-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_backprop.py
352 lines (281 loc) · 12.2 KB
/
train_backprop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
from collections import OrderedDict
from datetime import datetime
from timeit import default_timer as timer
import torch
import numpy as np
from torch_geometric.nn import GraphSAGE, GCN, GAT
from tqdm import tqdm
import settings
from datasets import load_node_classification_data, load_link_prediction_data
from utils.train_utils import setup_cuda, set_seed, EarlyStopping, SeedManager, ResultManager
from utils.log_utils import log_stdout, logger
from utils.eval_utils import eval_node_classification, eval_link_prediction
def main(args):
seed_manager = SeedManager(args.seed)
result_manager = ResultManager(result_file_prefix=f"bp-results", args=args, seed_manager=seed_manager)
for run_i in range(args.num_runs):
if result_manager.load_run_result(run_i) is not None and not args.overwrite_result:
logger.info(f"Skipping run-{run_i}: already evaluated.")
continue
seed_manager.set_run_i(run_i)
set_seed(seed=seed_manager.get_run_seed(), deterministic="gat" not in args.model.lower()) # initialize seed for each run
print(f"\nStarting run-{run_i} of {args.model} on {args.dataset} (seed={seed_manager.get_run_seed()})\n")
if args.task == "node-class":
data = load_node_classification_data(args, split_i=run_i)
model = build_model(data, args)
trainer = NodeClassificationTrainer(
model, data, args.device, args.lr, args.epochs, args.patience, args
)
elif args.task == "link-pred":
train_data, val_data, test_data, data = load_link_prediction_data(args, split_i=run_i)
model = build_model(data, args)
trainer = LinkPredictionTrainer(
model, train_data, val_data, test_data, args.device, args.lr, args.epochs, args.patience, args
)
else:
raise ValueError(f"Invalid task: {args.task}")
"""Training and testing"""
result = trainer.train_test()
perf_dict = {
"perf": result["test_perf"],
"train_time": result["train_time"],
"train_epochs": [result["train_epochs"]],
"best_val_epochs": [-1],
}
result_manager.save_run_result(run_i, perf_dict)
perfs = [result_manager.load_run_result(run_i)['perf'] for run_i in range(args.num_runs)]
print(f"\nTest Performance ({args.num_runs} runs): {np.mean(perfs):.6f}%±{np.std(perfs):.4f}")
def build_model(data, args):
assert args.num_layers >= 1, args.num_layers
if args.task == "node-class":
out_channels = data.num_classes
else:
out_channels = None # will be set to args.num_hidden
if args.model == "GNN-SAGE":
model = GraphSAGE(
in_channels=data.num_features,
hidden_channels=args.num_hidden,
num_layers=args.num_layers,
out_channels=out_channels,
dropout=0.0,
act="relu"
)
elif args.model == "GNN-GCN":
model = GCN(
in_channels=data.num_features,
hidden_channels=args.num_hidden,
num_layers=args.num_layers,
out_channels=out_channels,
dropout=0.0,
act="relu"
)
elif args.model == "GNN-GAT":
model = GAT(
in_channels=data.num_features,
hidden_channels=args.num_hidden,
heads=4,
num_layers=args.num_layers,
out_channels=out_channels,
dropout=0.0,
act="relu"
)
else:
raise ValueError(f"Invalid model: {args.model}")
print(model)
return model
class NodeClassificationTrainer:
def __init__(self, model, data, device, lr, epochs, patience, args):
self.model = model
self.data = data
self.device = device
self.lr = lr
self.epochs = epochs
self.patience = patience
self.args = args
def train(self):
model, data = self.model, self.data
"""Training"""
start = timer()
stopper = EarlyStopping(self.patience) if self.patience >= 0 else None
epoch = -1
data = data.clone().to(self.device)
model = model.to(self.device)
optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()
epoch_tqdm = tqdm(range(self.epochs))
for epoch in epoch_tqdm:
optimizer.zero_grad()
out = model(data.x, data.edge_index)
loss = criterion(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
"""Validation"""
if stopper is not None and (epoch + 1) % self.args.val_every == 0:
val_metric = 'acc'
with torch.no_grad():
val_out = model(data.x, data.edge_index)
pred = val_out.argmax(dim=1)
val_perf_dict = eval_node_classification(data.y, pred, data.val_mask)
val_perf = val_perf_dict[val_metric]
epoch_tqdm.set_description(
f'Epoch: {epoch:03d}, Train Loss={loss.item():.4f}, Val Acc={val_perf:.4f}'
)
if stopper.step(val_perf, model):
print(f"[Epoch-{epoch}] Early stop!")
break
if stopper is not None and stopper.best_score is not None:
stopper.load_checkpoint(model)
train_time = timer() - start
logger.info("Finished training")
return train_time, epoch
def test(self):
model, data = self.model, self.data.to(self.device)
model.eval()
out = model(data.x, data.edge_index)
pred = out.argmax(dim=1)
test_perf_dict = eval_node_classification(data.y, pred, data.test_mask)
test_acc = test_perf_dict['acc']
print(f"Test Accuracy: {test_acc:.6f}")
return test_acc
def train_test(self):
train_time, train_epochs = self.train()
test_acc = self.test()
return {
"test_perf": test_acc,
"train_time": train_time,
"train_epochs": train_epochs,
}
class LinkPredictionTrainer:
def __init__(self, model, train_data, val_data, test_data, device, lr, epochs, patience, args):
self.model = model
self.train_data = train_data
self.val_data = val_data
self.test_data = test_data
self.device = device
self.lr = lr
self.epochs = epochs
self.patience = patience
self.args = args
@staticmethod
def link_predict(z, edge_label_index):
pred = (z[edge_label_index[0]] * z[edge_label_index[1]]).sum(dim=1)
assert len(pred) == edge_label_index.shape[1], (len(pred), edge_label_index.shape[1])
return pred
def train(self):
model, train_data, val_data, test_data = self.model, self.train_data, self.val_data, self.test_data
model.train()
"""Training"""
start = timer()
stopper = EarlyStopping(self.patience) if self.patience >= 0 else None
epoch = -1
train_data = train_data.clone().to(self.device)
val_data = val_data.clone().to(self.device)
model = model.to(self.device)
optimizer = torch.optim.Adam(model.parameters(), lr=self.lr, weight_decay=5e-4)
criterion = torch.nn.BCEWithLogitsLoss()
epoch_tqdm = tqdm(range(self.epochs))
for epoch in epoch_tqdm:
model.train()
optimizer.zero_grad()
z = model(train_data.x, train_data.edge_index)
out = self.link_predict(z, train_data.edge_label_index)
loss = criterion(out, train_data.edge_label)
loss.backward()
optimizer.step()
"""Validation"""
if stopper is not None and (epoch + 1) % self.args.val_every == 0:
val_metric = 'rocauc'
with torch.no_grad():
model.eval()
val_z = model(val_data.x, val_data.edge_index)
val_out = self.link_predict(val_z, val_data.edge_label_index)
val_perf_dict = eval_link_prediction(
y_true=val_data.edge_label,
y_score=val_out.sigmoid(),
metrics=val_metric
)
val_perf = val_perf_dict[val_metric]
epoch_tqdm.set_description(f'Epoch: {epoch:03d}, Train Loss={loss.item():.4f}, Val AUC={val_perf:.4f}')
if stopper.step(val_perf, model):
print(f"[Epoch-{epoch}] Early stop!")
break
if stopper is not None and stopper.best_score is not None:
stopper.load_checkpoint(model)
train_time = timer() - start
logger.info("Finished training")
return train_time, epoch
def test(self):
model, test_data = self.model, self.test_data.to(self.device)
model.eval()
z = model(test_data.x, test_data.edge_index)
out = self.link_predict(z, test_data.edge_label_index)
test_perf_dict = eval_link_prediction(
y_true=test_data.edge_label,
y_score=out.sigmoid(),
)
test_rocauc = test_perf_dict['rocauc']
print(f"Test AUC: {test_rocauc:.6f}")
return test_rocauc
def train_test(self):
train_time, train_epochs = self.train()
test_rocauc = self.test()
return {
"test_perf": test_rocauc,
"train_time": train_time,
"train_epochs": train_epochs,
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="node-class", choices=["link-pred", "node-class"],
help="graph learning task")
parser.add_argument('--model', type=str, choices=["GNN-SAGE", "GNN-GCN", "GNN-GAT"],
help="model type")
parser.add_argument('--dataset', type=str,
help="dataset name")
parser.add_argument('--num-runs', type=int, default=1,
help="number of total runs. each run uses a different random seed.")
parser.add_argument("--gpu", type=int, default=0,
help="which GPU to use. Set -1 to use CPU.")
parser.add_argument("--seed", type=int, default=100,
help="seed for exp")
parser.add_argument("--lr", type=float, default=1e-3,
help="learning rate")
parser.add_argument("--epochs", type=int, default=300,
help="number of training epochs")
parser.add_argument("--val-every", type=int, default=10,
help="number of epochs between validation")
parser.add_argument('--patience', type=int, default=30,
help='patience for early stopping (set this to negative value to not use early stopping)')
parser.add_argument("--num-layers", type=int, default=1,
help="number of gnn layers")
parser.add_argument("--num-hidden", type=int, default=32,
help="number of hidden channels")
parser.add_argument('--exp-setting', type=str, default="default",
help="experiment setting")
parser.add_argument('--overwrite-result', action='store_true')
parser.set_defaults(overwrite_result=False)
args = parser.parse_args()
return args
def populate_args(args):
setup_cuda(args)
args.results_dir = settings.RESULTS_ROOT / args.exp_setting / args.dataset / args.task
args.results_dir.mkdir(parents=True, exist_ok=True)
args.exp_datetime = datetime.today().strftime('%Y%m%d_%H%M%S')
stdout_path = args.results_dir / "stdout"
stdout_path.mkdir(parents=True, exist_ok=True)
log_stdout(stdout_path / f"stdout-{args.task}-{args.model}-{args.dataset}-{args.exp_datetime}.txt")
from pprint import pformat
print(f"args:\n{pformat(args.__dict__)}")
return args
if __name__ == '__main__':
args = parse_args()
args = populate_args(args)
main(args)