-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_and_resave_model.py
63 lines (44 loc) · 1.87 KB
/
split_and_resave_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright 2024 Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
import argparse
def split_model(args):
model_path = args.input_model_path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
new_path = args.output_model_path
if not os.path.exists(new_path):
model.save_pretrained(new_path, max_shard_size="10GB")
tokenizer.save_pretrained(new_path)
def split_model_from_pt(args):
model_path = args.base_model_path
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
model.load_state_dict(torch.load(args.input_model_path)['state'])
new_path = args.output_model_path
if not os.path.exists(new_path):
model.save_pretrained(new_path, max_shard_size="10GB")
tokenizer.save_pretrained(new_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_path", type=str, default=None)
parser.add_argument("--input_model_path", type=str, default="")
parser.add_argument("--output_model_path", type=str, default="")
args = parser.parse_args()
if args.base_model_path is not None:
split_model_from_pt(args)
else:
split_model(args)