Skip to content

Question: Scaling Feedsim Dataset Size #131

@vpetrucci

Description

@vpetrucci

What would be a reasonable strategy for scaling the Feedsim dataset to leverage large-memory systems, such as one with 256 cores and 2 TB of RAM (i.e., 8 GB per core)?

Specifically, would it be appropriate to increase parameters like "graph_scale" and/or "num_objects" to better utilize the available memory?

Also, what are suggested values for parameters that scale the workload meaningfully without distorting its intended behavior or characteristics?

Starting leaf node service

monitor_port=$((port-1000))
MALLOC_CONF=narenas:20,dirty_decay_ms:5000 build/workloads/ranking/LeafNodeRank \
    --port="$port" \
    --monitor_port="$monitor_port" \
    --graph_scale=21 \
    --graph_subset=2000000 \
    --threads="$thrift_threads" \
    --cpu_threads="$ranking_cpu_threads" \
    --timekeeper_threads=2 \
    --io_threads="$EVENTBASE_THREADS_DEFAULT" \
    --srv_threads="$SRV_THREADS_DEFAULT" \
    --srv_io_threads="$srv_io_threads" \
    --num_objects=2000 \
    --graph_max_iters=1 \
    --noaffinity \
    --min_icache_iterations="$icache_iterations" &

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions