diff --git a/challenges/PIQUE challenge/.ipynb_checkpoints/Quantum Quest-La Aventura de Quanta-checkpoint.ipynb b/challenges/PIQUE challenge/.ipynb_checkpoints/Quantum Quest-La Aventura de Quanta-checkpoint.ipynb new file mode 100644 index 0000000..7897649 --- /dev/null +++ b/challenges/PIQUE challenge/.ipynb_checkpoints/Quantum Quest-La Aventura de Quanta-checkpoint.ipynb @@ -0,0 +1,90 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "a2833482", + "metadata": {}, + "source": [ + "**Quantumaniacs**: Angel Contreras, Antonia Morales, Carolina Perdomo.\n", + "\n", + "# The Idea:\n", + "\n", + "Drawing upon our team's robust experience in popularizing science and a shared passion for video games, we took an innovative journey to bridge these worlds through interactive learning for quantum computing. Recognizing the power of play as a profound educational medium, we decided to use this vibrant energy and curiosity to craft an educational adventure. Games, after all, are not mere pastimes; they are gateways to immersive experiences that shape understanding, especially for young minds.\n", + "\n", + "Our objective was clear yet ambitious: to create a game that, within the confines of a captivating narrative, educates young individuals about the fundamentals of quantum computing. *Quantum Quest: La Aventura de Quanta* (Quantum Ques: The Adventure of Quanta) isn't just a game; it's a carefully designed story that introduces players to concepts such as superposition, Grover's algorithm, and the phenomenon of decoherence. By embodying these principles within the game's mechanics, we aim to demystify quantum computing and spark a flame of scientific curiosity. Our commitment is to socialize science in a responsible, engaging manner, thus igniting a lifelong passion for learning and discovery in the hearts of players.\n", + "\n", + "For this initial version of \"*Quantum Quest*,\" we've chosen to present the game in Spanish, a reflection of the time constraints inherent in the fast-paced hackathon environment. However, we are poised to expand this quantum journey into a multilingual experience, alongside designing further segments of the game, to ensure that Quanta's adventures resonate with a global audience.\n", + "\n", + "# About the Game:\n", + "## Story:\n", + "Join Quanta, a brilliant and skilled agent of the elite \"*Quantum Pioneers*,\" on a quest to save Professor Planck, the creator of a qubit resistant to quantum errors. A nefarious entity known as \"*Decoherence*\" has abducted the professor, threatening to cast the universe into turmoil.\n", + "\n", + "## Characters:\n", + "\n", + "- Quanta: The protagonist, a sharp agent versed in quantum mechanics.\n", + "- Decoherence: The villain, a mysterious force unsettling the realm of quantum computing.\n", + "- Q-Bit: Quanta's ally, a robotic cat with the ability to understand multiple states, offering gadgets and wisdom.\n", + "- Professor Planck: A mentor whose significance to the world is unparalleled.\n", + "\n", + "## Puzzles:\n", + "\n", + "Designed to encapsulate quantum computing principles:\n", + "\n", + "- Superposition Puzzle: Players guide Quanta through a labyrinth of multiple correct paths, employing Grover's Algorithm with gadgets like the oracle and diffuser. Iteration is key, mirroring the algorithm's process to confirm the correct path. For this first version of the game, we decided to simplify the number of optimal interactions from $\\dfrac{\\pi}{4}\\sqrt{N}$ to $\\sqrt{N}$, where N is the search space.\n", + "\n", + "## Scenes:\n", + "\n", + "- Quantum Lab: Where players are introduced to quantum bits amidst a trove of gadgets.\n", + "- Superposition City: A world where everything exists in manifold states at once, showcasing superposition.\n", + "- Decoherence's Lair: The climactic scene where players confront Decoherence and the professor, leading to an escape into the Entanglement Forest, setting the stage for a $CONTINUATION$.\n", + "\n", + "## Art:\n", + "\n", + "**The vibrant artwork that brings our quantum universe to life was meticulously crafted using DALL·E 3, allowing us to transform complex quantum concepts into visually stunning scenes and characters.**\n", + "\n", + "- Style: A cartoonish flair to render quantum computing concepts accessible and engaging.\n", + "- Scenes: Bright and colorful, distinguishing between quantum states and the classical world.\n", + "- Characters: Expressive and exaggerated to simplify complex ideas.\n", + "\n", + "## Interactions:\n", + "\n", + "- Dialogue: Educational exchanges laced with quantum computing principles within the storyline.\n", + "- Gadgets: Interactive tools symbolizing quantum computing functions.\n", + "- Mini-Games: Select the correct answer games, educational challenges to deepen players' grasp of quantum concepts.\n", + "\n", + "# Ren'Py:\n", + "In the whirlwind of innovation that defines a hackathon, especially one with a window of less than a week, efficiency and familiarity are key. This is precisely why we turned to Ren'Py as our game engine of choice. Ren'Py's Python-based environment offered us a seamless transition from concept to execution, leveraging our team's pre-existing knowledge of Python. This strategic decision enabled us to focus our energies on creativity and educational impact, allowing us to craft an engaging and instructive game within the tight timeframe. Ren'Py's intuitive nature and flexibility made it the ideal tool for bringing \"*Quantum Quest*\" to life quickly and effectively." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cfc91c20", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/challenges/PIQUE challenge/Image_Selection/decoherence.png b/challenges/PIQUE challenge/Image_Selection/decoherence.png new file mode 100644 index 0000000..0693010 Binary files /dev/null and b/challenges/PIQUE challenge/Image_Selection/decoherence.png differ diff --git a/challenges/PIQUE challenge/Image_Selection/front.png b/challenges/PIQUE challenge/Image_Selection/front.png new file mode 100644 index 0000000..0352983 Binary files /dev/null and b/challenges/PIQUE challenge/Image_Selection/front.png differ diff --git a/challenges/PIQUE challenge/Image_Selection/qbit.png b/challenges/PIQUE challenge/Image_Selection/qbit.png new file mode 100644 index 0000000..8b916c2 Binary files /dev/null and b/challenges/PIQUE challenge/Image_Selection/qbit.png differ diff --git a/challenges/PIQUE challenge/Image_Selection/quanta.png b/challenges/PIQUE challenge/Image_Selection/quanta.png new file mode 100644 index 0000000..e667964 Binary files /dev/null and b/challenges/PIQUE challenge/Image_Selection/quanta.png differ diff --git a/challenges/PIQUE challenge/Quantum Quest-La Aventura de Quanta.ipynb b/challenges/PIQUE challenge/Quantum Quest-La Aventura de Quanta.ipynb new file mode 100644 index 0000000..1940917 --- /dev/null +++ b/challenges/PIQUE challenge/Quantum Quest-La Aventura de Quanta.ipynb @@ -0,0 +1,90 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "id": "b44d3b3c", + "metadata": {}, + "source": [ + "**Quantumaniacs**: Angel Contreras, Antonia Morales, Carolina Perdomo.\n", + "\n", + "# The Idea:\n", + "\n", + "Drawing upon our team's robust experience in popularizing science and a shared passion for video games, we took an innovative journey to bridge these worlds through interactive learning for quantum computing. Recognizing the power of play as a profound educational medium, we decided to use this vibrant energy and curiosity to craft an educational adventure. Games, after all, are not mere pastimes; they are gateways to immersive experiences that shape understanding, especially for young minds.\n", + "\n", + "Our objective was clear yet ambitious: to create a game that, within the confines of a captivating narrative, educates young individuals about the fundamentals of quantum computing. *Quantum Quest: La Aventura de Quanta* (Quantum Quest: The Adventure of Quanta) isn't just a game; it's a carefully designed story that introduces players to concepts such as superposition, Grover's algorithm, and the phenomenon of decoherence. By embodying these principles within the game's mechanics, we aim to demystify quantum computing and spark a flame of scientific curiosity. Our commitment is to socialize science in a responsible, engaging manner, thus igniting a lifelong passion for learning and discovery in the hearts of players.\n", + "\n", + "For this initial version of \"*Quantum Quest*,\" we've chosen to present the game in Spanish, a reflection of the time constraints inherent in the fast-paced hackathon environment. However, we are poised to expand this quantum journey into a multilingual experience, alongside designing further segments of the game, to ensure that Quanta's adventures resonate with a global audience.\n", + "\n", + "# About the Game:\n", + "## Story:\n", + "Join Quanta, a brilliant and skilled agent of the elite \"*Quantum Pioneers*,\" on a quest to save Professor Planck, the creator of a qubit resistant to quantum errors. A nefarious entity known as \"*Decoherence*\" has abducted the professor, threatening to cast the universe into turmoil.\n", + "\n", + "## Characters:\n", + "\n", + "- Quanta: The protagonist, a sharp agent versed in quantum mechanics.\n", + "- Decoherence: The villain, a mysterious force unsettling the realm of quantum computing.\n", + "- Q-Bit: Quanta's ally, a robotic cat with the ability to understand multiple states, offering gadgets and wisdom.\n", + "- Professor Planck: A mentor whose significance to the world is unparalleled.\n", + "\n", + "## Puzzles:\n", + "\n", + "Designed to encapsulate quantum computing principles:\n", + "\n", + "- Superposition Puzzle: Players guide Quanta through a labyrinth of multiple correct paths, employing Grover's Algorithm with gadgets like the oracle and diffuser. Iteration is key, mirroring the algorithm's process to confirm the correct path. For this first version of the game, we decided to simplify the number of optimal interactions from $\\dfrac{\\pi}{4}\\sqrt{N}$ to $\\sqrt{N}$, where N is the search space.\n", + "\n", + "## Scenes:\n", + "\n", + "- Quantum Lab: Where players are introduced to quantum bits amidst a trove of gadgets.\n", + "- Superposition City: A world where everything exists in manifold states at once, showcasing superposition.\n", + "- Decoherence's Lair: The climactic scene where players confront Decoherence and the professor, leading to an escape into the Entanglement Forest, setting the stage for a $CONTINUATION$.\n", + "\n", + "## Art:\n", + "\n", + "**The vibrant artwork that brings our quantum universe to life was meticulously crafted using DALL·E 3, allowing us to transform complex quantum concepts into visually stunning scenes and characters.**\n", + "\n", + "- Style: A cartoonish flair to render quantum computing concepts accessible and engaging.\n", + "- Scenes: Bright and colorful, distinguishing between quantum states and the classical world.\n", + "- Characters: Expressive and exaggerated to simplify complex ideas.\n", + "\n", + "## Interactions:\n", + "\n", + "- Dialogue: Educational exchanges laced with quantum computing principles within the storyline.\n", + "- Gadgets: Interactive tools symbolizing quantum computing functions.\n", + "- Mini-Games: Select the correct answer games, educational challenges to deepen players' grasp of quantum concepts.\n", + "\n", + "# Ren'Py:\n", + "In the whirlwind of innovation that defines a hackathon, especially one with a window of less than a week, efficiency and familiarity are key. This is precisely why we turned to Ren'Py as our game engine of choice. Ren'Py's Python-based environment offered us a seamless transition from concept to execution, leveraging our team's pre-existing knowledge of Python. This strategic decision enabled us to focus our energies on creativity and educational impact, allowing us to craft an engaging and instructive game within the tight timeframe. Ren'Py's intuitive nature and flexibility made it the ideal tool for bringing \"*Quantum Quest*\" to life quickly and effectively." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fcb2a89d", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/challenges/PIQUE challenge/QuantumQuest_2-1.0-mac.zip b/challenges/PIQUE challenge/QuantumQuest_2-1.0-mac.zip new file mode 100644 index 0000000..4bc5c88 Binary files /dev/null and b/challenges/PIQUE challenge/QuantumQuest_2-1.0-mac.zip differ diff --git a/challenges/PIQUE challenge/QuantumQuest_2-1.0-pc.zip b/challenges/PIQUE challenge/QuantumQuest_2-1.0-pc.zip new file mode 100644 index 0000000..bd9e55c Binary files /dev/null and b/challenges/PIQUE challenge/QuantumQuest_2-1.0-pc.zip differ diff --git a/challenges/PIQUE challenge/README.md b/challenges/PIQUE challenge/README.md new file mode 100644 index 0000000..71baf96 --- /dev/null +++ b/challenges/PIQUE challenge/README.md @@ -0,0 +1,23 @@ +# Quantum Quest: La Aventura de Quanta +![Quanta](https://github.com/Quantumaniacs/escuela-de-computacion-cuantica-2023/blob/main/challenges/PIQUE%20challenge/Image_Selection/quanta.png) + +## Quick Overview +"Quantum Quest: La Aventura de Quanta" is a creation by **Quantumaniacs**: Angel Contreras, Antonia Morales, Carolina Perdomo, aiming to blend the thrill of video games with the fascinating world of quantum computing. This game is an entry point for young minds to grasp complex concepts like superposition, Grover's algorithm, and decoherence through an interactive narrative. Crafted during a fast-paced hackathon, it stands as a testament to the educational potential of gaming. + +For a detailed dive into our game's design and educational framework, please refer to the accompanying `.ipynb` file in this repository. + +## Getting Started +### Windows/Linux Users: +Download `QuantumQuest_2-1.0-pc.zip`, extract the files, and run the executable to start your adventure. + +### Mac Users: +Download `QuantumQuest_2-1.0-mac.zip`, unzip it, and get ready to explore the quantum world on your Mac. + +## Acknowledgements +We extend our heartfelt thanks to the Ren'Py engine for providing a robust and intuitive platform that perfectly matched our team's Python expertise. Our visual storytelling was brought to life thanks to the artistic capabilities of DALL·E 3, whose generative prowess transformed abstract quantum concepts into a visual feast. +![Beauty](https://github.com/Quantumaniacs/escuela-de-computacion-cuantica-2023/blob/main/challenges/PIQUE%20challenge/Image_Selection/decoherence.png) + +--- + +Your journey into quantum computing awaits. Dive in and let Quanta's adventure unravel the mysteries of the quantum world! +![Q-Bit](https://github.com/Quantumaniacs/escuela-de-computacion-cuantica-2023/blob/main/challenges/PIQUE%20challenge/Image_Selection/qbit.png) diff --git a/challenges/openqaoa challenge/.ipynb_checkpoints/challenge-openqaoa-checkpoint.ipynb b/challenges/openqaoa challenge/.ipynb_checkpoints/challenge-openqaoa-checkpoint.ipynb new file mode 100644 index 0000000..d0800e4 --- /dev/null +++ b/challenges/openqaoa challenge/.ipynb_checkpoints/challenge-openqaoa-checkpoint.ipynb @@ -0,0 +1,2069 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Challenge: OpenQAOA\n", + "\n", + "Quantum computing is used extensively for modelling and solving combinatorial optimisation problems. The purpose of this is to find a problem with binary clauses where the amount of states is immense and difficult to solve with classical resources. This type of problem is known as NP-hard. in order to uncover the correct answers, quantum computing produces algorithms of NP-complexity. On the other hand, in quantum computing, we are interested in representing such a model in a quantum circuit and being able to find the optimal states that satisfy the cost function using a classical optimizer.\n", + "\n", + "Multiple companies work around computers and generate an SDK that can generate quantum circuits, in this challenge, we focus on a fundamental step of the Quantum Approximate Optimization Algorithm (QAOA) algorithm. Before starting the quantum part, one must model a problem in terms of 0 and 1 and convert it into a Quadratic unconstrained binary optimization (QUBO) form that can then be converted into an Ising model to find the optimal states. To validate the model one makes use of OpenQAOA, an SDK focused on circuitry of the QAOA algorithm. \n", + "\n", + "If you want to know more about this SDK you can check the following link https://openqaoa.entropicalabs.com/ \n", + "\n", + "**NOTES**: \n", + ">\n", + "> * To run on real QPU or simulators you can use [qbraid](https://account.qbraid.com/) \n", + ">\n", + "> * The [OpenQAOA workflow](https://openqaoa.entropicalabs.com/workflows/customise-the-QAOA-workflow/#the-circuit-properties)\n", + ">\n", + "> * To guide you, you can check out [examples of problems in OpenQAOA](https://github.com/entropicalabs/openqaoa/tree/main/examples/community_tutorials)" + ] + }, + { + "attachments": { + "wf.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAzTCAYAAAAZ1tSlAAAACXBIWXMAABdhAAAXYQHuO4cIAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XdgFNe5NvBni6RV70K9SyBU6CB678U007GNHbfEduyUm9zkS3GcfpPcJCZ2bKc4Lrgbm2J6N2CabcA0FSSQQAih3stqvz+EuDKozDkzW7Q8v/9s6cweLTs7M+95z/vq0LkNAOZ28TMiIiIiIiIiIiJybM8A+DMA6O08ESIiIiIiIiIiIrIiBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETMwr99sqVQFKSlaZCREREREREREREQrZvBw4d6vZXmAFIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInJjR3hMgIiIiIiIi5/DzCRMwJzlZeNyPd+3CttxcK8zIcfXx9ESEjw9cDQZ4ubre+v8VDQ2wWCyob2lBRUMDKhsaUNvcbMeZEpEzYACQiIiIiIiINBHr54chYWHC4wLc3a0wG8dhMhoxLSEBE2NjMSY6Gn2DguDdIejXk+bWVtQ0NaGyoQGNZjNqmppQ29SERrMZFQ0NaGhpQX0PQcJWiwWPb96s9k8hol6KAUAiIiIiIiIiK+gbGIhvZ2ZieVoa/Ewm6eO46PXwN5ngr+IYZgYAie5qDAASERERERERaSjKxwe/mTIFy9LSYNDp7D0dIiIGAImIiIiIiIi08tjQofjdlCnwcXOz91SIiG5hAJCcToinJxIDApAcGIg+np7wdnODu9F4q7BuZWMj6pubUdPUhIKqKuSUlSGnrAwVDQ12njkRyXIzGJAYEIDEgADE+/vDy9UVnq6u8HVzg16nQ6PZjLrmZlQ0NKCioeHWeX+5shKtFou9p092FurlhaSbn58QT0/4uLnB3cUFni4uANqKsde3tLRdNyorkX3z81PV2GjnmRMRkSNxNxrxyrx5WJmebu+pEBHdgQFA6tWMej2GhIVhQmwsxsfGYlRUFHwlV9qu1dTg08uXsTc/H3vz83G2pAQMCxA5pnBvb0y8ed6Pj4lBYkAA9BLbaxrNZnxRVHTrvD9YUICapiYrzNi+Zicl4dmJE6XG7rp4ET/YuVPjGdmPi16PYRERmBAbiwmxsciMjBQqwt7R1epqHOhw3Th/44bGs7Ufg06HHffdJ5W9YrFYMPPNN3Gjrs4KM7OPERER+Nvs2UJjiqqrcfr6dbx47BgKqqqsNLPu6XU6LElNxdzkZMT7+8PFYPjaz6/V1ODM9ev427FjuFxZaZc5uhoMeGjQIEyMi0OMry8Mer2icZuysvDzvXutOzkiAR4uLti8YgUmxMbaeypERJ1iAJB6pUGhobh/4EAsT0tDiKenJscM9fLC4v79sbh/fwBAbnk5Xjt5Eq+fPIm8igpNXoOI5PmZTFiSmor7BgzAqMhI6DSop+NmMCAzMhKZkZH44ZgxaGhpwccXLuC1kyexLScHZifJDnxkyBCpjowA0C8oCM/t39/rA6PDwsNx34ABWJ6ejkCNOk2Ge3tjaWoqlqamAgAulJbeum7YK+CjlSnx8Zio4iF2WVoa1h49qt2E7Oz09evoHxwMd6PArXNYGOYkJ+M7I0dixQcf4MNz56w3wU74mUz4eNkyjIuJ6fb3Zicl4duZmVj2/vv46Px5G82uTZyfH7atXo2kgADhsf97+LAVZkQkx6jX48OlSxn8IyKHxgAg9RoGnQ5L09Lw/VGjMDA01Oqvl+Dvj2cnTMDPx4/H7vx8/ObAAezKy7P66xLR1yUHBuIHo0djRXo6TCIP3xJMRuOtgE5RTQ3WHj2KtUeP9uqtnsEeHpiZlCQ93tPFBQtTUvDayZMazso2XPR6rEhPx/dHj0ZqcLDVX69vYCB+NWkSnps4Edtyc/GbAwdw4PJlq7+uNaweMEDd+IwMpwoA1jU3Y3deHmZLnEtuBgPeXrwY/dauxcXycivMrnNvL17cY/CvXcc55tto0dOo12PrqlVSwT+zxYKtOTlWmBWRnN9OmYLpCQn2ngYRUbeU5dgT2ZFBp8OagQNx7okn8ObChTYJ/nWk0+kwOS4OO++7D4ceeogXdyIbSQkKwrpFi3D2W9/Cg4MGWT34d7swLy/8atIkXHr6aTw7YYJ0eQF7W5aWBheFW+q6cp/KYJCtGfV6PDZ0KLKefBKvzp9vk+BfR3qdDjMTE7F/zRrsfeABVZl09uDt6ooF/fqpOsbwiAj0CwrSaEaOYVNWlvRYF70eT2dmajib7o2OihK+X3EzGPDdkSOtNKM7LUxJQXJgoNTYQwUFKK2v13hGRHImx8XhOzY8v4mIZDEDkBza4LAwvDRnDoaGh9t7KgCAkZGR2LpqFdafP4+ntmxBYS/f4kXkiDxcXPCTcePw3VGjVAeutOBnMuGn48fjG4MH45lt2/DumTP2npIQLYJ3E2NjEenj0yu+8zIjI/H3OXMwoE8fe08FADA+Jga7778fb331Fb6zbRuu1dTYe0o9WtS/PzxuNkBRY3VGBn68e7cGM3IMm7Ky8MKsWdLlB6bGx2s8o64tSEmRGje/Xz88tWWLTWogT1OxoKomGEukJTeDAS/OmaO6LInFYsFXJSW4VFGB0vp6NLa0wMPFBW5GI/xMJrgZDPB0dYWPmxtMN5sbtjc6IyJSigFAckhuBgN+M2UKnhoxAgYHvLAt6NcPU+Lj8aNdu5xqixORvU2Ki8M/5s1DnJ+fvadyh3Bvb7yzeDEeGDgQ39iwAVerq+09pR6lBAVpsoCi1+mwKiMDv/30Uw1mZR0eLi74w7RpeHTIEId8IFqeloaZiYn43vbt+OcXX9h7Ot1anZGhyXFWZWTgJ3v2OE2n7cKqKpwsLpbeidAvKAjh3t42+e6Y17ev1LhIHx8MDgvDiaIijWd0JzWZsQwAkqNYM2iQ1Db2doVVVfj1gQNYf/688AJR/tNPI8bXV/q1iejuY//UCqLbxPj64tMHH8QzmZkOGfxr5+3qiudnzsQ7ixfDS7KDJBG10QH48dix2L56tUMG/zqamZiIE488gvEKa2vZk9o6bl87lkZBIWtICgjA4YcewuNDhzpk8K+dn8mEf8ybh1fnzxdrJmFD0b6+mhWxj/b17RXniYiNKgNPttgOnhIUpCogMVcyeCgixtcX8f7+UmMvlpfjbEmJxjMiEmfQ6fDDMWOkx689ehTJzz+PF48f7xXZ4UTU+zEASA5lanw8Tjz6qMNs+VViSWoqjj78MBJV3GwT3c28XV2xYfly/HLSJIcO+ncU6uWFnffdh2+PGGHvqXSpPWtPK/2Dgx3yu3lucjKOPfIIMhxky68S9w8YgEMPPeSQmRsr09M1DaJqGYR2BGozzybFxWk0k66pDeDJZg+KUPM+MPuPHMXk+Hjp7/Hn9u/Hk1u2oL6lReNZERF1jQFAchjz+/XDxhUrEOjubu+pCEsJCsL+NWuQ4mQFz4mszc9kwvbVqzEnOdneUxFm1Ovx5xkz8OyECfaeSqcmxMYiysdH02M6Whbg8rQ0fLh0aa9s0DIwNBT71qxBgmQWlLVo3fBlsUb1BB3F8atXUVxbKz1+og0CgGoDeAP79NH8u+N2at4HBgDJUaxIT5catysvDz/bs0fj2RAR9YwBQHIIS1NT8e6998LNYLD3VKSFeXlh7wMP9KosFCJ7CvLwwK777kNmZKS9p6LKT8ePx++mTLH3NO5gjc69y9PTHaIxCwCsGTgQry9cCKODzEdGjK8v9q1Z4zDdcoeFh2s+F29XV8xX2VHYkbRaLNisIgAV5+dn1TIHwR4eqr9TdTqd1bcBy26Frm5qwr5Ll7SdDJEEHYAZiYnC41paW/Hwhg02abRDRHS73nvXTE5jZmIi3li40GEeKtUI8fTE9tWrEevgNcyI7M3DxQWfrFyJwWFh9p6KJv5r9Gj8aOxYe0/jFk8XFyyU7ALanWAPD6kHHq0tSknBP+bN6zVbxrsT4e2NHatXI9zb295TsUrQGHC8zFG11GagWTMLcHZysibnxVwrZmUnBwYiUjLDcHtuLprMZo1nRCQuvU8f9PH0FB63JScHeRUVVpgREVHPHLMCNd01BvTpg3fuvdcqGRxNZjPyKiqQVVqKmqYmVDc2AmjbcuhnMiEpMBAxvr6aF4zv4+mJjcuXY/S//oWqm69JRP9Hr9Ph9QULMMxK9eSKa2tx4cYNFNfWorqxES2trXB3cYGXqytifH2RHBholcY9v5w4EVmlpXj/7FnNjy1qQUoKvK3UnGj1gAGqGyGoMSIiAq8vXGiVZh9NZjNyy8uRffO6UdPUBADwd3eHn8mE5MBARPv4QKfxa0f6+ODjZcsw/tVXUdfcrOmxlXLR67EsLc0qx56akIAwLy8UOUmR+x0XL6LRbJbetTApLg7/slInaK3q902Mi4O3qyuqb54DWmL9P3IGsjVx//PllxrPhIhIOQYAyW5CPD2xacUKTR9Sz924gbe/+gq7Ll7E0StX0Nza2u3ve7q4YGxMDKYlJGB5WhpCvbw0mUdaSAjeWrQIc9atY4o/0W1+NWmSptlptc3N+ODsWWzJycGevDxF9blSg4MxOT4eC1NSMC46WpOAjk6nw2sLFuBieTk+LypSfTw1rJlxNTc5Gf4mE8obGqz2Gl2J9PHBx8uXa9pB91RxMd45cwa78/Jw/OpVtPRw3fB2dcX42FhMS0jAsrQ0BHt4aDKPoeHheHX+fCx57z1NjidqVlISgjT6W25n0OmwIj0dfzx82CrHt7Wapibszc/H9IQEqfHW6gRsMhoxTXJOt3MzGDAtIQEfnDunyfE6kv37Wy0WfJKdre1kiCTJlvw5VFCg8UyIiJRjAJDs5uW5c6W3gHRksViwKTsbv/30U+GLam1zM7bm5GBrTg5+sGMH5vXti5+MH48BGtTxm5WUhCeGD8fzR4+qPhaRs5gYG4v/Gj1ak2MVVlXhdwcP4rWTJ4Wzbc+UlOBMSQn+euQIkgMD8UxmJh4cNAiuKuuQuhuNeGPhQgx56SW7dfYL9/bG5Ph4xb9vsVhwo75ecSDLZDTi3tRUvHzihOwUpegA/Puee6S2XN3OYrHgw/Pn8btPP8Wxq1eFxlY3NWFTVhY2ZWXhe9u3Y1FKCv7fuHHoHxysel739u+PNQMH4t92yBAR7dZ7vbYWIQL/FvcNGOA0AUCgLRNNNgAY7u2NfkFBOH/jhqZzmhQXB08NG67M69tX8wCgDm0NimQcvXIF11U0YCHSkky5nyvV1U6TCU1EvVPvL7pGvdKagQNxjwbbVE4VF2PkP/+JeW+9pXpFrbm1FR+cO4dBf/87Vn34IW7U1ame32+nTEHfwEDVxyFyBr5ubvj3/Pmqt242ms348e7dSHr+eaw9elT1Vvus0lI8vnkz+q5diy05OaqOBbR1Bf/V5MmqjyNrZXq6UA2wL4uL8aHgQ761asV154nhwzFFILDZleNXr2LIyy9j8bvvCgf/btdkNuOtr75C+osv4qENG1ChQVbkn2fMQIyvr+rjiPA3mYQ7cf9UsINlRp8+miyuOQrVdQCtkAWo1fbfdrOSkjSvs5kWEiIUOO6I23/JkcgkMVxi7T8isjMGAMnmwry88OcZM1Qf54+HD2PYK6/gyJUrGszq/1gAvHn6NNJeeAG78vJUHcvDxQX/uuce9P4y9UTq/X7qVNWBjQulpRjy0kv49YEDaNA4wy6/ogKz3nwTj27apLrI/LdHjMCoqCiNZiZGNJNre24utghuqxsVGYkEf3+hMWrE+fnhtyo7LVssFjy3fz9G/vOf+OLaNY1m1qbVYsG/vvgCaS+8gIMqF6N83Nzw8ty5Gs1MmaVpaUL17CoaGvDPL75AYVWV0OvYI3BsLfkVFfjq+nXp8Wrq4HVGBwgHcXsS5OGh+feYmgYo9qw9SnQ7mRJGlawNTkR2xgAg2dwvJk6Ej5ub9HizxYJvbNiA723fbtVOcMW1tZj5xht4VeVWrFFRUVjcv79GsyLqndJCQvDQ4MGqjrHv0iWM/Mc/cKakRKNZde7lEycw4403VN2o63U6/GHaNJsH/weFhiI9JERozLacHOzKy0OjwPepTqcTDjSq8evJk+GhYmtjk9mMlR9+iJ/u2dNjjT81rlRXY8prr+HdM2dUHWdaQgJm2rDbsmjNyF15eWhpbRXOmF2enm6Vpl/2oiYjbUJsrKaNbIaEhyPCCp2k52qcVSgb+LxcWYlTxcWazoVIDXeJa1KlHWrnEhF1xBqAZFOpwcFYM2iQ9HiLxYKHN2ywWX2k5tZWPLRhA9yMRixX0R3x15Mn4+MLF6wasFTDw8UF/YODkRIUBG83N3i7usKg16O2qQnXa2txpqQE52/ccNj5d8ag0yHK1xfh3t7wcHGBr5sb9Dodyhsa0NjSgkuVlSisqkKrxTnbtBh0OiQEBCDUywterq7wdHFBbXMzapuakF9RgQIb/+2/nzpV1Vayw4WFmP3mm6i1UYfUPfn5uOett7B11SqYJBtOjIyMxMKUFKsU0e+KaFCupqkJBwsK0GQ248ClS0JbbFdlZODZvXut3uhoWHg4lqamSo83Wyy4b/16vKMyKKdUQ0sLVn74IdyMRlWlLn43dSq25+bCbOXzNDEgACMjI4XGbM/NBQBsyc7GwwKB/TAvL0yNj9dkq70j2JSVhR+OGSM1NsjDA+khITipUVBL6+2/HY/7Xzt2aHIsg06HcTExUmNtuf3XoNMh0scHET4+8HBxgberK4x6PaoaG9FoNqOkthZ5FRV269htbSajEZk3s7yDPT1hsVhQWl+PsyUl+LyoSPPs+95KJoBvzQWo3ibUywvRvr7wcXODh4sL3AwG1DY3o8lsxvXaWlyurNSkrAYRfR0DgGRTv5o8WVUQ4Nl9+2xeHL3VYsH969cjyscHY6KjpY6RGBCAhwYNwovHjwuNS/D37zF7sKGlBedu3MDOixeFAjoD+vTBwpQUzOvbF+l9+vT471Lb3Iwdubl498wZvH/2bI8dlm0t3Nsbk+PiMCE2FpmRkUgMCOixoUOT2YyzJSU4VFCAfZcuYXNWltUDTEa9Ht8dObLb3zFbLCiorMTm7GzUNDUpOq4OwMioKMxNTsbUhASkhYR0u6WvoaUFnxUWYufFi1h3+jTyrFiXZnxMjKpspvyKCsxZt85mwb92+y5dwgMffYS3Fy+WPsavJk/G+vPnbRJsNer1WJGeLjRmd17ercD+pqwsoQBggr8/RkVFqd7y2pPfTJmiqkvzD3bssFnwr11LayuWvf8+Pn3wQQwJC5M6RnpICFakp+P1U6c0nt3Xrc7IEHp/LRYLtt4M4O28eBENLS1CQfLVAwY4TQDws8JC3Kirk+6ePDEuTrMA4FyNt/+26xsYiOTAQGSVlqo+1sDQUPibTFJjrRkA7BcUhElxcRgZGYnhERGI9fNT1BDqWk0Nvrx2DYcLC3Hg0iUcuHzZZgGecTExPQbui2trcbG8HAcvX1a0kDAyMhLfHTUKs5OSujynKxoa8PqpU/jFvn2a1Mq2lghvb0yMi0Ool5fQc4cFwIvHjqG6qQmuBkO3TXVkAoCuBoPQOVDZ2OgUC9URN5uTjYqKwoiICPQNCoK7gutGeUMDzly/joMFBThUUICdFy9qHnj3N5nwyJAhin+/pK4ORwoLrbobxdvVFfP79UNiQADcOnmfWi0WXK2uxu68PJy14jyCPTwwNSEBEd7eij7vtc3NWMvmlw6PAUCymcSAAFU3qHvy8/HL/fs1nJFyza2tWP7BB/ji0Uelb/S/nZmJvx8/LpQtkxIcrLju1WeFhT1uW9QBWJCSgu+MHInRgnV9PF1cML9fP8zv1w//M20afrV/P14+ccLq2SndcTUYsCglBQ8MHIgp8fHCN2OuBgMGhoZiYGgovjlsGOpbWrDxwgW8cOwY9l26ZJU5u+j1iv9Nr9fWYvobb+DLbuqVebi44KFBg/Ct4cOFGs6YjEZMiI3FhNhY/GLiRGzLzcXP9uxR3RShM09nZkqPbT/3yurrNZyRcu+cOYPxsbF4fOhQqfF9AwMxMzERmwVr7MmYlpAg3CG3Y3bie2fP4k/TpwudR/cNGGDVAGBGnz6YrKJm2ObsbPzJTp1nG1pasPS993Di0UfhK1n24unMTKsGAHVoy+QUcezqVVyurATQ1hF5c3Y2FqWkKB5/T9++8HFzU928xxGYLRZsyckR3kLdblJcHP782Weq5xHt64uBoaGqj9OVeX374g+HDqk+juz239rmZuzJz1f9+h2Fe3vjwUGDsCQ1VbhsQrtQLy/MSEzEjJsLXDfq6vDBuXN49csv8VlhoZbTvcP0hAT8aOxYRb+7Ky8P019/vcv7NX+TCX+bPVvRThc/kwlPDh+OwWFhGPOvfwnN2RbcjUb8cfp0PDJkiFTCwb+++ALVNxde5yYn4/0lSzSd35LUVCwRyGhPev555JSVaToHW/Fxc8PqjAwsTUvD6KgoqYCpv8mEMdHRtxIw6pqbsTErC2+cOoVPsrM1CY5WNjbimZEjhe6fLBYL3jh9Gg9v2CBUPkWJkZGR2LB8uaLnTYvFgrXHjuHprVs1DxSvGTgQa2fNEiq/8uG5cwwA9gLOU4iFHN63hg2TrnfT0NKCb2zYYNdgU2FVFb67fbv0+L6BgZiWkKDhjL4uMzKy20DLoNBQfPrgg/hgyRLh4N/tIry98cLs2Tj+yCPoHxys6lgyXA0GPDpkCLKefBLrFi3CtIQETWopuRuNWJKair0PPIDjjzyiScdRNUI8PfHXmTM7/ZlBp8PjQ4ci56mn8NeZM1V1m9brdJiZmIgj3/gG/jFvnnSwojNxfn6qakj95bPPrP4g1ZPvbd9+K+Ah48kRIzScTddEgxBNZjM2XLhw67+vVlcLB77vTU2V3iKtxJPDh0uPrWlqwiMbN1p9i3J3csvL8aNdu6THDw4LU/193Z0x0dGIF2zm8v7Zs1/777e/+kpovIeLi1PVxVWTmTYuJkaTLrui239FF3q02l4s2wCkPdNUC6nBwXh9wQLkffvbeG7iROngX2eCPDzw6JAhOPzQQzj00EOY36+fZsdWY3JcHB4YOLDTn6UGB+Pk448Ll7kpt9OiXHeMej0+WLoUjw8dKnVeXamuVnWfT23CvLzwx2nTUPDMM1g7axbGRkdrVu/Uw8UFS1NTsXH5cpx/4gk8PnQoXFTWlW21WL52L6SETqfD6owM1c3JbudmMOC9JUsUJ5vodDo8OXw41nRxfstKDAjAK/PmCdde/uj8eU3nQdbBACDZhJerq6raf388fBgXy8s1nJGc10+exCEV2S5PqHiYVWJhJ1kYOgD/PWYMjj78sObd/AaGhuLoww8LrWaqNS4mBicfewx/nzNHdUfZ7gwJC8OO1auxfulShAhmVWlpTFQUgm+7EUjw98f+NWvwwuzZCPPy0uy1dDodHho0CJ8/+qhmgd1vDhsm/YBbXFuL5+yU9dtRXXMzvqfioWBafDySVQRolfB1c8M9gg+bOy5evKO+zlunTwsdw99kstrWwwB3d6yUzKwCgF8fOICr1dUazkjOS8ePd5vF2xNrXjdEa0ZaLJY7AoCbsrKEs/lkM+Yc0bacHOm2ZmLcAAAgAElEQVSSGL5ubhgSHq56DiLn4I26Orx84oTQ8UdFRSHQ3V10Wl/jotdjrGQZFS22/wa4u+P5mTPx5WOPYVVGhqItvmqMjIzE+qVLsef++5HRp49VX0uJWUlJd/y/4RER2L9mDaJ8fISP5wjfrbd7OjNTVbmRRzduZM05FdwMBvxg9GhcePJJfGfkSFUNH5VICgjAC7Nn49Tjj2O6ygQL2cDVmkGDNFnEaTcrKUmqmZPIFmYlVmVkCP9dLa2tNtntQuoxAEg2MTspSTqrqLqpCX/UYOuJFiwAfrZ3r/T46YmJCFB5E92dtJCQrx3fy9UVG5Yvx68nT7Za50VPFxe8tWgRHlIR4FXC1WDA2lmzsPf++9EvKMiqr9XR/H79cPKxx6S3Lqml0+kwusND04J+/fDFY49pHsztKN7fHwdV1C5rpwOwTEXznD8dPuww2wTfP3tWugOlTqdT1URIicX9+yuqp9PR7YEcoG1LsGgww1rdgBf06yf8N7Urra/HX48c0XhGcswWC57dt096/Ly+fbutQyXLdDPjWcSJoqI76oU2tLTgY8HsiXExMVZdwLGlysZGHFBRMkLttcXHzQ0TYmMV//7e/HzsE9xOa9DpMFtloH9YRAS8XF2Fx1ksFmxWGQCcHBeHr775TTwxfLjNu1BPiI3FiUcewQ9Gj7Z5V/iOBt12PU8MCMDmFSuk70mLamq0mJZmonx88LPx46XHv3byJIMXKvQLCsKRhx/Gb6dMgbfEea72tbeuWoVX5s6VvmfYdfHira3fInzd3O44t9SYI/k9OzQ8/I5kATVkSq/sv3TJbuV6SAwDgGQTnWWmKfXKiRMod6AVuZ0XL+JEUZHUWBe9XvrLXQm9TnerTkaIpyf23H+/VV+v4+u+Mncu7rXStq5IHx/sX7MG3xo2TFUzAFmhXl7YsnKlcIMFrbRvAfzJuHH4YMkSm9xc+ZlM2LpqFRIEtwd2NDwiApESmQVA20P1S4JNc6zJAuD3Bw9Kj1+g4jtQifsEg3DNra2dbnkpq6/HXsHgwIzERE1vPNupuW787ehRmzeN6c6GCxdw/sYNqbEeLi63aoxpaV7fvsILc111tP6gk2Byd/Q6nXDtQUe2UUWAaqJA8K4z0xMShLLZtubkILusDOcEP49qM31lA50niopUBZt+On48tq9erWm2vCjjzdq/n6xcafWsqK5E+fjcCn56u7pi84oV0jWtAcfLAPzLzJlSAWagLZj5zLZtGs/o7rE0NRXHH3kEA+yc6fqNwYNx9OGHEefnJzy20Wy+1dxKlMgCTHf0Ol2nmbpKx2pVZsrL1RXDIyKEx3H7b+/BACBZncloxEzJLzQA+Mfnn2s4G228Irh9piM1D7VKjIuJQYinJ/Y+8ACGarC1SCmdTodX58/HII0Lkcf7++PTBx/ECImLkZZcDQa8vmCBcKBFC2NjYvCXGTPwi4kTbRoADfLwwLv33tttN+HuqPmsv3vmTLcNbezh/bNnpRcjBvTpoyqY2p1YPz/hrXV78/O7XKkVDea46PVYrnFw3MfNDZMla3BaLBb884svNJ2PWq0WC15RcS2zRgBZ5rvswy4CgNtzcxV3LG9nrcxRe1CzRXV0dLSq7agi9fksFgs+uZnltL6Lf8uuTE9MlL4WAPKBTtn31qDT4e9z5uDZCRM0qz+m1ozEROy67z5VgTdZRr3+1lbfv86cqboshSMFAOckJ2OBinqLj2/a1On1UHZr/93kW8OGYd2iRVbJUpeRFhKCTx98EKkSZWxkA1haBQCHhIUhVMVChZpn7Y7GSlyTLBaL8E4Ash8GAMnqxkZHS2csfXHtmvAqtS28e+aMdNenqfHxqgvWdmdGYiJ2rF6NFBtuk23n4eKCNxct0qwpQLy/P/Y98IDDbBXT63T4x7x5qmuNiBoREYGnbNRI4naDw8LwgzFjpMbKrmQCwJtW7Hwqq9FsxntnzkiP1+rm7HarMzKEA8PdBfk+On9euOGS1jXdJsfFSQcbPi0oUNW0xVreOn1aupHVzMRETbcPhnh6Cn+Pnb5+HVmlpZ3+rL6l5VZgSam+gYF2X9jRSk5ZmXSGp6eLi/T7YNTrhb5nj129eiubTjRr0dvVVfpB12Q0SpetkAkA6gD8Y948PKpxXSwtDA0Px57774efyWTz147z98fc5OQuG4KIKHKQAKCHi0uXzdKUeOurr7oMXMie03eLb48YgbWzZjlMgL1duLc39j7wgHBzvE+ys6WCvmOiozWpA6h2x5ZWDRFlFl8/v3bNIe+7qHMMAJLVjVRRq0x0hdpWyhsahLfJtfNwcbFqQejU4GC7FpxOCQpSVYelna+bGzatWCG9hdRaXPR6vLlokVSR3t7qh2PGCP+9Pm5u0o1EbtTV4cDly1Jjra2rDCglRkZGajiTNjqIZ1KZLZZuV7qLa2txUPD9HxoermlHcGe8bhTV1Eh3tA5wd9e0kczytDThWmg9ZYbKnBvMAmwjuz12dFSUUA23jkG/o1eu4HptrdDryXYDHhkZKbUweLW6Gp9LlFz5+YQJmgS5rCUtJAQfLFli9UYkt+sXFIT/nTFDk2M5Sgbg/xs3TmrLJ9B2rXtqy5Yuf55VWsptjV1YmJKCP02fbu9pdCnIwwOfrFwp1MSvQvLZztfNDYM1qAOots5qsIeHJju/ZOr/fczzpFdhAJCsLlPFQ+/Oixc1nIm2dqmYm5r3pDd4OjMT0Sqy9nQA3lq8WJMsxnM3bmBzdjZeO3kSL584gQ/PncPBggJV9cEC3d3x6vz5di3obUvuRiOezswUGjM8IkJ6JXJPfj5aJTOlrO3Ty5fRJJn9a43zPjMyEkkBAUJjDl6+jOIeHvylgjkaZgHyunEnLT8/Wm7/bbc5OxsNLS1Cx1yWlmbzIIi1qAkATpQMAIoG5DrW/WztsB1Yqbl9+0pd92T/vs3Z2RC9Eszv1w8/1WAR0tomxcXh91On2vQ1fzJunCalKMwWi3Dw2BpSgoLw3ZEjpcd/a/Nm3Kir6/Z3Fr/7Lh7btAnHrl512PsSW+sXFITXFyxwuMy/28X7++PtxYuF5ikb8B2vchtwuLc3BmtQQklNF2ygLXAqk0TCQHnvos0+PaIu6ACpQqIAUNvcjGNXr2o7IQ3JZgACbQ9yfzt2TLvJCKpqbMSX164hp6wMJXV1aLVYEOrlhWhfX6naD7czGY346fjx+MaGDVLjHx82TNVF7GJ5Of7n0CFsuHChy1Vqd6MRs5KS8M1hw6SyL6bEx2Nx//54T7BemrXUt7TgxNWrOHfjBsrq69FqsSDwZtbQqKgo1f+mDw8Zgp/s2aP4AV/N1r49eXnSY62t/XtptESGWry/P0I8PTV9cJLJoFIS3Ft//jz+d/p0oa3FqzIy8OPdu1U/JBn1eukO1Dfq6vDV9euqXt+a9ubnSwcnMiMj8Z+TJ1XPITU4WDhbIau0FKd7eF9rmpqwPTdXKCgV6O6OWUlJTvHwcLCgAOUNDfCX2NqZGRkJd6MR9YIBVJH3Or+i4o5O5huzsoQy5aJ8fDAwNBRfXLumeAwgn+EoGlTt4+mJl+fOlXqtjupbWnDg0iWcKCrCtZoaXK+tRW1TE0K9vBDq5YWkwEBMiY9X3VjkqeHDsfHCBeyy0TVPTX2xjopraqTLGWhFB+CF2bOl723eO3u2y6ZGHZktFrx04gReOnHiVsfXIWFhGBIejoUpKVKlKk4WF6NF4VbTRsHvBGtz0evx+oIF8FBZ889sseBIYSGOXLmCwqoqXK+tRWVDAwI9PBDm5YUYPz9MjI1Vnfk+MTYWT2dm4k+HDyv6/Y/Pn8famTOFy6pMiI3FHw4dkpkiAGB2UpImNb5nJCbi2X37pMdPiosTDuzmlpf3eH9AjoUBQLKqEE9PBApsT+noq+vXFV8g7eGr69dhtlik6j6kaLhVTsQn2dl4/uhR7M7L6zKLKcDdHcvS0vDjsWMRrmKb66qMDPz3zp0o6WF19XYxvr7Sq+Itra34wc6deP7IkR7reNS3tOCDc+fwwblzuLd/f7w4Z47wZ/W3U6bg4wsXpDPCtLA9NxcvHDuG7bm5XT48erm64tEhQ/CjsWOFtot15OvmhjnJyXhfYcBTzWf85G0PqY7my2vXpAKAQNvKuVYBQDeDAUtTU4XGWCwWRQHAy5WVOHb1qtACTqSPDybGxqp+mI329ZV+uDhZXCycMWRLaj7bWl03rJH91+6Dc+eEs9LuGzDAKQKALa2t2JqTg+VpacJj3QwGjI6OFspeTQkKQqJA9m9nXb935Oai0WwWCmLM7dtXKADo6eIitRBc39IinM375xkzVHUkL62vx28//RT//PzzHhs+GW527PzFxIkYKJm5o9Pp8M977kG/tWuFs2ftqaCqyt5TwKqMDOmalDfq6vDEJ58Ij6tsbMTe/PxbCQCF3/mOVDmYqa+9Jnxv7CieGTlS1TbThpYW/O3YMfzls88UfY4yIyPx0/HjVSUF/GrSJHx47hzyKyp6/N0r1dXC9z5AW717g04nHRhXu/233bCICAR5ePSY2doVmcUaZ7h+3224BZisKlayLgeAO1aqHU19SwuyuyiI3hM174uMC6WlGP/qq5i9bh225uR0G7Aqq6/HC8eOIePFF1XVYXMzGPDgoEHC456bNEmqm1hNUxNmvfkm/nT4sHAR3/fOnsWk//xH+IYs3t8f9/bvLzRGK9llZZj2+uuY/sYb+PjChW4zR2qamvDHw4cx/JVXkKfgBqgr8wW67Ml+xi0Wi0NncAHAaRXfTVqe+7OTk4UDuseuXlX88CazDViLLtmy9ZwAx79ulNXXo1Dy4VmLz45Bp8NKia3aSjJlAGDjhQvC37+zk5KkFyYcjS3rAKrZ/tuuuqkJ+wR3M4i+7pjoaKnGZ3vy8lAnUKpjeESE8IJIR9tzc5Gydi3+cOiQom7vZosFG7OyMPTll/Hc/v2wSD74x/j64snhw6XGWkuj2YzyhoYu/yZ711n1N5nwh2nTpMc/uWWLQ2xh7m0C3d3x35JN4QDgbEkJhrz8Mr63fbvi+5DPCgsx6803cd/69cIZ0u1MRiN+NWmS4t+X6Wbro6IOoMloxBSJxhudMeh0mKaiUaFM/T8GAHsfBgDJqtQ8sOSWlWk4E+vILS+XGhfo7i7dGVnUe2fPYshLL2H/pUtC40rr6zH/7be77PqoxCrBB82MPn2wMj1d+HUsFgvuW78eO1TU1zpVXIx5b70lvHonWhtPLYvFgl8fOID0F14Q/ntzy8sx4403pG+ipsTHK67/JBvEKamrQ1Vjo9RYW5E97wF1wa3bydTcUxrIEf3ddgtTUqQC+B3xutG5CG9v1R3kJ8XFCWesXKqsxAmF5TjKGxqEt/C7SmSyOqqtOTnSOxcmCmYziQTiKhoaurwHEO0GPDg0VOgzZKvtv7+ZPFl6C92H585hzrp1UllZZosFP92zB9/eulXqtQHgR2PHwtfNTXq8Wq0WC947exbz334bgb//PUy//CUCfvc7uP7yl4j4058w9OWXMWfdOjzw0UeY+J//4PcHD9ptrgDwmylThJo7dLT+/Hm8/dVXGs/o7vDfY8dKd68+WVyMcf/+N86WlEiNf/3UKcxdtw6NkjtulqelKc7UlQ1oyWakToyNVX3f1NEMyWzJGF9foaxyALheW4vDBQVSr0f2wwAgWVWMige5opoaDWdiHUUquqCpaZKh1NqjR7H0vfekG16U1ddj4TvvSKe0p4WECDUoeCYzU6qo8B8PH8Z6DVagPissxB8Fa3ho3f20O41mM1avX48f794tfROUVVqKXx84IDW2j6cnEhT8e7oaDNK1hhyls2B31MxRq/M+yMMDs5KShMeJZPXllJUJZ9R5ubpiYUqK6LS+hteNzhn1elVlGQD5mpEiVwCZwLEWmaOOoKy+HockH4aGhofDR2EQKMTTU6gpzNacnC4zM0UDbTqdDnMFgo8yDUAsFovQvDL69JEONJ4pKcHq9euFM1dv9/zRo3jl88+lxvqZTHbrWpxVWoqhL7+MJe+9h48vXEBZff2tn7W0tuJqdTVOFBVhc3Y2/nPyJPbm59u1zMKIiAg8PHiw1Niy+np8c/NmjWd0d/BydcU3JN/3ioYGzH/7bZR2+GzJ2JWXh+9s2yY1VqfTKV6wP1tSIpX8INsIZI5G23/bTU9IkHqWmiyRhbgxK8vu9UBJHAOAZFVKb2Y7oya4ZivXVDxsqnlvlHjl88/x1JYtqm/UzpSU4I1Tp6TH36Nw22jgzdqDokrq6vDc/v3C47ry208/Fc6QUxvwUKK5tRVTX3sNb54+rfpYLx0/Lh1AVLKC6uXqKt0drjcEcBzhvF+amipc/PxkcTFyBDPkZII5MkGmjnjd6Jqa90Y2OCu6Ffzj8+eFHwgyIyNVF3t3FLLbgI16PcZGRyv63dlJSULfsZ1t/22XX1EhXHZhrsIHVj+TSWpb3Knr14XqzD2hYgvt01u3Cm017s4Pd+5EhYLtw5351vDhNu+q+nlREUb84x/CTV3sxaDT4cU5c6Tfp29v3arq+/dutjojQzpL9dcHDiiqv6fE348fl/68Lk1NVVwjVCYLcGx0NIwSWfpK6/8pzS4P8fSUaqTG7b93DwYAyarUdImqaWrScCbWUa1ijp5W3AL8eVERvrl5s2artM/t2ydd32Z8TIyi31uRng6TUbwv0f8cPKjpltHyhgbFjS7azZbIxBJV19ysqiZjRyV1ddJdrJU8pKvZylDbC857Nd9NajvntZPJmPpAomO1TB1AmW2mHfG60TU11w2Z7dlFNTXCGW3FtbU4KPFdJbOl3RHZog6gyPbf5tZWbMnJ6fZ3RLcBT4qLg5eCz+K4mBipRmkbBWpwuRkMUouHQFvdP9FGI90pu9lEREZSQABGSTaXklFUU4MZb7whHbC0hyeGD8cgyYYrG7OyVC1m3+3ul8xQvVxZieePHtVsHq0WC364c6fUWJPRqPi7Qiaw5ePmJvz5TA8JQYzCnSEicxLdBqyDeLmGmqYmTb8/yXYYACSrUvMgJ5uhZEtqurZpFQjoTH5FhaYdlHPLy3G8qEhq7OjoaEWrtYskmmmYLRar3NBtFnwYGhQWJtRF0REcvXJFapySwI6az3Zv6ITYZDZLb3nQIvDfNzBQqqumTDDvq+vXcUFwK4xso4l2vG50Tc17IxNgW3/uHFolPusymaOrMjIU1xh1ZOdu3JCu86hku6zJaMRUgSLv+y9d6jHIIxq0NBmNigrN26L+35T4eOmaytaoZbf26FHpjMIFAo221Hro4497VSfacG9v/GLiRKmxFQ0NeGzTJo1ndPeI9PHBcMnOv389ckTz+7rtubk4Kdnwa4HCLPgjV65IZYuK1gFUuv23rrkZL584ofi4MwUTE1JDQoRL92zLze0V9+x0JwYAyapkMrraddep1lGomaOa98YeRINi7fxNph6zxoI8PDBG4danjnbn5Vlly+jhwkKh33czGDBIsvuXvcg2dwlSsH3CzcnPe0B+nloEimW22J6/cQNnJItvywQO1WRz8brRNdn3JtLHRyoYI/NvD7QFDkWzxmP9/DBOYca4o5PNAhzQpw8Ce+iIPDkuTiiTs7vtv+2OFBYKB4OUbAMWbWwCtGWQHlPYdAYQ607fUWl9PfYJNkdTora5Gdtzc6XGKi2ZotamrKwes0Idzf9Ony5dAuGZbdt6RX1hR3VP377SDXa0qM/dGdlr09joaEVd51stFkXfnbcTDQAq3f577OpVHC4sVLz4PDwiosdrSUcy9wfc/tt7MQBIVqVmZUC0vpU9qJljb1s12ariZjElKKjbn4+KipLaJiTabVKpy5WVwo1T+vay+lWy237cFTx4Njr5eQ/Iz1O2A3M7vU4n3F0bkL9Zlh2bFhIiVfsL4HWjO7Lvzcr0dOG6WTfq6qQDJAVVVTgqEMRpp7Z+pKOQDQDqdboeC8mLNOAAlG2nNVss+CQ7W+i4s5OTu71uB3t4ID0kROiYAPBJdrZQ1qnM4iHQ9r5ouVOiI9mgR4K/v+pGP0r8v927rf4aWlqWloYlkp3Ct+Tk4NUvv9R4RncX2XPsZHExLkpmQ/dkveQ9jVGvV9xASSbANUagDmCQh4fiuezNz0dNUxOOKdy9Y9DphDLFRev/Nbe2SieGkP0xAEhWpaawcm/YUumuIlNFq6LTtnKmpES6DmBKD11yRwp0M+xIdhurEqWC2RBqOpfag2ytNCXnpWzXaaB3ZMa6GgxSAWtAfY26cTExiuvFdCSzJbPdiatXcamyUnicbBags1831HzGZd8bmZqRG1QGSGQCx/f276/quuoo9l+6JF2btrtMDB2UN+AAgNPXryNPYfF90aBlcA8PrxNiY6WyhkTm4W8ySS++7bbSAiIA7FJRF2uERHkHEXvy86W3T9qSDkCYlxe+M3Ik/n3PPVLHKK6txSMbN2o7sbvQCMl7dGueY6evX8f12lqpsUrPsd15ecLf4yJ1AGcmJiq+l9xxM6tYZKFmpsI6gEa9XriD8b78fJT3ovqh9HW9/y6LHJqaBzklBabtTc0ce0Ozg45qmppwtaZGqrh/vL9/tz9X0lm2M2sGDZJeFe6Jt+BWk0gfH6vMozdSc95bszmOVtSc92oDgDKBnLyKCnwuWcMTACxoC+Y8k5kpNG55ejq+v2OHcBDJ2a8bsvXKALnrxpCwMPTvYRGmM2qCxkDbZ+Z3U6YIjfFxc8M9/frh7a++UvXa9tZkNmN7bi4WS9S27W7b7NDwcKEMMZEtbNtzc9FkNgtlqM7r2xcHu2gSo6Se4e0azeZbD7pKDA4Lk96aeFayJIISV6qrUdXYKLVldUh4uNW2TQLAFsFMT1tbt2gR1i1apPo4lY2NmPnGGygU6CZNdwpwd0ec5AK3Nc8xoK3eaoinp/C4oQrrGTaazdiakyP8nDEhNlZRGQOl238rGxtx5GbCw6asLMW1MKcnJkKv0/WYUT00PFy4w/PHEtujyXEwAEhWpaY7q2gxUntQM0ctO9faSlZpqVQAsE8PF+i4HgKEXVmZni41zhrUPNQ7m5qmJrRaLMJbDoG2FX9Hp+a8V9tBeJHCAtYdqdn+2/EYogHAPp6emJ6QgM2CD5y8bnRN5r2RCRpXNjaqymICgJyyMpwsLsaAPn2Exq3OyOj1AUCgreuoTAAwJSgIoV5enRagF93+KxIArGpsxL5LlzA1Pl7xmLl9++IHXXTklKkptS8/X6hLdk+Li12xWCzCzY1EnbtxQyqbT/ZvUkpuH0fvUtnYiLnr1uGLa9fsPZVeT83n8Zy1A4AlJRgvUTdW5G/66Px5qQDg/xw61O3vuOj1mK5wi+7OixdvLaR+ee0arlRXK3oW6+PpiUGhoTjRwwKw6PZfi8WCj1n/r1fjFmCyqksKt550xhZ1UNQKUzHHyxJb6uztiuRKancPvDpAakujo7FmV+fepslsluqeBqg7p2xFTZBS9n0B2ordy2SUfHD2rPRrtjtUUCDVcEemphuvG50zWyzChexd9HosS0sTfq1NWVmadFSWCT5PS0joFYHcnmzJzpbqFq7T6brMApwnEAAsqqlRXC+qneg24JSgICQFBNzx/8O9vaW25oq+vmzpjcLqatXZ2D25cOOG1DhnuB+yp1PFxRj28ss4cPmyvafiFNR8Hq0dZJc9frSvr+KO859kZws37lJSB3BMdDT8TCZFx+tYx9UCsaaMSroBTxZY9AGAE0VFKGBmba/GACBZVb6KBzlrr4JqQXaOpfX1QqvcjkK2tlt3FzkPF5deUfetJy69oPaYLcme+yEeHg6fTZnQyQOvUrLdlwG5mnpXqqtvbR1Ro9VikSqIPa9vX+GtJbxudK6wqgrNgtupZyQmSm2R0iJoLHsco16P5RJBS0dTUleHI4Id5dt1lj0X4+srlE258cIF4WwvJQ1DbtdZVqJM9h8gHgCULb1RVl8vNc4Wr8FyIvJaWlvxjQ0bkF1WZu+pOA3Zz6PFYkG5lc8z2XPMw8UF/go75FY2NmJPfr7Q8X3c3HpsgqZ0+6/ZYrljF4XI9+SMHuoAuhuNwnXY2f2392MAkKxKzYNcuuC2IVszGY2drnwroeZ9sSfZuoXdBficJXOuuhdu6bYm2c+4TqdDqkTnSFtKUzG/bMkAYJiXl1BHt3brz50T6qjZHZlgjrvRiHsFt88483XDz2RClOQDlcz7IpOBWdvcjG0Cddi6c6akRCpLQ2bbsiOS7QbcWf084e6/Eq+dV1GBM4Lb9jrLSuyujmFXzpSUKG5Y0s5T8v7B2tl/al6jN9QxdVRGvR7bV68WLjtAXZP9PNa3tEhlQItQcx6LLDTLbHed0MN34ByFAcBDBQW4cVtTwl15eahvaVE0PjMyEv7dJGGMjo4WTsJgALD3YwCQrOp6ba10l6C0kBDpTpu2kBocrLjV++1kt4bYm2wGoFs3Fxd3JwkAVrAb1tecV/EZz3Dwm3c1DxeymQkr0tOlvg+1qP/Xbt+lSyiVWHEXDeZcrqxUfHN7O0f/7KiZn+h1w89kEuoY225LdramXeplAscDQ0OR7uALAUrIBgAT/P3v2Honsv23trlZuoajaBbg6KgoBNyWTSPTAETmvZJdQLRFAFB2l4ezLIrai5/JhI0rViDIw8PeU3EKsvfoNjnHVCy8i5xnH1+4AItgMLO72oRJAQGKSyR09n1c19ysuMOyQafDtG4Wj0Xr/+WUlQkvEpHj6f377sihWQAcKSzsMQW5M96urhgcFqaok5I9jJMoPNtOiy159tAsWROqu0Bpo+SDvqNRE/ByRmo+4+NjYvDyiRMazkY7JqMRwyUKuwNt23Flt6zIZHIBwBPDh+PxYcOkxnZGtKMvAIyJikKcn5/i7J7m1lacuHoVY6KjhV+rj6cnUoKCcM5Bz0eZguXtRM+pJampUuUVkgMD8e699wqP64psXcb7BgzA93fs0Er/zm4AACAASURBVGwe9nD6+nVcqqyUqqM1MS4Or375JYC2LWUin50dubnSQfRNWVn44Zgxin/fqNdjZmIi3jx9GgAQ5+cn1TVUJgAoWz5EywB3V9TsmNDh7mjWYS1RPj54df58zF23ju+jSg59jql4DZG/62p1NY5evSrU1Ke9DmBn90xKt/8CXTdy2njhAmYrqO8HtG0DfufMmU5/Jlr/j9l/zoEBQLK6I1euSAUAgbY6Mo4aAJStcQMAn0nWBbI36a0A3VykZR9SHElVY6NTdK3U0tErV6Q7AU+Ki3PYB6BRUVHSN8R7BevItBvQp4901uFCia7BWtPpdFiVkYHn9u9XPObIlStSAUCg7fPjqAFAmcyodqLXDZmakUBblqIjZFKuSE/HD3futPo2MmvblJWFb0kE4SfGxt4KAE6Jj4erQJ1Zke6/t/ussBA36uqEMqhmdAgAynzGS+vrcbigQHicaHH+diLvpazudj50p8lsdshrX28zOykJT40Ygb8cOWLvqfRqDn2OqXgN0b/ro/PnhQKA7XUAj3aycKd0+++F0tIuS2hszs6GxWKBTsE99ozExE7vqf1Nph5rFd6OAUDnwAAgWZ2aYNc9/frhdwcPajgbbXi7ukoHABtaWvDltWsaz8g2vCU6kALdB/kaJAOANU1Ndg+kNrS0IKesDK+fOiXVIdWZVTQ04EJpKVKCgoTHhnp5YURkpN3/fTtzj2Adro72KNyycTvZ7D9HsnrAAPxy/37FD7Zqrxt/O3ZMery1BHl4SAc1KxoahLKME/z9MToqSuq1HEW4tzemxMdrVo/QXqQDgB3uMWYKLKK2dlI0XoTZYsGWnByhAPL0xETodTq0WixS9f9kOybLZhnZos6e7GvYInPqbvHzCRPwxqlTUqUrqI0znmOA+N/18fnz+M3kyUJjJsTG3hEA9HFzw1iF9wHdLeQUVlXhy+JiDAoN7fE4oV5eGBQWhs+Liu6Yn0hpmeLaWhx2wPtyEscAIFnd/kuXUNfcLFXXJDMiAgn+/sgtL7fCzOQtTEmRrtOyOy9PekXN3mS7s1Z1U6ejyWxGVWMjfASDi7XNzZj6+utS8yHb2JqTIxUABICV6ekOFwA06vVYpqI7qdKaLR0ZdDqsSE+Xfk1HkRQQgMzISMU3j7suXkRzaytcJOqsToqLQ5iXl8MF5Zempkr9PQCwPTdXqJnLqowMRZkBjm71gAG9PgC4Nz8fNU1Nwg+rUT4+SAoIQE5ZGWYp3OoFAIcLC3G9tlZ0ml+z8cIFoQBgsIcHhtws2WKr+n+AcwYn1GxrdAY/3r0b23JyALRt04zx88NTI0YIZV+18zOZ8ONx4/Cdbdu0nuZdQ/Yc83R1tfpODtmkBED8PDt34wYulJYqrt0HtAXYfn9bEsv0hATF2ZE91WPdlJWlKAAItGUB3h4AFE1k2XDhgmZN5ci+2ASErK5ORUdBnU6HBwcN0nhG6j08ZIj02PW9OH3ar5tOUt25UlXV7c8vV1YKH7OPp6d0QJJsY72KBhTL09Mdrhj6vL59EeLpKTU2q7RUuMMlAExNSECYl5fUazoakWYg5Q0N0lumDTodHhg4UGqstegAfGPwYOnxItcNHZwjaxQAFvTr1+u/5xtaWrBTsiHHqKgoJAYECNVRFG3i0ZltubnCC5UT4+IQ5eODCMGaj82trdL3iLJBflt8pkQXNdsVVVdrPJPeJa+8HCeKinCiqAgHCwqw7vRpjPv3v6XLAX1z2DCpmpTURvbzaNDprH4PJ3seN7e23tFZVwnR7a8jIyPvKIOjtJv7jbo6HOqhLILIwsn0ThqB9NSp+HYy3ZDJMTEASDahJhDw+LBhNlmtVWp0VJT01iqzxaKqNo+9JQusfHV0pYcbiEsSAUAASAwIkBpHtnGooADFkpkoge7uDhf8/6/Ro6XHvn7qlNQ42TpujmhJaqpQzR41140nR4xQVR9Ia9MSEjBQ4Ur97RrNZnwisKVzVFQUEvz9pV7L0Xi4uGBR//72noZqshluwyMikBkZKTRGi3uMqsZG7L90SWjMmOho4XpSAPDp5cuoaGgQHgcAlyQWVQAg2tdXqqu6CNmgk8yCqLNrMpvx2KZNwp1YgbY6cb+cNMkKs7o7qPk8xln5OhQvefyCykqpTDbRAKCfyYT+wcG3/tuo1yvO5t6soCzC8atXcU3hIsjIqKivLUoEeXggtcPcelLd1IRdkmVsyPEwAEg2sTErSzqN3N9kwpPDh2s8I3k/mzBBeuyevDzVW3PsxcPFBQmSAbfcsjJVP+9KakiI1DiyDbPFgve66DymxPdHjYK7ZCF1rc1MTJTaggS01eR67eRJ4XE+bm6Y36+f1Gs6ogB3d8XFrwHgw3PnpMslhHl54REVmdpa0gH46fjx0uO3ZGd3W0bhds6S/dfOGYLgm7OzpR44h0VEYIRAADC7rEyzBjiiQcvRUVEYEh5u9dfpSHbx0GQ0Wj04kSLwcN2R7N/k7D4vKsJGyc/KsrQ0qeA0AfmSQXYA0iVglOoneXzZoObRK1eEs45HdUgYGR0VhUB3d0XjlCzktFosihcHXfT6r9VnHRcTI1QmZGtOjnTNdnI8DACSTVQ0NEhnwADAj8aOFdoCYy0LU1IwVbBlekdrjx7VcDa2lRocLL1ifrK4uNufH5fc2jGtk5R2cixrjx6VWrUH2rI0fjBmjMYzEudmMODPM2ZIj9+dlyd1w7lIRa1RRyUSnCqurcV7Z89Kv9bPJ0wQ6mRqLasHDPjaQ4AokYYmJqMRS1JTpV/LEU2IjUW0r6+9p6HKtZoanLit/pISA/r0wfiYGMW/r+UOA9HAXIC7u1S9UjVblk+qaKhmzeCEt6srIiXvWXtrkzhbeG7/fqn7Cb1Oh99PnWqFGTm/K9XVUttlAfkguLWPL3uOtUrs4hrZYQFnnsLtv41mM7YrLIsgEhTv+Mw0TuC6ArD7r7NhAJBs5q9HjkgHArxcXfH3OXNgz5LmwR4e+OvMmdLj8ysqVK1029swyewnoOeLrWxtlxk3Ow+S47pQWqqqiP8PRo9Gup0zPX8+YYL09ncAePH4calxIjXzeouZiYlCQbm/fPaZ9GsFuLur+s7WQoS3N/4wbZr0+LMlJdglUD9uTnIy/CVrtToqvU6HlU7QCEfm+u9qMCBN4PtPywBgbnk5zpaUCI0R3Xp+obQU2ZI7AACgoKpKug6gmnuangwJD5duwnN711D6P8evXsUnNxuEiJocF4cZAt206f/I3qMPk8gIVirQ3V16C7Cac0w0ENZx8U9p/b/deXmoaWpS9Ls7L15Eo8KdEh0DgCILS82trUJlSMjxMQBINnO2pATbJQthA8Dc5GQ8NWKEhjNSTq/T4dX584WLW3f0/NGjPdZzcGSLUlKkxmWVlva47TmrtBQlEiuMwR4eX1tdI8f0vyqCOCajEW8vXgxPO2XCzUhMVFX772RxsVQtuxhfX+EV2t7A1WAQ6qR87OpVHOyhEHZ3lqel4SE71ZI06vV4c9EiBKvIQvzLkSNCXRSdMWgMOMe2ZmsvAJbW1/dYNF6UteesxfFlu8Vbs7yC7LHL6uuRVVqq8Wycyy/27ZMe+7spU7hoLEH2HJsSH2+1Gu5zkpOldyXJ/j1AWyknkZIcSQEB8HVzQ7y/P5IUllESWcipaWrCHoW1+RIDApDg7w93o1FoYWlvfr50nVZyTI5RXInuGj/atQtT4+OlL8B/mDYNhVVV+EBFcXhROgB/mzVLceHWzhRUVeFFgW1cjqaPpyfGC3aLardDQdC31WLBpqwsrJHo3Pm9UaNw8J13ZKZGNrI9Nxd78vO/Vn9ERP/gYKxftgxz161TvNKphaHh4Xhn8WJVDww/37tXKIDTblVGhtTrHrlyBf/64guJVxTXPzgY35ZYlFmdkSFUDuG/d+7E/jVrhF+n3QuzZ+NqdTW2SGaOyNDrdPjnvHlCq+y3yy4rw78F/i2DPTykM1ye2bZNuk6vqOcmThTupp0SFIRh4eHSmSiO4IuiIlyprla1kNidT7Kz0dLaqukxN2ZlqVoA6YkWAcDNWVlYIBFwSw8JQYK/P3LLy1XPoSMd5AOAW3JypGpF3k2OXrmCrTk5Ut91GX36YHVGBv4jUZP3brYpKwvPStQ/NxmNmJGYiPdVlPLoygLJpISzJSXIU1HXsNFsxpacHCxVWGpDp9NhcFgY+iosOWC5+TwkYlNWluLzYVpCAr64dg1GvfIcMG7/dT4MAJJNfV5UhHWnT2OVZFFvo16PdYsW4b716/GOiuYCShl0Ovx5xgw8NnSoquP8dM8e1Pfi4qnL09OlV9qU1rFYf+6cVADwnr59kR4SgtPXrwuPJdv5/vbtOPrww9LBtKnx8Vi/bBmWvvceqhVujVAjMzISG5cv/1rXNFEniorwseSNk2zG00vHj+PfX34pNVaUl6srHh0yBCbBRi3DIyLQLygI5xU2Kzhw+TI+On9e+qHa1WDAB0uXYtn779ukC7uLXo+/z5mjOhvvR7t2oVkgoLMsLQ0uAjf17T4vKsKfVWTpihocFoZHJRq0rB4woFcHAC1oC1ZZqzmNNT7bhwsKUFpfr7hwvYiKhgYcvHxZ9XE2XLgAs8UidY+yZtAg/L/du1XPoaNJcXGIkaxZKXu9uNv8Yt8+6cWO5yZNwrtnzvTqe3Jb+6KoCJcqK6U+12sGDtQ8ABju7Y3pkjXAtQhmfXT+vOIAINC2mKy0m/vn166hsKpKaD6bsrKwdtYsRb87LSFB6D7cYrHwe8kJcQsw2dyPd+9WlWngajDgrUWL8OyECUIrGKIC3N3x0bJleEJlB+Ivr13D6714tdHDxQXfHzVKamxZfT22Kcy62XHxotQ2YN3N4s7c1OHYThQV4Q0VjYCAtvpxnz74oOJtFLJWZWRgz/33q2ogYbZY8K3Nm6Wy/0ZERKCvRM3BltZW6S6JMmqamhQH+G8n2tn1hzt3qsr+dDcasX7pUvxwzBirbgEL8fTEJytX4kGV244PFRTgA8GHJtmA44c2zKhX83qyAU5HYq3zs9FsVnytFWG2WLDFSrWftubkCAW4u1JSV4fdCrfA3e7pzEyEenmpnkM7HYBfTZ4sNbaqsdGmWcq92eHCQulrT5SPj93KCfVWFgDvfPWV1NhZSUkYGx2t6Xx+Nn688MJju3c1SB75/+zdd1gU59oG8HvpiCLFFrAAKiqCJUaNJnaxxI7tWKKJJmpMYownxZh4Uk5OmkksyWevscQWC4INLAhixa5IL4Io0vvC7s73xwqCLLA7u0tZ79917eUyO/POOyvMzj7zvs9zNCIChRpcj/RwdMRAZ2e11hVzIycuM1PtQRADnZ01qix/9enIdTIsdftKiuqk+MxMfObnp1UbEokE/+nXDxdmz0aXZs101LNnxnfogLvz52Okq6tW7RTK5Xj78OFqz/2nzail533Tv7/oCsx77t5V+0t7gUyGdSKLJQxr0wYf9+olalt1ODZogC9efx3bx43DMk9PjROdk9KiEydEJ2wv1qlpU9yYNw+LevXSeTDAsUEDHJg8GdvHjRN9cVls5cWLuCQy0bTY0X/n4uJEV+sTS2w6Bk2nOIelpuLrM2dE7auYkUSCHwcNQuDbb6OjjqsTSgBM8/DA3fnzMViLSvEAkC+TYba3t0bBY7fGjfGKyITr1R0APBMTg7T8fI23a1yvHoZrkYqjNjgdE6OXkUdnYmL0NjJaX3kAddnu/2mQUqA0K1NTfN2vn876Md7NDT1FFhfZeuOG2on/SbtcgItff10vo1oN2dqrV0V/l/nZ01NnN97aN2ok+gbbubg43Hz8WOs+ZEmlGt10GNWuHWzULM4ldiS3utXUrc3NMcHNTe12Of3XMDEASDVi9ZUrauWGq8orDg4ImTMHeydORLeXXtKqLWOJBKNcXXHpnXewf9IkndwV/i4gQHS5eW0MdnHBJyJH7ZU2ytUV/xYZWBMEQeOA3uorV0SP8lnm6anzqVUODRpgzYgRiP7oI/wwaBCmd+qET3r3RsjcuejUtKlO9/UiSM3Pxzve3qKrgRerZ2qK34YMQfiHH+Kdl1/WukCIk40NVgwbhsgFC0TlknpeZFoalooMVmlaJKO06g7kAMqLTjGjeFo2bKhxfrxfg4O1KghSrHeLFrj13nvY4eWFzlr+HZsYGWFc+/YImTsXO7y8tBo1WuwLf3+1p0cX03REZbHQlBSEargvbRVpMVK1rhc5ySsq0qiqs7r0ObVdVyP1SpMLgk5Hu/mEh4vO6zW3WzdM0mA6X0Xa2Nlh3ciRorZVCAL+rw7nia4J5x88wCmRIz9tLCzwZd++Ou6RYYvJyICvyPN2r+bN8f3AgVr3wdrcHPsmThQ9+2vVpUta96HYYQ3OuebGxmqtF5+ZiZsivzNqckPFUoMb3AwAGiYGAKlGCABmHT5cZXVYdRhJJJjo5oarc+bg9nvv4T/9+qFPy5ZqnXAbmJlhRNu2+H3oUMR//DG8p0xBD5F3b58XGB+Pn8+f10lbYizz9MR3AwaInho7vE0b7Jk4UfRdu5PR0RrfaUvKyRF9J99IIsG6kSOxavhwraeGOzRogGWenohcsADzXnkFZs/9LjU0N8fByZNhq+YdPXrmaESEzr7oONnYYMOoUUj65BNsHTsWUz081BqtKoFyJOFHPXvi9MyZiFqwAB/17Kn1qD9AOXpr2oEDotMcvNG2raiRCQpBqJELtfSCAtHT7zQN5sgFATMPHkS6DqrRGUkkmObhgRvz5uH63Ln4sk8fvNaihVqjSm0sLDDK1RWrhg9HwqJFODB5MrrqaCT6yago/KHhOdBIIsE0kQHAmggaA9B4enOxka6udf68q+sRdYIg6HXqf6ZUisC4OJ22GfzggahRoBWRC4LoEWESiQQ7vLxE56YGgI6NG+P0zJmwEzmqbMetW6z+K4I2owDnd+8OZxsbHfbG8H1z9qzoIjVfvP46/jdwoOjvFI3r1cOJ6dM1ql5b2o1Hj3BQh9dIh+/f13nBniPh4aLSxgDKAnBi0ihVJjw1FfeePNFpm1Q7sAgI1ZiErCyM3b0bp2fO1MkXbwBwb9IE7k2a4Nv+/SEXBMRlZCAuMxMpeXnILSyEsZER6pmaoomVFVxsbfVWjS8mIwPj9+zReUU+TS3t2xevtWiB948eVXtEiaWJCZb06YMv+vQRXfgDAH4IDBS13ffnzmFmly6ip2d82KMHhrVpg+/PncPOW7fUnrJgJJFgsIsL5nbrhtHt2lUZRHSxtcV2Ly+M/vtvVu3T0McnTqBdo0bw1HKqZLEGZmaY2bkzZj4NKKXl5yMyLQ2PcnKQW1SEnMJC2FhYoL6ZGVo2bIjWtrY6O+eUJggCZh0+jMsip/4C4kdyXUpMrLE8LQdCQ0Ul5B7v5ob3jx7VKFgalZ6OCXv34vj06TqbAt6lWbOSVBIyhQJxmZmIzchAWn4+cgoLYWJkBKunnxut7ezwkg5zhpV2PyUFk/fv1/h8MsDJCS2srUXts6YCgH7R0cguLEQDMzONtjM3Nsakjh2xLiRETz3TP9+ICAiCAImOpsRdF5E0XlNHwsPVzmGlDn1MK95+8yYW9eoFDxEBAlMjI2wfNw5DWrfGF/7+ap9LzYyN8UGPHvjvgAGoJ3IkeoFMJnrE+IvuXFwczsbGor+Tk8bbmhsb4/uBAzHtwAHdd8xAXX/0SKtCjkv69EHvFi3w0fHjuKXmAAEJgIkdO2L50KGi0xEBwOf+/jq9Vk/KycHlxES1i3uoQ5uR3ApBwNGIiJLrYF3g6D/DxQAg1agLCQl4+/Bh7PLy0tnFcDFjiQQutrZwqeZ8bZlSKUbu2qXzOzFiDXR2xp3583EsIgK+ERE4HhmJ2OemypgaGaGbgwMmuLnhX+7uWgdG/wkNxTmRIwbSCwrwmZ8fNo0eLXr/be3ssG3sWPxv4ECcjonBmdhY3HvyBE9yc5GSlweJRAJbCwvYWVrCvUkTvNq8OYa2aaNxbr8Rbdviq759tboL/SKSKRSYtG8fgmfPRodGjXTevp2lpc5G8mriv+fOYbfIRNmAst8jROYdralADqC8SFw9YoTGNwwamJlhbPv22HX7tkbbnY6JwXs+PtioxTmiIiZGRmhta1vteT5T8vIwctcuZIgY3Sg2Z2RsRgauJyWJ2lZbBTIZjkZEaFRJsdiMzp3rdAAwISsLNx4/1tmo0eqobO0THo7lQ4fqtD1dKy68dPatt0SPMnqzUydM6tgRR8LCcCQ8HFcfPsSjnJyS0YoWJiZoamWF9o0aYUjr1pjq4aF1upjvz51DfGamVm28yL4LCBAVAASAKe7u+P3CBYTU0HmwLlrs748RWozE7u/khOtz5+JMbCwOhIYi+MEDJGVnIzk3FwKU30eaWFnB2dYWA5ycMK1TJ1FF0Urbf++e6KIxlTl0/77OAoBZUinOxsZq1YZPeLhOA4CaTHOmuoUBQKpxu+/cgZ2lJf4cPlznQcDqlvU0+FfbhkwbSyQY6epaUtSkUC5Hcm4u0gsK0LhePTS1stLZe59bVIRPTp7Uqo3N169jlKsrxmqZj625tTVmdO6s17xRX/frh8uJiTjO6n0aySgowNDt23Fq5ky9V/WtDquvXME3Z89q1cbkjh3VzhXzvIM1GABMzs1FUHy8xjn9AGUwR9MAIABsun4ddpaW+MXTU+Nta5u0/Hy8sXMnotLTNd7WytQU4zt0ELXfg/fvi55upAv/3LsnKgDYq3lztLGzQ2Ramh56VT18wsPrVAAwMi0N91NS0F4HN2yi09P1do0UGB+P3y5cwKda5EA2NzbGBDe3MonypXI5pDKZTgusAcDFhIQaTRVjCM7ExiIwPl5UpVmJRIKfPT0x+K+/9NAzw5SYnY33fX2xa/x40W0YSSQY5OyMQaVGFcsUCmQXFuo8xcOjnBy85+ur0zaLHQ4Lw0+DB+ukrRNRURpVFlbl5NM2nk9bJMajnBxcTEjQuh2qnZgDkGqF1VeuYLa3d7VXy9Wl9IICeG7fjqD4+JruSpXMjI3R3NoaHk2aoFn9+joNvH58/Hi5EYZivHvkiOik3tXJSCLBTi8vtSt80TMPsrLQb8sW3K1lAXNN/Xz+PN4/elTrYIrYQPXNx49FBY90SWxOt8EuLqKn9SwLDsaHx45pXVSmJj3Jy8PAbdtw5eFDUduP69AB9TWcRlusJkeNAsCxyEhRFXElEonoqfK1ha5GwD3Iyqq2QmO6yjOor6rCxZaePo1gHRQLKs3c2Fjnwb+UvDxMO3CgxlPFGAJtZmEMcnbGsDZtdNgbw/f3nTvYeO2aTts0MTLSefCvSKHA9AMHkKKnGVn3U1I0LthVEV3cyMmSSkXPvnqed1gY0xsZMAYAqdbYcuMGpuzfj1yRyfNr0oOsLAzctk2r3F+GYP+9e9igo4uClLw8vLFzp04ThevLsuBgUVP3SJlHpf/WrTqp7loT/nvuHBb7+2vdTls7O9FTSWo6kAM8HU0m4mLRWCLBVA8P0fv98/JlvHX4MApEBJJqWlR6Ovpt2aJxsaTSxAbCHuXk6DxIoqmcwkKcEDlyenqnTqILXNUGxVNLtXUkLKzaRnHqKnCn7wCgVC7HmN27a/ymSGUKZDKM3b0b0bW4j3WJf3S0VueznwcPFj1t/EU139cXfnqoaK5L8319RVeKVpcu8uTJFAocjYjQQW90d6OG+f8MGwOAVKvsu3cPr27ciLA6VA3NPzoaL69bV2134WurCwkJmHnokE7bvJ+SgpG7dumk6qe+fHX6NH4KCqrpbtRpKXl5GLB1K1ZcvFjTXdHYKw4OOilGITaPG1A7AoAJWVm4JPIGiLajuf66eROvbd5cJ0YMF/MJD8cr69cjVIvRA44NGmCQyEI6h/RQwVAMsb+7Lra2eF3ElL/aojhhu7aqY/pvMV1U7s2SShGg44rCqqTk5WHI9u21MgiYL5Nh4r59dfamV22lzSjATk2b6jVVjCEqUigwYe9erfPW6YMgCPjUz0/noxRV0UWg7LwOq6Lr4gZLdmEhTus5cEo1iwFAqnXuJCejx4YN2H7rVk13pVKFcjm+OXsWw3bs0Nvw8rri+qNHGLVrl0bVPNV1ISEBfbdsqbEKpxUpkMkw58gR/E9ktWMqq0ihwMcnTmDC3r1Izs2t6e6obXibNlg3apRWo5EkEB8EC09NxZ3kZC32rjtigzmdmjZF56ZNtdr3taQkdFu3DvtETkWuLgUyGRb7+2P0339rPWp4qoeH6ErttSFoDChHK4jNe6RN0Lw20PaLWpZUijPV+OVbplDgmJa5bv2io7XOc6Wu6PR0vLZpE67VogIP6QUFGLJ9u95HQb6ITkRFaZWz7LsBA2BpwtT4msiSSjFsxw7sr0Wfu0UKBWZ5e+PX4OBq2d/lxEQ81PL7iS5v5Ogix+qxiAhIq+k8TTWDAUCqlbKkUsw4eBCD//oL4bVwNGBAXBy6rF2LbwMCamXewpzCwmrb15nYWPTfuhWpepyqWxwU1vdQfnWFp6bi1Y0bdTbdmZ75JzQUHf7v/7Dh2rU6k9vt7S5d8O2AAaK379OqFZxsbERtW1sCOYDy/04sXYy+SC8owKR9+zBi165aORrQLzoaHmvW4Ofz53UybVPse5aWn19rRm1kFBSIHmkw0c0NFnX4C7tfdLRWX7J0kTReU9oGro5Uc1XJx7m5eH3zZqy9erVa96vKpcREdFu3rk7kia6rtBkF2MLaGgt69tRhb14MUrkck/btwycnT1b7+eh5cZmZ6LdlC7beuFFt+xSgfQBP1yO5tT1Pc/qv4WMAkGq1UzEx6LRmDT7z88PjWjAq6H5KCqYfOIABW7dqNXVL305GReGtQ4dEJVhXlyAI+DU4GMN27ECWVKq3/RR7mJ2NIdu34zM/vxrLE5lbVITvAgLQbf16rfJ2UeXS8vMx58gR9N68udbnmCm2tG9fzOnWTdS22gS/oLhnvgAAIABJREFUatOIt+j0dISIHG0z1cMDJjqYSg0ARyMi4L56Nb46fbpWjM6+k5yMifv2Ycj27TqrXNu1WTO4N2kiattD9++jqBYVHhD7O2xjYYHR7drpuDfVJ6ewUKtAbHVO/y12PDJS9O+OQhC0HkEoRr5Mhvd8fTF2927EZWbWyP6/DQhAnzqWpqAuOhYZKbqgEgAsfv112Fta6rBHLwYBwG8XLqD3pk24qsX7L5ZCELD5+nV0XbsWF2qgcq02AbPQlBSdV7TXJgBYKJfrLB8h1V4MAFKtJ5XLsSw4GC4rV2Lh8eN4kJVV7X249fgxpvzzDzquXo2dt29XW9JtbWy7eROvbdqk8w8WQDkCbuiOHfjUz69a7/gpBAHLgoPR7o8/8NfNm9U2+jK3qAirr1xBm1Wr8PXZs9U6wvJFdjEhAUO2b0evTZvgEx5eK3KWVeb/3ngDo1xdNdrG0sQEE9zcRO3v4P37tWp6GwB8e/asqO2a1a8PT5H57FTJKyrC/wID4bxyJT7180OSDgouaCokKQnj9+5F57VrdT5FSmzQuEAmq3VpC3bcuiU6V9uLWg1Yl0njNZFRUCB6BNvlxMQaTe9wOCwMHf78E1+fPVstRbvkgoDdd+7A7f/+D9+cPVurgu6GbMmpU6KvFWwsLPBl37467tGLIyQpCT03bsQ73t6Ir6Zge0BcHF7duBGzvb1rLF/4mdhYZIocCPGPHm7iBj94IHrQjDbHQnUHA4BUZ+QVFWHlpUtwXrECQ7Zvx183b+o1EPM4NxcrL11C9w0b0HntWuy+c6fWByCed/3RI7ivXo1FJ07oZIpuYnY2/n3yJDzWrKnRkVmJ2dmYeegQ2qxahd8vXNDbh/69J0+w8PhxNP/9d7x/9KhOqjaS5i4mJGDU33/DacUKfHHqlNb5TfTFxMgIuydMQE9HR7W3GdO+PRqam2u8r8uJiXhbx0V3dOFIeLjoojj6yOmWU1iIX4OD0XL5cryxcyd23b6tl1ylxR5mZ+O3CxfQZe1avLJ+PQ6Ehur8c8PEyAhTRFROlsrlGL93b62rPFool2P8nj2ikqAPa9MGTays9NCr6iE2AKjLpPGaEttnXVWn1Ea+TIbvAgLQcvlyLDpxQi8pZjIKCrD6yhW0++MPTPnnH8Ry1F+18o+Oxuf+/qJvEM/v3h3OIlNykPJG/abr19Fm1SpMO3BAdHGwyhTIZCVFI/tv3arVqE9dEDtqLi0/H6uvXNF5f+SCgD8vXxa17WFO/30h1N3kKfTCkgsC/KKj4Rcdjfd8fdG7RQv0a9UK/Zyc0N3BQXROoCypFOcfPMC5uDgExMbicmJirczvpympXI7lFy9iy40beL97d0zr1AkdGjVSe/vswkL4RUVhz927OBgaWqvuYsdmZODfJ09isb8/Bjo7w6tDB/Rt1Qrt7O0hEZEcPzE7GyEPH+JkVBSORUbq5YuyAIhqN1vHwe78oiJR/ajJIOiDrCz8FBSEn4KC0L5Ro5K/+76tWsGxQQNRbRbK5QhNScH5+HiciY1FUnY2fKZOhY2Fhaj26pma4sjUqXht0yZEqDH6tl+rVmr/P8gUCsRlZuLw/ftYHxJSq/4WS/vi1CmcjonBnG7d0NbeHg3MzNTarlPTprAwMUGBHlIXFBcwOBYZCStTU/Rp1Qp9W7VCv1at8IqDA8yMjUW1WzwiKiAuDufi4hDy8KHePzd6Ojoit7AQ0WqeE1Lz83EtKQk/BwXV2imINx8/hvvq1Vj46qvo3aIFXmrQQO3COp4uLth5+7Ze+6cvsRkZ8I+OhoutrUbb/V2Dx3skLAzvd+8uarvaIruwEMsvXsTyixfRpVkzTHRzwwBnZ3R76SVR54KItDQExsXh4P378IuKqpYE+ukFBaI+w6tj9CMAPMnNFdU/XdzY/zU4GOfi4jC3Wzd0adZM48/zOd264YtTp6pcLz4zE1IRn1e6/IyIz8yEXMNrger4blOkUGDX7dvYdfs2nGxsMNHNDUNat0bP5s3VviYoLSknB0Hx8TgSFobDYWHVknpIE3vv3lX75q9CEHA/JQVLz5zR2+yEn4KCUN/MDKPbtYO5Bue0w7XoPE36U9H1lTeAUeWWTpsGtG2r1w4RacNIIkHLhg3Rxs4OrW1t0ax+fViamsLWwgKWpqaQKxTIl8mQJZUip7AQiVlZiExLQ2RaWo1MEavKSFdXHJkyRePtDoSGYvzevRW+3sLaGr1atICrvT1aWFvD1tISpkZGKFIokCWVIj0/H6EpKbibnIxrSUm1NtBQEXtLS3RzcICzjQ2cbW1ha2EBW0tLmBkbo1Auh1QmQ3ZhIR7n5CA+MxMJWVm4+fhxnao+S2XZWFiU/N23bNgQ9vXqwdLEBJamprA2N0dmQQHkgoC0/Hw8ysnBg8xMxGRkIPTJk3K/3wOcnHB8+nTRQSEAiEpPR+9Nm/g7VQcYl/rcaGNnh6b168PSxAQ2Tz83ZAoF8ouKkF1YiGypFAmlPjdqQ25aItINCxMTdG7aFG3s7OBsawvHBg1gZWYGCxMTmBkbQyqTIaOgABlPg28xGRm4+egRzwNEajKWSNCxSRO42tvD2cYGLRs2RH0zM1iZmZVco2cWFCCnsBAxGRmITk/HneRkjqQlUtfJk4DqKtgfA1gBMABIVKvpKwBIRJX7l7s7dnl5iRpJWiwkKQn9t25lzkgiIiIiItIvNQKAzAFIRET0nN137uDbgACt2uj20kvYO3GizqrbEhERERERicVvJURERCp8FxCArTduaNXG8DZtsGXMGLXzmREREREREekDA4BEREQqCADmHDmidcXr6Z064ev+/XXSJyIiIiIiIjEYACQiIqpAkUKBCXv34tbjx1q183W/fqIqZxIREREREekCA4BERESVyJJK8cbOnUjIytKqnZXDh2Ns+/Y66hUREREREZH6GAAkIiKqQmJ2Nsbs3q1VRV9jiQS7xo9Hr+bNddgzIiIiIiKiqjEASEREpIZrSUmYvH8/ZAqF6DYsTUzgPWUKXO3tddgzIiIiIiKiyjEASEREpKajERGY7+urVRuN6tXDsWnT0NTKSke9IiIiIiIiqhwDgERERBrYcO0afjl/Xqs2XGxt4T1lCqxMTXXUKyIiIiIioooxAEhERKShz/39sfD4cSgEQXQbPRwdsXfiRJgY8aOYiIiIiIj0i986iIiIRFh56RIm7tunVXXgN9q2xZoRI3TYKyIiIiIiovJMaroDREREddWB0FAcCQvD8LZt0bdVK3R3cECz+vVha2mp9si+8W5uuJOcjJWXLum5t0RERERE9KJiAJCIiEgLRQoFvMPC4B0WVtNdISIiIiIiUolTgImIiIiIiIiIiAwYA4BEREREREREREQGjFOAiWqxyLQ0/Hz+vMbb3UlO1kNviIiIiIiIiKguYgCQqBa7n5KCxf7+Nd0NIiIiIiIiIqrDOAWYiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyICZVLC8vcql+/cDRowZEhERERERERER1QpFRRW90qn4SUUBQGuVS6VS7TpERERERERERERE1cG2+AmH8xERERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgNWUQDwfrX2goiIiIiIiIiIiHTpVvGTigKAWdXUESIiIiIiIiIiItK99OInJmJbsLW1rXolIiIiIiIiIiIi0imZTIbs7Gy11xcVADQ1NUVaWpqYTYmIiIiIiIiIiEgL586dQ79+/dRen0VAiIiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYCY13QGqxeRyyB/EQ5GQAEVKCoScHAhFRZAYG0Fi3RASe3sYt2gJ4xYtAGPjmu4tERERERERERGpwAAglSUIkEdEoOhiMGT37kHIz69yE4mFBUw6doTpq71g3NYVkEiqoaNERERERERERKQOBgCphCz0Hgp9fCBPeAABwNVHGbjwMB2xmXmIycpDan4RAKCBmTFaWdfDa4626N+iERwBFIWEoCgkBEaOjjAfNRomHdxq9FiIiIiIiIiIiEiJAUCCkJuDgn37ILt+DQnZBdh0Ow77w5MQl1Xx6L9ApGHHvQQAQAf7+nivsxOmdnCEWWIi8teugUmXLrCY9C9IrKyq6zCIiIiIiIiIiEgFBgBfcPKEBBRs2oDc5CdYERKNFSExyJfJNWojNDUHC07fwS9XorC4RxvM6Ngcshs3kBsbh3pz5sLI0VFPvSciIiIiIiIioqowAPgCk0dHI3/dGtxOeIJ/+VxDfFZeuXVsbRvCw8MVzs4t0KxZYwBAamo6bt68j2vX7kIufxYsTMjOxwenbsM/7gn+HOwB64x05K1cDst578HYpXW1HRcR1W3e3t549OhRje1/zJgxaNq0aY3tX5XQ0FAEBgaWWWZhYYEZM2bUUI+IDNOdO3cQHBxcZpmdnR0mTJhQ7X1RKBTYuHFjueVDhw5Fq1atqr0/REREVLcxAPiCUjxMRP66NTgdnoDpR68ju1BW8pqxsTEmTXoD06aNxpAhfWBqqvrXJC0tA8ePn8Ovv27E9ev3SpYfinyEWylZODimO5wbAvnr1qLego9g5Nhc78dFRHXfsmXLEBQUVGP79/DwqHUBwICAALz33ntlljVu3JgBQCIdO336ND766KMyy9zd3WskACiTyTB37txyy729vRkAJKIK5ebmYuTIkVAoFCXLOnXqhD/++KMGe1Vebm4ubt++XWZZ48aN0bo1B44Q6QsDgC8gIS8P+evX4fj9eEz1uYYihVDyWp8+3bFy5VJ07Vp1EQ87OxtMnToaU6aMwpEjpzF//n+QmPgYABCdkYexh67Ab+KraAIgf+MG1PvkU0is6uvrsIiIiIiIiF5oMpkMgYGBkAtyQAJAAQiCUOV21S08PBy9evUqs2zWrFnYtGlTDfWIyPAZ1XQHqPoV7N2DqNhEvHviVpng32efzUFAwC61gn+lSSQSjB49CNevH8HQoX1Klsdk5mGCdwjyiuRQpKWhYN8+nR0DERERERERVcAMgAXED/lJSwP27gY++gAY3B9o1xpo3hRo5QB0cQfGjQK++wYIPAcUFYnvpwUASwDG4psoIZcDT54A9+4CN64DYfeB9HSg1GhIohcZRwC+YGRh95Fz9Sqm+15HhvTZiXrlyqVYsGCmVm03bmwHH5+NGDfuPfj4nAYA3EjOxI+XIvHf19tBdv0aZD17wqSDZgFGIiKqu44fP46zZ8+WWda2bVvMnj27ZjpERESkZxmFwNlkYGxdzIB0IRhYuRzwPQJIparXSUpSBtl8fYDvvwUcHICZbwPzPwQ0TaMigXbDkh7EA/v3Af4ngWshysBl6RGPRkbKPvV4FRg2HBjrBdjba7FDorqLAcAXTKG3N7bdeYDbKVkly+bPn1Ym+Pfo0SNs27atwjZsbW3RqVMn9OjRA0ZGZc/WJibG2LNnJQYOnI5Ll24CAFbfiME0N0e0t6sPqc8RmLTvAEgkOj4yIjJ0Hh4eMDMz0/t+6tdnqgJdCggIwM8//1xm2ZAhQxgAJCIigxSSBkwOBBLygKvDAXebmu6RmmJjgEULlYG/0gE0Bweg68tAKyfA2vrZKLvwMOUou7w84OFD4Mf/AX+uAj5dDCz6BND3Ndu1EOCH75X9LVWYshyFQhmwPHxQ+Vj0ETBlGrB4CeDkrN8+EtUyDAC+QOQREciNi8PvV6NKlnXt6obly78qs15iYiIWL15cZXsdO3bErl270KlTpzLL69WzxLZty9Cp0wgUFhahSCHgq6D72D/6FSgSEiCPioRxm7a6OSgiemF4e3vDycmpprtBREREpNKGSGDBVaDgaTzqnYtA0FDARIdjHyKyAZkC6NBQd21i+zZg4YdAdrby58aNgbdnA/+aCnR0r3jwRn4+cOYUsHUL4OOt3P4/XwIH9gO79gD6+M6XlgYs/hT4a+uzqb0mJkC3V4A+fQG3jkCzlwBzc2VwMjEBuHUTOHsGCL2n7PPmjcCuHcCnnwOfL9F/sJKolmAA8AVSdOkidtxLQFLus6HcP/zwCczMTFWub21tjX/++afMMoVCgcjISKxbtw63bt3CsGHDcP/+fVhbW5dZr107FyxaNBs//bQWAOAfl4KHOVI41DdH0YVgBgCJiDQwcuRItGnTpsyy6hgNSUREROrLkz8L/gHApVRgxX3gkw66aT9NCow6q5xifGIQ0Fnb0YUKBfD5J8CqFcpRf/XqKUfwffQxoM6MCEtL4I2Rysf9UGVbx44qRwa+1hPY8w/Qf4CWnSzl8iVg6mQgPk75s729ctrx27OA5i0q31YQlAHAtauBbVuUgcD/fgscPwb8vRdoyerqZPhYBORFoVBAduc2fKIelyx69dUuGDasb4WbmJqaYvDgwWUeQ4YMwfz58xEYGAgnJyckJSXB19dX5faLFs2CqakyxqwQBOwPfwgAkN27x0SsREQaaN68ebnzcd++FZ+/iYiIqPp94Ar0blR22dc3gfAs1etrokgB/Os8EJYFPC4ABvkDV1K1aFChAD54T5nvTxCATp2BSyHAl0vVC/49r30H4JAPsGEzYGWlLL4xdiTg76dFJ0vx8QaGDFQG/4yMgPkfAPcigKVfVx38A5SjGN06Aqv+D7h1Dxg1Rrn8ymWgb2/lKEEiA8cA4AtC/jARedk5CE5MK1k2efII0e1ZW1ujZ8+eAIAHDx6oXKdxYzt4er5e8vOBiCQAgJCXB3kF2xAREREREdVFxhJg46uAZamKtnly4N1LgEKoeDt1fBQC+CU9+zlVCnx7W4sGv/sa2Lhe+fyNEUDAeaBde636CIlEWQzE/6xyGnFeHjDJC7h5Q7t2fX2Af01UtmdvD3gfBVb8AdjaimuvlROw/yDw5xrl9N+HD4Fhg5WFTYgMGAOALwjFgwe4+DAdBfJnI++GDOkjuj1BEBAaGgpAmQuwIuPGDSl5fvtJFqRP969ITBC9byIiIiIiotqoQ0NgqUfZZeeSgTUR4tv8IwxYE152mUt9YPOrIhv0PgT89IPy+fA3gL0HlKP2dKXbK8CJU4CdHZCTA0waD2RkiGvrxnVg+r+AwkLAsTlwNggYMlT7PkokwJx5wMEjymNPSQHGjASSk7Vvm6iWYg5AmQyyyEjIw8MgT3gAISUFQk4OBKkUEgsLSOrVg8TeHsYtWsK4TVuYtGunTDJaxyhSUxGRnlvys42NNdzc2lSyRcViYmLwyy+/4NatWxg0aBCGDx9e4bpdujxLeFGkEBCXlQdX2/pQpGozXp2IiIiIiKh2+qQD8E+8siJwsSU3gBGOgJOGcbbjD4FFIWWXNTQFDvUDmliI6NyTJ8B7c5RTgN09gJ179FMEw90D2LUXGDUciIkGPvkY2LhFszayspQ5/3JzgUaNgON+2o9SfJ7nEODvfcD4MUBcLDB7JnDYVznNmMjA1L1Ilo4oUlJQFHAWRVcuQ8jPL1meVyRHcl4hAMBGWgSbggIgLQ3yiAjg9ClILCxg0u0VmPXrD6OmTWuq+xoTcnLwJL+w5OfmzZtVuU1aWhrs7OzKLMvJyUFRUREAYOLEidi2bRuMKjk5OjqWfY+S8wrhagsIOdmadJ+IiPRAJpMhLCwMqampyMjIgFQqha2tLWxsbNC2bVs0bKjLEoO116NHjxAZGYmsrCzk5uZCIpHAxsYG9evXh4uLC5o0aVLTXdSYQqFAVFQUYmJikJmZCSMjIzRu3Bht27bFSy+9VK19ycnJQUhICJKTk9GwYUO0adMGLi4uotrKzs5GZGQkHj58iLy8PABAo0aN0Lx5czg7O8Okmm/SCoKA2NhYxMTEIPXpzU1ra2s4OTmhdevW1d4fTUilUoSFhSExMRE5OTkAADs7O7Ro0QLOzs4wNVVdJE5f0tPTERoaisePH0Mmk8HS0hLNmzdH+/btYWGhWZQjJSUFSUlJSE5ORlpaGho0aAB7e3u4u7vD0tJST0dA9IypkXIqcM/jQOHTCVhZRcC8S8CxgYC6RYHvZQJTzgOyUtOHTYyAna8BHmILgHz1hTIIWK8esHO3uHx/6ho4CFi8RFlsY8dfyunBfTTIYbx0CRAZoRyAs2O37oN/xYYNB35aBvx7IXDiOLBlEzD7Xf3si6gG1d6rEj0R8vIg9fFG0cWLgFyOW0+y8U/4QwQ/TEdsZh4e50nLrG9tZoLejnYY0MIeg1o1gqstUHQ+CEUXgmHaoyfMR46CpEGDGjoaDSjkkJUqvFFcnKMyJiYm6NatW7nlycnJCA8Px/79+yGXy7F58+YKvyQ+X6VSLjz99JKzCAgR1Q3R0dHw9/cvt9zZ2Rmenp6i2w0ICEBYWFi55Z6ennB2di6zLCoqCqdOnSqzzMLCAjNmzNB4v48fP8bWrVvh6+uLkJCQkiDK8yQSCdq1a4cBAwbg3XffRdeuXatsWy6XY9OmTWWW3bhRPu9PQkIC1q9fX275hAkTyt140oesrCzs2rULx48fx5kzZ5CVVXl29iZNmqBHjx6YMGECxo4dWyOB0RMnTiAuLq7MsvHjx8Pe3r7MsuDgYKxZswY+Pj7IqGC6lbOzM0aNGoU5c+ZUmsajIg8ePMCxY8fKLOvQoQP69CmbWiQuLg5ffvkl9u3bh8LCZzchx48fj/3796u9v5iYGGzbtg1HjhzBzZs3IZfLVa5nZWWF3r17Y+LEiZg8eTKsra01OCrN3Lp1C3/++Se8vb3x+PFjlevUr18fAwYMwPTp0zFu3LhqD6ipkpqaiu3bt+PAgQO4dOlSmf+X0iwtLdG7d2+MHz8e06ZNE/VeHj9+HPHx8WWWPf83np+fj82bN2Pr1q0ICQmBIJRPkmZpaQlPT08sWrQI/fr1q3B/6enpWLt2LXbu3Im7d1Xn8TIzM0PPnj0xb948TJo0qVYHaKnu62ILfOYGfH/n2bITScBf0cBMNe6BpEiBMQHKir+l/dJVOZJQlNB7wPZtyueffQF0cBPZkAY+XwLs26usEvzVF8opvBI1QqC3bgIb1imfL1ykDCbq0wcLgJPHlQHApUuA8RMBG23LLBPVDd4AhIoepqamQl1UFBoqZH+1RMj48H3hj0FjBVfbzgLQWqPHwJY9hRMTpglZCz4QshZ8IGR/+YVQdOd2TR9alfL37BaW9hpechytWw+ocN2rV68KAAR7e/sK10lJSRFGjhwpABCGDx9e4XqxsQll3j//idOFrAUfCPl/79LqeIjIcL3++usqP3tiYmJqpD8FBQWCu7t7uf6Ym5sLt2+LO/9HR0cLVlZW5drs0qWLIJVKy62/e/fucus2btxYo32mp6cLc+bMEczMzCr8fK/s4enpWeX/QUFBgai2ix9i3091FRQUCF9//bVga2sruo8NGzYUli1bpvL/SZ/GjBlTri83btwoeT0uLk4YMWKERscikUiEKVOmCA8fPtSoL0ePHi3X1rx588qsc/DgQaFBgwYq9zt+/Hi19vPo0SPhrbfeEkxMTDT+f7K1tRV++OEHobCwUKNjW7lyZbm23N3ATNDsAAAgAElEQVTdS17PyMgQZs2aJUgkEo3607p1a+HQoUMa9UUqlapsy9vbW6N2BEEQcnJyhMWLF6s871T1sLGxEX755RehqKhIo30WXydW9Dfu7+8vODk5adSXd955R+Xf3l9//SXY29tr1Fa3bt2EqKgojd9LIk0UyAXB/YggYMezh90+QXiYV/l2Urkg9D1ZdjvsEIQ5F6veZ0ZGhmBsbCzAAgKsIMAUQp8+fZQvzn5LEEwhCE7NBSGvik7oko+3cr+mEISAs4IgCMK1a9eUf4+WT/tpDGHWrFnPthk3Wrl+61aCkJtbPf2MjhIEa0vlfr/9T/Xsk0gLAQEB6nzmLcRTL8zE9sKzZ5C/bg0uhMWh/54L+PDUbYSn52jczun4FAzdfxFeh6/gUW4BhOxs5G9Yj0JdlTfXE0n9+mhm9Ww0XkLCIxQVyUS3Z29vj82bN0MikeDYsWNITExUuV5kZNnRCg71zZVPjI1VrE1EVPuYm5vjr7/+Kjd6RyqVYtasWZDJNDuXCoKA2bNnIzc3t8xyCwsLbN++vdzIaV0IDg6Gm5sb1q9fX+GIn6r4+fmhU6dOKkdD1gUJCQno27cvvv32W6Snp4tuJzMzE59++imGDBlS5cjB6hIYGIiuXbvC19dXo+0EQcDff/+Nzp074/Tp0zrrz86dOzFhwgRkZ4tP93Hs2DF07NgRW7du1fhvDFCOBluyZAm6d++O6Oho0f0oLS4uDr169cLmzZtVjlSrTFRUFMaOHYt58+aJOh5tXL9+HV26dMFPP/1U7ryjjoyMDHz22Wfo168fHj16pJM+rVmzBkOHDkVsbKxG223cuBFeXl5lRoEuWrQIM2bMKJmCra6QkBC89tprePDggUbbEWnC3AjY2Es5bbdYmhT44ApQ0WlEADD/irJwSGkDmwJ/dNeiM2lpwP69yucLFgLVOR1++AjAo5Py+fq1Va8fHgYc9VE+/+o/yunK1cHZ5dnU37WrlVWHiQzICxEALDx5AtKDB7DmWjSG7b+EG8mZZV63tq6P6dPHYPnyL3H48DpcuXIQV68ewtGjm/DTT59i0KDesLAwL7ONf1wKXv87GAEJqYAgQHrEG1Jfn+o8LI252T+bqiyVFuL6de3KnDdu3Bg2T4dFJyUlqVzn9OkLJc8bWZrBob4yh4vi4UOt9k1EVJ26du2Kr776qtzyK1eu4Ndff9WorbVr1+LMmTPllv/vf/+Du7u76D5WJCgoCMOGDavwPK2J7OxsjBs3DlevXtVBz6pPUlISXnvtNVy+fFlnbQYEBGDUqFFQKGo2pUVQUBCGDh2KtLS0qleuwJMnT/DGG29oHEBUJTAwELNmzapwmq46tm3bhlGjRmkc0FHl5s2bePXVV3Hnzp2qV65EcnIyPD09ERoaqlU769atw4QJE6otCHjy5En06dMHkZGRWrcVHByMvn37an0u2bBhA95//33RvyO+vr5YunQpAODzzz/H8uXLRffl0aNHmDJliujtidTR0x74qF3ZZQcTgH3xqtf/7R6w6bk/2bYNgL19ADNtvr17H1IGtCwsgBlvadGQCEZGwDtzlM99jygrA1dm62ZlkRIHB2DKNP33r7QFC5U5B1NSlO8ZkQEx+MQXRRcvIt/nCJYE3sfqG7FlXmvXzgXffbcQo0cPKhfgKzZ8eD98/vlcZGZm488/t2P58s1ITVXm1EnOk2LswStYN8QDk9o5ovDkCUisrWGmSWLT6iItgHsjazQ0N0WmVFnEY/duH/To0Vl0k7du3UJ6ejqMjY3h5OSkcp0TJwJLnvdv0QhGT/M9SBroMdksEZEeLFmyBEeOHCkX/Prmm28wevRouLlVnUcnNjYWn3/+ebnlAwYMwMKFC1VsoZ3MzExMnjy5wpFYxsbG6NKlCzw8PErycqWmpuLWrVu4ceOGylFOOTk5eOeddxASEgJjFaO5bW1ty/ycn5+PgoKCMstMTU1RX0XScVXt6cKsWbPK5SIrzdHRES+//DIcHR3RsGFDSKXSkoIEN27cqHDU5Llz57B+/XrMmzdPL/2uSkJCAmbMmIH8UsXMitna2qJz585o2bIlpFIpHjx4gOvXr6tcF1COaJ08eTKCgoLQpUsXUf3JzMzEm2++KXqUKaDMG/fOO+9UGhxq164dPDw84OjoCKlUioSEBFy8eBEpKSkq13/y5AmGDh2Kq1eviiqAolAo8OabbyIiIqLcaxYWFnj55ZfRsmVLmJqaIj4+Hnfv3q2wLwBw+PBhLFy4EH/++afGfdHElStX4OXlVemov86dO8Pd3R1NmjRBbm4uEhISEBQUVOHo1oiICIwbNw4BAQEwN1d97VyZwMBALFiwoMy5xcHBARMnTsTLL78Me3t7pKen4/Lly9izZw+Sk5NVtrNs2TIkJyeXyzlqZWWFMWPGoF+/fnB0dER2djbu3r2Lffv2qcy5CgDnz5/H8ePHMWzYMI2Ph0hd33UCvBOAiKcfx4IALLgKDGwGNCr1p+SdACx+LnWurRng3R+w1/xPrqziwSqDPIHn8sdWC68JyiIbubnA2dOAYwvV6wkCsH+f8vnU6YCIc41WnJyV+QZPnlDmLvzX1OrdP1ENMIgcgLIH8ULWxx8J/37FUyidh87MrL2wbNkGobBQs1wmgiAImZnZwrRpi8q0Z2rURjg09l/KvIAffyTIamE+kQLvw0LWgg+EmR37lfT7pZd6qXwPqsoBmJ2dLRw9elRwcXERAAiTJ09Wud7FizfKvE9rPceV5E4s8Dmi0+MjIsNR23IAlnb37l3BwsKiXN969uwpyGSySrdVKBTC4MGDVebXiouLq3RbsTkAFy5cqPK9NDc3F7788kshKSmpwm2jo6OFKVOmVHgtsGPHjir3LwiCsHjx4nLbDhkyRK1tdcHPz6/CYxgwYIBw/vx5QaFQVLh9enq6sGrVKqFRo0Yq2+jQoUO1HIeqHICq8qe1bdtW2LNnj5Cfn1+ujYyMDGHDhg2Co6Njhe9Jhw4dVG5bWkU5AGfMmFFuuYWFhfDGG28IS5YsEXbs2CH4+voKd+7cUdluYmJihe8zAMHLy0u4evWqym0LCwsFHx8fwcPDo8LtBw8eXOn/tSCozgGoKt+fnZ2dsGrVKiEtLU1lX7y9vYUePXpUmpOnqlx+2uQATE1NFVq2bFnhdfwHH3wgxMbGqtw2Pz9f2LNnj9C6desK+7506dIq+6AqB2Dp86e5ubnw008/VZhPMycnR3j77bcrfQ9LP958803h8ePHKtuSyWTCsmXLlHnRVGw7ffr0Ko+HSFtnHwuC0XM5/aadf/b6zXRBaLCn7OumuwThpGZpWlXnAHztNUF4qZEyt93a1bo9ME306q7sw6eLKs4BeO/us3yBVy7XTD83rlfu366BIBQU1EwfiNSgaQ7AitT9AKBMJuT88D/h75GTBEmpIJSNTVfh9OkLWje/du0uwdjYtaRdK1NX4fL0t4SsBR8IOd9/JwgaJp3WN+kpfyFrwQeCj9cUoXRQ7tdfN5ZbtzgAqM6jb9++QkZGhsp9Dh36Vsl+rM3aCfFz55YEAAsDz+n7kImojqrNAUBBEIRff/1VZf9+/vnnSrdbt26dyu22b99e5T7FBAClUqlgZ2dXbjtLS0vh3Dn1z8GLFi1S2e+xY8eqtX1NBwDHjx+vsv/z5s2rMhhUWkxMTIUBlbCwMD0egZKqAKCqAEhOTk6VbaWlpQleXl4VtvPjjz9Wur2qAGDxTcHiR4MGDYQVK1YI6enpah/j1KlTK7zuVOfvRBCUv/cffvhhhce2c+fOSrdXFQB8/tG7d28hISGhyr4UFRUJ3333XYUFQ5ydnYWCSr5YahMAfOedd1Ru+9JLLwkhISFVbi8IyqI5FQXgzM3Nq7xxoSoAWPyoV6+e4OfnV2UfFAqFWr/7//3vf9U6ph9//FHl9s2bN1dreyJtzb9cNsAn2SkI3gmCkJQnCE6Hyr+2OlzzfagKAPZt2eJZUO3Gdd0fmLoWfaTsw6B+FQcAi4NvzewFQcPiQzoTE/3s/bp8qWb6QKQGTQOABjsFuDDwHBKjYjH35E0IT5dZWVnizJmd6NKlg9btz507BQqFAvPnfw0AyC2S499n78LHqycUyckoDDgLs8GeWu9HVyQNlPn/Xne0Q+cm1riZrJza8e23qzBlyig4ODQpWdfW1hYTJ06stD1HR0