@@ -72,7 +72,7 @@ def percentage_change(
7272 data: The data need to calculate the score
7373 pre_mean: Baseline mean
7474 """
75- if type (data .value ) == pd .DataFrame and data .value .shape [1 ] > 1 :
75+ if isinstance (data .value , pd .DataFrame ) and data .value .shape [1 ] > 1 :
7676 res = (data .value - pre_mean ) / (pre_mean )
7777 return TimeSeriesData (value = res , time = data .time )
7878 else :
@@ -89,7 +89,7 @@ def change(
8989 data: The data need to calculate the score
9090 pre_mean: Baseline mean
9191 """
92- if type (data .value ) == pd .DataFrame and data .value .shape [1 ] > 1 :
92+ if isinstance (data .value , pd .DataFrame ) and data .value .shape [1 ] > 1 :
9393 res = data .value - pre_mean
9494 return TimeSeriesData (value = res , time = data .time )
9595 else :
@@ -114,7 +114,7 @@ def z_score(
114114 pre_mean: Baseline mean
115115 pre_std: Baseline std
116116 """
117- if type (data .value ) == pd .DataFrame and data .value .shape [1 ] > 1 :
117+ if isinstance (data .value , pd .DataFrame ) and data .value .shape [1 ] > 1 :
118118 res = (data .value - pre_mean ) / (pre_std )
119119 return TimeSeriesData (value = res , time = data .time )
120120 else :
@@ -1496,7 +1496,9 @@ def fit_predict(
14961496 The anomaly response contains the anomaly scores.
14971497 """
14981498 # init parameters after getting input data
1499- num_timeseries = data .value .shape [1 ] if type (data .value ) == pd .DataFrame else 1
1499+ num_timeseries = (
1500+ data .value .shape [1 ] if isinstance (data .value , pd .DataFrame ) else 1
1501+ )
15001502 if num_timeseries == 1 :
15011503 _log .info (
15021504 "Input timeseries is univariate. CUSUMDetectorModel is preferred."
0 commit comments