |
| 61 | + bin_img = cv2.morphologyEx(bin_img, cv2.MORPH_OPEN, kernel) |
| 62 | + # 寻找最大轮廓 |
| 63 | + contours, hierarchy = cv2.findContours(bin_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
| 64 | + # 找到最大轮廓 |
| 65 | + max_contour = contours[0] |
| 66 | + max_area = cv2.contourArea(max_contour) |
| 67 | + for contour in contours: |
| 68 | + area = cv2.contourArea(contour) |
| 69 | + if area > max_area: |
| 70 | + max_area = area |
| 71 | + max_contour = contour |
| 72 | + # 绘制最大轮廓 |
| 73 | + bin_img = np.zeros_like(bin_img) |
| 74 | + bin_img = cv2.drawContours(bin_img, [max_contour], -1, 255, -1) |
| 75 | + |
| 76 | + # 将最大轮廓旋转为正 |
| 77 | + rect = cv2.minAreaRect(max_contour) |
| 78 | + box = cv2.boxPoints(rect) |
| 79 | + box = np.int0(box) |
| 80 | + # 获取旋转矩阵 |
| 81 | + center = rect[0] |
| 82 | + size = rect[1] |
| 83 | + angle = rect[2] |
| 84 | + if size[0] < size[1]: |
| 85 | + angle = 90 + angle |
| 86 | + M = cv2.getRotationMatrix2D(center, angle, 1) |
| 87 | + |
| 88 | + bin_img = cv2.warpAffine(bin_img, M, bin_img.shape[::-1], borderMode=cv2.BORDER_REPLICATE) |
| 89 | + # 连通域分析 |
| 90 | + num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(bin_img) |
| 91 | + # 找到最大连通域 |
| 92 | + max_label = 1 |
| 93 | + max_size = stats[1, cv2.CC_STAT_AREA] |
| 94 | + for i in range(2, num_labels): |
| 95 | + if stats[i, cv2.CC_STAT_AREA] > max_size: |
| 96 | + max_label = i |
| 97 | + max_size = stats[i, cv2.CC_STAT_AREA] |
| 98 | + # 获取最大连通域的bbox |
| 99 | + x, y, w, h, area = stats[max_label] |
| 100 | + # 截取最大连通域 |
| 101 | + bin_img = bin_img[y:y+h, x:x+w] |
| 102 | + template["binary"]["path"] = os.path.join(self.config_path, 'templates', f'{part_id}_bin.jpg') |
| 103 | + # template["binary"]["img"] = bin_img |
| 104 | + cv2.imwrite(template["binary"]["path"], bin_img) |
| 105 | + |
| 106 | + template["positive"]["src_path"] = positive_src_path |
| 107 | + template["negative"]["src_path"] = negative_src_path |
| 108 | + template["positive"]["img_path"] = os.path.join(self.config_path, 'templates', f'{part_id}_positive.jpg') |
| 109 | + template["negative"]["img_path"] = os.path.join(self.config_path, 'templates', f'{part_id}_negative.jpg') |
| 110 | + positive_img = cv2.imread(positive_src_path) |
| 111 | + |
| 112 | + # template['positive']['img'] = positive_img |
| 113 | + |
| 114 | + # Load the label file for the positive object type to get its position |
| 115 | + with open(positive_label_path, 'r') as f: |
| 116 | + label_data = f.readlines()[0].strip().split(' ') |
| 117 | + label_type, x_center, y_center, w, h = int(float(label_data[0])), float(label_data[1]), float(label_data[2]), float(label_data[3]), float(label_data[4]) |
| 118 | + x, y, w, h = int(x_center * positive_img.shape[1]), int(y_center * positive_img.shape[0]), int(w * positive_img.shape[1]), int(h * positive_img.shape[0]) |
| 119 | + x = x - w // 2 |
| 120 | + y = y - h // 2 |
| 121 | + template["positive"]["bbox"] = [x, y, w, h] |
| 122 | + |
| 123 | + positive_img = positive_img[y:y+h, x:x+w] |
| 124 | + cv2.imwrite(template["positive"]["img_path"], positive_img) |
| 125 | + |
| 126 | + negative_img = cv2.imread(negative_src_path) |
| 127 | + # Load the label file for the negative object type to get its position |
| 128 | + with open(negative_label_path, 'r') as f: |
| 129 | + label_data = f.readlines()[0].strip().split(' ') |
| 130 | + label_type, x_center, y_center, w, h = int(float(label_data[0])), float(label_data[1]), float(label_data[2]), float(label_data[3]), float(label_data[4]) |
| 131 | + x, y, w, h = int(x_center * negative_img.shape[1]), int(y_center * negative_img.shape[0]), int(w * negative_img.shape[1]), int(h * negative_img.shape[0]) |
| 132 | + x = x - w // 2 |
| 133 | + y = y - h // 2 |
| 134 | + template["negative"]["bbox"] = [x, y, w, h] |
| 135 | + |
| 136 | + negative_img = negative_img[y:y+h, x:x+w] |
| 137 | + cv2.imwrite(template["negative"]["img_path"], negative_img) |
| 138 | + # template['negative']['img'] = negative_img |
| 139 | + |
| 140 | + templates[part_id] = template |
| 141 | + |
| 142 | + # sort the templates by key |
| 143 | + templates = dict(sorted(templates.items(), key=lambda x: x[0])) |
| 144 | + # Save the template information for both positive and negative images |
| 145 | + with open(os.path.join(self.config_path, 'templates.json'), 'w') as f: |
| 146 | + json.dump(templates, f, ensure_ascii=False, indent=4) |
| 147 | + |
| 148 | + return templates |
| 149 | + |
| 150 | + # 根据json配置文件,读取并截取有效图片,保存到templates文件夹中 |
| 151 | + def get_templates(self): |
| 152 | + with open(os.path.join(self.config_path, 'templates.json'), 'r') as f: |
| 153 | + templates = json.load(f) |
| 154 | + # 创建图片模板文件夹 |
| 155 | + templates_path = os.path.join(self.config_path, 'templates') |
| 156 | + if not os.path.exists(os.path.join(self.config_path, 'templates')): |
| 157 | + os.mkdir(templates_path) |
| 158 | + # 创建零件截取的图片 |
| 159 | + for id, template in templates.items(): |
| 160 | + positive_img = cv2.imread(template["positive"]["src_path"]) |
| 161 | + negative_img = cv2.imread(template["negative"]["src_path"]) |
| 162 | + positive_bbox = template["positive"]["bbox"] |
| 163 | + negative_bbox = template["negative"]["bbox"] |
| 164 | + positive_crop = positive_img[positive_bbox[1]:positive_bbox[1]+positive_bbox[3], positive_bbox[0]:positive_bbox[0]+positive_bbox[2]] |
| 165 | + negative_crop = negative_img[negative_bbox[1]:negative_bbox[1]+negative_bbox[3], negative_bbox[0]:negative_bbox[0]+negative_bbox[2]] |
| 166 | + positive_path = template['positive']['img_path'] |
| 167 | + negative_path = template['negative']['img_path'] |
| 168 | + cv2.imwrite(positive_path, positive_crop) |
| 169 | + cv2.imwrite(negative_path, negative_crop) |
| 170 | + with open(os.path.join(self.config_path, 'templates.json'), 'w') as f: |
| 171 | + json.dump(templates, f, ensure_ascii=False, indent=4) |
| 172 | + return templates |
| 173 | + |
| 174 | +class MatchTemplate: |
| 175 | + def __init__(self, config_path='config', temp_path='run\\match'): |
| 176 | + self.config_path = config_path |
| 177 | + self.is_save = True |
| 178 | + self.temp_path = temp_path |
| 179 | + if not os.path.exists(self.temp_path): |
| 180 | + os.mkdir(self.temp_path) |
| 181 | + |
| 182 | + self.templates = self.load_templates() |
| 183 | + # 读取模板 |
| 184 | + def load_templates(self): |
| 185 | + with open(os.path.join(self.config_path, 'templates.json'), 'r') as f: |
| 186 | + templates = json.load(f) |
| 187 | + for id, template in templates.items(): |
| 188 | + template['binary']['img'] = cv2.imread(template['binary']['path'], 0) |
| 189 | + template['positive']['img'] = cv2.imread(template['positive']['img_path']) |
| 190 | + template['mask'] = {} |
| 191 | + template['mask']['img'] = template['binary']['img'].copy() |
| 192 | + template['mask']['contours'], hierarchy = cv2.findContours(template['mask']['img'], cv2.RETR_LIST, |
| 193 | + cv2.CHAIN_APPROX_SIMPLE) |
| 194 | + # 去除小轮廓 |
| 195 | + min_area = 100 |
| 196 | + template['mask']['contours'] = [c for c in template['mask']['contours'] if cv2.contourArea(c) > min_area] |
| 197 | + |
| 198 | + # 颜色直方图 |
| 199 | + hist = cv2.calcHist([template['positive']['img']], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) |
| 200 | + # 对直方图进行归一化 |
| 201 | + cv2.normalize(hist, hist, 0, 1, cv2.NORM_MINMAX) |
| 202 | + template['mask']['hist'] = hist |
| 203 | + |
| 204 | + print('load templates success') |
| 205 | + return templates |
| 206 | + |
| 207 | + # 匹配模板 |
| 208 | + def match(self, img, binary): |
| 209 | + best_match = None |
| 210 | + best_score = 0 |
| 211 | + # 求颜色直方图 |
| 212 | + hist = cv2.calcHist([img], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) |
| 213 | + # 对直方图进行归一化 |
| 214 | + cv2.normalize(hist, hist, 0, 1, cv2.NORM_MINMAX) |
| 215 | + # # 灰度图 |
| 216 | + # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
| 217 | + # # 二值化 |
| 218 | + # bin = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] |
| 219 | + # 求轮廓 |
| 220 | + contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
| 221 | + # 最大轮廓 |
| 222 | + max_contour = max(contours, key=cv2.contourArea) |
| 223 | + # macthed_list = [] |
| 224 | + for id, template in self.templates.items(): |
| 225 | + # 形状匹配 |
| 226 | + shape_score = cv2.matchShapes(template['mask']['contours'][0], max_contour, cv2.CONTOURS_MATCH_I1, 0) |
| 227 | + # 将score归一化到0-1之间,并且变为越大越好 |
| 228 | + shape_score = 1 - shape_score * 5 |
| 229 | + |
| 230 | + # 颜色直方图匹配 |
| 231 | + hist_score = cv2.compareHist(template['mask']['hist'], hist, cv2.HISTCMP_CORREL) |
| 232 | + score = shape_score * 0.2 + hist_score * 0.8 |
| 233 | + if score > best_score: |
| 234 | + best_score = score |
| 235 | + best_match = id |
| 236 | + name = self.templates[best_match]['name'] |
| 237 | + # 缓存匹配结果 |
| 238 | + if self.is_save: |
| 239 | + # 绘制模板的轮廓 |
| 240 | + # for id, score in macthed_list: |
| 241 | + # img = cv2.drawContours(img, [self.templates[id]['mask']['contours'][0]], -1, (0, 0, 255), 2) |
| 242 | + img = cv2.drawContours(img, [self.templates[best_match]['mask']['contours'][0]], -1, 122, 2) |
| 243 | + # 绘制匹配的轮廓 |
| 244 | + img = cv2.drawContours(img, [max_contour], -1, 64, 2) |
| 245 | + # 保存匹配结果 |
| 246 | + cv2.imwrite(os.path.join(self.temp_path, f'{best_match}_match.jpg'), img) |
| 247 | + return best_match, best_score, name |
0 commit comments