d4enpi2LBhMDIqn4xi//7jZab/vt/VGTbmzxLoS6yttToeInrxrF27ttz0Ul2bNGkSnJ2dK13n448/xuHDhxEYGFhm+ddff43Ro0ejffv25baJj4/Hp59+qnJ/06dP167TFQgICFCZF+4///kP+vTpo3Y7P/zwA/bv319uCq2fnx8UCoXKz4DaQiaT4fjx4+WWu7u7Y9WqVZA8TUuhDicnJ/zxxx8YM2ZMudciIiLg6uqqVV+15eXlhS1btqg1jdrW1hZ79uzBuHHj4ONTPn/xsmXLsHDhQlhYWKi9/9KFNtq3b49jx45VmB5Elbt37+Lvv/8ut9zIyAhbt27F1KnqTcEyMzPDypUrkZ+fj40bN5Z7/ZtvvsHkyZNFTzd3d3eHr69vSQ7kypiYmGDp0qUwNTXFF198Ue71mJgY7Nu3T+fngDt37mDz5s3lljdu3BjBwcFq/7+Ym5tj06ZNMDMzw7p168q8JpVK8csvv4iexrx69WoMHjy4yvUkEgmWL18OHx+fCqeFz5gxQ2WOVlU+/fRTrFu3rlzxkcTERBQWFuqlCBNRaT92AXwSgfinM/MFAZh/GWheD4h9Li3eB67Ae211s9/6iYnK7P+mpoBruyrX15uOT3Mdh6uekg8AuHVT+W/Xl5W5+GpCKyegSRMgOVnZn+49aqYfRDpmmAFAmQyF/n74/WoUsgqfJVlev/5/VQb/Ro0aVZLceO/evXBxcalw3ffem4bIyDj8/rvyIiswIQ3/hD/EBFcHFJ7yh2mfvpBUd86CChg1bab8VyLBb/06wnPfBQgAsrNzMXbsPJw+vQP16yurK7m4uGDv3r2i93X/fhRmzXqW48rG3BTvd3Uqs46kYdUXzkREpf38889630fXrl2rDAAWByQ6d+6MnFJJrAsKCjBr1iwEBgaWCS4IgoB33323XE4tBwcHrFmzRrcHUIqqfGUA8Oabb2rUjrm5Oby8vLBixYoyy3Nzc/HkyRM0bdpUdB/17f79+yrzny1YsKBcVWd1jBgxAlZWVuXa1FVlVLFatmyJ7du3axTUMjExwe7du9GxY0fExcWVeS0tLQ0HDhxQO+hWWqNGjeDj46NR8A8AVqxYoTLn5LvvvqtxPyQSCVavXo3AwMByed8iIiLg6+uL0aNHa9QmoAwu/vPPP2oF/0pbvHgxrl27hn379pV7bd26dToPAP7888/litNIJBLs2rVL4/8XiUSClStX4tKlS7hxo2xish07duCXX35BPQ2rcw4aNAgzZ85Ue31nZ2f06tULQUFB5V6zsbHBqlWr1G7L2NgYU6dOxQ8//FBmuSAISE1NFZUjkkgT1qbA2h7AiLMoqQKckKd8lDbUAfi9m+72+5Lw9JzQpGn1Vv99XstWyn/T0oAKctIi6mkFlHblb6hWG4lEuf/kZCA6qub6QaRjtfe2vRaKrl9DYlIKtt15ULJsypRRmDq18ou9oKAg+Pj4ICQkBCEhIdiyZUuV+/rvfz9Gq1aOz36+EKEcZ5mXB1lI7amSaNSsmfJEBqDHSzaY7vYs6eqVK7cwYcL7yM8vqGhztYWGRmH48NnIzlZ+OZIAWDXIHdZmylhz8aW9kU1DrfdFRFRTXFxcsGzZsnLLL1y4UC5QtnnzZpw8ebLMMolEgi1btpQU3tAHVZU6jY2N4eDgoHFbPXr0gIuLS7lHenq6LrqqNxUV/hg6dKio9ip6/6RSqaj2dEVMEAZQFkz47bffVL72fHEFdS1duhStW7fWaJuCggLs37+/3HJbW1t8//33ovphampa4bHt3LlTVJsfffSR6JGev/32G6ysrMotDwoKwr1790S1qUpGRobK93LMmDFqjbhTxdzcXGW188zMTFGVo1UVQqrKK6+8onL5vHnz0LChZteUPXqoHsnzfLEiIn0Z7gDMqOReo1tDYPdrgIn6g9SrVHLbQs8zKapUfN1TWKisSKxK8U01x+bV06eKODz9jq9l5XOi2sQgA4Cyq1ex+XY8CuTKOx3Gxsb45psFVW5XfLHbtWtXAMDWrVsrrUIHAPXqWeKXX55dyMRk5uFykvILUdGVK6L6rw8SMzMYNWpU8vOyfh3wSrNnF0wnTgTi1VcnICwsWtXmajl5MgivvTYJsbEJJcs+eNkZY9s0e9YPABJLS44AJKI6b+7cuSoDSUuXLkV4eDgAZZXWf//73+XWef/99zFkyBC99s9ExbQZuVyOhIQEFWtXbsqUKYiKiir3UDXduTZxdXXFunXryjzWr1+PFi0qqDyoBn1VKhbLyckJkyZNEr39+PHjVVawPnPmDJ48eaJRW/b29pg9e7bGfbh48SIyMjLKLX/zzTfRqNS1i6ZGjBiBtm3Lz587ceJEuRFyVTExMcGiRYtE96VFixZ4++23Vb7m5+cnut3neXt7qwxkLVmyRKt2Bw0ahJdffrnc8mPHjmnUjrW1Nfr376/x/hs3bqxy+dixYzVuq0mTJlWvRKRnv70MNFMxEK+ROXC4H2Cj49noJWPeRYx+16nS+y8qUr1O9tNSyTWdMqr45kJOTuXrEdUhBhcAFAoLIYsIx8m4ZxetXl5D4Opa+ZSuzMxM7N27FxKJBDt37kSzZs2QkJCg1kXZuHFD0Ljxs1Ece8MeAgDksTEQVEw9qinGTs/eg3qmxtg3qjva2tYvWXbr1n107z4O3367ChkZWaqaUCk+/iEmT16AoUPfQnp6Zsnyka2b4tve5XNMGDk4lltGRFTXSCQSbNy4sdx0wPz8fMyaNQtyuRxz5sxBZmZmmdfbt29fLdOZK/rCXB37ri3atGmDOXPmlHm8++67GuX+e15qaqoOe6i9adOmaXU8gDKH2vMEQcDVq5rNZBjy/+zdd3xT1fvA8U9W96CDVXYpZVOEsveeIkMQB8OF4AQBcSsigoo/EUVA5KsIyBBEkGEVVPaeskfLKKuU0dLdJvn9ETrSJG0zmpb2eb9eeZGce++55xYakuee8zzdu5ud5ZafPXv2mG13xNJYc8uH4+LisoL0BdW1a1cqVKiQ/455sLTs1dL12yIiIsKkrXr16jRr1szuvs0tm7Z27E2bNrVp+b2rmZQ6KpXK4szAvFiT21KIwhKVAPfMxL/6VIIQb8efL2ueehHPWDc6v6Wcm5lro4s6x3Dm+a28YSREcVbicgDqLl7kZkIyR29mB7D69u2c73E///wzSUlJdO7cmbp16zJ06FBmzpzJggUL6NmzZ57HajRqHnusD998swiADZExfNGxPuh0aC9eRG3mznpRUNWoQfq+vVmvA9w1/D6gOcM3HmTvNcOd93v3Evnww1l8+eUPPPFEP7p3b0unTi3x9TX+n+jGjVj+/HM7y5ev588/t5GenmG0fXRYdaa1r4PKzJcSlQ3Lz4QQok2bNrgXct6agIAAq/avXLkys2bNMgmg7Nixg549e7Jp0yajdo1Gw6JFi2xarmmtVq1amW2fPXs2Op2OKVOmWH29pV1ERITVs+IKW9++fe3uY9CgQbz55psm7fv27aNXr14F7sfSv7n87N6926QtMDDQIUGrnj17MnnyZJP2vXv3WjWD9eGHH7Z7LOHh4VSrVs0k56IjA4C7du0yacvvc2xBdejQwaTt7NmzVhXPcGTO0MDAwGI3I1eIgriSBAO2QmKG6bbFUfBcCLQ1fw/PZlkJO27fMgTY7LxxZLPYWMOfbm4oLN0wyvysV9QTaTLPX5Q5E4VwsBIXANReu8ruq3fQ3b9zoFAo6N69bb7HZVaKe/755wHDXdqZM2eydu1abt68aXEmRaauXdtkBQCvJKQQm5xGoLsLuqtXoBgFAHML8nJl46CWfLDjFLMPXcjK0RcXd485c5YwZ84SFAoFFSqUxcvLA41GzfXrsdy+bbpUB8DXVcNHbWrzdAPLy6uUFSUAKISw3uLFi61OYO8Mw4YNY/Xq1axevdqoPXfwDwzLg22ZsWKLsLAw6tSpw6lTp0y2zZkzh6VLlzJmzBgGDBhAeHi43bPISrLY2FgWLFjA1KlTi3ooRtRqNWFhYXb3U7NmTfz8/ExyOu6zMpWJuSWiBXHw4EGTtsx0LPZq2LAhKpXKJKXLgQMHzM58tMTWa8stPDzcJAAYGRlJUlKS3TcG4uPjTarbAg5bql+5smk+rvT0dE6fPk3Dhg0L1Icjb34440aKEI6WlGEI/uUu+pFJq4fnd8PB3uDuwPj2NZUayICbNw2BLS+vfI8pFBeiDH8GlkVvqVhm2bJwEoi54bRhmXXjfi7CfOIAQjxISlwAUH/3DpfisysKlSsXQIUKef/SHj16lIMHDxIQEMCAAQMAaNy4MWFhYRw5coTFixczbty4PPuoW9c44fXle8kEurugN5PTpqgoKwah8PJCnyuPgUap4JN2dekfUpFP957jr4vGsxv0ej3XrsXk2bdKoWBE/Sq826oWge553wVWVpIAoBCiZJk7dy7bt2/Pc3ZYy5Yteeutt5w2JqVSybRp0xg4cKDZ6qp3795l2rRpTJs2jaCgILp160a7du1o27YttWubpm8oDdLT07lw4QJnzpzh9OnTHDt2jCNHjnDs2DHS0tKKengmateu7ZBZsQqFgiZNmrB582aj9itXrljVj60zSs393jRq1MimvnLz9PSkZs2aJkt+rancrFQqHRJoBUMgcdWqVSbtd+7csTugdf36dbO/69HR0WYrEFsrwUIerBMnThQ4AChEaabTwzO7YV+uTBJ1fOBUjuxLp+Lhw6PwqWPugwCQVK0aXDwPWi0cPwYtWjquc2v8d9TwZ926lvepVh3YAmfPOmNElp27X424et6pxIR4kJS8AGBKCvFp2fOpAwPzr3Q0b948AEaOHGmUY2T48OGMHz+eBQsW5BsALFfO+EPv7WRDUgd9UvHJAYhCgapWKBmHTO+0g6E68KpHwjkUE8ei49H8c/kW5+/mPf7G5Xx5NLQiA2tVoLJ3Ab6EKJUyA1AIUeKUK1eOuXPnMmjQILPbPT09+emnn8wW5ihM/fv3Z/Lkybz//vt57nf16lUWLlzIwoULAcMyvTZt2tCpUyd69uxJSEiIM4brVBcvXmTr1q0cPnyYM2fOcObMGaKioki3lJS8GHLkcspKlUzz85orzJEXa6uxgqHyanJyskm7PcU/citfvrxJANCaa/P29nZY+gFzs+jAEAA093dgjdu3b5ttN1fB15FiM5f0CSHy9NF/sNx4AjCNysC27vDUTvg9R42u/zsJg6tBuD+OUaEiZKTClWjYsb3oAoA7thv+DM8jxUP9BoY/LXxndYo7d7JnK9arX3TjEMLBSlwAEJ3e7N1PS5KTk1m6dCkAzzzzjNG2p556ijfffJPjx4+zd+9emjdvXuB+lZkrqRTFq86KunZtiwHATA+V8+WhcoYP8ZfvJbP/ehxXE1JIztCSptUR6O5CNV93Ggb6EuRlYeq2BaoqVVFYmu4thBAPsIEDB/L4449n/Z+S08SJE81WI3WG9957j1q1ajFmzJgCBz1u3LjBr7/+yq+//goYZpo988wzjBw58oGuoHn69Gm+//57VqxYwaVLl4p6OHazJeBmSe5iNmB9ANDHhoqNls7hyGszNy5rrq2wf86AyfJrW1gKABa2e5kVO4UQFi27CFOOGbeVd4M1HcFHA982g20xcPf+ZPMMPTy7C/b2BFdHLAVWKKBDR/h5MWxcD69PcECnVoqKhFMnDc87dLK8X2Zw8tJFQxCuKGbgbdtiKP6h0UBT56RuEcIZild0ygEUbm6UccuuLhYbm/cHql9++YU7d+6gVqsZPnw44eHhWY/evXtnJRdesGBBnv3cvGn8ocvH9X5stYBJkZ1FVdu6PDBVvN0ZUKsCLz1UnQnNavJ2y1qMCqtGj+rlsoJ/BQ+3gqqIvgALIURhS09P56yF5SqLFy8mKclCwh8nGDp0KOfPn+ftt9/Gzy//mfG5nT59mkmTJhEcHMzkyZNJSUkphFEWnrNnz9KnTx/q1KnDjBkzbAr+BQYG8vzzz9tdCdaRHJkDzVyQLC4uzqqbqkobKjZaWlZqSzVhS7y9TUtq5q7OnZfC/jkD6BxQZdKaa3IkCQAKkbe9t+DZ3YYlwJncVPBrB6h+/62usgd8lmvJ79G7MP24Awfy8P1K3tu3QfRlB3ZcQMuXGYJq/v7QJo8c/eHNoEwZQ7GS39c6b3w5ZZ63SVOw4XOTEMVVyQsAenlT2dst63VMzC3u3LH8gSiz+Ee1atXMbq9xv3DGsmXLSMyjEtGxY8ZLS6r63P+wWMy+JCn9/VEG2bfEJDdr0saraoU69NxCCFFcfPzxx+zfv9/stnPnzjk1/585/v7+TJ06lWvXrrFy5UoGDx5sdTAwMTGRDz/8kPbt21udH66o/PHHHzRt2pQNGzYU+JgyZcrQunVrRo0axdy5c9m7dy/Xr1/nu+++sziDqyhYCp7ZwlyA2tXVtdCLw5gLzkHhX5s1S3odORZLnyVtCcznVlRFMRz58xGipLl8v+JvUo6KvwrguxbQOlemg+dCoEuue0zTTsBR+ycIG/TqYwi+abXw3VwHdVpA6emwYL7h+aDBkNeKMFdXw1gBFv9kCAQ607178JthBQT9Bzr33EIUshK3BFifkkyjwOylGnq9ns2bd/Hooz1N9j1z5gzbt29HpVLxzz//UKWKaeXalJQUgoKCuHPnDitXrmTEiBFmz/vnn9uzntcs40nZ+4UwdLdumd2/KKkbNSLtahF8cVOpUAUHO/+8QghRyPbs2cMnn3yS5z7ffPMNgwYNon379m9TAHEAACAASURBVE4alXmurq4MGjSIQYMGodVq2bdvH5s3b2br1q3s3LmzQF/m9+3bR+/evdmxYwdeRVVJsACOHDnCgAED8pyx6O/vT/fu3WnZsiX16tWjXr16dudicxZHzvgytwTV399RyacssxT4cuS1mVvua03ArbB/zuCYAKClPg4dOkTjxo3t7l8IYZ2EDHjkX7ia6x7EW/VhmJlVrZmBwbD1hmMBUrXw3B7Y2QPU9t6P8fCA4SNh5v/B3G/htdfBxuJNVlv8E1y8YFiKPPrF/PcfPhKWLjHkAdy2Fdp3KOwRZlv4A8TFGVbyPfGk884rhBOUvBmAWi3Vfd2p45/9hWTJkjVm950/fz56vZ5evXqZDf4BuLm5MXToUAD+97//md1Hq9WyceOWrNddqmXfzlEWw7LhGgdV1rOWqnp1FMVsSbQQQtgrKSmJ4cOHk5GRked+Op2OZ555Js/Z5M6mUqlo2bIl77zzDhEREdy5c4c9e/bw+eef06lTp6w0GOYcPXqUyZMnO3G01hszZozF4F+fPn34+++/iYmJYenSpbz22mt069btgQn+AVy7dq1Q+3JEUCo/Li4uZmeuxcTEOOwc5qoMWxPcTEhIcNgyV0t/Z474WVu6pryqkwshCocOGLELDuWK+Q+oAlPyiMcHe8HUXNv33YIvTzpoYGNfB3d3uHsXPvrAQZ3mIy4OPrxfjKzPw9CwAN9FO3eBBveri3/0gfNmASYkwIzPDM8HPgpSvFKUMCUuAIibYUnHkNrZv6wbN27hypUbRrulpaXx008/AfDss8/m2WXmrL+tW7dy6tQpk+1Ll67j4sXsGXXdinkAUFmpMkon3NXPTW1l/kEhhHgQTJw40aTCqK+vLx9//LHJvufPny/ypcB5UavVNG/enAkTJvD3339z/fp1pk+fbjEf25w5c4rt8r89e/awa9cuk3a1Ws2PP/7IunXr8g1yFndnz551WGDqwIEDJm3OKvhirprx4cOHHdJ3UlKSye8nQFkrPp/p9XqHjWffvn0mbRUqVHDITFpL1/SgLNcXoiR55zD8mivdbBN/+Kl1/l/AXwqFtrl+nT84CqfjHTCwoErw2jjD8+/mwtYtee/vCG+Mh2tXDTPqPs57tUQWhQLevR803LoFflleeOPLafpUuHoF1Gp4+13nnFMIJypxAUCFhyEAOLh2EMr7eWtSU9MYP974zWbt2rXExMRQvnx5+vTpk2efLVq0oGFDwx2IhQsXGm1LT89gypRvsl7X8vOia7Xsd2yFAyvHOZK6UZjzzynLT4QQJUxERARz5swxaf/iiy9455136NGjh8m22bNns2WLEz5wO0BgYCCTJk3i2LFjVK9e3WR7YmIiW7dudf7ACsBSzr8pU6ZYTOfxoNHpdBw6dMjufiIjI83OEmvatKndfRdEeLhphcXDhw9bVYDEksOHD6PVak3amzRpYlU/lvJ7WmvPnj0mbS1atHBI3+XLl6dq1aom7bt373ZI/0KIglkYCZ/mKt5R0R1+6wBeBUjApVLA/BbgnuP+VLIWnt8DWkdMhHvzHQipZcgFOPxJQ3CusPz0I/x4fxXd6xOgXv2CHztgELS7nzZl7CtwJdrhwzOycwf83wzD81GjoU7dwj2fEEWg5AUA/Qwz26r5uDOsXvYynuXL1xst0y1fvjzz5s1jyZIlaDQak35ymzt3LvPmzaNZs2ZG7W+88SlnzkRlvX6zeU1UORJmF9sAYEGmXjuQMqgSyvLFp3KiEELY6/bt2zzzzDMmQYru3bvzzDPPADBv3jyTIgc6nY5nn322UJcCp6WlcefOHZNHfsuULalevTozZ840u+3EiRP2DLXQHD161KTNy8uLV1991a5+i1sF5NWrV9vdx8qVK822t2zZ0u6+C8JcAOzu3bts377dzN7WWbdundn2Vq1aWdXPb7/9ZvdY9uzZY7YCtaMCgGD+uhwVpI+KimLTpk1Gj507dzqkbyFKiu0xMHov5Pxk4KGG1e2hihV1eur4wge5vq5ti4E5phOarefhAT8uMhTbuHoFHukLt287oONcIv6Al0Yblu82aw7vvG/d8QoFzJ4Lnp4QGwtDB4OZok4OcSUanngMMjKgWnWYbLqKQ4iSoMQFAJUVs4NMH7aug59bds65xx57lYMHDbdj2rVrx6hRo+jSpUuB+s2sBjhwYHYloKVLf2fmzB+yXjcM9GFgaEWj4xQ+xTMAqAoORuHExO2axg/lv5MQQjxAxowZw9WrxnfNfXx8mD9/flbl1GrVqjFt2jSTYwt7KfDGjRvx9/c3eVhTCTe37t27m60Ie7swvjQ4wPXr103awsLC7KqUmpCQQHR0Ic9AsNKyZctsDuyCYXmrpRzH1gbJbGUpALZkyRK7+tXpdCxatMik3dfXl3r16lnV17Zt27hw4YJd4/n+++/Ntrdt29aufnMy93d28uRJs8vhrfX888/TrVs3o8dnn31md79ClBQXEmHQNkjJMelYqYAFLaFFoOXjLHm9DoTnytr09hGIckTmjeYt4OtvDUG2w4ege2eIvuyAju9b9QsMHgCpqYZlx8tX5l3515I6deHLWYZx7tkNQx+F5GTHjRPg+jXo3cMQDHV1hUU/QzGdxCOEvUpeANA/IKvQRIC7hqlta2dtu3cvkd69n2Xv3iN2n2fevKUMHz4h67W3i5qFvRsbzf4zjMf5ufYKRKlE3aCB004ny3+FECXJzz//zIoVK0zaP/vsM5MleGPGjKFdu3Ym+xbmUmBLhSzMLT8sKLVajVJp+rHBt5h+SE5NTTVp8/HxsavPn3/+2a5gW2G4fv06CxYssPn4n3/+mdOnT5u0t27dmooVK5o5wvFatGhhNn/dkiVLTILs1liyZInZgG3Pnj3N/lvOi16vz7fSd17OnDljNhhZs2ZNhwYA+/btazZQb2kGb0EdPnyYv//+26S9a9eudvUrREniqYLKue4xvdcAhlazrT+NEr5vCS453q7upZvOMLTZyGfgk08NwbWjR6B1c/gzwr4+U1Ph7Unw5FBISYHy5WH9H1DZfMHNAo/z9fvfu//YCH17gqMKRZ08AZ3aG/5UKmHOd9DSOTe/hCgKJS4AiEKBsnLlrJdP1avMhGY1s17fuBFLu3ZDmTVroU25ZeLi7vHyyx8yevR7ZGQYbu8ogLndGhFSxjhJuqJMGRR2zDQobOow58zKU1aqhNJMgm8hhHgQRUdH89JLL5m0d+nShVGjRpm0K5VKvv/+e9zc3IzaC7MqsLk8YACrVq1Cp9PZ1OeRI0fM5lKrnOP/3OIkICDApM2e2XuxsbF88IGTKiZa6d1337VpJuadO3eYMGGC2W2jR4+2d1gFptFoGDp0qEl7QkICEydOtKnP+Ph4Jk2aZHbbyJEjbepzwYIFZoul5Een0/Hiiy+aDUo/99xzZgN2tqpZsybt27c3aV+xYoXNM4B1Oh1jx441+dysVqt5+OGHbepTiJKorBts7gqt7s/2G1rddBmvtcL84K0cczYUQIMyoHNUUdzxEw3LbF1c4Pp1eLgXDHsCIs9b149OB+vWQnhjQxVdnc6QZ/DvrVDfAZNOPvkUXnrF8HzbVmjeBDbavqoBnQ7mz4M2LeD8OVCpDDMinxpu/1iFKMZKXgAQUNWoYfT6vVahDKuXfdchLS2d116bQuPGD/PLLxsL9GUoPj6BuXN/JjS0K7NnL85qVysVzOrSkIdrmga4VEHmZ2AUF+o6dVDYORuiIDRNm+W/kxBCPAD0ej1PP/00d+/eNWr38vIyWvqbW2hoKB9++KFJe2RkJG+++abDx1muXDkamJnlffr0abOzkPKj1+vNVjVWKBQ2LRO1NQhpDXOzII8dO8a5c+es7isxMZGBAweaXVZcHMTGxjJw4ECr8hMmJiby8MMPm72mwMBABg8e7Mgh5mvs2LFmKzL//PPPfP3111b1lZaWxpAhQ7h27ZrJtkaNGpktzlMQOp2OQYMGWTUrUa/X88orr7B582aTbW5ubjYHI/NiKWj67LPPcurUKav7++CDD8zOVh44cCDVqtk4tUmIEqqMBv7oDK/VgQUtDAE7e71VDxqWAX8X+LU9fNHEUCjEYZ4bBRGbDbnv9HpYvhQa1IHBAw1LeW/dMn+cTgdnTsOXX0DTMBj4CJy+/x4z8FHYsQdqhTpmjAoF/N9XMHW6IVh39Qr07wsD+8G+vQXvR6s1BA7btTLkJ0xIAG9v+Hk5PP+CY8YqRDFWgDpEDx5VdeMAoAL4pmsDavl58NGuM2Tcv2Vy9Ogphgx5hQoVytK1a2u6dGlNaGgNypcPJC0tnZiYW5w8eY6//trBhg3/kpJifOfWy0XNol4P0aWa+aQOyqCgQrk+h1Eq0YQ3I+1v0w+lDqPRoHFSEnEhRMm2dOlSs7O6CkOnTp2oVauWSfvXX3/Npk2bTNqnT59OjVw3n3IbP348v/zyi8kMom+//ZZBgwbRsWNHu8acW+/evTl27JhJ+8svv0yVKlXo3LlzgfrRarW8/vrrrFmzxmRb8+bNCQ4Otnpszsgb2KVLFxYuXGjUptfrefnll/n9998LVAAM4NSpUwwbNizPKrD37t2za6yOsGXLFvr378/ChQspn8+s+wsXLjBs2DB27Nhhdvtbb71lMmO1sAUHBzNq1CizVbXHjh1Lamoqr7/+er5Ld2NjYxk5ciQREeaXsU2fPt2uGXcXL16ka9eurFixwmyQPaf4+Hhee+01fvzxR7Pbx40bR4UKji+Q1rt3bzp27Mi///5r1H79+nU6duzIL7/8YjYtQW4ZGRm8//77ZvOYKpVK3njjDUcNWYgSxUcDMx1YRN1VBYvbgLcaahRWCvc2beHAEZj2MXz7jSHP3prVhodaDdVrQPXq4O1jCKLF3oRzZ+HmTUPQMFPNEPhkOvQfaAjaOZJCARMnGQqKvPAcREXCut9h/Tpo/BA8MsBQNbheffDxMSzp1Wrh9i347z/4ZzOs/tUw4y9T8xbw/Q9S8VeUGiUzAFgj2PAGkePNSAGMbRpMi4p+jPrzCBfjs5OHXr9+k8WL17B4semXG0t6VC/H9PZ1qJlr2W9OSiflzrGHpkWLQg0AapqGo/C0/DMSQoiCevvtt512rp9++skkAHjy5Emzs/U6dOjAmDFj8u1TrVazYMECmjVrRnp6elZ7ZlXgo0eP4unA98vRo0fz1VdfmSw7TEhIoEePHjz77LO8/PLLFoMY9+7d47fffuPTTz/l+PHjZvextZDJyZMnuXbtWqHmmOvduzfu7u4k50oWHhERQd++fZkzZ06ewcuoqChmzpzJ/PnzTfrILSIigjfeeMOhSzltERERQaNGjZg0aRJPPfUU5cqVM9oeGRnJwoUL+fLLLy0GLZs0acIrr7zijOGa+Pjjj1m3bh2XLxsnotfpdEycOJHffvuNSZMm0bNnT5MAbmxsLMuWLWPKlCnEWMgN9cQTT9CrVy+rxxUQEMCtHDNgTp48SbNmzXjttdd49tlnTd4rMsfy+eefm636C1C7dm3eeecdq8dSEAqFgrlz5xIeHk5CgnG1gBs3btChQweefPJJRo8eTatWrUyCqunp6axdu5apU6dy6NAhs+eYMGECTZs6MMIhhMhTozJOOImPD0z7DF4dC9/NhUU/waWLhsq4584aHuaoVNC6jWEm4aDBhuXEhaljJzh4FL76EmZ9aahgfOig4QGGOICHB2g0kJZmvnJw1WrwznswfKRh/EKUEiUyAKjw9kZZoQI6M0s/WgX5cXB4B5adimbGvkii4qwrJd6kvC/vtKxFt2qmyapzUxX3GYCAskJFVJWroHVk1accNG3zv8MshBDFXXp6OsOGDTMJBHl6erJgwYICFxQICwvjzTffZMqUKUbtkZGRTJo0iW+++cZhY65RowZjxowxm/w/IyODefPmMW/ePMqWLUv9+vXx8/PDzc2NhIQELly4wKlTp4wClbk99thjPPLII/mOw1xQMzk5mTZt2jBixIisIODly5cZM2YMQQ76vzMgIICxY8eanb30559/UqtWLTp06ECrVq2oVKkSKpWK2NhYrly5wtatW80GPQMCAqhevbrJLM5//vmHwYMH8/TTTxMQEEClSpWoUsWOhOcFFBYWxvnz542CPDExMYwfP55JkyYRHBxM1apVSU1N5fLly1y8eDHP/Md+fn4sXbq0wLMjHc3f359ly5bRpUsXs8uZd+zYQb9+/fDz86Nu3bpUqlSJlJQUoqOjOXbsWJ7/Xhs0aMDcuXNtGtfUqVOZPHmy0ZLilJQUPv30Uz777DOqVatG1apV0Wg0XL58mcjIyDyLxXh7e7Ns2TKHBvxzq127Nv/73/8YOnSoyZJ7vV7P4sWLWbx4MeXLl6dWrVoEBQWh0+m4evUqR44cyTM3afPmzfnoo48KbexCiCJWMQg++Aje+9BQHGTHdjh+DK5Ew717hoCZfwDUqAEPNYH2HcHZE188PeHtdw3BymU/w4plsGunoQiJXg/m3sO8vKBTF3jyKXj4EUOAUIhSpkQGAAHUteuQZiYACKBRKhhWrwqP16nM9iu3+ffyLf6+FMvRm/Hocn0wdlerqB/oRc8a5RhUq2KeM/5yUri4oCzv+GUdhUHdvEWhBABVwcGonPAFSAghCtuUKVPMJv+fOnUqNWvWNHOEZe+88w6rVq3ixIkTRu2ZS4E7depk11hzmjZtGocOHcqz2vDNmzdNlgrmp1u3bvzvf/8r0L516tQx2x4VFWWSF/Gxxx5zWAAQDDMUN2zYwJEjR0y26XQ6/vnnH/75558C9dW4cWN+/fVXfvvtN7P/FlatWsWqVasAmDt3Li+8UPi5hBo3bszMmTPp06cPSblmOGRkZHDmzBnOnDlToL58fX1Zt24doaEOytdko9atW7Ny5UoGDx5sceblnTt32LlzZ4H7rFevHn/99Rfe3t42jals2bKsW7eOTp06ER8fb7RNr9dz4cIFLly4UKC+vLy8WL16NY0bN7ZpLNYYPHgwcXFxjB492mwBHzDMCLxx40aB+2zevDkRERG4uro6aphCiOJKqTQsrW3snMKRNvHyMsw8fG6UIeh39AicPWNYmpyaCu7uhuBk7TqGYiSFPTtRiGKuxAYAVaG14d+8P9SrlQo6VgmgY5UAPmwdSrpOz43EFG6lpKNUQKC7K+U8XFDZsKRHVTPkgZlOrAkPJ3XNakOOBAdyaWdahU4IIR40u3fvNjuLrG3btjYtlXR1dWXBggW0bdvW6Eu5Xq/PWgrs5eWYJD9ubm6sWbOGIUOG8Oeff9rdn1Kp5Pnnn2fmzJkFzhHXq1cvKlSoUCQFNLy9vdmwYQNdunSxqfgBGK756aefZtasWXh4ePDII48wceJEiwEVZ+vYsSNr165lyJAhNudWDAkJYdWqVTRqZGe5Sgfp06cP//77L0OHDiUqKsquvgYMGMAPP/yAr6+vXf00adKETZs28cgjj5gtLlIQNWrUYMWKFYSHh9s1Fms899xzVK1alREjRtj9OzhixAhmzZqFjxMKyAlRHP3www9ZRYD0en3WjOrMWbYFabP2mMzX1pwjLS3NsC0dyAB0cObMGUaOHJlvP9acx9bry3yelYoiFUO+Lh2sX7+edu3aZe2b+5jc48xru6OuL/P5Qw89xO+//44QD7KSGwCsVcswrTeP5SC5aZQKKnu7U9nb3THnf0AoPD1R16tPxn9HHdan0s8PdVjh390WQpQ8tWvXzjfnWmHLLDai0+n46quvCAsLM9quVCqtWvqbW8uWLXnvvffMfpBctGiRSU5Bf39/k3xbfn5+BTqXr68vf/zxBwsWLGDy5MlER0dbPV6FQkHHjh2ZOnWq1VV/PT09WbRoEf369SuSv9egoCD279/P+PHjWbBgQZ5LM3Pr3Lkzn3/+OU2aNMlqCw4OZuzYsXzxxReFMVybdOnShUOHDvHqq6+aLdZiiZubG6+88grvv/++VUFnX19fs/nfbP19MKd58+b8999/TJs2jVmzZlldaKVu3bpMmTKFQYMGWXVcuXLlLP6uNWvWjEOHDjF27FiWL1+e53LqnFxcXHj55Zf54IMPrAqeKRQKsz/nMmWsSwbWvXt3jh8/zuTJk/nuu++sqhYNEB4ezuTJk+ndu7dVx4WEhJiM39aqweXLlzfpy9bZwh4eHmZ/rjKrUeRn9uzZ2TPAiyLlqzXnVAD6+w/gxs0bLFy0MK8jrD+HI6hynFMFN27d4Matgs9Ktpqt16eFSpUqOXQoQhQFS78Ca4GHLR2k0WhIS0srnBE5UPJ388g4bloB0Rk8xk9AVdW2DzlFIePoEZIXfO+w/tweG4qmdRuH9SeEEMJ+Wq2WP/74g1WrVnHgwAFOnDhhMSAWEBBAeHg4rVu35sknn7R6qXNup06dYvLkyaxdu9ZkuSpAhQoV2L59u93nyculS5eYO3cumzZt4tChQ2avPSQkhG7duvHkk0/Spo35/8d0Oh1ffPEFM2bMMCk4UbVqVebMmWN1sCQ//fv3NwnujRgxwqTC7P79+1mwYAF//PGH2WWpGo2Gli1b0q9fP4YPH25SKKQ4iouLY+XKlaxdu5bt27dbnOlYq1YtOnbsyJAhQ+jcubNDA5K5/ffff8yfP58NGzZw/vx5k+0ajYbmzZvTr18/RowYkW9lZme5efMmy5YtY8OGDezYscNsYFWlUhEWFkbbtm0ZOnSo1UF/IUqqZs2asf/IfpBVpKVPGjRr3Iy9e/cW9UiEMLJ161Y6dOiQ327jgJlQwgOA6bt3kbL0Z6efV+Hujtcn0w15Ex4UOh0JH36APu6u3V0p/f3xfPf9B2YJtBBClFapqalcv36d+Ph44uPj0Wg0lClTBj8/P8qWzb/YlS0yMjI4e/Yst2/fRq1W4+PjQ+XKlW3Oz2ar5ORkrl69yq1bt9DpdFSqVIly5cpZNQtIp9Nx7tw5YmJi8PDwoHLlyoUWUCtoADCnu3fvcuHCBe7du4eLiwt+fn4EBwejVj/YC0Bu3rxJdHQ0CQkJaDQavLy8CA4OxsPDo0jGEx8fT2RkZNZ4ypQpQ3BwcJEVU7HG1atXuXbtGgkJCfj4+BAQEEDZsmVxd7d/NYwQJY0EAB2kYJOnnaOgY0mHpmFN2b9/f6EORwhrWRsAfLA/AeZD3bAhLFdCrupnhU1VM+TBCv4BKJW4tG5N6sYNdnfl0qOXBP+EEOIB4OrqavOSPFup1Wrq1q3r1HOa4+7uTs2aNe2acahUKgkNDS3ywhmWlClTxinFJpytbNmyhRagtoWPj88D+3MOCgpyaOEdIUoyhUKRlVOvyIJYzj5vcQrWFbGCpn0Qojgr0QFAhacXqhrBaM+fc+p51fXqO/V8jqJp3YbUPyPsKgaiDAxE07y5A0clhBBCCCGEEEWrS5cuWTfNMlMMKBQKQ2DQTJseUOVoK8gxOdtyH5dzm7m2zD7S0tL4+uuv0av0hvV+WqhSqQrDhg3L97wFGZelNmuPiY6OZurUqYYZlQogHdq2bsszzzxj93nsGZeln4kUQBIlQYkOAAKoGzVybgBQqURdTKroWUvh44M6rDEZBw/Y3IdLj54P3uxHIYQQQgghhMjDtGnTCrRfshbGHYCqnvB2EcwLiYuLY/bs2WjVWkORjTSoXr26IdhWjBw6dMgwJhWgBDIgNDSUp59+uqiHJkSJVeIjNepGYfnv5MjzhYaicHIeI0dy6djJ5mOVQUFowps5cDRCCCGEEEII8WA4HQ+tImDeWZjyHxyPc/w5ZCWqEMJWJT4AqPT3R+nEkt3qxg857VyFQVWtGqpatWw61m3QozL7TwghhBBCCFHqpGih419w5E726+d3Q4YD09Gn6WDAVth0zXF9CiFKj1IRrdE4axagSuX0GYeFwaVrN6uP0YSHowqxLXAohBBCCCGEEA8yNxW8kWvJ765YmHXaMf3r9fDqflgTDf22wLorjulXCFF6lIoAoLpJU7ifvLNQzxNaG4WnZ6Gfp7Cp69RFWblygfdXuLri2q9/IY5ICCGEEEIIIYq3V0KhVa4i5e8fhXP37O971mnD0mIw5Bl8dBv8Hm1/v0KI0qNUBACV5cqhqlqt0M+jadGi0M/hLK69+xZ4X5devVH4+hbiaIQQQgghhBCieFMrYX4Lw2zATIkZ8Pwe0NmRu2/jVZhwyLjNTQnBD27qeSFEESgVAUAATfPmhdq/wsenRCz/zaSuXx9VSEi++ynLV8ClfQcnjEgIIYQQQgghirf6vvBuA+O2f29kz96z1vE4eHy7cS5BtQKWtjWcSwghCqrUBADVTZqCWl1o/bu0aQsqVf47PkDynQWoUOD22NASd91CCCGEEEIIYas36sFDfsZtbx2Bi4nW9XMzFR7ZAnHpxu0zmkKvIPvGKIQofUpNAFDh4YG6QYP8d7SFSoWmVevC6bsIqWrWRNM03OJ2l86dUdWs6cQRCSGEEEIIIUTxplHCglaGPzPFpcGYvVDQlcCpWnh0K5zPlT/whVrwWm2HDVUIUYoU3pS4YkjTvAUZhw87vt/GD5XYHHiugwaRceoU+sQEo3ZlhQq49upTRKMSQgghSpfu3btTvnx5o7ZWrVoV0WiEEELk5yE/w0zAqcey2zZehcVRMKxG3sfq9TB6L2yNMW7vUgG+tjw/Qwgh8lSqAoDquvVQeHujv+eAMkw5aNq1d2h/xYnC0wvXQYNI+WlhdqNKhduw4aDRFN3AhBBCiFLkxRdfLOohCCGEsNK7DeC3aDh+N7tt3AHoVgEquFs+7vOT8GOkcVuoNyxvazyrUAghrFG63j6UyjyXtNpCFRyMqkY+t3AecJqm4bh06ZL12rVHL1SVqxThiIQQQgghhBCieHNTGaoCqxTZbbdS4ZX9lo9ZEw1v51q05u8CaztCgGuhDFMIUUqUrgAgoGnRwqH9ufbJp1BGCeH68CO4tO+Aqnp1XLp1K+rhCCGEEEIIIUSx1yoQXs2V+b71XAAAIABJREFUs2/VZVh5yXTfI3dh2E7Q5kgUqFHC8nZQ26dwxymEKPlKXQBQGVQJVbBjCleoQkNRhdRySF/FnkKB66BH8XhtHChL3T8bIYQQQgghhLDJlDAI8c5+rdcbZgHeSs1uu54M/f6Fe7kq/s4Kh64VnDJMIUQJVyojOS7t2jmkH9eevRzSzwNFgn9CCCGEEEIIUWCeaviuBShzLAW+nmzIBwiQrIWB2+BSovFxr9aG0aVkvokQovCVymiOOqwxCt8y9vVRuw6qmiEOGpEQQgghhBBCiJKqU3kYlevr4+IoWHcFnt8Nu24ab+tZEb5o6rzxCSFKvlIZAESlQtOqlV1duPTu7aDBCCGEEEIIIYQo6aY3hioe2a/1wJBtsOSC8X71fGFZO1ArEEIIhymdAUDApX0HFC4uNh2rfqgJquolu/KvEEIIIYQQQgjH8XWBOc1BkSOwl6w13qesm6Hir6/GqUMTQpQCpTYAqPD0RNOipfXHubjg2u+RQhiREEIIIYQQQoiSrE8leKq6+W2uSljZDmp6OXVIQohSotQGAAE0nbtYXdTCpUdPlP7+hTQiIYQQQgghhBAl2fi6xrMAM80Mh/blnD8eIUTpUKoDgEp/fzRNwwu+f7lyuHTqXIgjEkIIIYQQQghRUiVmwHN7QK833XY63vnjEUKUHqU6AAjg0rsPqFQF2td1wKAC7yuEEEIIIYQQQmTS6WHkLth/y/z2r0/DzljnjkkIUXqU+gCg0t8fTes2+e6nbhSGul49J4xICCGEEEIIIURJ8+FRWHnJ8natHp7bBckZzhuTEKL0KPUBQADX7j1QuLpa3K7w9MRt8BAnjkgIIYQQQgghREnx8wWYety4rYI7TA0zbjsZD1OOOW1YQohSRAKAgMLHB5c+D1vc7jZ4CAofHyeOSAghhBBCCCFESbA7Fp7bbVgCnMldBb+2h7caGCoD5zTjJBywsExYCCFsJQHA+1zat0dVvYZJu6ZpU9QPNSmCEQkhhBBCCCGEeJBdSoSBWyFZm92mAL5rAa0CDc+/bQa+Ltnb03WGQiFpOmePVghRkqmLegD50cXGoj17Bu2VK+hv30KfkAg6LSiVKLx9UJYti7JKVdS1atk3S0+hwO3Jp0j6vxnok5MNTb6+uD4qS3+FEEIIIYQQQljnXjo8sgWuJRu3v9MAnsox96SqJ3z2ELywJ7vt8B349Di819A5YxVClHzFMgCoT04mfc9u0nftQnf9WsEOUihQ1aiBpmVrNE2bgtr6S1OWK4fbyGdInjcH9Hrchj6BwsPD6n6EEEIIIYQQQpReWj0M32kI5OX0aFWY3Mh0/+dDYPlF+Pt6dtsnx2FAFWhQpnDHKoQoHYpXADAjg7R//iZt8yb0ycncSUlj7fkY9l67y4X4RKLikrmakIK3ixpvFxXVfTxoW8mfTlUDCa9QBiIj0UZGkrr+d1x790XTogUoFFYNQV2nDh5jXkIbFSlVf4UQQgghhBBCWO3tw/BbtHFbU3/4sRUozXxFzVwW3Hg9JNyvApyiNSwF3t4N1JK8Swhhp2ITANRevkzK4p/QXb/OP5di+fbwRf65HEua1jTxQVxqOnGp6UTfS2H7ldtM33uOMq4aRodVY0zjavgRR8rSJaTv24Pbk8NQ+vtbNRZVaCiq0FBHXZoQQgghhBBCiFLix0j4/IRxW5A7rO4Annl8A6/pBVPCYNyB7LY9sfDVaRhft3DGKoQoPYrFfYT0/ftI+upLzp2KZOi6Azzy2z4iLsSYDf5Zcjc1nel7z1H/xy18tu8cWr0e7blzJM34HO35c4U4eiGEEEIIIYQQArbFwOg9kKPgLx5qWN0eqhQgu9QrtaF1WeO294/A2XsOHaYQohQq8hmA6du3kbLyF345dYUXN/1Haq6gn0KhoEWLMBo1qkNwcBWqVg0iKSmF2NjbHDx4nM2bd3Lr1t2s/RPSMvh411m2Xr7N9z0aUQFI+nY27s+PQl1Hbps4my4mBu3lS+huXEefkIA+MQmFqysKNzcUfn6oKldBWbUqClfXoh6qEEIIIYQQQtgsMgEGbYXUHF9plQr4oRU0DyxYHyoFfN8Cmmw0LAEGSNLC87thc1fDdiGEsEWRBgAzDh0kZeUvfLHvPB/tPG10lyQw0I/x45/liSf6UbVqkMU+dDodO3ce5NNPv2P9+n/Q6w29bI2+RdulO/l9QHPqBniR/P18PF55FVW16oV7UQLdzZuk79xBxpHD6G7dyv8AlQp1aG3U4c3QPPQQqFSFP0ghhBBCCCGEcJC4NEPF35upxu0fNIQhVa3rq64vvNcA3jmS3bYlBuadhRclU5UQwkZFFgDUXb1C8pLFfL73HFN2nclqVyqVvPLKcD744BX8/Hzz7UepVNK2bTht24azf/9/DBs2gVOnzgMQk5TKwDX7+GtwKyp7Q/KC7/GcOAmFt3ehXVdppouJIXXDejIOHwK9nuh7yfx1MZaouCSi4pKIvpeCVq/HQ62iio8bTcv70rFKIHX8vcg4eYKMkydIXfsbrj16omnVGpTFYoW6EEIIIYQQQuTpy9Nw7K5x2+PV4d0GtvU3sR78ehkO3M5ue+sw9KkE1TxtHqYQohQrmgCgVkvyokVsPneNqbvPZjW7u7uxaNEMBg3qaVO34eEN2bdvNaNGvcPSpb8DcCUhhYFr9vH3kFZ4xcWR8ssK3J951iGXIe7T6UjbvInUPzaSnJLKohNXWHn6Knuu3TGa1WnkKiw/dRWAip6uDK9fhRczC7isWE7azh24DxuOskJFp12GEEIIIYQQQtjirfpw+DasuV/5t0UALGhpvuJvQWiUML8FtIyAtPtLiuPTYfpxmNPcMWMWQpQuRTLFKm37NqLPRPJsxGF095fsurm58uefP9oc/Mvk5eXB4sVfMHRo36y2U7cTmLbXUAgk48hhMk6esHS4sJI+KYnkuXNIXfc7q09GE75oGxP+Pc7uvIJ/uVxLTOXT+wVcJu88TXKGFl10NIkzPifj0MFCHb8QQgghhBBC2MtVCb+0g6HVoaqnoeKvu52ZjR7yhzfqZb8eEQwzmtjXpxCi9HL+DMD0dNIiIpix7xy3U9KzmmfP/pC2bcPNHpKQkMDq1atZt24d0dHR3LhxAz8/P+rUqUP//v0ZMGAAyhzLRZVKJQsXfs7VqzfYunUfAHMPX+CpupWpG+BF2vp1qOvWM3suUXD6e/dI+nY2dy9cZMTGQ2y+GGuyj0ajpkGDUIKDq1K1akVcXFyIi7vH6dOR7Np1iJSU7CQZCWkZfLE/kogLN1nYqzG1/LxIXvgjrvfu4dK+gzMvTQghhBBCCCGsolHCotYQnQQV3R3T57sN4a/r8EIIjAwGRSEXAcnMqW/pua3bc79OSUkxOXd6ejoJCQlm+9HpdFnPM7fpdDqj5+a2O+qYmjVr4iqFK8UDztLbx1rgYUsHaTQa0tLSbDph+q6dnJv/Aw/9tCWr4u/jjz/Mzz9/aXb/jRs38txzz3H16lUUCgUVK1ZEpVJx/fp10tMNAcRWrVrx22+/Ua5cOaNjz569QMOGvUlNNYy1V41yLH+4KQAer41DFRxs0zUI0KemkvTVTC6dOseja/dz4pZxXfoWLcJ49tkhDBrUA3//Mmb7SE5OYdu2/XzzzU+sW/eP0Zu8l4uaH3qG0aN6OVAocHv8CTQtWhbqNQkhhBBCCCFEbhEREXz66aeA/QGmvI7LbMt8ntmu1StQ6LUWj895jE6n49KlS0bf9F00LgQGBhZ4rJlyBvXyCvCZ2y+/7Xq9Puv7fCaFQpE1scfSOYvK0aNHadiwYVEPQwgjW7dupUOHfCdLjQNmQhHMAEzfu5dvD0dlBf/UahVTpowzu+/69evp378/Op2O8ePHM27cOCpVqgQY3qDWrVvHxIkT2bVrFwMGDGDr1q2oclSQrVWrOq+//gzTps0F4K+LN7mZnEZZdxfS9+6RAKAdUhb9xOXT5+j6y06uJmTP4qtSpSKffTaJxx7rgyKf21Pu7m50796W7t3bcvjwSV588X127ToEGGYDDt9wmDUDmtGyoh8pK5ajLF8eVfUahXpdQgghhBBCCJHTjRs3+OeffyDzq2Yhz8Izy5pzaoxfpunTuHrzauGe05a+c02o06NHi9bs7g45ny30QGrxCEIKYS+n5gDU37uHNiqSP6JuZrU98UQ/atY0rYt+584dRowYQUZGBvPmzWPGjBlZwT8wLPPt168ff/75JwEBAezcuZPVq1eb9PPyy8OzgoIZOj2/nrlmeH78GMgvsU3Sd+0k6fBhRmw8ZBT869ChOUeOrGPo0L75Bv9ya9y4Llu2LGX8+Gezjk3O0PLY7wc5fTsRMjJIWfQTehtnngohhBBCCCGELbLSTbndf7gWwcOlCB6aQn6onfhQ2fEQooRwagBQGxXJpbhEzt1NzGobMKC72X2//vprbt26Rc+ePXnuuecs9lmtWjVGjBgBwNKlS022BwWVo2PHFlmv15y7DoA+Ph7dzZsm+4u86RMTSV27hre3n2Lvtew69wMH9iAi4kf8/Hxt7lujUTNjxltMmzYhq+1OShpjNh1Bp9eji40l7c8Iu8YvhBBCCCGEENbICgDqi8FD5+SHtggeGU56pBfgkQEgMwBFyeDUJcDaK1fYEn0r67VGo6Zz51Zm912+fDkAL7zwQr79Tps2jXfffddo+W9Offt2YvPmnQAcvhmPTq9HqVCguxKNMlfeQJG3tE1/cfzyDb4/eimrLSysLosWzcDV1SWrbebMmaSmppocr1arKVu2LI0bN6ZRo0ZmzzFp0gtcuXKDr7/+CYD91+NYdOIKI+pXJn3Lv7i074DCx8fBVyaEEEIIIYQQprJWNyUV7ThKK0ury8y1F0qbq+UxCPEgcWoAUH/7NlFxyVmvQ0Nr4OPjZbJffHw8J0+eBKBdu3b59uvi4oKLi4vF7Q0ahGY9T0jLIDY5jXIeruhu37Fm+KWePjWV9F07+XTvOXT374B4eLizatVsPDyMy1x98MEHxMfH59lfgwYNmDlzJl26dDHZ9vnnbxIRsY0zZ6IA+HDnKQaHVsSDNNJ2bMe1V28HXZUQQgghhBBCWNasWTPmzJmDQqHICgRlzgrM3ZbXdnP7Z7ZZ6q+gbVlplJKTGTRoEDq1zrDeLx0a1W/EzJkzrRqrLddnzTEnT57k4YcfNiypVgKpMGTQED7//HOTn0vm8Tn7zf3c2u1ZszpzjctSPzn3F+JB5dwAYFIit5OzK/1UqFDW7H7R0dHo9Xrc3d0JCAiw+7wVKxrP8ssMAOoT71k4QpiTcfQIp6/eZM25G1ltL774pNkcjpnmzZtHcI5iKxkZGURFRbFixQr+/fdfevTowY8//shTTz1ldJyrqwuzZr1Pz55PA3ArOZ31kTcYXDuI9N27ce3ZC+QujBBCCCGEEKKQhYSEEBIS4thOr12FU6fg+jVITASNBgLLQkgI1AwBtW1f1ePi4gzBKyWG/HVa8PX1pVOnTg4dvr2yJosoyCrQ4eXlRdWqlr9bCiHs49wqwDo9Wn12SXNLUXStVpvndmupVBb6kWX8Vsk4fJj1kTFGs//eeGNUnse0aNGCsLAwk/YxY8Ywe/ZsXn75ZUaNGkWLFi2oVauW0T49erSjceO6HD5smA26/PRVBtcOQn/3DtroaFRVqjjoyoQQQgghhBCiEOn1cGA/LFkEGzfAhSjQ6czvW6YMdOgEg4dAv/7g5ubcsQohSiTnBgBdXPBxza5Jfveu+SWi5e7n5UtMTOTevXt4e3vbddq7d41n+nlq7l+2xnGXn5iYyK5du7JelylTxmyeAFdXVzw8PMz24evrazbo6eLigqenp8PGahO9Hm3keTZfjM1q6tKlFWXL+tvc5UsvvcT27dtZtmwZn332GfPnzzfZ58knH8kKAP59KZa7qemUcdWgPXNaAoBCCCGEEEKI4m/LvzD5fdix3RAIzEmhAJXKEAzMDAjevQtrVhseFSrC6xNg9IsSCBRC2MWpAUCFtzcVPbPftM6du4herzcJlJUvX55KlSpx5coVdu3aRffu5isFZzp58iT16tUDICYmhrJljZcWnzp1Puu5UqGgoqerYTwKx63jf+vjD/lm/3r06VqjdncXV5QqFQq9Hr0u+81epVTi7uKKXqdHl5ZhdIybxgWVQok2LR19jrtCSoUSV40GvVaHNtWwlFrl5oJCqcBVrUGpUJKRmoZep0OpUtGhQTjffv6lQ65PdyuWpPh77L6WnTexe/f88zPm5+WXX2bZsmWsXr2a7777zuTfwoAB3Zk4cToAGTo9h2Pi6VglAN2VaLvPLYQQQgghhBCF5tYtGPsKrFiWHfjz8YFefaBzFwhrDJWrGAJ7Wi3E3oSTJwyBwrVr4Pw5wxLhN8bD99/BvO+hTduivSYhxAPLuTkAU5KpH5hd9OPOnTiOHTtDw4a1Tfbt378/s2fPZv78+fkGADds2AAYcjPkDv4BbNq0M+t5w7LeuNxfEqy7etWm68gtNjaW9Qe344Ub4Q+1Qe3qarT96L+buBHqbnKcYf6jAjBXwESHIWlD7srGmQHBzJmUmfXgc1fczaBh/F0rriJvulu3uBCXTJo2OyDZpk1Tu/tt1qwZrq6u3Lp1i8jISGrWrGm0PTi4Cj4+XsTHJwBw9k6iIQAYe8tcd0IIIYQQQghR9A4egMED4fIlw+tKlWHiJBjxNFha3eXnB7VCDct+p38O//4Dn34Cf2+GM6ehWyeYOh3GjXfedQghSgznlrJJT6dlRT88NdlBraVLfze769ixY3FxcWHlypWsWrXKYpcJCQnMnj0bwKSQBBjyCf711/as112rBmZvdECBEYDxH75NZJkMgnwqMvLLr3lq+gyjh2d588VOHiT6hARuJhsHGStXrmB3vy4uLgQGGv5OYmJiTLYrFAqCgspnvY5NTrs/HingIoQQQgghhCiGNm+Crh0NwT+VyrCE99gpePFly8G/3BQK6NQZNv4FK1dDxYqQkQGTJsDrr1nOHyiEEBY4NQCocPfAXa2ib83sgM6SJWtJT88w2TckJIRPPvkEgMcff5zp06eTlJRktM+FCxfo27cvUVFRVKlShXHjxpn0s2TJWmJismeLda6aHYxTBQaa7G+tK1eusOX8f6gS02nd71Gz+6Smpth9Hls4tFS5TodWZ5yvQuOgHIrq+xWuMjJM/x2AoSJwpoz7/9HptfIfnhBCCCGEEKKY2bEdHu0PCQmGYh6/rTPM5rM1p7tCYZgRuPdg9vLfb2bBW284bsxCiFLBuQHA+296j9WulNV26dJVvvrqR7P7jx8/ns8++wylUslbb71F2bJladu2LX379iU8PJyQkBC2bNlCjRo12LhxIz4+PkbHa7Vapk79Nut1SBlPWlfyyx6Pr6/d1/Tqe29wsYyWcinutB36hMl2bXo6qelFEwB0JIVajYfGeDly5rJce+j1em7dMgRoAy0EZBMSErOeu6lVWeMRQgghhBBCiGLj0kUYMhASEyEwEP76B3r0dEzf5SvAhj+hZy/D6y+/gAWmRRSFEMIS5wYAfQwBt05VA2hcLjv49tFHX3Ppkvl8fBMnTuTo0aNMmjSJkJAQTpw4wfr164mKiqJ169b83//9H0ePHqV+/fomx7733pecOROV9frtlrVQ5SgyocgVMLTWqdOn2Xn1DOj1hNRtbJL7DyDuxg3SVHozRxc+c1WIbe7L04vyHsZVpy5evGJ3v6dOnSIhIQEPDw9CQkJMtqempnH58rWs10Fe93/GDrw2IYQQQgghhLCLVgvDnoCbNw2z/dZuMBT5cCR3d1i+Clq1Nrwe9yocP+bYcwghSiynBgBVFQ0541QKBf/XsT7K+0Gce/cS6dv3ee7ejTd7XGhoKNOnT+fIkSPcvn07a9bY1q1bGTduHF5eXibHrF27menT52W9bhDozcBaxjnrlL5l7Lqe1ye/w/UAJd43M+j7iunyY4C4a9dIUaTbdR5bOTJEpijjS1UfN6P8jbt2HbK734ULFwLQtWtXNBqNyfYdOw6Qlpb982sYaAgc6+Pj7D63EEIIIYQQQjjE7K9h107DRIWvv4XwZoVzHnd3WPoLlC8PKSnwwnOG4KMQQuTDqQFAZYWKWc/DK/gyon7lrNf//Xeafv1e4M4d+wM7v/4awdChr6G/X2rdQ6Pi+x5hWQFHAFQqFN7eNp/jwKGD7L97CVRKgnwqUCE01Ox+Ny9dJE314Oer0ycno1QoaB3kn9W2bNk6u/rctWsXM2fORKFQMGHCBLP7RERsy3pe3sOVhmXv/53JEmAhhBBCCCFEcRAbCx9PNjwf+Cg8OaxwzxcUBN/MMQQb9+6BpUsK93xCiBLByUuAfYyW3X7WoR7tKmcHlLZt20eTJo+wb99Rm/pPT8/gk0/mMHjwKyQnZ+fd+7pzA+oFGAf7lOXLGyoy2WjiJx9wM0CJ6nYybQcOtbjftchz4G46s80ZHLkEWJ9i+Hk+Vic7iHvo0AmOHTtjVT/JyckcP36c999/n65du5Kamsq4ceNo166dyb5JScn89NPqrNedqgZkzWpU+tk3e1MIIYQQQgghHOLrmXD3Lnh4wOdfOCdd0SMDoHsPw/NPPjZUCBZCiDw4NQAIoKpRI+u5q0rJ0r5NaRiYHRS8cCGaNm2GMGrUO0RFRReoT71ez8aNWwgL68M773yB7n6lWAXwYetQBtcOMh1HkGlbQR04eIAD8dGgUFA+1YM2Zop/ZIqNvgRuD34AUOHuAUCf4ApGxUDeemtGnsc1btwYhUKR9fDw8KBBgwZMmTIFvV7PJ598wowZ5vv49tslXL9+M+v143Wyi8coAsvZczlCCCGEEEIIYb/kZJh/P/XU8y9A5SrOO/eHUwzBxnNnYYN9q7OEECWf09dRqqrXIOPIkazXPi5qfh/YnBf+PErEhRjAMJNv/vzl/PjjKrp1a0u3bm3o1KkltWpVx8PDHb1eT0zMLU6cOMfGjVtYsWKDSUEKV5WSb7s2NBv8A1BWtD0AmJiQSIIiHRIV6OJ0zHt1NOlJSWb3jT5+HOrZWPLdTo6876T0Mcyg9NSoGFG/CnMOXwBg3bq/Wbfub/r27Wy0f8eOHUky8zNxc3OjXLlyNG3alP79+xNkIRAbFRXNJ5/MyXrdKsiPTlWzqwQr7SzgIoQQQgghhBB2W7fWsARYpYJXXnPuuZuGQ9t2sG0r/PA/6NffuecXQjxQnB8ArBFs0ubvpmFFv6Z8uf88H+8+S4bOkLsvPT2DDRv+ZcOGf606R6Oy3nzZqQHNKlheJqq0Ywagt7c3bqhJ8nTleh24nnjC8s5FFPwzcOAMQN8yKNzc0Kek8HaLEFaduUZMUioAI0e+wfbty6lTp2bW/mvWrLH5XCkpqTz66EtG+SDfblkr13h8cx8mhBDi/9m77/gqy/v/4+8zs4EEQsgikLBXgLBk76GiVUSligOsVtvibNX6a2u/X6vW7VdbrVonjqp1VFCZCrKXoCJ7JyHMQPY85/fHkZRw7pOck5zkJIfX8/HII8l13fd1XyeEaN5c1/UBAACN698fut6PHiO1T2n85193gysAXLxQys9v/OcDaDYafwtwSopMoaFu7SZJdw1I06aZo3R9zyTZLb5PrW14iJ4d20vLrh5WY/gnSZaExBr7axIZGakQU6N/6Xxm8ucaQJNJ5nauKsotQ2z632Fdq7pOnDilyZNn6eDB7Ho/Jj+/UJdffps2bdpa1TarV3uNSmpdfTqtOAMQAAAAQABVVkpfLXF9HKjVdxde7CqQWFoqLV8WmDkAaBYaP8Uym2VJ6+Sxu0PLMD03rrc2XzdS/zOsq8a0b6Mwq+diHa1CbLqme5I+unSgts8aoxt7JctSy9l3pqioegVIkZGRsjvrXkCksfj77FnzWaHpjO6J+kWf9lWfHziQpYyMS/Xll8vrPP7+/ZkaOfJqffHFf//DlRHXSn8d1d19LmdVlAYAAACARrdju5Sb6/p49JjAzCE2VurZy/Xx2tWBmQOAZqHRtwBLkqVrV1Vs/aHGa5KiwnRHRqruyEhVSaVDO04UKKugRKWVrgIf0aE2dWgRrg4tw3x/fqfOtV9Ug8jISNmcHtK10xXS1mLpaLnkkNTaKnULk+L8WAikyCEdL5ecklpZpJbGf4x+XQEo1/mN5atWVn3+2KgeOlpUpk9350iSjh/P1UUX3aRZs67Q/fffqtRU7w7ALSoq1mOPvazHH39ZRUXFVe1prSL01oX9FHLualCzWZa4uPq/IAAAAACoqx++d71v0ULq3CVw88gYIG3ZLH3/feDmAKDJC0gAaO3WTaU+XB9qMSu9bQult/VP4Qdr5/oFgBEREbI6DMK1Q2XSN3lSpfO/bYWV0sFSqV+E1Cu8Xs9VmUNaVyjtL3GFf2e0s0kXtJAiqwdlJrN/F3ieXcFZkiwmk16elK4ou1Vzf3RVbHY4HHrllff1+uv/1rRpk3XhhaM1YcIwxcdXr9qbm3tamzZt1XvvzdNHHy3UyZOnqvUPjo/WexdnqHWYe3BqbttWsgWmsjIAAAAASJL27XO979DRtQ03UM4scNm/L3BzANDkBeSnlDmuncxt28px9GggHi9LPf91xmw2y2axyrXE7yf5ldIKV/iXmBinX/1qpsLDQ/Xaa//Wli3bpG8LXav1kkLq9tAKSYtOSycr3PtyyqUvcqULW0kRP21Ndkpmf28Bjo2VKSJSzsKCqrbQn6otD0uM1l1f/ajiikrXdCsq9a9/zde//jVfktS2beuqEPDgwexqBT7OZjGZdGOvZD08srtCPZwDWZ8KzgAAAADgF8d++n02PsDHE515/rHA/H4NoHkIWCULa+8+AXmuqWVL1wqyego59194vi+SKpxq1y5W69d/rPvv/6Vuv/0GrVnzoYYM6eu6ZnNR3R+4pUA6WSGTyaQ//vE3OnXqW5WU/KhXXnlEYWGhUolDWlMZYhwdAAAgAElEQVRw1g1OmS1+PqfQZJKls/H5jdd0T9K6a0d4LOBy9OgJbdmyTVu2bPMY/g1LjNayq4fpqTE9PYZ/kmRJrHsBFwAAAADwi6Kffr+LiAzsPCJ/en5RPX7fBBD0AhcA9glMAGjt0rX2i7xgt5yzBTXTtan5rrtmVdvuGhoaooceusv1SW6Fa0uwryqd0q4SSdKtt/5cf/7z7WrZMkohIXbNnj1dTzxxv+u67DIp76fxnZLZ31VAJFm7dPPYl9LivwVc7h6QqvS2LWqdQ0JkiH7Vr4OWXjlUX0wboj6xUbXOwVyPCs4AAAAA4BdnftdxOmu+rqEF+vkAmoWAHVRgSekgU4sWcublNe5zu7lXlK0Lu/WsALDcKZW6fugOHtzX7dpqbfmO/27T9VZupesZkm699Rq37htvnKa7735YJSWl0tEyqUWY5HTKbPZ/pWJL19oD1KSoMP1paFf9aWhXnSgu15rDuTqYV6TjxWVyOJ2KjwxTastwdWwZpo4tw30LKs1mWVJT6/EKAAAAAMAPIiJc7wvyAzuP/J+eHxnglYgAmrTAnVRqMsnau7fKV66s/Vp/sdlk7dXLP2MVl6lNfpkkyelw6sSZ5uISt0vPrmwbeqpUFpXLZLdKJpMcToeKSt3vkdkkWX8K8I7/d9VgYqJ79duwsFC1aROtzMwcKb9CKiiVLGaZGmAFoLlNG5lbt5HjxHGvrm8dZtNFqfXfcn2GJTlZpjDfKz8DAAAAgF+1/el3s6yswM4jO9v1vq3774oAcEYASxW5zgFszADQ2r2HTKGhfhnro3/OVXHxf4O9ceNu1P79WZo//ytNmjSi2rXz5i396SOTvnz874qMNK4GXFxcrJIS9zDwxx17dfv6xyRJO3fu1+DB6dX6T53KU07OMUnSjP4j1atPB5WWl2nM8JF1fXk1svbqpbJlXzfI2LWpbwEXAAAAAPCLtDTX+wP7pbIyyW4PzDx2bHe9T00LzPMBNAuBDQC7dJUpLEzOs4K0Bn1e335+Gyv+nEpPN954hf70p2f14ovvaNKkEbroojGSpK1bd+n++5+QJHXsmKRRo0a4jVWbMWMq9fD/vqojR47r0Udf1Mcfv1Ct/4knXlFFRaUsFose+8sflZTUro6vyjvWPn0IAAEAAACc384UtiwslH7cKvnx902fbNxQfT4AYCBgRUAkSRaLrD16NM6zbDZZe/ZssOHvvHOWunTpqPLyCk2derNGjLhakyffqIyMS3X06AmZTNLf/vZgnca2WCy6556bJEmffLJIV101R+vXf6fvvtuuu+9+WA8/7AoEZ878WYOHf5JkSU2TKRDnS1gsnP8HAAAAoGlI6yTF/bTtdumSwMwhK/O/KwCHDgvMHAA0C4ENACVZ+/VvnOf08N/2XyNRURFauPB19e3bXU6nUytWbNCCBd+otLRMJpP00EN3acqUUXUe/847b9TUqWMlSe+//7kGDbpc6ekX66mnXpXT6VR6enc9/fQD/no5NTObZe3pp7MUfWDpmCpToJbVAwAAAMDZTCZpwiTXx598FJg5fPqJ5HC4CoAMGx6YOQBoFgIfAPboKVNEw68msw0c1ODPSElJ1IYNn+jDD5/Xbbddq4kTh+uaay7Vli3z9fvf31avsS0Wiz766AU99NBdiolpVdUeHh6mX/3qWi1f/q5atWpR35fgNWufxl9ebusXoCX1AAAAAGDk8itc79eukbb92PjPf+M11/sLL5YacMELgOYvoGcASpIsFtkyMlS2fFmDPcIcHd1oK9YsFoumTZusadMm+31sq9WiBx64Tffdd4u2b98rh8OhTp1SFBbW+D/orV27yRQSImdpaeM80GSStU967dcBAAAAQGOZNFlKTHJtxX3mKekfrzTes79aKn27yfXxjbMb77kAmqWArwCUJOugwQ06vm34CMncJF6qX1gsFvXs2Vm9e3cNSPgnSbLZZOnWvdEeZ+ncWaYWjbfCEQAAAABqZbNJv/qN6+O5b0rbtzXOcx0O6U//z/Vx337SmLGN81wAzVaTSMUsyckyJyQ0zOBWq2yDhzTM2Oe5xtwGbOvbOGdFAgAAAIBPbrlVio+XysulO37jCuca2uuvSmtWuz7+44NBteAFQMNoMj8lbAMa5ow+24ABMkVFNcjY5ztrz16uf/FqaGZzQM4cBAAAAIBaRUVJD//V9fHSJa6twA1p5w7pd3e7Pp40WbpoasM+D0BQaEIB4IAG+VcL27ARfh8TLqawMFl79W7w51i7diPEBQAAANB0/fxa6eKfgrj/d7/05RcN85wTJ6QrLpPy8qRWraS/veiqRgwAtWgyAaCpZUtZu3bz65iWzp1lad/er2OiusaormwbQYgLAAAAoAkzmaSXXpU6dJQqKqQZ06XFi/z7jBMnpKlTXOcMWizSK69J7VP8+wwAQavJBICSZBvk3zApZMpFfh0P7qzduzdocQ5zTIys3Xs02PgAAAAA4Bdt2kifzpNiY6XCQumyqdKrr0hOZ/3H3vajNHq4tGG9K2x89HHpkp/Vf1wA540mFQBa0/v6bauntWs3WdLS/DIWamA2y5YxoMGGt40cxYG2AAAAAJqH7j2kzxdK7dpJpaXSL38hXXO1dDi7buOVl0vP/580bLC0Y7vrd6NHHpNuv9O/8wYQ9JpWsmKxyDZ0qF+Gsk+a7JdxULsGq7Jss1HBGQAAAEDzkt5X+ma11Lef6/MP35d6dpXu/5106KB3YxQXS2++LmWkS3fdLhUUSJGR0lvvSHfd02BTBxC8rIGewLnsw0aobPFiqbKyzmNYu/dg9V8jMsfHy5yUJEdmpl/HtQ0YKFN4uF/HBAAAAIAGl9JBWr5K+t8HpWefdgV4Tz4uPf2kNOQCaew4V1CY3N4V7JWVSUeOuM73W/GNtGiBq9DHGSNHSS++LHXqHKhXBKCZa3IBoKllS1l79VbFls11HsM+ZYofZwRv2AYNVqk/A0CTSfZRo/03HgAAAAA0ptBQ6S+PStfdID30P9JHH7q29K5a6XrzRnpf6b7fS5dN42gkAPXSJH+C2MeOrfO91r79ZEnp4L/JwCu2jAGuSlR+Yu3bT+b4eL+NBwAAAAAB0bWba+vuzr3SX5+QRo9xrfozYrW6zhH8ze3SspXS2o3StOmEfwDqrcmtAJQkS4eOsqR1UuWe3T7dZ7LbFXIplZACwRQZKWufdFV8u8kPg5kUMnFS/ccBAAAAgKYiMUm6827XW1mZ6zzAw4ddFYNtNlf14JQOUosWgZ4pgCDUJANASbKPH69iHwNA+8RJMsfENNCMUBv7iBF+CQBtGRkyJyT4YUYAAAAA0ATZ7VJaJ9cbADSCJruO2Nq9h8yJSV5fb27bVvYxdd86jPqzpHWSOSGxfoOYzbJPpIIzAAAAANRZhaRySY5ATwRAU9FkA0CZTAq56CKvLw+57HLXeQkIKPvwEfW63zZgoMxxcX6aDQAAAACcX2w2m+xmu+yyy26xy2azBXpKnhVLKpJUGeiJAMGvSSdm1p69ZOnUSZW7a94KbO3dR9YePRtpVqiJdeBAmebPk7OwwPebbTbZJ7P6DwAAAADqomXLlsrPz5fT6axqMzfBAiIJCQl6+OGHq7Wlp6cHaDbA+aFJB4CSFHLhxSp67lnprB9gZzOFhSn0iumNPCt4YrLbZR85UqVffO7zvfZx42Vu3aYBZgUAAAAA5wdrM9gZFxcXp/vvvz/Q0wDOK03vnwLOYUlLk23AQI/9IVdcKVOrVo04I9TGNnKUTCEhPt1jjo6Wfdz4BpoRAAAAAADA+avJB4CS63w/U2SkW7u1dx/ZBgwIwIxQE1N4uGwXDPXpnpBpV8hktzfQjAAAAAAAAM5fzSIANEVEKPTKqyST6b9tUVEKvXpGAGeFmtgnTPR6FaC1azdZe/dp4BkBAAAAAACcn5pFAChJ1vS+sk/6b4GI0OlXGa4KRNNgioyUbeSo2i+0WBTCGY4AAAAAAAANpumfDnqWkMlTZDJb5Mg7LSsVgpo8+7jxKl+5Qs6iIo/XhEycJHPbto04KwAAAAAAgPNLs1kBKEkymWSfNEmh068M9EzgBVNYmEIuvsRjvyUpWfYJExtxRgAAAAAAAOef5hUAotmxDR0qS2qaQYdNoTNnShZL408KAAAAAADgPEIAiIZlMin06qvdCoKEXDxV5nbxAZoUAAAAAADA+YMAEA3OHNdOoTfMksyubzdLWprso0YHdlIAAAAAAADnCQJANAprjx4KvXqGTC1aKPTa6ySTKdBTAgAAAAAAOC80qyrAaN5sg4fINmAg5/4BAAAAAAA0IlYAonER/gEAAAAAADQqAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIGY1bg6PqSkbdDgs+uCDLxpoSgAAAAAAAAA82bZtm6TIWq4K6SvFjJR2LTcZX5CQI4XF+XtyAAAAAAAAABqLaZG0eyJbgAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQcxDFWAPUuKkyNAGmgoAAAAAAAAAnxWWSPuPeOz2LQAc3lPqnFjfKQEAAAAAAADwl3050v5FHrvZAgwAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQcwa6AkAAIDq/jhqlHq1bdsgY5dVVupUSYlOl5ToVEmJdp08qfVZWcrKz2+Q56F5aBcZqf+bMsWtfdWhQ3pmzZoAzAgAAAD+RAAIAEATMyolRWM7dmzUZ2bl5+uzHTv0j40btTknp1GfjcCLtNs1vUcPt3aH0xmA2QAAAMDf2AIMAACUGBWlXw4YoG9vuUUrZ83SBUlJgZ4SAAAAAD8hAAQAANUMTU7Wilmz9ODo0TIFejIAAAAA6o0twAAAwI3ZZNKfRo1Su8hI/XLevEBPB81AhM2mP4wa5da+OSdH7/3wQwBmBAAAgDMIAAEAaCYKy8t1pKCgzveH2WwKtVrVIiREFpN3a/tuycjQtmPH9OzatXV+Ls4P4Tab7h02zK39ne+/JwAEAAAIMAJAAACaiQW7d2va++/Xexy7xaKOrVppSFKSLunaVZd261ZjIPjI+PH6z44d2nfqVL2fDQAAAKDxEQACAHCeKaus1I4TJ7TjxAm9sWWLesTG6pVLLvFY+CPMatX9I0bo5s8+a+SZorGcKCrSfYsXu7VvP348ALMBAACAvxEAAgBwnvvx2DGNf/NNfTZjhsZ27Gh4zZU9e+pX8+er3OFo5NmhMeSWlOivK1cGehoAAABoIFQBBgAAKiov1w2ffKKCsjLD/pYhIbogObmRZwUAAADAHwgAAQCAJOlQXp5e37zZY//41NRGnA0AAAAAfyEABAAAVf6zY4fHvqQWLRpxJgAAAAD8hQAQAABU2Xj4sMe+thERjTgTAAAAAP5CERAAAFAlt7hY5Q6HbGb3fyOMDg3123O6tWmjUSkp6hMXp47R0WoVGiq7xaKi8nKdLinR7pMn9f3Ro1q2f7/25Ob67bnnk25t2mhGr14amJio2PBw5ZWWatfJk/rlvHmBnlq9xUVEaHSHDspISFDnmBjFhIUpwm5XeWWlTpeW6uDp09p+/Li+OXBAmw4fVqXTGegp16pHbKxGtG+vTjExSouJUZTdrlahoTKZTDpdUqLC8nKdKCrStuPH9f2RI1qblaWTxcUNNh+zyaRubdpoYEKCMhISFB8ZqeiwMLUKDVVxeblOl5Yqt7hYW44c0YbsbK3PylJheXmDzQcAANQPASAAAKjilJRXWqrWYWFufcUVFfUaO9xm080ZGfpF//7qERvr9X1bjhzRSxs36p+bNqm0stKrex6fMEFjDCoaL9yzR79fssTrZ58xICFBL158sWFfWWWlRr32Wp0qJC+aOVPRBl/rd77/Xk+tXl2tbXa/frp14MBqbXtzc3XlBx9Ua4sND9ezU6bo6p49ZTKZqvX1joszDABbhoRoyfXXu89vzx7d7+Hrte4Xv5D5rPGtBqGxJE3u1Ekbbr7Zrf3DH3/UoytWGN5jxCTp0m7ddNvAgRrXsWO1Z9fkcEGB3tyyRc+uWaPDBQVeP68xJERF6c4hQ3R1r14+b7Evdzi0dN8+vbVli9794Qc5/BRyJkRFaVa/frqxb1+lRkfXev21P73PLyvTu99/r7+tX6/vjhzxy1wAAID/EAACAIAqJrnCICP1WW00s08fPT5xouLqsI04PS5Of7vwQt07bJhumz9f83ftqvWefadO6Z74eLf2+MhIPbBkiXyNSiampSnDYLwzBiYmatWhQz6N2bV1a4+FVf741VdubfFRUW5zCLVW/1+53m3bat7Pf672LVv6NBer2Wz4+nafPOnxnv7x8bJ4EcLFhIUpxiDkXJeV5fX8MuLj9dLUqepfw5+BJ/GRkbp32DD9etAgPfzNN/rrihUBXxEYbrPpL2PH6taBAxVisdRpDJvZrElpaZqUlqa7hw7VbfPna01mZp3nZDWbdceQIXpw9GhF2Gw+3x9lt+vmjAzN7t9fT61erT999VW9/9EAAAD4D2cAAgCAKm0jIjyu5Np69KjP40XYbHp/+nS9edlldQr/zta+ZUt9NmOGHhk3TrXFTvN37jRsT4iK8mn14RmjO3SosX+swWrD2ni6p7C8XEv37fN5vO5t2uirG27wOfxr6u6+4AKtuemmOoV/Z4v4KXRbOHOmx5C7McRHRmrV7Nm6Y8iQOod/5+rXrp2WXn+9Lu3atU73R9ntWnLddXp8woQ6hX9ns5hM+u3QoVo4c2a9xwIAAP5DAAgAAKoMb9/eY5+vq4tahIRo6fXXa3qPHvWdVhWTyaT7hg/X8xdeWON1B06f1vceAktPq+48sVssGpqcXOM1Y2oJCI14CgAX7dmjEh9XTkWHhuqLa6813LrdnD07ebKemDjRYyhdF2M7dtSS669XlN3utzG9FWW368trr1V6XJzfxw6zWvXBlVf6PHak3a5F112nkSkpfp3P8Pbt9eGVV9Ya1gMAgMbBFmAAAFDlql69DNuPFRX5tCrNZjbrPzNmaFBiosdrHE6n1mdna9WhQ8rOz1dRebniIiLUKSZGkzt1Mtw2esZtAwdqx4kT+r+1az1eM2/nTvVu29atfUJamp6t4b5zDUxIqHUl09DkZIVarV4Hd2aTyfCMQsk1b1+9cPHFSmnklX+bDh92OwPQKHw6WVysfadOubUfPH26xvEfHD1acwYPrvGavbm5WrR3r7Ly8nS0sFCxERFKiIrShNRUdYqJ8XhfRny83p42TZe++67P28Hr49Hx49WnhoCu0unUmsxMbcnJ0cHTp5VbUiLJFfAmt2ypPnFxuiApyWMgajOb9c9LL9XAl17y+nU9NHasBtfw97S0slLLfyqmcqSgQIXl5Yqw2ZTYooUGJSZqWHKyx/MYJ3fqpJ/37q23v//ey9kAAICGQgAIAAAkuYKuad27G/Y9u2aNT0UuHp84UaM8rCgqq6zUixs26NEVKzwWZbCazbqka1c9On68OnsIcv46frwW7tmj7cePG/bP27lT9w8f7tY+KiVFNrPZ69dT2/ZfyXUW39DkZK9D0vS4OMPVeg6n06szDs92fXq6rurZ0639cEGBvti1S98dOaIdJ07oRFFRVaDkD4Nefrna57Hh4Tr629+6Xffl7t265qOPfBr74i5d9MeRIz32f7l7t/7f0qXaePiwx2v6x8frkXHjNDEtzbB/apcuuql/f728aZNPc6urTjExujkjw7CvwuHQ8+vW6a8rVyqnlkIlMWFhmjN4sO4dNsztDEjJFW4OSkzUWi/OWEyPi9OvBw0y7CsqL9fD33yjv61fr1M1fN+0b9lST0yc6HGl78Pjxvm1SAkAAKgbtgADAAClRkfrk6uvNlzJsyc3V0+vWeP1WMOSkzXHQ6hwKC9Pg15+Wbd/+WWNFVkrHA59tG2bev3973pp40bDa0KtVj09aZLHMdZmZup4UZFbe6TdriFJSbW8iv/yJgCUfDsHcJyHbcjrs7NrDYDO1jYiQs+dsx16y5Ejmjx3rpKfekqz//MfPbt2rb7cvVvrs7NrLOrRVLQICdE/Lr7YrYKx5FqNdv0nn2jK22/XGP5JrhWKk+bO1Q2ffOIx7H10/PhGOw/w5owMw5V75Q6Hpr3/vu5csMCrP/uTxcV68OuvNfr111VYXm54zeUegvxz3dC3r2Ehl1MlJRr52mv6yzff1Bj+Sa6VnFd+8IGeW7fOsL99y5Y1rgQGAACNgwAQAIDzWLjNpl8PGqRvb7lFCVFRbv35ZWX62XvvqchD0HAuk6Rnp0wxDG8Onj6tIa+8oi1Hjng9v7LKSt0yb56eWLXKsH9yp04ew7xKp1Nf7N5t2DfBw6qwc3k6/89oNZMvAaCna33d/hsbHl7tLLtn1qzRwJde0oI9ewJe6bau7h8+3PB7scLh0NR33tGbW7b4NN4bW7bo0nffVYVBCHhmNV1juMRDgY6/rlih/+zY4fN4a7OyDKtFS1Ln1q29GuNKg5WjknTPwoW1Bqzn+t2iRTrgYVv3lE6dfBoLAAD4H1uAAQBoJiLsdqVGR9f5/nCbTVF2u1qFhqpHbKwyEhJ0UefOauFhBdSxoiJd+Pbb+sGH6r8Xdu6sDINqrSUVFZr2/vvKzs+v09zvW7xYAxISDFfj3TZwoMcCJfN27tTMPn3c2senpnoMT842MCFB4eec/1dSUaEFe/a4VVwdmJCgKLtd+WVlNY5pM5s1wkOxlc/qEASd8eaWLbprwYJGPdPO32LCwvQrD6tH7128WIv27q3TuF/s3q0/L1um/x0zxq3vlgED9PA33zRoYNoqNFRdDLayl1RU6KnVq+s87ltbtujJiRPd2uMjI2u9N8puNwxaC8rKNPe773yeS0lFhf71ww/63bBhbn1pNZzHCAAAGgcBIAAAzcSktDTtmTOnUZ711f79uvGTTzyu6PHklwMGGLb/ff16bcjOrvN8Kp1O/eKzz7T9179227I4rXt3/XLePMNVigv37FG5wyHbOVsvByYkqGVIiE6Xltb4XKPAcXVmpubv3OkWAFrNZo1MSan1DL/BSUmKNKhAe/D0aZ9WR54tp6BAt8yb16zDP0m6pndvw+q83x05omd82IZu5OFvvtE1vXurW5s21doTo6I0LjVVC/fsqdf4NUmNjjZcFbv8wIF6nct4rKhIeaWlbiF+WC1FayQpsUULw/aDp0+rtLKyTvPx9P3rTSAJAAAaFgEgAACokpWfrz999ZVe27zZ50P724SHa7LBVr+i8nL9deXKes9t98mTen/rVs04p1JxuM2mcR076jOD7bOnSkq04uBBjTknyLOazRrTsaM+2b69xmcaBYBf79+vJR6KfYzt2LHWAHCcH6v/nvHU6tVeVyBuyq41WK0pSQ9+/XW9i0g4nE79deVKvXbppW59F3Xu3KABYHllpT748Ue39i98LPhipK5hnadKwtE1VN+uzQdbtxq+JqPt1wAAoHERAAIAAEmuVXaPrVypN7dsqVPYMiktzTBU+HL3bh0tLPTHFPX2d9+5BYCSK6gzCgAlaf7OnW4BoOTaBlxTAOjp/L+v9+/X3txc7c3NdduSPcaLcwA9nf/naf61cTqdevXbb+t0b1PSNiJCAxIS3NpzS0rqFY6e7YOtW/WPiy+W3WKp1u7Nn1t9fH/0qK784IMGGTvMoBKwN04WFxu2x0dGakJqap22W5c7HH6tNA0AAPyHIiAAAECSZDGZ9Ozkydr+61/7VNDiDE8hyqf1ONfuXMsPHDCs6NqrbVuP93gKjyZ4qMR7xqDERLfz/4orKrT2p/MGjVYBpsfFqXUNK6gibDbDoiUFZWX6ysOqwtpsO35cJzyEOc3JmA4dDKtQz9+502MVX18VlpcbnhfZtXVrt23izUF6XJzhdnJvHM7P1zGDKtmS9MZll6lvu3b1mRoAAGhimt//6QAAgAaVGh2thTNn6l6Dw/xr0s9DYLA+K8sf05Lkqkp84NQpt/becXEe79lx4oR2nTzp1t6ldWu1b9nS432G5/8dOlS15XKJwQops8lkeN8Zw9u3d1t9JkmL9u6t81bOVYcO1em+pqafQfEYSfU6O9KIUVEbu8WiruecDdjUJbdooTcuu6zO9zslj9ue4yMjtfamm/TUpEnq0KpVnZ8BAACaDrYAAwDQTHybk6MXN2yo9zitQkOVGBWlIUlJGpCQYLjqymIy6dHx41VUXq7n1q2rdUyTpO6xsW7tlU6n9ubm1nvOZztSWKhO51QVjY+MVOuwMI8r4ebv3Kk7hgxxa5+Qmqp/etg+6+n8vzOW7tsnp9PpVtxhbMeO+ve2bYZjetz+W49Vkr4WammqunsI4HaeOOHX53jajt6rbVufKl43tlCrVT1jY9UnLk7jU1N1effuCq3j9t8z/rpihWb06mX4M8BusejOIUN0x+DB+jYnR/N37dLnu3ZpY3a231ZkAgCAxkMACABAM1my4TgAACAASURBVLEvN1cvbdzo1zG7tG6th8aO1fQePQz7n5w0SUv27dOPx47VOE7r8HDDs8icTqdWzp7tl7me0fmc8O+MtJgYnfCw2nCehwBwvIcA0G6x6AKDrbpfnRUAHisq0pYjR9y2Sta0fXqcwbZjh9Opz+tRDOJUkJy5luxhNeaTkybpf8eO9dtz4iIiDNvTzjnPMRCsZrNSWrZUp5gYdW7dWp3Pet+hVSuPhTvq6vujR/XnZcv059GjPV5jMpnUPz5e/ePj9YeRI1VUXq51WVlacfCgVh06pFWHDtVaTRsAAAQeASAAAOexnSdO6MoPPtCfR4/WH0eNcuu3mc16ZNw4XfreezWO4ylUsZrNyvCwtdPfWoSEeOz75uBB5ZWWul0zLjVVZpPJrejJYIPz/84EH2dbsm+fWwDYrU0bJURFKTs/v1p7TFiY4TbpdVlZOlKPIinBEgC29fA95GlloL/V9P3TUOIiIjQuNVVDk5M1on17dWvTxnCLeEP6n2XLFGKx6P7hw91WsxoJt9k0ukOHqhWyDqdT3+bkaOGePfp81y6tPHhQ9avXDAAAGgJnAAIAAD349dda7KHq54WdO3sM+M6o71ZEf4iqoRhCWWWl4XlnseHhSjc4P9Bo+++qQ4dUds45fUbnAErGqwBHeyhyUdfqv2cUlpXV6/6moq7VbP0lqpECQLPJpJ9166b/zJihzLvu0tuXX65fDRyoPnFxjR7+nfHA0qWaNHdurSt9jZhNJmXEx+v+4cP1zY03atecObpv+PA6FycBAAANgwAQAADIKemh5csN+6xmc61Vgf29NbEuagtwPFUDHm+wLbe28//OWH7ggFsoKBkHgJ6+hp7mdb6xBPh7qKYA2V8y4uO16ZZb9PFVV2lqly51/nuTU1CgVzZt0oVvv62TfqoAvWjvXvV+4QVd9eGH+nr/frdVsd5Ki47WI+PGafecObouPd0vcwMAAPUX+H+uBwAATcKyAweUnZ+vhKgot75+8fF694cfPN7raRtqYXm5th8/7rc51qS4vLzG/i9275bD6XRbhTchLU2Pr1pV9XmIxaILkpPd7jcKAAvLy7U2K0sj2rev1j7GIEAcZxAAHjh9Wt8dOVLjvM8Xp0pK1NIgxN2ck6PKOoZRvqjPNmxvXN69u96ZNk0hPqzyK/rp78+248e19ehRfXfkiDbn5CjrrO3l/vzaOJxOvb91q97fulXJLVroih49NDEtTSNTUty2xNcmLiJCb/zsZxqanKzb5s+vc6AIAAD8gwAQAABUWZ+drUu7dnVrbx0WVuN9nlYhHTh1SgNeeskvc6uvo4WFWpeVpSHnFPcY3r69Qq1WlVRUSJIGJSa6bUctLC/X+uxsw3EX793rFgB2aNVKqdHRVRWQE6Ki1M3gLLv6VP8NNrnFxUoxKAQy9d13lZmXF4AZ+U//+Hi9O21ajVt8HU6nNmRn68vdu7U2K0vbjh3TgdOnAxacHcrL09Nr1ujpNWsUYrFoSFKSRqakaHj79rogOdnrFZO3ZGToVEmJ7lu8uIFnDAAAakIACAAAquw5edKwvVVoaI335ZaUyOl0uhURiK3l7MDGNm/nTrcAMMxq1bDkZC3Zt0+S9+f/nbFk717DKqpjO3asCgCNVv+dmQ9cPIXIseHhzT4AfOGiizyGf6dLS/X4ypV6edMmHW3gVYh1VVpZqWUHDmjZgQOSJIvJpL7t2mlkSoou7tJFI1NSatzO/LuhQ/X+1q3adPhwY00ZAACcI/AH9gAAgCYjr7TUsL1lLQFghcOhXINtwK3DwnzeOtiQ5u/aZdg+IS2t6mNvz/87Y11WlvINCnGcfeaf0fl/+WVlNY57vjlWVGTYnmywKrA5GZqcrEGJiYZ9W44cUa+//11/+eabJhv+Gal0OrXx8GE9vWaNxr35puKeeEK3f/mlx9dgMpl077BhjTxLAABwNgJAAABQpcjDOXpG1WvPtdWggqjZZHJbcRdIW3JydMhgNdmZQiC+nP93RrnDoeU/rYw625gOHXTmq2YUAC7as0elHlYVno9+OHrUsH2owZ9Hc3Jxly6G7ceLijTxrbea/epGybV68//WrlX6iy8a/hyQpIlpabJ48XMEAAA0DAJAAABQq3IvgqqNHs7IG5mS4rd52MxmpUZHu7219XKrsVPSfINtt/3atVOb8HANTkoyPv8vK6vGcRfv3evW1i4yUj1iY9U5JkbtDVaxfcb232oa4/tHktq3bOn2/dOhVSu/PuNs/dq1M2x/ft06v6z6q+lcwcaWU1Cgaz/6yLCvVWioUhrw6wwAAGrGGYAAAKBWns6/O9uivXt1x5Ahbu0z+/TR/yxb5pdiBtf37auXp051a3/w66/152XLvBpj/q5d+uWAAdXazCaTxnbsaFioY8XBgyp3OGocc4lBACi5Vv4Zfe0cTqc+97Ad+Xy1/MABlVZWulXJHZKYqG5t2vilmnTHVq20e84ctxWtqw4d0rBXX633+EYSW7QwbDcKjX0VGx5uWDm5NlF2uw7ceadhX4dnnvF4FIA3NufkaE9urtKio9362oSHV52LCQAAGhcrAAEAQK28ie6+2rdPpw2Cg9ToaI/bIH1hNpn0m0GDDPsW7tnj9ThL9u5V8U8Vf882PjXV5/P/zvjh6FEdMVjNNaZjR437aXvx2dZmZTWrM98aQ2F5uWEoZjKZ9GsPf+6++s3gwYbb2X35/vFVhIczMD2deeiLK3v2rNN9+WVlspnNig4NdXvLiI+v97w8FXQpNfh7BwAAGgcBIAAAqOIp6POmkEdxRYXe37rVsO+pSZM8BiHeurFvX/WJi3NrP15UpPUeto8aKa6oMFyxN7lTJ8PzCr0JAJ2Slv5URfhsozt00BiDUPGzHTu8mep55/XNmw3bb87IUP96BlOdYmJ028CBhn0NuRrTKBSXpJiwsHqN2yo0VPcOH17n+z2dPXhJ1651HlNyVQhONVj9J8nw/E0AANA4CAABAECVYg9FQFp4uc3wmTVrDLf6pkVH6/+mTFFdSwB0bd1aT06aZNj39/XrVVHLFt1zGVUDTm7Rwu38v4KyMo9n053LaPVadGio2oSHu7Vz/p+xT7ZvN9wiajOb9eZll6lVLdWoPQm1WvXOtGlu24slaU1mpk8Bsq+OFBQYttfnbEOr2axXL71UyR62F3tjrYdzLWf166fW9QgnL+ve3fD+I4WFHlcGAgCAhkcACAAAqniqAty9TRuvKgH/eOyY3v3hB8O+Wf366R9Tp3o1ztk6x8Toi2uvNTzrrLiiQs+vW+fTeJKrEIjTizMJvTn/7wxP5wCea9+pUx4r3gajCLvd62srHA6PZzn2jI3VkuuuU6xBoFqTcJtNH0yfroEJCYb9j61c6dN4vtrgIVycM3iwonz42pwRabfrvSuu0GXdunm8xptqu0bFcCRX2P/GZZfJavb914TOMTH624UXGvZ5Wh0MAAAaBwEgAACokuNhtVKk3a7uBgUyjNyzcKFyS0oM+37Rv79Wz56tQYmJtY5jNpl0Y9++Wn3TTerooXron7/+uk5nqR3Ky9N3XoRw3mz/PePA6dPaffJkrdfNO89W/xlVQK7JW1u2aNmBA4Z9/ePjteXWWzWzTx+vVpNekJSk1bNnezyDcvHevfq0gbdje/rzToyK0idXX+31qkaTpIu7dNH3t96qad2713htx+joWgO8BXv2ePx7elHnzlo0c6ZhIQ8jFpNJ16ena81NNxlW5HY4nXrt22+9GgsAADQMqgADAIAqB06f9tg3Mz1d9y1eXOsYOQUFuv7jj/Xp1VfLZLASaVBiolbPnq3VmZn6dPt2rcnM1NHCQh0tLFRMWJhSo6M1vH17Xdunj8ezxCRXOPf4qlXevTAD83buVLrBmYLnPsMXS/btU6eYmBqvCdbz/yo9rKjsGxenq3v10nvnrAy1mEyG9zglXfvRR9p4882GYVJ8ZKTevOwy/XHUKH28fbuW7tunzLw8HSkoUKjVqoSoKA1OStL0Hj00vH17j/M9UVysGz75xC/VqWuyLitLa7OyNNgg9B7bsaN+/NWv9NTq1frwxx+1/9Spav0Wk0l927XTmI4ddWPfvuoRG+s2htPpdPt7FmGz6aGxY/X7JUs8vr680lI9/M03enzCBMP+0R06aMdvfqP5O3dqyb592pCdrWOFhcotKZHNbFbL0FD1jI3VBcnJmt6jR41B73Pr1unbnByP/QAAoOERAAIAgCq7TpxQcUWF21l4kmvL4ptbtujHY8dqHeeznTt118KFetrDuX1mk0nDkpM1LDm5TvPceuyYrv7ww3qFN/N27tQDI0Z47M8vK9PGw4d9GnPx3r26JSPDY39eaanH1W3N3emSElU4HG4rz0wmk96dNk3PX3ihsvPzVeFwKDY8XJ/t3Knb5s83HCszL0+XvveeFs6c6XGbbKeYGP126FD9duhQn+daUFamy//1L2Xl5/t8r6+cku5esEDLb7zRcPt7fGSkHp8wQY9PmKDjRUU6WliocodDbcLD1SY83PDcwjOeWbNGMWFhui493a3v3mHDdFm3btqQnS2npAeWLHEL+J9bu1bX9unjMQi3mEy6pGvXehUG2XT4sH6/ZEmd7wcAAP7BFmAAAFCl3OHwWPQizGrVF9dcU+uquTOeWbNGt86f7/UZet76NidHY15/XUcKC+s1zrqsLB2tYYwVBw/6XFzkq337agwlF+7Zo7LKSp/GbC4qnU6tOnTIY3/rsDD1bttW/dq1U5IXxSvWZGZqwptv6rCHbel1daqkRBPfekvLGzGIXXnokO748star2sTHq4esbFKj4tTYlSUx/CvoKxMV3/4oe5csKDG19GldWv9vHdvXdO7t+FZjKWVlZo8d65XW9frYuWhQxr7xhsezxYFAACNhwAQAABUU9MZde1bttRjHrYMGnlxwwaNef117Thxot7zqnA49OiKFRr6z3/W6dy/czmcTn2xe7fHfl+3/0qubaWba9jqGOzVfx9dscKv463NytKAl17y27mJ83ftUu8XXtDqzEy/jOeL59at05wvvlBpPQPg5QcOaNDLL+tfPxXV+Pe2bR7P8vNGTkGBRr3+ul/PpiytrNRDy5drwptv6nRpqd/GBQAAdccWYAAAmpj5u3YZrshprDO05n73XY1n73mzBfhsKw8dUvoLL+gXGRm6Z+hQpfhYFKK0slL/+uEHPbl6tb47csSne2vzyqZNKq2oMOz7Tx3P6ntq9WqNTEkx7Pt81646jSm5tlK+tHGjW/u+c86Nq4uSigrDsT1VsPXki927ddeCBXpswoQ6VZE1kp2fr6nvvqspnTrpgZEj67Rt/Kv9+/V/a9fqk+3b/TKnunpu3TotO3BAj0+YoAmpqYZnZHqyOSdHf/nmG/37xx919hrTUyUl+uW8eXpn2jSvqv8aOfM1vrJnT905ZIiGJCXVaZxTJSV674cf9NTq1drVQKsKAQBA3Xj4v4SEHCnMfX/PNWOlzrVX7QMAADBiNpk0MiVFF3XurOHt26tbmzZuVVBLKyt14NQprTp0SCsPHdKn27f7ZcUfGk+fuDjNGTxYE9PSlHzOdt+i8nLtPnlS/9i4UX9fv97nsbu2bq3Lu3fXyJQU9YmLU0JUVLV+h9OpwwUF2pCdrRUHD+qLXbu01cfQujH0iI3VVT17akRKigYkJLiddZhXWqqtx45p2f79+ve2bbWGsRckJen/jRyp0R06KNxmq2rPzMvTuqws3TZ/vtfb5nvExuqSrl3VPz5e/dq1U4dWrQwD3eNFRfrh6FFtyM7W6sxMfb5rl0o8BOoAAKCB7cuR3lhk0GFaJO2eSAAIAAACqkVIiFqEhMhsMulkcbEKysoCPSX4UZTdruiwMDmcThWUlelUPbarGgmzWtUyNFThNptyi4vrtR02kEKtVsWEhclusSi3uLjOW2etZrNiw8Nls1h0oqhIhX46fy/cZlOLkBCFWa06VVLSbL/OAAAErVoCQLYAAwCAgMorLVUe54QFrfyyMuU3YKhbXFGhYj8XCgmEkooKZfuhKnGFw+H3wimSa+UmxTwAAGi+KAICAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMSsPl29eY904GgDTQUAAAAAAACAz04X1tjtWwC49UB9pgIAAAAAAACgkbEFGAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxDwUASk4JBXFebrJYrHoL3/5S0PNCQAAAAAAAIAH+/bt0z/+8Y9argqZJ0XOlSSThyv+I2mqp9ttNpvKysrqOEUAAAAAAAAAdbV8+XKNGjWqtsvulPSMxBZgAAAAAAAAIKgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIhZAz0BAPC3vLw8bd26VZmZmcrLy1NlZaXCwsIUHR2t2NhYpaenKzQ0NNDTBAAAAACgURAAAggKq1ev1ocffqh58+Zp586dNV5rt9vVr18/TZgwQbNnz1aHDh0aZ5LnoYkTJ+rkyZNVnz/zzDMaPnx4AGcEAAAAAOcfAkAAzdrChQv14IMPavXq1V7fU1ZWprVr12rt2rV6+OGHdeGFF+rJJ59Uly5dGnCm56fvvvtOR44cqfr89OnTAZwNAAAAAJyfOAMQQLOUm5urn//855o0aZJP4d+5HA6H5s2bp/T0dD388MNyOBx+nCUAAAAAAIHHCkAAzc7u3bt18cUXa8eOHTVeZzabFRcXp1atWik/P1/Hjx9XSUmJ4bUlJSV64IEHtHPnTv3zn/+UxWJpiKkDAAAAANDoCAABNCv79+/X6NGjlZWV5dZnMpk0ZswYXXvttRozZoySk5OrBXkVFRXaunWrlixZoldffVVbt251G+ONN95QZWWl3nrrrQZ9HQAAAAAANBa2AANoNgoKCjRlyhTD8K9Xr15aunSplixZohtvvFEdOnRwW8VntVqVnp6uu+66Sz/88IPef/99JSUluY01d+5cvfbaaw32OgAAAAAAaEwEgACajTlz5mj79u2G7d9++61Gjx7t03jTp0/Xxo0bNXjwYLe+22+/XdnZ2XWdKgAAAAAATQYBIIBmYcWKFXr99dfd2u+99149++yzslrrdqJB27ZttWjRInXv3r1ae35+vp599tk6jQkAAAAAQFNCAAigWbj99tvldDqrtc2YMUOPPvpovceOiorS3LlzZTZX/5H40ksvKT8/v97jAwAAAAAQSASAAJq8hQsXatOmTdXaEhIS9Pzzz/vtGf3799cVV1xRre3UqVNauHCh354BAAAAAEAgUAUYQJNntPX3scceU0xMjF+fM3v2bL3//vvV2pYuXapp06YZXp+VlaWcnJyqzzt27FhtTgcPHtSTTz6pL774QseOHVNUVJTmzZunPn361DiPNWvW6PPPP9eGDRu0e/duHT9+XA6HQ1arVa1atVKHDh3Up08fTZ48WePGjXMrduJJYWFhtTMUo6OjlZqaWvW5w+HQ/Pnz9e9//1sbNmxQdna2zGaz2rVrp5SUFF100UWaPn26YmNjvXqeN7Zv36433nhDq1evVk5Ojo4ePSqr1ao2bdooIyNDU6ZM0RVXXCG73e63ZwIApMzMTH3++efV2i644AL17t27QZ63efNmrVu3rurztm3b6mc/+1mDPAtA43nvvfeUl5dX9fmoUaPUtWvXAM4IgK/+I8np6c1mszkBoDEUFxc7o6Kiqv0Mio+Pd5aWlvr9WSUlJc6rrrrKOX369Kq3e++91+P1v/vd76rN66233qrqmzdvnrNFixZuPz9XrVrlcbzFixc7BwwY4PFnr9FbYmKi86233nI6HI5aX9+qVauq3Ttt2rSqvtWrVzt79+5d6/OsVqvzt7/9rbOwsNCrr2lcXFy1++fNm+d0Op3OvLw85+zZs50mk6nWZyYlJTkXLFjg1fMAAN5ZsGCB28/bp59+usGe98gjj1R71uDBgxvsWQAaT2pqarW/26+88kqgpwScN5YtW+bN74x3nAn6WAEIoElbsGCB2zl8N998c4OsCAsJCdF7771X73EWLFigadOmqbS01Ot7Hn30UT3wwANyOBw+PSsrK0szZ87UqlWr9Pzzz7udY+iNN954Q7/4xS9UXl5e67UVFRV6/PHH9fHHH2vRokXq0KGDz887ceKExo4dq++++86r6zMzMzVlyhTNnTtXM2bM8Pl5AAAAAHC+4wxAAE3aggUL3NouueSSAMzEO9u3b9fll1/uU/j39ttv6/777/c5/DvbCy+8oL///e8+3/fxxx9r1qxZXoV/Z9u9e7fGjRunzMxMn+4rKSnRpZde6hb+xcXFqVu3bmrRooXhfQ6HQ7NmzdK+fft8eh4AAAC8s379ei1evLjq7dChQ4GeEgA/IgAE0KRt2bKl2ueRkZG1nqEXKJWVlbr++utVVFRU1WYymZSamqqpU6dq5syZiouLq3ZPbm6ubrvtNrexevXqpb/97W/avHmzTp48qcLCQu3Zs0fLly/XI488ovbt27vd84c//MGn4DEzM1OzZs2qFjwOHDhQL7/8srZs2aKsrCxt3LhRzz//vPr27et2/969ezVjxgy36sw1ueeee7Ry5UpJUmhoqP7whz9o3759ysnJ0bZt23T69Gnt3r1bc+bMcTvbsKSkxC9VnwEAAOBuzpw5mjBhQtXbp59+GugpAfAjtgADaLKcTqe+//77am2DBw+W1do0f3Q99dRTVSvbIiMjdd999+mGG25QYmKix3veeeedagcnS65iJC+++KLb60xNTVVqaqpGjBih22+/XVdeeaXmzZtX1X/q1CktXbpUU6ZM8Wq+a9eurfrYbDbrscce01133SWTyVTVnpCQoP79++vWW2/VE088od///veqrKys6l+xYoVee+01zZo1y6tn7t+/X5IUHx+vJUuWqHv37m7XpKWl6dlnn9WwYcN09dVXVwsYP/30U7344ovV5ggAAAAAqBkrAAE0WZmZmW7n/51dtbapORP+paSk6Ntvv9UDDzxQY/gnSR988EG1z7t166YXXnih1pAzLCxMb775piIiIqq1n13l1xdPPvmk7r77bo/Bmtls1u9+9zs999xzbn1/+MMfqoWCtQkJCdGXX35pGP6d7corr3Q78+/IkSPKzc31+lkAgKbhjjvu0MmTJ6veFi1aFOgpAfCDTZs2Vfu7fe211wZ6SgA8IAAE0GSdPHnSrS0mJiYAM/GezWbTJ598ok6dOnl1/a5du6p9ftNNN8lms3l1b3R0tC644IJqbceOHfNuomcZN26c7rjjjtovlHTrrbfq8ssvr9aWnZ1teFajJ/fcc4/X27ivv/56t7a6vEYAQGCFhoYqOjq66i0qKirQUwLgBy1btqz2dzskJCTQUwLgAQEggCbr9OnTbm3/n737jmvq6v8A/mEPAZWlgqPiQEHcuFFLBbVFrXXUXbVibd3W7dM+1K2tddFa66K2tG77qFURXDhx4wYLDqYoIMqW5P7+yM/Uyw2QBMLq5/165VXvyTnne3JJJX5zhjYJQJlMBj09Pa0fW7duVTvW4MGDVe6Xp0pubi7MzMyUS3vfLO/VRPXq1UXX2hwksnLlSo3r5z9t+JdfflGrrZGRESZNmqR2LFWzBItzWAoREREREdG/UfncSIuICEBGRoakzNTUtAxGor4xY8aoXdfY2Bh///13seK9ePGiWO3d3NzQunVrjdo0aNAAnp6eCAkJUZaFhoaq1dbDwwM1a9ZUO1b+BCcRERERERFpjglAIiq3jI2NJWX59wQsTwwMDNCuXbtSi5ecnIzLly8Xq4++fftq1W7gwIGiBGBiYiLi4uKK3POwQ4cOWsUjIiJ6W15eHs6dO4fw8HAkJCQAUKwScHZ2RufOnWFjY1PsGHK5HBcuXMDff/+NuLg4pKenw97eHvb29nBxcUHz5s0lM+K1kZOTg8uXL+P+/fuIj49HZmYmAMWXYDY2NmjevDnc3NxgZmZW7FhvEwQBJ0+exPnz55GZmYm6detiwoQJJRrjbTKZDOfPn0dUVBTi4uKQkZEBe3t71KhRQ3k/S+qQr+fPnyM0NBSxsbF4+vQpqlWrBkdHRzRv3hzNmjUrkRhl5eHDh7h+/ToePXqE58+fQy6Xw9TUFJaWlnB2dkaLFi1Qp06dsh6mxq5du4bbt2/j6dOnSE5OhrW1NWrUqAFnZ2e0a9euRP5fyy85ORmnTp1CREQEXr58CRMTE9jY2KBt27Zo27atyn+LqEsQBNy/fx9Xr15FXFwcUlNTYWRkhGrVqqFhw4Zo3769Rl+KE5UEJgCJqNzKf8AFUPwZb7r0zjvvlMqeRk+fPsWBAwfw7bffFvt+tGnTRqt2bdu2lZRdv369yARggwYNtIpHREQV2+7dSYTA1wAAIABJREFUu7FixQrldbNmzRAQEKCyrr+/v+g5Pz8/+Pj4AFBsn7Fq1Sp8//33eP78ucr2hoaG+Oijj7Bw4UI4OztrPNaEhAQsW7YMu3fvRmJiYoH1HBwc4OvrixkzZsDKykrjONeuXcOyZctw5MgRlase3mZhYYG+ffti1qxZam81MnjwYERHRyuvT5w4oRxneHg4PvnkE4SHhyuft7a21kkCMC4uDkuXLsXevXvx9OnTAuvVrl0b48ePx7Rp07T+PBUaGooVK1YgODgYr1+/VlnH2dkZs2fPxujRo5VJpT59+igTyQ4ODjhw4ICkXWZmJrp27Soq27t3L+rVq6f2+OLi4tCvXz9R2ds/l4JkZGTgp59+wqZNmxAREVFknBYtWmDMmDH4/PPPC01iHTx4EN98843yOv9hcitXrhT9v+jm5oZt27aJ6gwdOlS0p/VXX30leY0FefHiBZYvX44dO3bg8ePHBdarWbMmPvroIyxYsAAODg5q9f32zxQALl68qDxkLzo6GgsWLMCePXuQl5ensr2dnR2++OILzJkzR6Pk+7Nnz7B+/Xps2bIF8fHxhdbt0qULpk+fLtlfm6i0HQAgFPQwMjISiIh07fHjx5K/f/r27atxP3K5XAgODlb74erqKoq5ZcsWlf3Onj1bVK9t27bFfclKMplMePjwoRAUFCSsX79emDhxouDl5SXUqlWrwL+bAQhz5swpsM/z589L6t+7d0+r8WVlZQl6enpF3qcaNWqI6uzdu1ejOK9evZKM+e7du1qNmYiI/hEUFCT5+3X16tU6i+fv7y+K1b59+wLrzps3T1Q3ICBAEARBiIuLE1q1alXo78G3H+bm5sKuXbs0Gue6deuEqlWrqh0DgFCzZk0hJCRE7RivX78Wpk6dKvk9qs7DwMBAWLBggSCXy4uMk//zTEpKiiAIgnD58mWhWrVqkr6tra01uldFkcvlwvfffy9YWlpq9BodHR2FU6dOaRQrPT1dGD9+vEb3tHPnzkJsbKwgCILwzjvvKMvr16+vMsbLly8lfdy/f1+jcUZFRUn6SE5OLrTN5cuXhTp16mj8XgEgODs7CxEREQX2vXXrVo3669ixo6SPFi1aiOps3rxZrXsRGBgo2NvbaxTf0tJSWLVqlVr916tXT9Q2NzdXEARB2L9/v0bvSVdXVyEmJkatmHv37hXs7Ow0/jl99NFHQnp6uloxiN52+vRpdd5jytMeOQOQiMotBwcHGBkZib7BvX37tsb96OnpoUePHmrXNzc31zgGoDgFrThiY2MRGBiIU6dO4dy5c6Wy3LlatWpatTM1NUWVKlWQnp6uLFNnNiJPhiMiIm2kpqaiW7duGu2dm5mZiREjRqBWrVro0qVLoXUFQcD06dOxdu1ajceWmJiI3r17Y8eOHWrN5BkxYgR27typcRxAsYx2yZIlEAQBS5Ys0bj9vXv30LNnT52vqBAEARMnTsSGDRs0bhsXF4eePXtiz549ypmfhcnKykLfvn1x4sQJjeKcO3cOXbp0walTpzQeY2m5dOkSunXrhuzsbK3aR0REoFu3brh27Rpq1apVwqPT3po1azBjxgwIgqBRu1evXuHLL7/EkydPsHr1ao2XjB8+fBiDBg0qcNafKnfu3EGvXr1w5cqVQvci3759O8aMGaPVYXX79u1DVlYWDh48CAMDA43bE6mLCUAiKrcMDQ3h6uqKGzduKMsePXqEpKQk2Nvb6yxuYctTCqPtPiFxcXGYNm0a9u/fD5lMpna75s2bIz09XbS8R1MWFhZat61atarGCUAiIiJtjBs3Tpn8MzIywvvvv48+ffqgbt26EAQBkZGR2L17t+RQqtzcXEycOBHXr18vdA+xOXPmqEz+Va1aFb169YKzszNMTU2RmJiIkydP4tatW6J6r1+/xogRI3Dx4kU0b968wDibN29WmfyrVq0aevToAVdXV5iZmSEzMxOxsbF48OABzp8/L/l8sHLlSgwZMgRubm4FxsovLy8Po0aNQkpKitpttDV9+nSVyb/q1aujV69eaNy4MUxMTJCQkIDjx4/j7t27ono5OTkYOnQoLl26hKZNmxYaa8iQISqTfwYGBujevTtcXV1haWmJmJgYhISEiJZlPnr0CP369UNOTo6Wr1R3MjIyMGzYMJXJP3d3d7Rv3x61a9eGIAhITExEfHw8QkNDJZ9jExMTMXPmTAQGBkr6cXBwEH1JfvnyZaSlpSmvnZ2dRfsJuri4FPt1BQQEYPr06ZJyPT09eHh4oG3btrC3t0dqaipu3ryJkJAQyXLutWvXwsrKCgsXLlQ7bmxsLD755BNl8s/e3h5Dhw5Fx44dYW9vj1evXuHSpUsICAhAXFycqO2dO3ewZs0azJ07V2XfkZGRGD9+vCT5Z2pqCi8vL7Rs2RJVqlSBXC5HZGQkjhw5Ivk5HTlyBNu2bcO4cePUfk1EJYVLgImoXPD19ZX8HaTu0gJt5OXlCSYmJqJ46i4B7t27t8bxQkNDVS7Dyf+oXbu24O3tLcycOVMIDAwU/v77b0EQBGHQoEGiepouAX769KnGY37DxsZG1NeiRYskdfIvAT506JBGMbgEmIhINyrSEuBOnTop/9ysWTPhxo0bBbYNDAwUjIyMJK8tLCyswDYnT56ULB01MTERlixZImRmZqpsc+bMGcHNzU0Sp3v37gXGkclkQv369UX19fT0hK+++krIysoqsF1UVJTg6ekpifXll18W2EYQpEuAp02bJrmv69atE86fPy8kJiYWOgZNHDt2THI/TU1NhRUrVgjZ2dkq25w8eVJo2rSp5DX27Nmz0Fjbt29X+blpyJAhyuW9b8vLyxMCAgIKXeZdXpYAb9q0SVLX1dVVuHbtWoH95+XlCRs2bBBMTU1F7YyNjYUXL14UOb4OHTqI2q1fv77INposAY6JiVF577t27VrgUuWEhATJ510AgqGhoXD9+vUCY+VfAvz23yO+vr5CWlqaynaZmZnC0KFDJfEaNmxYYKyBAwdK6g8fPlx4/vy5yvq5ubnC/PnzJW2cnJwKjEGkiqZLgAvCBCARlQu7d++W/B3Up08fncW7cOGCJJ6uEoAxMTEF7n3Svn17YfHixcKZM2eE1NTUAvsobgIwMjJSozG/IZfLBUNDQ1Ff/v7+knpMABIRlU8VKQH45tGkSRMhKSmpyFgrV66UtF25cqXKujk5OYKTk5Oorrm5uXD8+PEi47x8+VLo3r27JNaBAwdU1j9x4oSk7tdff11kHEEQhOzsbKFZs2aitu3atSu0Tf4EoL6+vgBAsLW1LXCMxZWVlSXUrVtXFNfCwkIIDQ0tsu2LFy+Ezp07S+5RUFBQgfVV7be2YsWKImPduXNHqF69usr3WXlJAOa/FzVq1FDr/S8IgrBt2za17+PbdJ0A/PjjjyXjGjRokCCTyYqMM2vWLEnbTp06FVg/fwLwzWPKlClFxsrNzRXc3d0lbePi4iR1X716JZiZmYnqffjhh2rt0zlq1ChJjDt37hTZjugNTROAJX+WNhFRCfLy8pKcvHX48GFERkbqJN7hw4d10q8qixYtQlJSkqisadOmCAkJwcWLF7FgwQJ06dJF63361KHJXkpve/jwoWT/FGtr65IYEhERkYSBgQG2b98OOzu7IutOnjxZsi9vQadx7tu3T7KVhr+/Pzw9PYuMY2lpiT179sDR0VFU/sMPP6isf+XKFdG1lZVVgUsK8zMxMcH48eNFZW+fcKoOuVwOU1NTHDx4EH369NGorbp27dqFJ0+eiMo2btwIDw+PIttWrVoV+/btQ40aNUTlBd3P33//Hc+ePROVjRs3DrNnzy4ylouLC3777bci65UVuVyOq1evispmzJih1vsfUOwzWb16dVGZpu+XkpaQkIB9+/aJylxcXPDrr78Wujz/jRUrVkj29D5//rzoJOuiuLm54bvvviuynpGREebMmSMpV/X3yJ07d5CVlSUqmzVrllr7E06aNElSps1+50TqYgKQiMq1qlWron///qIymUyGRYsWlXisrKwsbN26tcT7VUUQBOzZs0dUVq9ePZw9exbvvfdeqYwBAK5fv65Vu/z/iAGAxo0bF3c4REREKvXv3x/u7u5q1TU1NUWHDh1EZQUdovDTTz+Jrtu1a4cxY8aoPS4bGxssXrxYVHbixAmkpqZK6uZPNHbv3l3yJWdhnJycRNf5kw7qmDx5suTelKT899PDwwPDhg1Tu729vT2++eYbUdmxY8dUHoy2ZcsW0bWdnR1Wrlypdqz3338fvXv3Vrt+aUpISJC8Z3v16qV2e0NDQ7zzzjuiMm3eLyVp27Ztkr38Vq1apfYBcXp6evj+++8lycLNmzerPQY/Pz8YGRmpVffdd9+VlKm6h4mJiZKy/P+vFqRZs2Zo06aN6EGkS0wAElG5p+rbsT/++EPyzWhx/fDDD5JNf3Xl+fPnkk24Z82apfEsuuJuWn3kyBGt2h06dEh0bW5uXuim50RERMUxevRojerXrFmzyDpJSUmSQ0NmzJihURwAGDZsGGxsbJTXr1+/lvyeBIDPP/8cwcHByseKFSs0jlUc+vr6mDJlis76j42NxYULF0Rl2tzPUaNGwcrKSnmdnZ0t+bzy8OFDyedAX19fyay3oujyfhSHlZWV6L0SHBxc5GEo+QkanrCra0ePHhVdN2jQAD179tSoDzc3N8lsUnVX79ja2mo089Xa2lqtA/5U1VF3pZKZmRmuXLkiegwePFjtMRJpiglAIir3OnbsKPnWUyaTYcSIESV28mx4eDj8/PxKpC91qFqGoe7MhjcEQcCdO3eKNY5z587h4cOHGrV58eIF9u7dKypr27at2t+oEhERaUJfX1+tJaRvMzQ0LLLOhQsXREkSY2NjrWaEGRsbo3v37qKya9euSeo1b94cPXr0UD6aNGmiUZz8J+VqqkmTJqhdu3ax+ihM/uSfmZkZvL29Ne7HzMwMXbt2FZXlv5+XLl2StBsxYoTGsd577z1R8ra8sLS0FL1XevToodHnrNevX2u9zYsu5OXlSX6GgwcPVmuZbH6DBg0SXT98+BDJyclFtuvUqZPGn1UNDAyKrFOvXj1J2fTp01XOAiYqa0wAElGFsHr1askSgfv37+PDDz9Eenp6sfqOjY3Fhx9+iIyMjGL1owlVM/c0/RAUFBSEqKioYo1DEAR8/fXXGrX55ptvkJmZKSrTZHkPERGRJpycnEQzwkpK/oSVs7Oz1nGaNWsmui5usi6/EydOqLV3WWHatWtXQqNRLf/9dHFxgbm5uVZ9FXU/8ycA7e3tNZ4hByj2etP1fSltycnJmDBhQrE/H5eku3fvSj5nt2/fXqu+8v+8BEFQuTVNfi1bttQqXlGaNm2KunXrisquXbsGZ2dn+Pv7MxFI5UrRX40REZUDTZo0gZ+fH+bNmycqP336NLp27YqdO3eiUaNGGvd7/vx5DBgwQOX+Hbpkb28vKbty5YraswATExPx+eefl8hYAgMDMXjwYLWWRQQHB8Pf319UZmFhwQQgERHpjK5maOWfIWVubo6QkBCt+sp/GMW9e/e0HldsbCwiIyNx7949hIeH4+zZs8Xq741atWoVu4/C5L+fZmZmWt/P/DO68r/+/Essi7N3WosWLbTeEqWsZWZmIjIyEpGRkbh58ybCw8Nx/PjxMt/vLz9VW+xou3WMq6sr9PX1IZfLlWX5D55RRVd/j+jp6eE///mP5JCeZ8+eYfLkyZgxYwa6du0Kb29veHh4cNUMlSkmAImowpgzZw7CwsLw559/isqvX7+Oli1bYsaMGZg2bZpav+BjYmKwcOFCBAQEiE6zbdmyJaytrXHixIkSH//b6tati5o1a4oSj6tWrcKwYcMkJxfmd/fuXQwcOBCPHj2SPFfQJueFEQQBQ4cOxe7duwtd+nTo0CEMHTpUcvrv5MmTYWlpqXFcIiIidejqd0z+mTlhYWHw8vIqkb7zJwRVebMsMjQ0FFevXlUmcnQ1c0sXsyjflv9+nj17Vmf3M3+s4iQ3dZ0YLSmJiYkIDQ3FuXPncPfuXURGRiImJqbc7fWniqote1R9Ga4Oc3NzWFlZifpMS0srsp0uP6v6+vri2rVrkkNwAMVy7OPHj+P48eMAgCpVqqBjx45477338P7773MPbSpVXAJMRBWGnp4efv/9d3h6ekqey8zMxOLFi+Ho6Ig+ffpg9erVOHHiBO7cuYPo6GjcunULQUFB+O677/Dee++hYcOG2Lx5syiZ1bx5cxw7dqxUToTT09OTnG4cFRWFd999F2FhYSrbREREYOrUqWjTpk2BMwFOnDghSdCpIyMjAx988AHGjBmDsLAw5SltOTk5OH36NIYOHYo+ffpI/lHSqFEjfPXVVxrHIyIiUlf+Uz9Lii6X5mVnZ0tOPH0jPj4e8+bNQ+3atdG+fXvMmjULO3bswLVr1wpN/mmzX9rbLCwsitW+KLq8n+np6aJEV/6EUrVq1bTuu6gvXsuSIAjYt28fevToAQcHB3z88cdYt24dQkJC8OTJk0KTf8V9v5Sk/D8vQ0NDrZeHA9Jktjp7guv6fmzYsAGbN28uMrGZkZGBkJAQzJs3Dy1atECLFi2wZcsWyGQynY6PCOAMQCKqYMzMzPDXX39h7Nix+OOPPyTP5+Tk4NChQypP3yuMt7c3du/eDSsrK3Tu3Lmkhluo+fPn45dffhHtp3f9+nV06NABTk5OaNasGUxMTJCamoqIiAjExMSI2terVw/e3t7YtGmTsuzWrVtwd3dHr1694OTkBF9f30LHMGbMGGzbtg2A4kNmQEAAAgICYGBggGrVqiElJaXAD5dWVlYIDAyEmZmZtreAiIiozBSUoCsp6enpklNpAwMDMWnSJLUSFgYGBmjcuDHatGmDnj17wtjYGB9//LGuhltsuryfMpkMWVlZyqRRSS5xLa/LMRMTEzF27Fi1lydXr14drVu3RqdOnTBgwACMGzdOrb3xSkNJz1LMf8hPbm5uifavrU8//RQff/wxfvnlF/zyyy+4fPlykW1u3ryJcePGwd/fH3v27EGDBg1KYaT0b8UEIBFVOKampggMDMS7776LmTNn4uXLl1r3ZWJigoULF2LmzJnKGQZt2rSBqampVstpNVG7dm1s374dgwcPFu1jAgDR0dGIjo4usG3Xrl2xZ88ePHnyRJQABIAbN27gxo0b8Pb2LjIB6O/vD5lMhu3bt4vKZTJZoSeqWVlZ4ejRoxqfXExERFRe5J811rdvX0yePLnE+s8/w2n//v0YOXKkymSIqakpPDw80KpVK7i6usLV1RUuLi6iL9mOHj1aYmPThfz386OPPiqx/YoBcaIu/6w9dZaAFkSdZGxJUTcRlp2djb59+xaYQGrYsCE8PDzg4uICNzc3uLq66vSE5+LK/97Iy8tDZmYmqlSpolV/+X/e+RPtZcnCwgITJ07ExIkTERMTg6NHjyIkJASnT5/G06dPC2x348YNdOrUCZcvX5YcKkJUUpgAJKIKSU9PD76+vujXrx+WLVuGrVu3apQIfPMt+sKFC/HOO+9InnN3d8eZM2cK7cPMzEz0gUObpTUDBgzAX3/9hdGjRxf6oeANe3t7LFq0CJ9++ikMDAxga2uLzp0749y5cxrHBhTLqgICAtCxY0fMnj0br169KrLNBx98gB9++AH16tUrsm7VqlVF38pq+i27np6e5EOdgYGBRn0QERGpkv/3i7m5OXr06KGTWMnJyRg9erQkAeTk5IRFixahX79+WidDyov899PCwkJn9zN/Qik+Pl7rvpKSkoo7HLWp+1nVz89PkvwzMDDA2LFjMWPGDDRp0kQXw9MZVUu0k5KSUL9+fY37ys3NLdcJwLfVqVMHvr6+yi/k7927h1OnTuHIkSM4duwYcnJyRPWTkpIwfvz4cp/sp4qLCUAiqtDs7e2xevVqLF68GP/73/8QFBSEixcvIjo6WrIXXp06ddCqVSt4e3tj0KBBhe7RsXfvXmUyzM7OTmUdPz8/+Pn5Ffs19OrVC1FRUdi2bRv27duHixcvipa2WFpawsPDA/3798fgwYNF+57o6elh//79mDRpEg4cOKCctWhlZYVmzZqpFV9PTw8TJkxA37598euvv2LHjh24e/euMnGnr6+P2rVrw8fHB0OGDIGHh4fary0iIkLtuqpUqVIFKSkpxeqDiIhIlfyHPzx+/FhnsQIDAyXJn4EDB+K3336DiYmJzuKWptK8n/k/m127dk3rvsLDw4s7HLU9f/68yDp5eXn4+eefRWWWlpY4cuRIqW1TU9IcHR0lZbdu3dIqAXj37l3JZ/yKcpBL06ZN0bRpU3z++edIS0vDkiVLsHr1atHrCQoKQmRkJBo3blyGI6XKiglAIqoUqlSpgmHDhmHYsGEAFN8OvnjxAunp6TAxMUH16tU12mzYzs6uwMSfLlSpUgWTJk3CpEmTACg+IL569Qr29vZFzgiws7PDzp07ASi+AdfX14ednZ3GM+UcHBwwZ84czJkzB4DixL2cnBzUrFlTstcKERFRRde+fXtRouXatWvIycnRSULu4sWLomtra2ts2bKl0iT/AMX9DAgIUF5fuXIFeXl5OvkM0bp1a+zatUt5/fTpU0RERMDZ2VmjfuRyueRno0vXr18vsk5ERITkQJUFCxZonPwrT6cDu7q6wtzcXLTvdVhYGPr27atxX6p+XhVxS5qqVati5cqVsLW1VX72fiM0NJQJQNIJngJMRJWSsbEx7O3t4eTkBEdHx2KdNFYWbG1tUb9+fY2XAzk4OKBmzZolskzWzs4OtWvXZvKPiIgqpQ4dOoiuc3JytFp6JwgCunXrhgYNGigfbyfCAOkSVW9vb8lJpkVJSEjQeGylKf/9zMjIQHBwsMb9yOVydOrUSXQ/f//9d1Gddu3aSdr9+uuvGsc6efIkEhMTNW73hqYnt54+fbrIOqp+zgMGDNAoTkH9lBVDQ0O0bt1aVLZ7926t+tqxY4fouk6dOnBwcNB6bMXl4+MDLy8v5WPz5s0atZ80aZLkc3txlrQTFYYJQCIiIiIi+tdp0qSJZAmiv7+/xv0cO3YMoaGhygO8oqOj0aJFC1Gd/Es/tVll8L///U/jNqXJzc1NchCFNvfz0KFDuHDhguh+tmzZUlSnXbt2kr2XN23apPGBHuvWrdN4fG9TZ//mN2JjYxEUFFRkvWfPnknKNH2/XL58udwlkXr16iW6fvDgAY4dO6ZRH+Hh4ZI9uvP3W9pu376NkJAQ5UPTxKa5ublkD0NjY+OSHCKREhOARERERET0r6Ovr4/x48eLyjT9B3xOTg5mz54tKnNycpIkAPOfWhsTE6PRWENCQnDgwAGN2pQ2AwMDjBs3TlR2+PBhjRKXWVlZmDt3rqjM2dkZTZs2FZVVqVIFQ4YMEZUlJSVh3rx5asc6evSoRvfUxMQEenp6orKTJ0+q3f6rr75Sa8Zg/vcKoEgeqksmk2HGjBlq1y8tY8aMkawqmTFjhuiwuMLI5XJMmTIFcrlcVP7ZZ5+V2Bi1kf9LhHPnzmmUiH78+DGSk5NFZXXq1CmRsRHlxwQgERERERH9K40dO1ay3ca4ceNw4cKFItvKZDKMHz8eN2/eFJVPmTIF+vrif2Y1aNBAdB0cHKz20tOrV69i8ODBkj3dytMeb2/4+vrCzMxMVDZmzBjJibaqyGQyjB07Fvfu3ROVT506VZJ4A4Dx48dLyn/66SesWrWqyFi3b99W7hutLmNjY9jY2EjiqXOwxx9//IFffvlFrTj53yuA+subX79+jbFjx+Ls2bNq1Venv5Li4OCA/v37i8ru3LmDUaNGSZJ6qkyePBmhoaGisk6dOqFNmzYlNkZteHp6iq4zMjKwYMECtdrK5XLMnDlT9P+yvr4+3n333RIdI9EbTAASEREREREWL14s2ndN28ebA60qAnt7e6xYsUJU9vLlS/To0QMrV65ETk6OynZRUVHw8fHB9u3bReWNGjWCr6+vpH7+ZYoZGRkYPHhwocmj9PR0LFu2DJ07d5YcCgEAqampGi951TUHBwcsXrxYVJaamgpPT098//33Bc72ioyMRM+ePSX7uzVt2hRjxoxR2cbd3R2jRo2SlM+cORPDhw9XuQQ2Ly8PW7duLfCeFqVr166i62fPnqFPnz4FJnNlMhlWrVqFUaNGQRAE6OnpSZZ75ufs7CyZVfb9998rD3wrSFhYGDp37ix5T77x8OHDQtuXVJvCfPfdd5K9L3fu3AlPT088ePBAZZuYmBj4+Pjgxx9/FJUbGRlJysrCgAEDJAn/H3/8ERMmTJDM7HtbVFQU+vXrhz179ojKvby8ynRPQ6rcuLM7EREREREhOTm50H+wqkuTfdHKgy+++AIHDhwQ7UeWmZmJOXPmYMmSJejZsyecnZ1haWmJ1NRUXLp0CadOnZLMWjI2Nsa2bdtUHjw2YMAAzJ8/H48fP1aWnTlzBk2aNMGIESPg4eEBW1tbZGRkIDExEaGhoTh48CBSUlKU9Z2cnBAdHa28lsvlGDlyJBYvXgw7OzvY2dnByMioJG+NVqZNm4aDBw/i1KlTyrL09HR8+eWXWLRoEXr27InGjRvDwsICqampuHDhAs6cOSO5nyYmJggICICpqWmBsVatWoVjx45JDrz4/fffsXPnTrz77rtwcXGBlZUVHj9+rHLmZefOnXHu3Dm1Xtunn36Kffv2icouXryIxo0bY9SoUejWrRvs7Ozw4sULXL9+HTt27EBkZKSy7oIFCxAWFlbk4SjTp0/HlClTlNevX7/GkCFD8PPPP6N///5wdnaGsbExnj17htu3b+Po0aMICwtT1jcwMEDt2rVF77cNGzagRYsWePfdd2FoaKhyX8H8e89t27YNTk5OaNmyJdLT0yEIAvr06aPWvVKlbt26WLVqlSRJfvr0aTRp0gRdunSBu7s77O3tkZycjBs3buD48eM+KjnCAAAgAElEQVQql05//fXXkqX2ZcHFxQVDhw5FYGCgqHzjxo349ddf0a1bN7i5ucHW1hZyuRwJCQm4fPkyLl68KHnPm5qaYu3ataU5fCIAwAEAQkEPIyMjgYiIKpbz589L/j7Pysoq62EREVEZCAoKKvCzfnEfAwcOlMTz9/cX1Wnfvn2BY5s3b56orre3t8av79NPPxX1MWHChELrp6enC15eXlq/ZiMjI2Hfvn2Fxjh8+LBgYGCgVf/9+/cXXr58KdSoUaPAOk+ePBHFc3V1FT2/fv16je+jtl6+fCl0795d6/tpbGwsHDx4UK1Yd+7cKfS+FPb45JNPhF27donK6tevX2i8AQMGaBXro48+EmQymeR9lpycLImRk5MjdO7cWas41apVE44ePSqsW7euwDqfffaZytc2duzYQvvu2LGjpE2LFi1EdTZv3lzkz2zVqlWCnp6e1u+PuXPnFhmjXr16ojbbtm0rsk1+ZmZmoj5CQ0NV1nv+/Lng7Oys9et5857/888/NR4j/budPn1anffXNPw/LgEmIiIiIqJ/tSpVquDgwYOYMmWK5KCCojRo0AAnTpyQ7G+WX+/evREQECDZI68wVlZW+O6777B3715YWlrCx8dHo7GVFUtLSxw+fBhffPEFDAwMNGrbuHFjnD59Wu3X6uLiglOnTqFt27YaxRk5ciR+/vlnjdoAiv343n//fY3ajB07Fn/88YdkqWhBjI2N8eeff6JLly4axfH09MSlS5fQs2dP9O7dW+N77+vrq/YYi2PGjBn49ddfYW9vr1G7atWqYcOGDVi2bJmORqYdGxsbBAcHw8PDQ6v2jRs3RnBwMPr161fCIyMS4xJgIiIiIqJ/GRcXF2zcuFEnfeffvwwAunfvLopX2D/8P/zwQ7zzzjvK69q1a2s8hpEjR6Jdu3bK6/ynyKpiYmKCtWvXYty4cVi6dCn++usvvHr1qsD6zs7OmDx5MsaMGaNy2a8qI0aMQJs2bfDNN99gz549BZ4Ka2dnhyFDhmDBggWoUaOGsnzZsmW4fPmy5OARVf773/+K9rnr3LmzWmMsKWZmZvjhhx/g6+uLpUuX4siRI0hPTy+wvouLCyZPnoxPPvlEoyQpADRp0gQXL17Exo0b8dNPP+HWrVsF1m3RogW++uorDBgwQKMYb5iZmeHQoUPYsmULvv32W9ES3/xatWoFPz8/9O3bV1k2depUDBw4UHmd/xCaN2xtbXHy5En88MMPWL16tWg579v09fXRuXNnfPnll6IEUsOGDbF69WpMnz5drdOHAaBDhw745Zdf8MUXXxT63n/bV199Jdo6QN2k5fDhw/HBBx9g+fLl2LFjR4GvDwAcHR0xcOBALFiwQOXSZVWWLl0qer916tRJrXZv8/f3R15envK6UaNGBdatU6cOTp06hd9++w0bN27E+fPni+zf3d0d48aNw6hRowpd6k5UUqTHKSkcAFDg4n4jIyO1j+smIqLyIS0tTXIKn6enZ6l800tERFTR5OTkIDQ0FI8ePUJCQgKysrJgY2MDR0dHdOrUCfXq1StW/6mpqTh79iwiIyORnJwMExMTODg4oGnTpujYsWOBs7dyc3MRFBSEe/fuISUlBQ4ODmjTpg06dOig8Yyv0pSdna28n4mJicr7Wbt2bXTu3Bl16tQpsVgRERG4fPkyEhISkJycDHt7e9SoUQNt2rRBkyZNRHV3796NwYMHK6/r168v2muxMHK5HHfv3sWFCxeQkJCAzMxMmJiYoH79+ujYsSOcnZ1L5PXI5XLcunULFy9exNOnT5GVlQV7e3s4ODige/fuoiRxfpGRkTh16hRiYmJgaGiIJk2aoGvXrqhVq1aBbV6+fIkjR47g3r17yM7Ohrm5OWrXro2WLVuidevWJfKa8rt+/Tpu376Np0+f4vnz56hWrRocHBzQpEkTuLu7qzwJujx7/vw5rly5gsjISKSlpSEjIwNmZmaoXr06GjZsiHbt2sHW1rash0kVXGhoKLp161ZUtekA1gBMABIREREREdG/VHESgEREZUnTBCCnfRAREREREREREVViTAASERERERERERFVYkwAEhERERERERERVWJMABIREREREREREVViTAASERERERERERFVYkwAEhERERERERERVWJMABIREREREREREVViTAASERERERERERFVYoZlPQAiIiIiIiKislCnTh0MGjRIeW1vb1+GoyEi0h0mAImIiIiIiOhfqUOHDti1a1dZD4OISOe4BJiIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSMyzrARARUcmLT3yFc5diEX73Kf5+mIrk1Cy8SMsGAFhXN4NDDQu0dK2Bdq0d0cqtBkxN+OuAiIiIiIiosuK/+IiIKpFzl2Lx6+5buHYrAYKguk5KahZSUrNw+/4z/Lb3NoyNDeDj1QijhzRHLXuL0h0wERERERER6RwTgERElcCT2DR8vzEM5y7Fatw2N1eGfX/dx4GgSPTxboQp49xhUcVYB6MkIiIiIiKissAEIBFRBbf3r/tY9eNFvM6Ti8ob1q+Ozu510LSxLeo4WKGKuREAIOVFFqIevUDYtThcCU9QLg3Oy5Nj/+EIXLmRgOX/8UTjBtal/lqIiIiIiIio5DEBSERUQQkCsOGXq9j2R7iovJN7bUwY1RpNG9uqbOdYyxJuTe3xYe/GkMnkOHoyGlv/CMeT2DQAQEz8S4yZdhB+M7vCq1t9nb8OIiIiIiIi0i0mAImIKqjvfryIXQfuKq9r2Vtg1sQO8OhQV+0+DAz08UGPhujt2QCBe2/jh21XIZPJkZsrw9crT8PK0hjtWzvqYvhERERERERUSvTLegBERKS5Q8EPRMm/po1ssW1dH42Sf2/T19fDyEFu+Gllb9hamwNQLAmevfAEIv5OLpExExERERERUdlgApCIqIJ5EJ2C5evPK69bNquBn77tDZvqZsXuu2WzGli/tKfyEJDMrNf4asVp5OXbX5CIiIiIiIgqDiYAiYgqmG9/uICcHBkAwNbaHMv/4wlzM6MS679h/er49r/vwdBQ8Svi4ZMX2PG/u0W0IiIiIiIiovKKCUAiogrkSngCrt9+qrxePK9bicz8y69ti1oY3Lep8nrTr9eRkppV4nGIiIiIiIhI95gAJCKqQDb9dl35587taqNN81o6i+U7opUyuZiZ9Rr7DkfoLBYRERERERHpDhOAREQVREz8S1y7mai89h3RSqfxLKoYY/iAZsrrg8ce6DQeERERERER6YZhWQ+AiIjUE3rhifLPTRrawNXZTucxP+jREP5brkAuCIhPfIXox6lwqldd53GJiIjKikwmQ3h4OM6fP4+EhASkpKQgJSUFpqamqF69OmxsbNC8eXN06tQJdna6/11MlV9eXh6uXr2KsLAwJCYmIjk5GampqTA3N4e1tTVsbGzQsmVLdOrUCdWr83MYEWmHCUAiogri5t0k5Z+7tK9TKjGtq5uhaWNb3Il4phwDE4BERFQZ3b17FytWrMCBAwfw4sULtdo0b94cX3zxBUaOHAlzc3Mdj5Aqm2vXrmHFihU4cuQIXr16VWR9fX19tGnTBhMnTsSQIUNgYmJSCqMkosqCS4CJiCqI6Mepyj+7lMLsvzfenmn4IDq1kJpEREQVz9OnTzF48GC4ublh+/btaif/AODmzZuYMGEC6tatix07duhwlFSZPHnyBD4+PmjTpg127dqlVvIPAORyOS5fvozRo0fDyckJf/31l45HSkSVCROAREQVRGJShvLPjjUtSi2uYy1L5Z+fJWeWWlwiIiJdu3XrFlq3bo3du3dDLpdr3U9ycjKGDh2KsWPHIi8vrwRHSJXNhQsX0KpVq2In7+Lj49GnTx/MmDEDgiCU0OiIqDJjApCIqILIyf3nHxRVzI1LLa6VxT+x0jNzSy0uERGRLj19+hS9evVCfHx8ifW5bds2TJgwocT6o8rl8ePH8PHxQUpKSon0JwgCVq9ejfnz55dIf0RUuXEPQCKiCkJPT0/5Da9cXnrf9ObJ/ollaKBXanGJiIh0JS8vD0OGDCkw+WdqagovLy94e3ujTp06sLOzQ15eHp4+fYrz589j//79ePz4scq2W7ZsQatWrTBx4kRdvgSqYLKzs9G/f/8Ck39VqlRBr1690KNHDzg6OsLOzg45OTmIj4/H+fPnsXfvXiQkJKhsu3z5crRs2RIff/yxLl8CEVVwTAASEVUAeXlAFTMTvMrIBgCkpmWjVo3SWQacnPrPsl8rS242TUREFd/27dtx6tQplc8NGTIEa9asQY0aNVQ+P2jQIKxcuRJbt27FjBkzkJkp3R7Dz88PI0aMQNWqVUty2FSBrV+/HtevX5eU6+np4dNPP8XKlSsLPOF36NCh+O677+Dv74/58+cjN1e6ImPu3Ln48MMPeTAIERWIS4CJiMqp5GRg925g1CjAxgZIjP8n4ff2gSC69igmTfnn0ko6EhER6YogCFi1apXK52bNmoU//vijwOTfG0ZGRvjss89w6tQplaf/Pn/+HP7+/iUyXqr4Xr9+jXXr1ql8btmyZdi0aVOByb83TExM8OWXX+Lw4cMwMjKSPP/o0SMEBASUxHCJqJJiApCIqByJjgbWrgW8vICaNYHBg4G9e4GuXYE2LW2U9W7cflpqYwp/K5ZLY9tSi0tERKQLISEhuHv3rqS8S5cuWLFihUZ9ubu74/vvv1f53P79+7UaH1U+e/fuRWxsrKS8b9++mDNnjkZ9vffee/Dz81P5HN9zRFQYJgCJiMpQbi4QEgJMnQo4OQENGgDTpgEPHgCffQYEBQEpKcDBg8CooQ7KdmfCYpCXp/1pheq6F/kcCUnpAAB9fT20bFZT5zGJiIh0KTg4WGX5kiVLoKen+V63Y8eORb169STl169fx9OnpfeFHZVfBb3nli5dqlV/U6dOhY2NjaT89OnTKpekExEBTAASEZW6lJR/lvbWqKGY7bduHWBmBvz3v8CVK8DDh4C/P+DtDbzZyqVjW0eYmBgo+kjNwomzj3Q+1l/33FL+ubVbTVSvaqrzmERERLp0+vRpSZmjoyM8PDy06s/IyAg+Pj6ScrlcrnKmIf37qHrPtWzZEq6urlr1V6VKFXh5eUnKs7OzERUVpVWfRFT58RAQIqJSEB2tmMV36BBw+jTw+rUi4de5M+DjAwwcCDg6Ft6HRRVjeHdzwsFjDwAAP2y7im4d6ymTgiU+5sepOB76SHk9tL92H1KJiIjKi9zcXJUHMfTo0UOr2X9vuLu7qyxPSkrSuk+qHJ4/f64yKefp6Vmsft3d3bFjxw5JOd9zRFQQzgAkItIBmQw4exaYOxdwdf1nae/Nm8CQIcCuXUBSEhAcrFj+W1Ty742xw1rC2FiR8ItPfIXtu2/qaPxyLF93HnJBAAA0bWQLjw51dRKLiIi0J5PJ8N5778Ha2lr0sLW1xbVr17Tud8WKFZI+ra2tsWHDhhIcfel79uwZXr9+LSl3cXEpVr92dnYFxlPF399f5f1dsGCB1mOIiIhAjRo1JH16e3tDJpNp3S8VT3x8vMry0n7PERExAUhEVEIyMhSz/D77TJHQ8/AA3uwlPmcOcOYMkJgIbN8ODBoEWGhxoG7tWpYYOdBNeb3l93CcvyzdVLq4fth2FdffOvzjs1GtUYyJEUREpCMGBgZYv349srKykJqaqnwkJydjzJgxyM3N1bjP+/fvw8/PT9RfamoqXFxcMH78eB28itJT0OyoOnXqFKvfnJwcleWmpqq3zvjiiy/g6uoqucfLly/H+fPnNY4vl8sxbtw4JCUlifrLysrC6tWrYWCgm9UCVLTy8p4jIuISYCKiYnj4UDGL7+BB4NgxxaEepqZAly7AvHnAgAFA7dolG3P0kOY4fPxvJDxNh0wmx7wlJ7FhZe8SO6F3x/47+O2tvf8++qAJOrcr4RdBREQlxsXFBX5+fpg7d66o/ObNm1i6dGmBJ4aqIpPJ8MknnyA7O1tUbmFhgYCAgAqfSHr9+jXatGkjKa9dzF/WBSV5atZUfXiWvr4+Nm/ejNatW4sObZDL5Rg/fjyuXr0KkzebAKthzZo1OHv2rKR85cqVWu8zRyVDEASV77mC3hvq0vQ9R0RU0HyOAwD6FNTIyMhIq28TiYgqOrkcuH79n/38rl5VlNvaAr17A336AL16AZaWuh3HpaupmDj3MKCv+PbXzNQQ86d2Ri/PBlr3KRcErP35En7fd0dZ1rSRLTZ//4Fy2TEREZVPcrkc3bt3x5kzZ0TlhoaGuHjxosoEhCrLly/HvHnzJOXbtm3D6NGjS2KoldKwYcPwxx9/SMrj4uLg4OBQYLu1a9di2rRpkvL58+djyZIlasV+8OABWrRogaysLFG5t7c3jh49Wqy9Dan86tWrF4KCgkRlhoaGSEtLg7m5eRmNiohKU2hoKLp161ZUtekA1gBMABJVWoKg2CPuSdxLvEjLxouX2ch9LYOJkQGqVDGGrbU5atWwQB0HSxgYcDeAwmRmAsePKxJ+Bw4olvECgIuLIuHn4wN06gTol9JtfPIEeO89IOVlIhq1CRLt69O3Z2NMGNUadraaffC7eTcJ3/14EfcePFeW1XG0wo/Le6GmvRZrlYmIqNRFR0ejRYsWSE9PF5W3aNECly5dgrGxcaHt79+/j1atWklm//Xr1w9//vlniY+3skhMTETjxo3x6tUrUbm7uzsuXbpUaFu5XI4ePXrg5MmTonJDQ0NcuHABbdu2LbJ9t27dJLP/rK2tcfPmTTiqu8kwVShRUVFo2rSpZD/L3r174/Dhw2U0KiIqbZomALkEmKgSiXqUinOXYnHxaizuRj5HRqZ0k+v8zEwN0aShDdq0qIXunerBuaFNKYy0/Hv8GAgKUsz0Cw4GcnIAQ0OgfXvFYR79+wONG5f+uB49UiT/4uKAnTtrwvEdbyxYdgopqYpv/Q8EReLoiSj0690YPl6N0KShDfT1VX/Xk5srw9lLMTgc8jdCLz7B/5/3AQBwa2qP77/pgWpVuY8MEVFF4eTkhKVLl2LKlCmi8vDwcCxfvhxff/11gW3f7CGXP/lnb2+PjRs36mS8lUFmZiZGjhwpSf4BwOTJk4tsr6+vj61bt6J58+aiPvLy8jB27FhcuXKl0MTt+vXrVS79/fHHH5n8q6TS0tIwfPhwlYfZqPOeI6J/L84AJKrgMrNe48iJKOw/HIGIv5OL3V8dRysM9GmKvj0bwaJK4TMFKpP8S3uvXVPMorSxATw9FbP8+vUDqlYtuzFGRAA9egApKcCffwJeXoryZ8mZWLD0pOjQjjesLE3QunlN1K5lhWpVTZCXJ0fqi2w8fPICt+8/Q2aW+MOjvp4e+vZqjJmfd4CJCZf9EhFVNIIgoHfv3iqXBoaFhaF169Yq23377beYPXu2pPzgwYPw8fHRyVgrMrlcjuDgYMyaNQu3bt2SPO/h4YFTp05BX83lAZs3b4avr6+k/D//+Q8WLVqksk1UVBSaN28u2kMQAIYPH47ffvtNrbhUcchkMhw8eBCzZs3C33//LXmeM3WJ/n24BJjoXyI3V4Y9h+7jl53hSHmRXXQDDZmbGWHkIDcMH9AMZqaVc7JwVhZw7pwi6bdnDxAfryh3clIk/Pr0Abp3V8z8K2v37imSf2lpimXInp7i52UyOQ4F/41tO8IRlyCdhaCOqlXssW55hxI7TISIiMpGXFwc3NzckJqaKipv2bIlLl26BCMjI1F5REQEWrVqJdlDbsKECdiwYYPOx1teZWVlISEhAS9fvkRGRgbi4+MRExODq1ev4syZM4iJiVHZrnHjxggNDUWNGjU0ivfBBx9Ilm8aGRkhLCwMrVq1EpXL5XJ4enri9OnTovI6derg5s2bqFatmkaxqXxIT09HUlIS0tLSkJGRgdjYWMTExODKlSs4c+YMEhISVLZr1aoVTp48iapl+U01EZU6JgCJ/gWu3kzAktXnEBP/Uuex7GzMMXtSR3TvVE/nsUpDUhJw9Khilt+RI0B6OmBgAHTooEj49esHNGlS1qMUu34d8PYGXr9WjLljx4LrymRyHDkehaMno3HjTiJycmQFV4ZihqBnl3o4tK8BHkbWQkwMkO/fhUREVAFt3boVn376qaR88eLFWLBggfK6oD3knJyccOPGDVjq+lSrciwoKAi9evXSqI23tzd+++032NnZaRwvPj4ebm5uSElJEZWr2sPR399fstxTX18fwcHB8Mz/LSFVGIGBgRgxYoRGbQYMGICtW7fCyspKR6MiovKKewASVWJ5eXKs3XwZO/+8I9qvLT99fT00a2IHF2c7NKpfHXY2VWBrbYY8mRwAkJH5Gk+fZSD6cSpu33+G2/efITdXdaLoWXImZn1zHB/0aIjZkzrC3KziZYfu3FEk/A4eBM6fVyzttbZWnNrr4wP07QuU1y/Kr14FevYEZDLFnoTt2xde38BAHz7ejeDj3Qi5uTJcv52Iew+SkfQ8Azk5MrzOk8HC3BSrvrVEn97W2OBvDyNDfThWA8aMUcwuHDCgdF4bERHpztixY3Ho0CHs379fVL5w4UL07dsXbm5uAIA1a9ZIkn+GhoYIDAz8Vyf/NOXm5oYFCxZg8ODBWp+66+DgAH9/fwwbNkxUHh4ejqVLl8LPzw8A8PDhQ8ydO1fSfurUqUz+/Yu0a9cO//nPf9CnT4HzdoiIRJgAJKogUlKzMGfxCdxQsc/bGy1ca6D/+87waF8HVpYmavedmfUa5y7F4kBQJMKuxalMLv4V8jcePEzBKr8e5f5U2Oxs4OxZRcJv3z4gNlZR7uQETJ6smOnXrVv5n+l27hzw/vuAqaniFOIWLTRrb2xsgPatHdG+tXQT8FWLgOeJgNH//xb4+GNg+nRg0yYmAImIKouffvoJ586dQ1JSkrIsNzcXn3zyCcLCwhATE6PyYJD58+ejQ4cOpTnUCu/ly5d48OABUlJSYGOj/YFqQ4cOxf79+7F7925R+dKlS9G/f380b94cn376KTIyMkTPu7q6YunSpVrHLU+io6PLJK6FhQXs7e3LJLY2UlNTERERgW7dunH2HxGphUuAiSqAZ88z8fmcI3gcm6by+Q5tHDHhk9ZwddZ8uUl+D5+8wIaAazh57pHK522tzbFhZW+8U6d87THy7JlieeyhQ4olvq9eiZf29ukDuLiU9SjVFxqqmJ1obg6EhADNmpVs/506Ke7R2/uWf/EFsHEjEBUFvPNOycYjIqKysX//fnz00UeS8iVLliAoKAihoaGi8tatW+PixYuSfQL/jbRZAly9enX4+flh8uTJWs8EfP78OZo1a4anT8Vf+rZq1QqjR4/G1KlTReXGxsYICwtDy5YttYpXnshkMhiW0ebL5eHwFG2WANvb22PZsmUYO3asjkZFROUV9wAkqmSep2Ri3Iy/VB7soMv9+a7eTMCi78+qjGtrbY6fvu2NerXLNgn49tLeCxcUJ/lWqQK8++4/+/lpuP92uXD0KPDRR4CtrWLmX6NGJR9j5EjF7Mj0dODNv09u3lTMMvzqK2DhwpKPSUREZWPIkCHYuXOnqExPTw9Cvin/5ubmuHr1KpqUt81wy0h4eDiWL1+unF31+vVrpKWlITIyEvfu3YNMVvA+uwMGDEBgYCBMTNRfkfG2AwcOoF+/fpJyVT+3ZcuWqVwSXBH92xOAZ8+exY8//qhcfp+Tk4O0tDTcv38fkZGRkMvlBbYdM2YMNm3aBAMDg9IaLhGVMSYAiSqRrOw8fDbzMO49eC55rkMbRyye2x1VrbT7YKmOzKzXWLLmHI6dki7FqF3LEgHr+uo0fn5vL+3980/gyRNFef36gJeXYsZcz57AW3tkVzh//QUMHKhIXB4/DjRooJs4fn7AN98oTj6uVeuf8rZtgcRE4PFjxQxKIiKq+JKTk9GsWTMkJiYWWs/f3x8TJ04spVEVLTQ0VHIqrrocHBwwZcqUEh7RP9LT07Fnzx6sWbMG4eHhKusMHToUgYGBWs8EHDNmDAICAgqt06VLF5w6darSJH3+7QnAwqSlpWHHjh1Ys2YN7t+/r7LOxIkT4e/vX8ojI6KywgQgUSUyb8lJhIQ+lJQP7NMUs77oAH197T5QakIQgM2B1/Hzr9clz7m3rAX/Zb10Oo7kZODECUXS73//A16+BPT1gVatFAm/Pn2ANm10Fr5U7d4NDB+uSGiGhAB16ugu1q+/AqNGKZYae3j8U75xIzBhguJ++/joLj4REZWuQ4cOFXpYgJeXF4KCgrROVunCt99+i9mzZ2vVtlWrVrh27VoJj0gqLy8PCxcuxKJFi1Q+v2PHDnz88cda9Z2WlgY3NzfExMSofN7S0hLh4eGoX7++Vv2XR0wAFi07OxuzZ8/G+vXrVT4fHByMHj16lPKoiKgs8BRgokriUPADlcm/If1dMeOz9iitz+d6eoDviFYwMtTHD9uuip67fCMBgXtvY+QgtxKNGR2tSEAdOgScOgXk5Sn2wvP0/Gc/v7dnrVUGO3YoluU2bKiY+efgoNt4DRsq/hsVJU4ADh8OzJqlOAyECUAiosrDx0KYBKwAACAASURBVMcHY8eOxdatWyXPVatWDVu2bClXyb+KwtDQEAsXLkReXh6WLVsmef7rr7/WOgFYtWpVbN26Fd7e3pJlv4DiBOfKlPwDAH19fezatatMYtetW7dM4mrK1NQU69atQ05ODn7++WfJ819//TUTgESkEhOAROVQSmoWVm0Ik5T36Fof0z9rV2rJv7eNHtICz5KzsOvAXVH5T9uvoWvHusXaD1AmU+zhd+iQYmlvRISivF49YOxYRSLK2xvQchudcm/LFmD8eKBJE8XMv9JIbr5ZWhwVJS63sAAGDQK2bwfi4gBH6QHCRERUQQ0fPlxlAtDKygpVq+puX9+YmBhE/P8vd09PT+jr6+ssVln55ptvsHPnTskJtpGRkbh8+TLc3d216rdr166oW7cuHj9+LHmulg4+MMTHxyM6OhrZ2dkwNTWFvb09GjRoUGpLjPX09DBo0KBSiVXRrVq1Cn/++afolG8AuHjxIqKiotBAV/vIEFGFVfl++xJVAht+uYr0DPEy+/p1q8FvZlfol+G38zMmtEOrZuJTNXJzZVi3+bLGfaWkKJa8jhoF2NgoZqF9+60iAfXf/wJXrgAPHyqWpPbpU3mTfxs3KpJ/LVsqluOW1sxGe3vAykqaAAQAX1/FrMtt20pnLEREpHvZ2dkF7on35MkTzJo1S2ex586dCy8vL3h5eSEvL09nccqSkZERJk2apPK506dPa92vn5+fyuQfAIwfPx4vXrzQuu83Hj58iClTpsDR0RGOjo7w8PCAl5cXPDw84OzsDDs7OwwePBjnzp0rdiwqORYWFvD19ZWUC4IgOd2biAhgApCo3HkUk4YDQQ9EZYaG+lg8tztMTMp2g2cDA318PbMrzEzFk4dDLzzBzbtJBbT6R3Q0sHat4sCOmjWBwYOBPXsAd3dgzRogJkaR+PPzU+zrV9lXIv3wA/D554rXGhysSISWpvr1VScAO3RQnAa8ZYviZGUiIqr4Zs6ciTt37hT4/KZNm3D06NESj5uRkYEDBw5o1XbWrFkQBEGrR2ns/5efl5eXyvLbt29r1d+5c+ewcuXKAp+PjY3FjBkztOr7jbVr18LV1RXr169HfHy8yjqpqanYvXs3unTpgsGDByMtLa1YManklPR7jogqNyYAicqZHfvvQC4X7/My0KcJGjewLqMRidWuZYmxQ1tIyn/dfUtSJpMpTu2dOxdwcVEsO502Dbh5ExgyBNi1C0hKUiS/pk7V/b535cmKFcCkSUCXLoo9/6zL4MfbsKHqBCCgWHr96JFiSTIREVVsISEh+PHHHwutIwgCxo0bVyIzyt4WGBiI9PT0Eu2zvGrUqJHK8ufPn2vcV0ZGBsaMGQOZTFZovW3btuF///ufxv0DwJIlSzBt2jRkZWWJyg0MDFCrVi1YWFhI2uzevRseHh5MApYTjRs3VlmuzXuOiCo/JgCJypFX6bn4K+RvUZm5mRF8R7QqoxGpNqS/K+xszEVlZ8Ji8PRZBjIyFAd4jBoF2NkplvauWKGYzTdnDnDmDJCYqNhjbtAgxZLff5sVKxRJ0e7dgcOHAUvLshlHgwaKU5ZTU6XPjRqlOHhl06bSHxcREZWc1NRUjB49WnKIhIuLi6RuXFyc1qfuqnLv3j3Mnz+/xPorrvv376Nt27aSx6FDh0qkfxMTE1iq+KX+6tUrjfuaPn06HjwQrwixsbFBjRr/x959h0VxdXEA/rH03hFQsTcENYAFFXvvvaMQUcCKnSRiicYejR0UDGKPLXZjx16wICg2xAIoIqAgnd35/pgPcJ1dYBu76HmfZx/YOzP33gHE5ew991TinDtx4kSJA7cRERGYN2+eUFuPHj0QHh6OnJwcJCYmIiMjA48ePcKUKVOEKvNGRUXB3d1dovF+VLdu3RL5M3flyhW59G8uJn1Emp85Qsj3j4qAEKJCwm+8Rk6u8N44vbvUgZGham2Ap6OtgUG9G2BzaHFVYD5fgGFjYnH9fCPk5QE6Ouzqtl69gIEDgSpVlDhhCeXl85H0IROf0nOQk8uHgb4mDPS0YGWhL3MadkAAsHgx0L07cOgQ+3VSlsK9oV++ZNOQv2ZiAvTvz+7T+OEDu2cgIYSQimfChAlISEgQarOwsMDFixfh6+uLQ4cOCR0LDg7GgAED0K1bN6nHjIuLw65du7Bq1SqVWilmYWGBu3fvctqjoqLQq1cvmftnGIazmg5gqyxL4vTp0wgODua0r1+/HhoaGhgyZIhQe0JCAqZNm4a/Jdi8d8aMGRB8tc/HtGnT8Oeff3IqQdvb22Pt2rXo378/evbsiaysLADAsWPHcObMGXTp0kWSWysVwzA4f/68XPssK2trazg4OMi1TxMTE5E/czExMXBzc5O5/8Lvx7cUWdSHEFJxUQCQEBVy/sorTtuAnvXKfyJl0K9bXWzZcR98fvGLx5T0Nxg6tBF69wa6dVPeyjZJ5eXzcf12PK5HxONBdBLeJKQL3Vchnpoa7KoYwbGBFdxaVIWrSxXoaJft1yjDANOmsXsg9u7NBtaUXdjk60rA3wYAAbYYyK5dwPbtgAL3hieEEKIge/bswd69ezntGzduhJWVFTZu3IiLFy8i7aul4IWpwNHR0WUOXOXm5mLatGl4/PgxoqOjkZKSIrd7kCcLCwsYGhpyVkd9W7lXWqmpqSKLnFhJ8C5acnKyyBWbffr0wfDhwwEA/fv3x+HDh4WOh4aGYtCgQejZs2epY8THxwutQGvUqBFWrFjBCf59rV27dlizZg28vb2L2kJCQuQeABQIBGL3tVO0kSNHYufOnXLts1q1auDxeELBVkB+P3PfVgAuJGqlKCGEUAowISpCIGBw7+F7obaa1UxRs5qpkmZUMjNTXU5FYF3DZGzYmIvBgytG8O9jahbWbrmNHiP2Ytbv53H45FPEvfkkMvgHAAKGwau3n3HszHPM/v0CeozYi9WBt5CUnFniOAwDTJ7MBv+GDgUOHlR+8A8QDgCK0rYt0KABEBzM3gMhhJCKIyEhQWRV2j59+hStILO2tsaff/4p8lpJqgJnZ2dj8+bNCA8PV9ngX6HatWtz2mSp0vu1W7duiWy3sbEpcx/e3t5ISkoSajM1NUVgYGDR840bN8LUlPv60Nvbu0ypwEePHhUKME6fPl0oxVecsWPHwtrauuj5mTNnSr3mR6ejo4MqItJg5PUzd/v2bZHtkvzMEUJ+HBQAJERFvHz9CVnZ+UJtLV0qK2k2ZdOqmfALGoGAwdMXqv3CHwDy8vgICruHfh77sfNgND6n50rVT8aXPOw5/AgDfj6AjdsikJvL3aibz2cLamzcCIwYAezcCWhqynoH8lG1KqClJT4ACACensCzZ8Dly+U3L0IIIbJhGAbjxo1DamqqULu5uTm2bNki1Obp6YmuXbty+ggODsapU6cUOk9l6NChA6ft+fPnePr0qcx9nzx5UmR7WVM9Q0NDOSv7AOCvv/4SCujY2Nhg9erVnPMSEhLg5+dX6jiRkZFCz8ua7q2uri50L58+fVKpFG9VJepnLiIighPolcaJEydEtssjvZgQ8v2hACAhKuJpLDdw5miv2huvNaxnyWl7ouIBwNhXaRg18QiCdz3gBOx0tDXQsmkVjHf/CUt+bY+glT0QtqEPQtb0wtLf2sPXwxluLeygqyP8LnleHh+h+x5ixIR/he6fzwc8PIDQUDaddscOoAxvsJcbdXWgevXSA4Da2lQMhBBCKpINGzaIDN6tW7dOZGpgUFCQyOIV48aNE0oPFsfIyAixsbEiH4Vpq6pCXLBLVEBNEklJSSL34DMwMECbNm1Kvf7Vq1eYOnUqp71Hjx4YPXo0p93Dw0PkvWzfvh3//vtviWN9vSekiYmJROmiRkZGQs+p2ETpRH2fCgoKsHbtWpn6jY2NxYEDBzjtNjY2+Okn1SogSAhRDSr0pyghP7Z3SV84baqa/luoTk0zTlvCO9V9IXj5xhvMXXYJ2TnC+/PUq22O4f0bopNbjTIV+cjN5SP8xmvs/fcxomKK9155E/8Z46afwPyZbmjTogaGD2cLffj6sisAS9haR2lq1QKiosQft7AA+vRh05bXrQPMuN9yQgghKuTJkyfw9/fntPfq1QsjRowQeU21atXwxx9/YMqUKULthVWBt5byLhCPx0PNmjVFHvs2YKRsbm5uMDEx4aTKhoaGwsPDA66urhL3KRAI4OPjI7IgQ58+faBdyr4fAoEAHh4eSE9PF2o3NjbmrNj8WmBgIBwcHPDli/BryIkTJ6Jt27Yi04QB4e9XvXqS7TUd+9W7hjweT2wVWmnxeDxERETItc+yMlPQi5wuXbpAR0cHOTk5Qu3r1q3DyJEj0bBhQ4n7zM/Ph5eXl8g9JwcNGlTifo6EkB8XBQAJUREfPnL3kbO20lfCTMrOQF8LerqaQqnLKZ+41e9UwbnLcZi7LFxofz9LCz3M8GmBDq2rSxSc09ZWR5d2NdGlXU2E33iDVZtu4v0H9sV3Tm4Bflt6CUbqfJw7URuzZgErVsj7buSnVi3g9GkgOxvQ1RV9zrhxbNGSnTuBb/42JIQQokIKCgrg4eHBCUQZGxsL7SEnysSJE7F//36h4hBAcVXg7t27y32+yqCtrY2pU6di4cKFQu15eXkYMmQI/vvvP9jb25e5v/z8fEydOlXkqjtNTU3Mnz+/1D5Wr14tck+41atXo3Jl8dvBVKtWDUuXLsXkyZOF2hMTE+Hn54ft27eLvO7o0aOlzkmUd+/e4ebNm0XPHR0doSvuxYOU1NTU4CyqMlkFZmpqCi8vL2zYsEGoPTMzEwMGDMDp06dRo0aNMveXnZ0NLy8vXLp0iXNMX18fv/zyi6xTJoR8pygFmBAVkZMr/A6elqZ6mSvMKpOJsY7Q8/QM6fbTU6SIyHeYt1w4+NfG1Q7/bBmAjm6SBf++1dbVDnuD+qNTm+IXbgIBg7S8K5gwNV6lg38AGwDU0snAsdMJOH0hFodPPsWxM89x824C3iayKxE6dgRq1KA0YEIIUXWLFi0SWYhi3bp1JQaSAHblVXBwsMiATllTgSuKqVOnwtjYmNMeHx+PFi1aYP369SJX833r4sWLcHNzw+bNm0UeHzduHOrWrVtiH1FRUZg7dy6nvWvXrvD09Cx1DhMmTEDr1q057WFhYTh27Fip10tiwYIFQqvYhg0bJtf+v2dz5swRuRL02bNnaNq0KUJCQpCXl1diHwzD4OTJk2jevDl2794t8pzp06dTARBCiFji/uw9CqC3uIs0NTVL/QVFCJHMb0sv4cyll0XPdbQ1cOUod88XVdPPY79Q2q9LYxtsXqE6qwSSU7IwwvdffPpc/IJ1cJ8GmDXBVa4puQwDbNh2B2H/FOfTGuhrYffmfrCpZCC/geQgL5+PS9de4+K117h2KxHZueKDtsZG2nBpbIP0jzUQuN4O166qQ4rsKEIIIQp29+5duLq6Ij9fuKBYjx49xBYKEGXZsmUiVxCNHTsWwcHBEs/Lx8cHQUFBRc9zc3OhpaUlcT/ytmnTJkycOFHscXNzc3Tq1AnNmzdH5cqVYWpqiuzsbCQnJyMyMhLnzp1DTEyM2OubNm2KS5cuQU9PT+w5eXl5aNasGacoh5GREaKiomBnZ1eme3n69CmaNGnCSTG1tbVFdHS02FRgSaxZswbTp08vem5lZYWnT5/CxMRE5r5/FIsWLcK8efPEHq9UqRI6deqEpk2bonLlyjAxMUFmZiY+fPiAe/fu4dy5c3jx4oXY6zt27IhTp05BU1WqzRFCFO7y5cto27ZtaadNA/AXQAFAQlTGvBXhOHW+eF8VdXUerp8YA56K7+HRc+Q+ofTl5k6VsWEpt5qgskz57QxuRMQXPe/TtS7mTmutsP34/tx8E3v/fVz03KmRNQJX9FCJ/f/4fAH2H43Btj2RSPucU/oF38jP00UVi4Y4uLNhmfZKJIQQUj6ysrLg5OTEqWRrbGyMqKgoVK1atcx9FRQUoEWLFrh79y7n2MmTJyVOBVbVACDDMPD09BSbJiuLmjVr4vr166UW1/D398fy5cs57YGBgfD29pZozOXLl4vc+9Hd3R1hYWES9fW1zMxMTJs2TWgfSDU1NRw8eBD9+/eXut8fEZ/Px4ABA6ROwS6Jo6Mjrly5InJlKyHk+yVpAJBSgAlREWYmwik3fL4AGRmqHWgXMAzSvtnzj6emBRH7ESvFpeuvhYJ/jg2s8MuUlgoNxk3zbg6XxsWpF/cevsfZ8JclXFE+7txPxHCff/Fn4C2RwT9tbXVUstRHZRtD2FgZQEuTG+DT1MpGUnoEBvx8EA+ik8pj2oQQQspg1qxZnOAfwK7akiT4BwAaGhrYtm2byFVEXl5e300qsJqaGoKDgzF27Fi59tuzZ0/cunWr1ODf1atXsWrVKk57x44dMX78eInHnTFjhsi983bs2CF1KvCBAwfg6OjICf6tXr2agn9SUFdXx759+zBo0CC59jt06FBcvXqVgn+EkFJRAJAQFWFqosNpS0xS3Yq6AJCSko38AoFQ2+GDBtDUZKvFurgAQ4YA/v7Ali3AuXPAo0dAJrfeiUJs2XG/6HMtTXUsnN0GGhqK/bXH46lh/kw36OkW/+EUuP0eBAyj0HFL8veeSEz85TTi3hRXPOSpqaG5U2X4T2mJ/cEDcfnIaBzfORT/hg7G0R1DcPXYGPyzdQD8p7RE059shYKmHz5+gc/sU9h5IApKvC1CCCEAzp49K3IPuo4dO8LDw0OqPhs1aoTZs2dz2hMTEzFz5kyp+lRFGhoaCA4ORlhYGGxtbWXqy8bGBuvXr8exY8dgYWFR4rkZGRkYM2YM+Hy+ULuBgQGCg4OlquCqoaGBkJAQkYFbb29vpKamlrmviIgItGnTBoMHD0ZcXFxRu76+PsLCwuDn5yfx/AhLR0cH//zzDzZu3AhLS0uZ+qpevTr+/vtv7N27V+WqbRNCVJPqVxgg5AdRoyp3D5WnL1LRoE7JLyKVKeb5R05b966G0O0GvHsHvHzJVpjNEBHHNDUFatYsftjYALa27Od16wKGhrLNLSLyHZ6/LH6xO7SfParals+LI2srA4wc6ICtO9kA5NvEdFy7HQ+35pKtwpCVQMBgxYYbOHjiiVB7q2ZV4De+OapXFf9OsZoaUMPOBDXsTDCwZ328jv+MoLB7OHc5DgzDrlBdu/UOXsSlYf7MNiqR4kwIIT8iS0tLnDlzhtPeuHFjqQJJhQICAtCuXTuRx/h8PtTVv5+tINzd3TF06FDs2rULmzZtwv379znBOVE0NDTQrFkz/Pzzzxg1apTIIg+iZGZmCqVFF6pUqRKqV68u6fSLNG7cGDdu3BC5SjM7O1vEFcI+fPiAOXPmICwsDAKB8Bu87dq1Q2BgIOrVqyf1/AhLTU0NEyZMgKenJ0JDQxEYGIioqCgwZXhXVVtbGy1atMD48eMxZMgQaGjQn/OEkLKj3xiEqIh6tc05bZGPk9Cve8nV45Qp8jE3DXTaZAs0qCPclpbGBgMTE4sDg4WPs2eBT5843RQFCL8ODBY+atUCSttz+uS54k2SNTV4GDGgoTS3KLVh/eyxY39UUXXnk+delHsAcOm6a/j31LOi52YmOgiY4YbWzSSfR7Uqxljya3t0bV8Lv6+6gvQvbOGQE+dewNREF1PHNZXbvAkhhJRdkyZNFNKvtrY2OnXqpJC+VZGWlhY8PT3h6emJ9PR0XL9+HZGRkUhOTkZaWhoyMjJgYGAAc3NzWFlZoVGjRmjVqhUMDCQv9GVtbQ1ra2sF3AVEpgGXRUhICGbNmsUJHtapUwd//PEHBg0aJFNAmXDp6urC19cXvr6+SE1NxfXr1/Hw4UOkpKQgNTUVmZmZMDQ0hIWFBSwtLeHk5ARXV1eRlboJIaQsKABIiIqoZKkPKwt9oYIa1269hUDAgMdTzRdcV26+FXquo62BOjXMOOeZmgLOzuxDlOxsbmCwMGD4+DFw4gQ4qaY6OtzAYGHA0MYGuHzzTdG5rk2rwMJMfBU+RTAy1Ea7VtVw+gJb2OX6nXjkFwigqeAU5EJH/3smFPyrWtkI6/7oiio2si2tbOtqhx0b+2D6/HOIfcX+kbDzQBQqWepjWD97mfomhBBCVIGRkRG6deuGbt26KXsqCpeeng4vLy/s379fqN3a2hrz5s2Dl5cXVZUtB2ZmZujVqxd69eql7KkQQr5jFAAkRIW0bl4Vh75K10z7nINb9xLh6lJZibMS7XlcqtCecgDQ3MlWqj32dHWLA3ii5OSwwcBvg4OFQcMLF4CvM1V0DT6hYcvcoudtXe0knpM8tHW1KwoAZmXn48XLVDSoq/iU7mexqVi+4UbR86qVjbBtTS+YGHP3mZSGrbUh1i/pirF+x/HuwxcAwPrgO2jVrEq5pVkTQgghRDbJycno3r27UMVnLS0tzJo1C/7+/lKtbiSEEKK6KABIiApp19JOKAAIAPuPxahkAHDv4cecto5uNRQylo5OyQHCvDwgPr44MHj7QSpuPSo+7tjASiHzKo1DfeHNnZ/GKj4AyDBs6m9eHrt3ka6OBlYEdJRb8K+Qpbke1v7RBZ5TjyEzKx95+Xys3nwLaxZ1lus4hBBCCJG/nJwcTvCvVatW2Lp1Kxo0aKDEmRFCCFEUqgJMiApp7lQZNlbC77Zeu/UWT1+kKGlGor378KVoZVshdZ4WLIyVs9JOS4sNDnbqBIweDTRrUZxGzVNTQ2UZ016lZW1lAG3t4k3Sk5K/KHzM8OuvEf0kuej5rImuqF3DVCFj1bAzwXh3p6LnV2+/xfU78QoZixBCCCHy4+/vLxT8GzJkCM6fP0/BP0II+Y5RAJAQFcLjqWFAr/pCbQKGwbrgO0qakWgbQiKQly9cHS8xrh6aNdWEmxuwezeQmyvm4nLwJSuv6HN9fU1oaSqvUqGpcfFGzZ/SFf9F2X0ouujzhvUs0atznRLOlt2QPg1Qs1pxgHHXwegSziaEEEKIsr148QKbNm0qet6uXTvs2bOnzFWMCSGEVEwUACRExQzu3YCTrnn7fiKO/vdMzBXl6+rttzgb/lKoTVtbHQd32WPOHODpU2DkSMDaGpg6lU3LLW8CfnHFEFWqWLdpoxrMzICGDYHWrYEhQ9iv0YIFwJYtwLFjwNWr7NcsL6/U7jgS32fgwaPiysxjhjpC0bevocGD18jiCpR3HiTi/QfFr3QkhBBCiHQ2b96M/Px8AACPx0NgYCB4PPqzkBBCvne0ByAhKkZfTxOewxpjTdAtofbVgbfQyL4Sqlc1VtLMgI+pWVj05xVORd6RAxzQ1FkfTZ3ZYNb+/cDmzcC6dcCGDUC3bsCECUD37kB5vL7U1yuuVpeZlQ8Bw4CnpEBg5lerER0c1KFeB0hOBhISgPv3gaws8deamwNWVoClJRtQrVSJ/bxSJeHPra0BfX3g0vU3Rd8bE2MdtGlRPinZ7VpVg5GBNtK/5IJhgKu33mJQb0ohIoQQQlTRwYMHiz53cnJCvXr1lDgbQggh5YUCgISooMF9GuD42ed4/jK1qC0zKx8zFpzD33/1gpFh+adoZOcUYPq8c0j9lCPUXslSH2OGNip6rqMDuLuzjwcPgMBAYNcu4ORJoHp1YPx4YOxYNrClKGamxWm3fL4AH1OyYGWhr7gBxcj4koeML8UBwDHu+hjSR/iczEzg/Xvgw4fix/v3bJDw688fPwY+fhQ/lp4eULtJErT+v4VkS5cqUFcvn3fzNTV4aO5si7PhcQCAB4+SKABICCGEqKB3797h9evXRc9TUlIwZMgQqfoyNDRESEiIvKZGCCFEwSgASIgK0tTgYcHMNhgz5SgKCgRF7W/iP2Oi/2lsXN4NRgblFwTMzinAzAXnEPNcOALFU1PDwtltoKerKfK6Jk3YAOCKFcCOHeyqwF9/ZVcJDhwI+PoCbm7yn2+t6sJFL2KepyglAPjoabLQc7vK3NWb+vpArVrsozT5+WwwMDkZePdO+PMPH4CnSakozH7+tgKxojnUtyoKAD6LTS3lbEIIIYQoQ2RkpNDzuLg4xMXFSdWXubk5BQAJIaQCoc0eCFFRdWuZYbp3c077kxcp8J55Eu+SymeftbTPOZj863+4fT+Rc8xjWCM4N7IptQ8jI2DiRCA6GggPBwYMAA4eBNq0ARwdgU2bgPR0+c25Tg0zocIfN5RUmfbW3YSiz3k8NTg2kG3Zo6YmYGsLNG7MplW7uwPTpwMrVwKhoYC6ZnH14yq2RjKNJamqlYvH+/Axs4QzCSGEEKIs8fHKeU1ECCFE+SgASIgKG9ynAQb0rM9pfxGXBo8pR3FdwYGtqJgPcJ94BJFfFZYo1KlNDXiPcZK4zzZtgD17gDdvgCVLgIwMNjhYuTLg4wN888a0VLS11eHSpDgweeHqK+Tl8Uu4Qv74fAHOhBe/o97I3kpob0J5K+ALhO7R2Kh808TNTIoL12Rm5QutXCWEEPLj0tPTg6mpadGDKNeXL1+Evh+yPExMTJR9O4QQQiRAAUBCVNycSa7o1p6bH5r6KQd+AWeweM1VpKZly3XMzKx8rA68Ba/pJ5CUzF3N1ewnWyyY2UamwhqVKgG//MJWvD17li0QEhLCpg27uLBVcUsqkFGazm1rFH2e9jkHJ869kL4zKZwNjxNaCdelbU2Fjsd8U5mlvEuefFsYhsdTnerLhBBClGf16tVITU0temhpaSl7Sj80Pz8/oe+HLI8XL8r3tRUhhBDZUACQEBXH47H77PXqXIdzjGGAI6efob/nAQRuv4cUGQOB6V9yEfZPFPqO+Qd7Dj+CQMBwzmnjaoc1izpDW1tdRA+S4/GATp2Af/4BXr0C5s8H3r4FvL3ZVYHe3kBMjOT9dmlbEybGxavStu66j+ycArnMuTR5eXxs3n6v6LmBvhZ6dKqt0DG1NNWFviefM3IVOt630r8aT0dbgwKAhBBCCCGEEKJCKABISAXA46lh/kw36kfkXAAAIABJREFUTPR0FrnqLis7HyG7H6D3qH2Y/fsFnL4Yi0+fc0T0xPUlMw/nr7zCvBXh6DFiL9aH3MHndG7wSE0NGDXIESsCOgjtrydPlSuzBULevmUDgi4uwNatgIMD0LkzsH8/UFDGGJ6WljpGD3Ysep78MQvrtt5WyLy/tTn0LhLfZxQ9H9bPXqHpv4UszfSKPo9/l1HCmfIX/654E8dKluVfcIUQQgghhBBCiHhUBZiQCsRjWGM0rGeJ31dfxfsP3CIg+QUCXLz2ChevvQIAVLU1Qs1qJrCpZABzU12o8dTA5zNI+5yDjylZeP4yFW8T00Wu9PuarrYO5s9qiY5u1RVwV1xaWsDgwezjyRO2wMWWLcCQIWwRDHd3dt/AqlVL7mdoX3scPPEECf8Phh088QSN7Cuhe8cylNyV0sVrr7DrUHTRc0sLPbh/FYhUpNo1zIoCf4+fJgO9uPtHKkr0k+KKx99WYSaEEEIIIYQQolwUACSkgmn6ky32BPbDptC7OHzyaYnFFt4mpuNtovTlddXUAH5WbUTfbYbadjqlX6AA9esDy5YBv/3GFg/ZvBlYvhxYtYrdN3DqVKBjR3au39LSUsf8mW3gM/MkBAwDhgEWrb4CfT1NtHG1k/tcb91LQMDy8KL98NTUgIBpraGnq/jVfwBbaOTS9dcAgBsRCRAwjEz7NJaVQMDgZkRxxeMmDpUUPiYhhBBCCCGEkLKjFGBCKiADfS3MnuiKfUH90aVdTairy/efspoa0Lp5Vezc2A/b1rdBZoYO3N0BgRILuxoaAuPHA/fvAxERwNixwPnzbGpw/fpsUDA1lXvdTw6V4OvpXPQ8v0CAOYsv4MDxJ3Kd37EzzzF93jnk5hZX4vUY1hiuLlXkOk5J3FoUBzU/pmbhxp2EEs6Wn2u33yLtq5Tzlk3lH1wlhBBCCCGEECI9cRt5DQdQT+xF6uoICAhQzIwIIWVmbKSDjm7V0adrHejqaOJjapZQMQZJWVroYWDP+pg/ow2G9LWHuZkurK3ZQh2hoYC5OdC8ufzmLy1bW6B3bzYN2MYGuHGD3R9w3Trg2TOgenW2vVATh0r4mJqFJ89TALAr1q7dfouXr9Pg5GgNXRlW6KV9zsGStdcQsvsB+F+lUnfrUAuzJ7qKXJmoKCbGOrh+Jx7JKWz55KSPmejdhVs8Rt4Wrb5aVC36yycrNK7niLp1FT4sIYQQQgghhPywXr9+jdDQ0NJO+w/ATQAQ96fpUQC9xV2tqamJvLw8aeZHCFGw2FdpuPPgHR49ScaTFx/x7sMXoVVphTQ0eLC1NkTdmmaoX8ccrs5VUKemmciAVUEB0Lo1EBkJ3L0L2NuXw41IQCAALlxg9wk8fJidr7Mzu2Jw1ChAT4+tmLxq0038c/Sx0LV6upoY1s8eg/s0gMVXRTRKk/opB4dOPMGug9H4kin8+7BP17r4za+VUirhnr4Qi4Dl4UXPV8zrgPatqitsvP8uvsTcZZeKnic+aw+XRjVw5IjChiSEEEIIIYSQH97ly5fRtm3b0k6bBuAvgAKAhPwQ0j7nICsrv+i5oYEWjAy1Jerj6VPgp5/Y4N+NG4Bm+WxrJ7HERGDHDmDDBiA+HjA2BoYOZfcKtLcH9h+NwZqgW8j/Zu9EDQ0emjaxRevmVeBY3wrVqhoL7d2Xk1uAuDef8OhJMq7dicetuwmcPtTVeZg81gUjBjiU68q/rwkEDEb4/ovYV2kAADNTXYSt76OQyrxvE9IxevLRogBo/drm0Mzpgx1hanj1iq3qTAghhBBCCCFE/igASAhRmL/+AqZNA/74A/j1V2XPpmR5ecCRI+yqwPPn2baOHdlVgY5N0rB03RU8fvaxxD70dDWhoc5DAV+ArOz8Es+tX9scv05thQZ1LeR1C1K7H51UVPgEAGpWM0Xw6p4wNNCS2xhZ2fnwmnYCz+PYjRc1NHjY+mdPfPlkCVdXYNEiYO5cuQ1HCCGEEEIIIeQrFAAkhCiMQAB06gRcvcquAnR2Lv0aVfD0KfD338DWrWyhEBsbYPRooJHLSxw5E4mXr9Ok7tuuijHGjmiMbu1rKSXlV5T374GOve5CzzyyqK1xw0pYOb8jTI1lr+acnJKFafPO4umLlKK2Gb4tMKwfmxvepAnw+TMQG8vuH0kIIYQQQgghRL4kDQDSn2aEkDLj8YBt2wBdXTaAlpNT+jWqoF49YNkyICEB2L4dsLZmqwaPHlYTWe/6Y9yw7hjYsz4sLcq2B6CluR76dquLzSu640DwQPToWFtlgn/Z2UC/fsDzh874yb52UXvkoySMmnAEkY+SZOr/8bOPGOt3XCj416lNjaLgHwD8/DPw6hVw7pxMQxFCCCGEEEIIkRNaAUgIkVhwMDBuHJsG/Mcfyp6NdO7eZdODd+4EsrKAOnWAsWOBPv2+IDk1FY+ffsHiJdlo3YpB27ZqMDXWgXUlA9SpYQZba0Ol7fFXEoEAGDgQ+PdfYNMmYNw4AWYsOIfrd+KLztHQ4GFgz/r4eXhjmJnqlrnvlLRshOx+gIPHn0DwVbVjtfwauHyqDXS0i4vKf/rE7v/XowdbnZkQQgghhBBCiHxRCjAhpFz06gWcOgWEh7MVgiuqT5+Af/4B1q4FHj8GdHSA3r2Bpk2B2bOBgweBAQOUPcuymTIFWL8e+O03YPFito3PF2DDtrvYdTAKTHHcDlqa6ujQujo6uFXDTw7WMBGRGvw5PRcRke9w/kocwq+/QV6+cDXpOlUdsSekKdavByZNEr521Cg2+Pf2LWBlJe87JYQQQgghhJAfGwUACSHl4t07wNERMDEBHjwADAyUPSPZCATAhQvsqsDDh4GCArZ90SK28Im+/IvoytXq1cCMGcCQIcDeveCsUAy/8Qa//3kF6Rm5Iq+3NNeDuakuDA21kZWVj6TkTHxMzRJ5romxDmb6tkBHt5pwdQViYoCHD4GaNb8aLxxo1w5YsQKYNUtON0kIIYQQQgghBAAFAAkh5WjvXmD4cHbl2dq1yp6N/CQmsumrDx8CDAMYGwNDhwKTJwMODsqeHdfx4+y+fy1bAmfPAtraos9Lz8jFtj2ROHTiCbJzCiQeR0dbA4N6N4DH0EYwNmIHefgQcHEB3NzYPf++Djza2wN8PvDkCTcgSQghhBBCCCFEelQEhBBSboYNYwNj69cD//2n7NnIj60tuwKwWTPg6FE2HXjrVnbFY+vWbGprfr6yZ8mKiGC/D9Wrs+nK4oJ/AGBkqA2/8c1wfNdQzJzQAs6NbKChUfJ/AxoaPDRtYoPZE11xcvcwTB3XtCj4BwCNGgFz5rCrJ0NDha/19ASePQMuX5b+/gghhBBCCCGEyI5WABJCZJKSwq6K09AAoqLYlOCKLjcXMDQEPDzYlGCADWRt28YWQElJYSsJjxkD+PoC1aopZ55xcYCrK7vK7vp1tpCJpHJz+Xj2MgUJ7zLwMTULfAEDTQ11mBrroFpVY9SqZgrtrwp8iJKXBzg5AfHxwKNHbAEQAPj4EahSBRg0iC22QgghhBBCCCFEPmgFICGkXJmbs6vj4uPZPei+BzEx7Ao/R8fitrp1gWXL2Pv85x92v7vly9mPnTsDx45BqMiGoqWmsmnKnz8DR45IF/wDAG1tdTg2sEK3DrUwapAjxgxphBEDGqJ7x1qwr2tRavAPALS0gJAQ4MsXwMenuN3CAujTh12ZmJoq3fwIIYQQQgghhMiOAoCEEJn16gX8/DO7Qu7wYWXPRnYPH7IfGzXiHtPRAQYPBq5dY9NvvbzY1Xd9+rBBwuXL2ZVvipSXxxb7ePaMXVnXsqVixyuL5s3ZvSCPH2cDpIXGjQNycmgFICGEEEIIIYQoEwUACSFysWYNmwrr4wN8+KDs2cgmKor9WFrBD2dnICiILRoSFMTuv+fvz6a9DhnCFsWQN4Zhg47nzwMrVwIDB8p/DGktXgzUrg1MnFj8M9CpE1CrFrtKlBBCCCGEEEKIcmgoewKEkO+DkRG7ArBzZzYIeOiQsmckvYcPgapV2fTmsjA2BsaPZx9XrwLr1gH//ssWC3FyAry9gZEjAX192ecWEADs2MGONX267P3Jk54eG+jr0IGd286dbPVfT09g7lzg5k2gRQtlz5IQQggpH+/fv8ejR48QFxeHjIwM5OXlQV9fHxYWFrC2toazszMMDQ2VPU3yfwKBAFFRUYiLi0NqaipSU1PBMAzMzMxgZmaG2rVro2HDhuDxaA0N+b5lZGQgJiYGMTExSE9PR1ZWFrS0tGBhYQELCws0btwYtra2yp4mkQIVASGEyNXUqWwAbM8etjptRWRjw67uO35c+j7evQPCwoBNm4A3b9gA6bBhwKRJwnsLSmLbNmDsWHbvvyNH2MIrqsjbmy2e8u+/QN++wPv3gJ0d4O7O7hVICCGEfK/u3buHPXv2YP/+/Xj9+nWJ52poaKBZs2bo0aMHfHx8YF7Wdx6J3AgEAhw+fBhhYWG4cuUK0tLSSjzfxMQErVq1gqenJ/r16wd19dL3SiakIkhISMDevXuxb98+3Llzp9Tz69evj06dOsHX1xf29vblMEMiiqRFQCgASAiRq5wcNniWmMim0lapouwZSSY5GbCyAn75BViyRPb++Hzg4kVg7VrgxAk2hdfZmd0vb/hwQFOzbP1cugR07cqmJYeHAwYGss9NUdLT2Xny+WxVYBMTNhB4/jz7c2FkpOwZEkIIIfL1/PlzTJo0CWfOnJHqen19fXh5eWHhwoUwNjaW8+yIKIcOHcLcuXMRExMj1fXVq1fH8uXLMWTIEDnPjJDyk5GRgblz5yIwMFCqGA+Px0Pv3r2xZMkSCgQqAVUBJoQolY4Ou/ItM5NdrVaelXHlITKS/SjtKr1vqauz++AdOwY8fQrMmQO8egWMGcOuivP3Z5+X5PFjoH9/wNKSXfmnysE/gA3wFe6NOGcO2zZuHPszsWePcudGCCGEyNv+/fvRpEkTqYN/AJCZmYm1a9fCycmpTKtviPT4fD58fX0xcOBAqYN/APDq1SsMHToUP//8M7Kzs+U4Q0LKR0xMDH766SesW7dO6gVeAoEAR44cQdOmTRFCqT4qjwKAhBC5c3YGZs0CzpypeCmfJVUAllWdOsCyZUBCAlsp18GBrRpcqxa7d+L+/eyqua+9ewd07w4IBMDJkxVnRWX37sCoUeyegGfPss/t7KgYCCGEkO/Ljh07MHToUGRlZcmlv5cvX6J169Y4deqUXPojXJMmTUJgYKDc+vv7778xcuRI8L99EUeICouJiYGbmxtiY2Pl0l9WVha8vLwwp/Ddf6KSKAWYEKIQ+fmAqyvw5Am7qq5WLWXPqGw8PdlVahkZZU/PlcXdu+x+ebt2sSvkatViV8v9/DNbNKR9e+D+fTZ9uHNnxc9HnlJSgIYNAV1dNh18xQpg0SL2np2clD07QgghRDZ37txBq1atkJ+fL/I4j8dD8+bN0bJlS1StWhU6OjpITk5GbGwszpw5g8TERLF9GxgY4NKlS3B2dlbU9H9IO3bswOjRo8UeNzIyQpcuXVC3bl1YWVlBQ0MDqampuHfvHi5duoRPnz6JvXbWrFlYsWKFIqZNiFxlZGTgp59+KjH4V7t2bXTo0AF16tSBkZERMjIy8Pr1a4SHh+Nh4YoJMdatW4fJkyfLe9pEBNoDkBCiMh49Alxc2Ed4OFARiqY5O7Npy/fule+4aWnA9u1AYCCbKqyjA1SrBjx7xhb/8PAo3/nIy/79wJAhgJ8f+6hZk61gvHmzsmdGCCGESK+goACNGzfG48ePRR7v168fVq1ahVpi3gFlGAbHjh1DQECA2D+ma9SogcePH0NHR0du8/6Rffz4EdWrV0dmZibnmLm5OVauXIkRI0ZAW1tb5PWZmZkICgpCQECAyBWfmpqaiI6ORt26deU+d0LkadKkSdi4caPIYw0aNMCmTZvQrl07sddHR0dj/vz5OHTokMjj6urqiIiIQJMmTeQxXVIC2gOQEKIyGjYEAgKAq1eB9euVPZvS8flATIxi0n9LY2rKBshiYoBz5wBDQzYQyDBsVeWtW9kVghXN4MHs/oXr17N7AnbpAuzeXTHvhRBCCCkUFhYmNvi3fPlyHDp0SGzwDwDU1NTQp08f3L59G15eXiLPiYuLw7p16+QyXwJs3LhRZPCvRo0aePjwITw9PcUG/wC2UMv06dNx8+ZNkRWb8/PzMX/+fLnOmRB5i4uLw5YtW0Qe69evH27fvl1i8A8AHBwccPDgQYSEhEBLS4tznM/nY+bMmfKYLpEzCgASQhTK3x9o3Zr9+OiRsmdTsqdPgexs+RUAkYaaGrv6MDmZrRK8cCHw4QO7aq5yZWDyZLYoSEWycSNbGMTLC3B3Z6sE//OPsmdFCCGESG/t2rUi2319fTF79myoqYlLtBKmra2NLVu2wN3dXeTxpUuXIicnR+p5ElZubq7IFU+ampo4fvw4bG1ty9yXo6Mjdu/eLfLYkSNHqCAIUWmbNm0SuW1B4c+1gQTVBn/++Wds3bpV5O+78+fP48qVKzLNlcgfBQAJIQrF4wGhoYCGBjB6NLs3oKqKimI/KmMFYKEDB9hgaZs2wN9/A/PmAW/esIU03NzYYFrDhmxa9ZYtQEX4m8DGBli9mg1cPnzIPqdiIIQQQiqqBw8eiEzbtbGxwerVqyXuT01NDUFBQahatSrn2KdPn3DhwgWp5kmK3b59G8nJyZz2cePGwd7eXuL+unTpgs4iNmfOzs5GeHi4VHMkRNEEAgF27twp8ti2bdugq6srcZ+jR4/GsGHDRB47ePCgxP0RxaIAICFE4WrVAv74g13Zpsp7Iys7AHjnDjBmDFCvHvDvv0BhFgqPB3TqBBw7xu4JOGcO8Po14O0NVK/OBgxfvVLOnMvKwwPo1g3480/A3h64cQOIjlb2rAghhBDJnTlzRmT71KlTpd6vT1dXF3PnzhV57OjRo1L1SYqJC8p5enpK3efIkSNFtt+5c0fqPglRpMjISLx//57T3rFjR7i4uEjd7+LFi0WuAqTfXaqHAoCEkHIxeTK7/9uCBWwVWFX08CFgaQlUqlT+Y794AfTowe79d/IkuyegKLVrA8uWAW/fsisrq1cHli9n2/v2BU6dAgSC8px52QUGshWBC18XBwcrdz6EEEKINC5fviyyffjw4TL1O3DgQGhoaHDaS6u4SUp37do1TpulpaVMVZZbtmwpsj0pKUnqPglRJEX97qpZs6bIAGJcXBwyMjJk6pvIF/d/GEIIUQA1NSAkhN1fb/RoNgioakXtHj4EGjcu/3FTUoBevdjCGBcusEG90ujosKsFx4xhV1YGBbHFNY4eZfcK9PICJk5kA5qqolo1YOlSYNIk9vmOHWwwU9V+DgghpCLJz8/HoEGDkJCQINSuoaGBAwcOoEqVKlL1u3//fixfvpzT7uHhgUmFv8h/UI9EbGpcv3592NnZydSvubk5ateujSdPngi1v3v3jnNuQEAATp06xWlfsGABevXqJdX4sbGxGD58OATfvJPo6OiIbdu2lXlfQ1X05s0bTlvDhg1luidra2uR7R8+fBDZfv36dUyZMoXT3qJFC2zYsEGqOTAMg9GjRyMmJkaoXUNDA/v27UO1atWk6pd8n0T97gLYlHZZtWjRQuTq1/fv38PQ0FDm/oliHQXAiHtoamoyhBAijZAQhgEYxt9f2TMR9ukTw6ipMcz06eU7bm4uw7RvzzA8HsMcOiRbX58/M0xQEMM4OrJfYy0thhk8mGHOnpXPXOWBz2eYNm3Y+QEMs2uXsmdECCEV39mzZxk1NTXOa/ZOnToxAoFA4v4+fPjAWFlZcfqrWbMmk56eroA7qDiys7MZHo/H+doMGzZMLv23b9+e07eenh7nvMTERMbMzIxzro2NDZOamirxuHw+n2nbti2nP21tbebBgwfyuDWlsrS05Nybp6enTH1++fJF5N/KQ4cOFXvNoEGDRF5z4MABqeYQGBgosr+AgABpb4t8x0T9Gzc3N5dL30uWLBH5s3jlyhW59E9ECw8PFxu3++rhVxjooxRgQki5+vlnoH9/di9AVSoM9fAhG5IqzwrADAOMHQtcvMgWyejfX7b+jIzYasEPHwIREcDQoexegp07Aw0asKnCaWnymbu0eDy2AEjhHsNUDIQQQmTXqVMnjB8/ntN+7tw5hIaGStyfr68vZxWThoYGdu3a9cOv5EhJSeGskAOAunXryqV/UdU5RW3Mb2NjI7Kq7bt37+Dn58dpL83mzZtF7pP3+++/o7Ey0iPkiM/nIyUlhdNuYmIiU7/iVvpZWFiIvWbTpk2oJGKvmYkTJ+Ljx48Sjf/mzRvMnj2b0+7i4oKAgACJ+iI/BlE/s/Xq1ZNL36J+dwGif38R5aEAICGk3AUGAhYWbGGIL1+UPRtW4fY65VkA5JdfgJ07AT8/YOpU+fbt7AyEhbF7BS5bxlYL9vdn03C9vYHISPmOJ4m6ddm9IAEgPJwtbEIIIUQ2f/75J2rXrs1pnzZtGuLj48vcz759+0RWbvz111/RokULmeZYHtLT0+Ht7S30kGdRhjQx76SJSweVVGxsLKfNUsx+HsOGDcPgwYM57WFhYThx4kSZx4yLi4O/vz+nvU2bNpg5c2aZ+1FV6urq4PP5YBhG6CFNxeavifu5KilgamlpiS1btnDak5KSRKYHi8MwDMaPH4/09HShdh0dHYSGhkJTU7PMff2oPn/+jO3btyt7GuXq06dPnDZRAWlpiPrdBYj//UVUC6UAE0IU6tAhNgV00iRlz4Tl7c0wGhoMk51dPuMFB7P337MnwxQUKH48Pp9NBR48mGHU1dmxnZ3ZlOGsLMWP/62CAoZp2pSdx+zZDJOfz2cSkzKY6CcfmFv3EooeDx8nMR8+ZjJ8KVLYCCHkR3P16lVGXV2d89q9Z8+eZbo+OTlZZOqvk5MTk5eXp+DZy8f79+8589+zZ4/c+s/Pz2dSU1M5j9zcXJn7jo6OFvm314gRI8Rek5yczFhbW3OuqVy5MpOWllbqmAKBgOnQoQPneiMjIyYuLk7me/qe9e3bl/N1U1NTY169elXqtWPGjBH5vT58+HCZxt66davI69evXy/rbX33oqOjGR8fH8bAwICxtbVV9nTKVVpaGud315cvX2Tut6CggKlSpQrn59HS0lKqbShI2UmaAkxFQAghStG/PzBsGLBxI1sAo2tX5c7n4UN2ZVp5FKQ4fRrw8WFX6e3bB6irK35MHg/o1Il9xMayqbfbtrGrAf39AXd3diVijRqKnwsAZGXnwWdKAlJWJOD0jRRc6ZuG/ALx5Yu1NNVRt5YZGtazhEsTG7g6V4G2djl84QghpAJp1aoVpk6dylnZdOLECYSFhWH06NElXj9hwgROipiOjg7CwsJoRdH/aWhowNTUVCF9b968WWR7mzZtxF5jYWGBoKAg9O3bV6g9ISEB06dPx7Zt20ocMzAwEBcuXOC0r127FtXLUpXsB7V3714cOXKE096tW7cyFd7466+/cOHCBbx9+1ao3dfXF23atIGZmZnYa9++fStyZWaXLl0wceLEMsz+x8Pn83HkyBFs3LhR6OfdyMhIibMqf7KmvYtz/PhxkSvN3dzcKnTxoO+RuO/GUQC9xV2kqamJvLw8xcyIEPLD+PSJ3XOPYYCoKEBBr6dLxTCAiQnQowewZ49ix4qMBNzc2BToGzcAOa26l0pODrB/P7B5MzsXHg/o3h3w9WU/8uS8SYRAwOB6RDwOn3yKa7fjweeLD/iVRldHA21dq2FwnwZoZG8lx1kSQkjFlpubC2dnZ061R2NjYzx69AiVK1cWed2RI0fQr18/Tvv69esrVNXfpKQkTjrunj17MGzYMCXNqGxiYmLQpEkTzt9Yurq6SEhIKDXo6OnpKXK/x5MnT6J79+4ir3n9+jUcHR2RkZEh1D5gwACRaeAEyMzMxOrVq7Fw4ULw+XyhY9ra2rh9+zYalXE/mbNnz6Jr165gGEaofdSoUdixY4fY63r06MGpAG1mZoaoqCjY2tqW8U5+DMnJyQgODkZgYKDIStC2tracCupEMrm5uWjSpAmnejnA/r/Sp08fJczqx3H58mW0bdu2tNOmAfgLoD0ACSFKZGIChIQAiYnAjBnKm8fLl0B6uuILgCQmAr17A2pqwJEjyg3+AexqR3d34Pp14PFjYNIkdk++Xr0AOzt2ZaAE20aJJWAY/HfxJYaMO4RpAWdx+cYbmYJ/AJCdU4DTF2MxdtpxeEw5hjv3E2WfKCGEfAe0tbVFrtj7/PkzfHx8RF6TkpICb29vTnvnzp1pRVE5SE9Px+DBg0UusHB3dy/TisO//voLdnZ2nPbx48fj8+fPnHaGYeDl5cUJ/llbWyMoKEiC2X+/8vPzER8fjxs3bmDLli3w8PBA5cqVMW/ePE7wT01NDZs3by5z8A9g/32J+je5c+dOHDt2TOQ1f//9Nyf4B7CrRyn4VywiIgIeHh6ws7PDr7/+KjL4R+RjwoQJIoN/tWrVQs+ePZUwI1ISCgASQpSqSxe2MvDffwOHDilnDuVRACQjA+jZE3j/nr3P8qw2XBYNGgBr17JByqAgwNycrRpcqxYwZAhw7hy7UlJSz1+mwmPyMcxddgmv47l/gMjDo6fJmOB/Gn4BZ/Dug4pUlSGEECVycnISWdTh+PHj2LVrF6d90qRJSEpKEmozMTFBSEgIpW8p2KdPn9CtWzfOik2AXbX5+++/l6kfY2Njkd+v+Ph4kemiW7duxblz54Ta1NTUEBISUmIV2+9dXl4ezMzMoKmpCS0tLVStWhUtW7aEt7c3tm/fLjKYqq+vj507d8LT01Pi8VauXIlatWpx2n18fDgFZwrTur81atQoDBkyROKxvzd5eXnYtWsXXF1d0bRpU2zfvh05OTlizzc1NYWHh0f5TfA7wzAM/Pz8xG4zsGbNGqiXxz5HRCKUAkwIUbrMTKC8ggZzAAAgAElEQVRxY3YVXnQ0YFXOGZ0LF7JVaV+/Zle+yRufz+55ePw4EBoKlLIFk8q4exfYsgXYsQPIzgbq1QM8PYHx40tP1xYwDLbtjkTI7gcoKGFvPwCwMNND/TrmqFPTDOamujA11gGPx/739DE1G0nJmYh9lYpHTz4i/UtuiX3p62liuk9z9OlaV6J7JYSQ701BQQFcXV0REREh1G5ubo7o6OiiNNmjR49y9o8D2D3Ohg4dWi5zlaeKlAL88OFDDBo0CM+fPxd5PDQ0FGPGjJGoz0mTJmHjxo1CbWpqajh9+jS6dOkCAHjz5g0cHR05FWR9fHzE7kP4o8jLy4O2tnaZzuXxeBg4cCCWL1+OGjJsonz16lW0bdsWAoHw66UxY8YIpXX36tWLU93Zzs4OkZGRCtvbrSJITExEYGAgtmzZwnkjQ5RmzZrBx8cHw4YNg66ubjnM8PuTlpYGDw8PHD16VOTxESNGiHyzicifpCnAFAAkhKiEq1eBtm2BPn2Aw4fLd+xBg4Dz54HUVDY9V94mTgQ2bQJ+/x0ICJB//4r24QO7QjMoCIiLAwwMgBEj2L0CmzThnp/+JRfzlofj2m3x+cO21obo07UO2rjaoU4N8Rtdf03AMHj0JBkXrr7GyXPPkfpJ/Lu6A3rWx6wJLaChQQvdCSE/rsePH8PZ2ZmzCqZ37944evQoUlJS4ODggPfv3wsdL20PMlVWEQKA2dnZWLp0KZYvXy72b6qpU6fir7/+krjvzMxMNGnSBC9evBBqt7OzQ1RUFAwNDdG9e3f8999/Qsfr1KmD+/fvQ19fX+IxvyeSBABr1aoFf39/DB8+XOav26xZs7Bq1SpO+4kTJ9CjRw+EhYVxgsE8Hg9nz55Fhw4dZBq7orpy5Qo2bNiAw4cPIz8/v8Rz9fX1MWLECPj4+MDJyamcZvh92rdvH/z8/Dj/bxRydnbGlStXKLhaTigASAipsPz82DTU3buB4cPLb9x69QBra3b/O3lbuhT49Vc2YLZzp2ICjOVFIAAuXGBXBR46xK5sdHZmVwSOGgXo6QGpn3Iwyf80nseliuyjTk0zeI92gluLquDJ8MXIy+fjzMWX2LLjvti03+ZOlbFqQUfoaFPBe0LIj2vZsmX45ZdfOO179uwRmRJcuXJlREVFKazSraKpcgCQYRgcOHAAc+bMQVxcnNjzxo0bh8DAQPCkrMZ148YNuLm5cfap8/b2houLC8aNGyfUrqGhgStXrqBFixZSjfc9kSQAWMja2hqLFi3C2LFjpU6Zz8nJgYuLCycVvHLlyjh79ixatWrFSQmePn06/vzzT6nGq6iysrKwe/dubNiwAZGRkaWe37BhQ/j4+MDd3R3GxsYSjdWjRw/cvHlT2qlKzdbWFtHR0eU+bmkiIiIwbdo0XL16Vew5Tk5O+O+//37obQTKGwUACSEVVk4O4OICJCSwVYGrVFH8mFlZgKEhMGECsH69fPv+5x82kNmmDfDff4CWlnz7V6aEBGDrVraC8IcPbEGX4SOykfjlJBLec/fHMTTQwhSvpujTra5Mgb9v5eXxEbY/Ctt2P0C+iFTjpj/ZYs3CztDWpj1ICCE/Jj6fDzc3N9y4cUOo3cDAAF++CL+B8j2sKFLVAOCNGzcwbdo03Lp1S+w5ampq+OWXX7B48WKZ916cM2cOVqxYwelfT08PmZmZQu3z5s3DwoULZRrve5Gfnw8HBwcYGhoWtaWlpeH9+/fIysoq8dr+/fsjLCwMBgYGUo199+5duLq6clazifq36uDggDt37kBHR0eqsSqaly9fYvPmzdi2bRtSU0W/yVxIW1sbAwYMgK+vL9zc3KQe083NrcRgl6JUqVIFb9++LfdxxYmPj8evv/6KnTt3cipWf61Tp07Yv3//D52OrgwUACSEVGh37wKurkC7dmzQTNEr5m7fBpo3Z9Nbx4+XX79XrrAFTmrVAq5dAyR807HCyM0FDhwAAoMKkJJ3CvrGyZxzHBtYYdnc9rCyUFxa0fOXqZiz+ALeJqRzjrVrVQ0rAjpW6NWXhBAii5cvX6Jx48acIMK3vocVRaoWAHz9+jX8/f2xb9++Ev94Njc3x/bt2+VWNTM3NxcuLi6lriRycXHB9evXOVWjlSUtLY1TnEQS/fr1U8i98Pl8xMTE4MSJE9iyZQtevnwp8rwuXbrg+PHjUs9hwYIFpQZjtbS0cOvWLTQRtQ/Ld4RhGJw9exYbNmzAiRMnOHskfqtmzZoYP348PD09YSWHDcV/9ABgZmYmVq5ciZUrV5YY/FZXV0dAQAACAgKkXrVMpCdpAJDyogghKsXZGZg9G/jjDyA4GPgmS0XuFFEBODYWGDiQLZRx4sT3G/wDAG1tYORIIPrVFZy7zA3+9exUG79Naw1NBe/FV6emGULX9Yb/ogu48+Cd0LFL115jy4578B5Ne74QQn5MNWvWxB9//IGpU6eKPcfe3h6LFy8ux1l93/Lz87Fp0ybMnTu3xMCrmpoaRo0ahVWrVsklaFFIW1sbO3bsQPPmzcUu3NDT08POnTtVJvgHALGxsTJVtE1LS1PICiR1dXU4ODjAwcEB06dPx++//44lS5ZwglJnzpzBihUr8Ntvv0k1zm+//Ybjx4/j7t27Ys/5/fffv+vgX0ZGBvbs2YN169aJrI79NR6Phw4dOmD8+PEYMGAAVZ2Vk2PHjmHy5Ml4/fp1iec5OTlh8+bNaNasWTnNjMiKAoCEEJWzYAFw+jQwbRrQvj1Qu7bixoqKYlcZ2tvLp7+UFKB7d7ay8YULQLVq8ulXlR397xnOXebuZTSgZ33Mmewq15TfkhgZaOOvRV0wY8E53LybIHRs2+5INHOqjJ8cKpXLXAghRNVMnjwZJ0+e5BR/ANjsnu3bt9Om7XJy9uxZTJo0Cc+ePSvxPFdXV6xcuRKtWrVSyDyaNGmC3377DfPnzxd5fPny5ahXr55Cxv6eaWpqYtGiRbCwsICfnx/n+LJly+Dr6wszs7IVOfu27+3bt8PFxYVTvAcAWrdujZkzZ0o1b1UXExODDRs2YMeOHcjIyCjxXBsbG4wdOxbjx49H1apVFTIfHx8f9OrVSyF9l+Tr9PPyFhsbi8mTJ+PUqVMlnlelShUsXLgQHh4etOqvgqEUYEKISnr8mF0N6OzMFudQ1Bt67dsDb98C3xTLk0pODtCxI3DrFnDwINC3r+x9qroPHzMx2OsQsrKF96tp36o6lgW0L7fg39dyc/kYP/MEHj/7KNRe1dYIuwP7UVEQQsgP6+rVqyL3xLK3t0dkZCQ0NBTz+zEjIwPJyewq8Ro1apR5f7v3799j+/btEo315csXzkrG4cOHo3HjxhL10759e4lXteTk5GDmzJnYuHFjiefVr18fS5YsQf/+/SXqXxrZ2dmwtrZGerrwFhkaGhqIjY2FnZ2d3MdMT09HQUEBdHV1JQ4qR0REoGnTplKPragVgOJ07txZZMpyUFAQxsuwt4ynpydCQ0M57atWrcKMGTOk7lecrKws5OTkQF9fX+IiKPIYu2/fvjh//nyJafJqamro0KEDfHx80LdvX5Vaufo92LZtG6ZMmcLZI/Rrpqam8Pf3x+TJk+kNIxUhaQqwOEcBMOIempqaDCGEKNqSJQwDMMzq1Yobw9ycYfr3l70fgYBhRoxg57tunez9VRQByy8xLl1ChB5Dxx9icnIKlDqvpOQvTJchuzhzC951X6nzIoQQZeHz+UyHDh3Evr5funSpwsaeNGlS0Ti5ubllvu7OnTti56vox8qVKyW6x5iYGKZx48Yl9mlra8ts2bKFyc/Pl/RLKLWFCxeKnU/Xrl0ZgUAg8xifP39mNm7cyHTq1IkxNzcXGsPIyIjp0qULs2bNGubz58+l9iXr9zwtLU3m+5HEhQsXRM5j4MCBUvcZHR3N6OjoiOzX0NCQiYuLk3neKSkpzNKlS5l27doxenp6QmOYmpoyPXv2ZIKCgpjMzEyZxyrNx48fS/yempmZMdOmTWOePn2q8Ln8iNLT05nhw4eX+D3Q0dFhZs6cyaSkpCh7uuQb4eHhZfndWLRUmVYAEkJUlkDAFgO5fZstDtKwoXz7j48HqlYF5s9n045lMWsWsGoVMGMG+/FH8ORFCkZPOoKv36zV0lRH6PreqFND8rQXebt07TVm/X5eqE1fTxP/hg6GifGPUTWPEEIKrV69usSVQ9ra2oiIiICDg4Ncxy0oKECVKlWQlJQEgC1OoaWlVaZrZV0NJouVK1eWOdXy5s2b6NGjB9LS0kQeNzAwwC+//AI/Pz/o6enJc5olunPnDlq1asWpKvu1rVu3wsvLS+ox9u/fjylTpuD9+/elnmtiYoJly5bB29tb7DlZWVmIiYmRej5NmjQp133g8vPzYW5uzklZrVu3Lp4+fSpxf3l5eWjevDkePHgg9pwOHTrg3LlzUleK3rZtG/z8/EpNswUAKysrhISEKDQVNiUlBRYWFiKPzZo1CwsXLqTVZgqSnJyM7t27i91zUk1NDe7u7li8eLHCUq2JbKgICCHku8HjAaGhQOPGwOjRwM2bgDxX+xcWAHF0lK2frVvZoF/v3sDy5bLPq6LYdSAa32ZqDOtvrxLBP4Ct/tuuZTVcul68gXFmVj7+ORqD8e4/KXFmhBBSvmJiYjD3f+zdeVhU1R8G8HfYd2RHBBQREREUd1Hc991My93MLSzL1LKyrCzTFrXFUnPJzMp9yaVccs+UFBVkcUEQRGVfZGeY3x/+VIZ7B4ZhhhnG9/M8Pjrn3nvmDAwy884557twYaXnFBUVYeLEiTh//rxal9YdPHjwSfinj44dO4bhw4crLPQxbNgwfPvtt7X+5jk/Px8TJ06sNPwDgLlz56Jv374qLQVes2YNXnnllUqXbZaXlZWFmTNn4tKlS1i9erVogGVhYYE2bdpUeyzaYmxsDD8/P1y4cEGuPTk5WaX+Pvzww0rDPwD4+++/sXr1arzyyivV7n/ZsmVYsGCB0uenpKRg6NCh+OmnnzBx4sRq319NffHFFwgLC0NoaKjGKjw/q+7evYvevXsjJiZG9Li/vz9++OEH0W0jqO7ijo1EpNMaNwaWLAEuXQKWLlVv3+qoAHzgAPDKK0DHjsDWrZrbq1DXpKbn4+hp+cIftjammDJGt6rSzZrSFoaG8r/q9hyKhVRapuAKIiL9UlxcjHHjxqGgoECuXWyftPDwcHypxmnsGRkZNSpYYGRkBDs7u2r9sbW1FfRjaWlZ7X7MzKqeKR4bG4sRI0aIhn+enp7Yu3cv9uzZo5WZMwsWLBC8sbe2thbMjsvJycG0adOUDvEeCw8Px6xZs+SuCwwMxOrVq3HlyhXcv38f0dHRWLduHYKC5D90W7t2LT7//PNqPiLVzZ49GzNmzJD78/PPP6utfycnJ0FbXl6eoEJwVc6ePSv6dRH7WX3rrbdw+7awAFtlzpw5I6hOPGDAAGzbtg3R0dFISUlBVFQU1q5di+blquPJZDJMmzZNpRmNyjAwMKi0kMSJEycwevRoNGrUCB9++KHK4So9VVhYiGHDhomGf+bm5liyZAnCw8MZ/ukhLgEmIp0nkz2qrHvsGHDuHNC27dNjcQmZuHT1Pq7HZeDm7UykpucjM7sARUVSAICBRAIHe3O4OlvB3c0a/r5OaNHMCX5NHTFhvAR79wI5OY9mG1bXpUtAt26Ai8ujcYm8/tNbv+2+huWrz8u1vTSmJUIn696n9gs++RvHTsfLtS3/uA9COnApAxHpv3fffRefffaZXJupqSkuXLiAqVOnIiwsTHAsLCwMATWYHi+VSnHo0CG89dZbguWc1VkCrIoHDx7A1dVVru23337Diy++qNb7ycvLQ8eOHREZGSk41qtXL2zduhUODg5qvU9lHTlyBP369ROEeuvXr0dkZCRWrFghuGbt2rWYNm2a0vfRtWtXnD59+sntSZMmYe3ataLf27KyMnzwwQf49NNPn7RZWFggNjYW7u7uSt+nqnx9fQUVmQcNGoT9+/erpf/+/fsLqmubmZkJQvfK5OXlISgoCDdu3JBr79mzJ5YsWYLOnTtDKpXKHevRoweOHTum9FLg3r1749ixp1ujfPXVV3jzzTdFzy0sLMSLL76IvXv3PmkbO3YstmzZouxDqpa4uDh8//332LBhg8Kl9I8ZGxtj2LBhCA0NRY8ePTQyHuBR8aLS0lKN9a+IgYGB6AcZ6jR9+nT8+OOPgnYPDw/s2bMHrVu31uj9k/pUdwkwA0AiqhPu3n20VLd+fWDnniwcOBaLk2cTcC9FfMlNVRzszJFytyGMy5rg/Fnnal9/586jWX9FRcA//wC+vioNo856ec5+XI1KeXLbQCLBH7+MhrOjpRZHJe6/K/fwyluH5NqGD/DFe2901tKIiIhqx7lz5xASEiIIDpYtW4a33noLERERaNu2reB1fVBQULWWApeUlGDTpk24du0arl27hkuXLiE9PV30XH0JAMWCVQDo168f9u7dW+uVVB/LyspCYGAgEhMT5dp79+6Nw4cPo6CgAC1btsTNmzfljtvY2CAiIkKppcDXr1+Hb7kXPoGBgQgLC6vy+zp58mS5qs6LFi3ChzXdhFkJYgFdixYtEBERoZb+27ZtK9hDrWHDhoiPj1e6D7FAxtraGlevXkWjRo0wd+5cLF++XHDdqlWrEBoaWmX/t2/fRuPGjZ/c7t+/Pw4dOlTJFUB2djYaN26MjIyMJ+NJS0vT6M9vUVERtm7diuXLl+PKlStVnt+0aVNMmTIF06dPh52dnVrHEhISgjNnzqi1T2W4u7sLfn7VSVFg5OHhgVOnTqFRo0Yau29Sv+oGgFwCTER1QoMGwJy37kFqeRATXt2F33dfUzn8A4D0zAIYWsSgzGo/Jr22D3+fiRfsZ6dITs6j/f7S04Ht25+98C8vvwSR0alybYH+zjoZ/gFA60BXONjJbx599oLmXlgREemCvLw8TJo0SRD+BQUFYc6cOQCAgIAA0f3AwsPD8cUXX1TrvqZNm4aVK1fiyJEjCsM/fXHv3j188803gvYWLVpg9+7dWgv/ACA0NFQQHtjY2GDDhg2QSCSwsLDA2rVrBbPGcnJyMHXqVKWWApefFQYA77zzjlKh0JIlS+SWIB84cKDKa9TB29tb0BYdHV3lTDNlFBcXiy6jdHFxUbqP/fv3i87GWrZs2ZMwZvHixWjSpIngnLfffluppcAnTpyQuz1z5swqr7G1tcXIkSOf3M7NzUVUVFSV19WEqakpJk6ciMuXL+PkyZMYNWoUjIwUly24fv06FixYgIYNGyI0NFR0Ri7Je/vttwVtFhYWOHjwIMO/ZwADQCLSebfvZCH07UPYd/wQrO2qrjJXXVHX0/D24r/x8pz9iIxJrfTckhLg+eeBiAhg3TqgZ0+1D0fnXYtNRVmFNwhddHg5rYFEgs7t5ceXmp6PB6l5WhoREZHmzZkzR7Cc0NTUFD///LPczL733ntPtPLvRx99pLYZUvpmxYoVyMuT/x0ikUiwceNGrVYr/f333/Hbb78J2r/88ku5fQh79Oghutz3yJEjokFURf/++++TfxsbG2PQoEFKjc/NzQ2tWj3dK7jiLERN6dxZOONfKpXiyJEjNe77zJkzgucCALRv316p61NTU0W/Fz169JAL6SwsLPDjjz8KgtuHDx/i5ZdfrjK4rTibTtnq2uX3AgRQqwV9unbtim3btiE+Ph4LFy6sNFTNzc3FDz/8gICAAHTv3h3btm2rsgDOs+jo0aNyP7+PffDBB2qvAE+6iQEgEemssjIZNv52BeND9yLs8r0qz7e3M0dQgCt6hTTCiIG+GDHQFwN7NUHrQFfUd7aq8vqI6BS8PGc/vl0fhuISqeg5M2YAR44An3wCTJhQ7YekF6JvpAnaApsr/0m3NgT4CZd5x97U7xkqRPTs+uuvv7Bu3TpBu9ibPBMTE6xfv15QHKK4uBiTJk1S6k20paUltm3bJvqnd+/eNXswOkYmk2Hbtm2C9v79+6Nt+U2Ka9ndu3cxa9YsQXvv3r0xdepUQfvnn38uuv/e/PnzkZCQUOV9Pebp6Qlra2ulx1l+eXZWVpZghqom9O3bV/D8BiC6F2J1KepD2VA0NDQU9+/Lf7itaJZm9+7dMX36dEEfx48fx/fff1/p/aSkPN22xcjISOkZihWLc2gj4G7QoAEWL16MhIQEbN68GR06dKj0/JMnT+KFF15Aw4YNsWjRIrnn67Nu69atgjZbW1u89tprWhgNaYPi+bRERFqUnVOE95edwLn/FP/StjA3RtdOnujS3gNtWrrC0d6i0j4zswtxNSoFp87dwclzCcjOKRKcU1Ymw8/bIhAWfg9ffdgbTo5P+/zkE2DjRmDqVODdd1V/bHXd/QfCpddNG9trYSTK8/UWju/O3WwtjISISLPS0tIwefJkwYygVq1aYf78+aLXtG/fHq+//rpgj7Hw8HB8/vnngsqhFRkbG2PUqFGix44dO4ajR49W4xHotrCwMNGAbMyYMVoYzSMymQxTpkx5slfbY9bW1qKzxoBHb/p/+OEHDBkiv+3746rAf/31l8LiEklJSU/+Xd0lg3fu3JEbn1gwp26Ojo5o3749zp07J9f+77//Yvfu3RgxYoRK/R44cEB0GbONjQ26d+9e5fU//fQTduzYIWhfunSp6HJf4FFwe+DAAbnvAfCo6vOAAQPk9vkrLzQ09MnjNDU1VfrrXnGWpjaXiJqammL8+PEYP348wsLC8N1332Hr1q0oKhK+ngceLdX/+OOPsWTJErmiIcoWTZk/fz4maOHTfktLzWypU1paij179gjahw4dCguLyt9Dkf5gAEhEOufeg4cIffsQku7lih53dbbCpNEBGNCrCSwtlNugHADsbM3QrZMnunXyxNvFnXD4RBw274hEXIJwD5joG2mY+No+rFzcB75NHPD778AHHwA9egCrVqn80PTC/RT5pS7WVibV+j5og4uT8MVUemahFkZCRKRZYjOKjIyMsGHDhkqLeixevBj79u0TvOH/+OOPMXTo0BpVBdYnFfdSe8zf318te8qJMTExqTQUWLVqFQ4fPixoL7+HnJjBgwdj7Nix+PXXX+Xajxw5grVr12LGjBmi11UMn5SVnJyM2NjYJ7fLLwfWtNdff10QAALAlClT0KRJk2o/v8PCwjBu3DjRpbfz58+HmZlZpdcnJCTg9ddfF7SHhISIzuR8zMbGBqtXr8bgwYPl2h8vBf77779FA64uXbpUOh4xWVlZ2L59+5PbPj4+ckvJtaldu3bYtGkTvvzyS6xbtw4//PCDwsIZpaWl2LlzJ3bu3Ak/Pz+88sormDhxYpWVdocOHaqJoWtNREQE0tKEq3hatWqlsf+7JBIJ6tWrp5G+STVcAkxEOiXxbg6mzT0gGv5ZmBtjzowO2LXxeTw/xK9GoZOJiSEG9/XBb6uH4703uqCerfCFWlpGPkIX/Ilft6Vj8mSgeXNg1y5Ag8XP6oS8fPlqkWJfO11Tz9YMBgbyL4izshkAEpF+2bRpk9wb9sfef/99BAUFVXqthYUF1q1bJwgPqrMU+FkQHh4u2t6mTRvY29tr5M/kyZMVjicmJkZ0U//u3bsrVejhm2++EV0OOnfuXMTFxVV5fXUsWbJEruL08OHD1dp/ZUaNGgU/Pz9Be1ZWFoKDg7Fx40aUlpZW2U9BQQG++uorhISEIDtbuJKgfv36T4rsKFJWVoZJkyYhJydHrt3CwgLr168XLLutaNCgQRg/fryg/cSJE1ilpk+pr1+/jkGDBsl9mPDBBx8oPXuutjg5OeGdd95BfHw89u3bh969e1c6xujoaMyePRuurq6YOHGiUpWG9YWi/7vmzp2rsf+7GjZsWMuPkqrCAJCIdEZGViFeffcv0eIMrVq44Pc1IzD2OX8YG6nvvy4DAwmGD2iKrWtGIKSjp+B4Tm4RvlzzJ1zqZ+PgQYAfYgHSMvlPuw0NdOvFoBgDA4nOvWglIlKnpKQk0eChZcuWopV+xXTr1k10j7HHS4FJWExBm0pLSzFx4kTk5+fLtVtaWmL9+vVK/d5zcHDA119/LWjPy8vDjBkzlKoKrIxNmzbJ7VPn6OiIKVOmqKVvZRgYGOCLL74Q/Zo8fPgQU6ZMQdOmTfHOO+/gwIEDiIqKwv3793Hv3j1ERkZi165dmD17Nry8vDBv3jzRZafGxsbYtGlTlUs4V6xYgZMnTwraP/nkE/j4+Cj1eFauXAlnZ+H+xgsWLKh2cHvu3DksX74cCxcuxPTp09G2bVs0a9YM//zzz5Nz5s2bJxo66goDAwMMGTIER44cwdWrVzFz5sxKvw+FhYXYvHkzBg4cWIuj1K6rV69qewikAxgAEpFOKC6RYu6iI0i+L5z59/wQP/ywbADqu1RdyENV9nbm+OrD3pg6rhUqvjY0NCpCYOejsLMvFr/4GSOVSircVs+bA00qk8kglZbJtRkaMhAkIv1QVlaGiRMnCpZxGRkZYf369TCpxtT1zz//XHSZ38cff8yqwIDaZ8XVxOLFixEWFiZoX7p0qcK94MS88MILovvgHT16FGvXrq3RGKVSKT799FNMnTpVLkz8+uuva31p4KBBgzBv3jyFx2/fvo2lS5di8ODB8Pf3R/369eHm5oaAgACMHDkS3377baVVcFevXo0+ffpUOobIyEjRPTWDg4NFlwQr4uDggG+//VbQnpeXh5dffhllZWUiV4nbsWMH5s6di08//RQ//vgjLl68+OR71axZM2zbtg1ffPGF0v1pW4sWLfDDDz8gOTkZa9asEVQyflbdunVL20MgHcAAkIh0wvcbLyIyJlXQ/vLYVnj71U4wUuOsP0UkEmDGxNZ4+7VgQQh4PzUbn6w4o/Ex6JLsbODiReDnn4HXXwf69AFcXYGzp03lzsusA0tps7KFn9Tr+r6FRETKWrFiBY4fPy5of+edd9CmTZtq9fV4jxRz+eoAACAASURBVLGKiouLMXHixGd6KXBWVpbCggO17eLFi/jss88E7cHBwQgNDa12f6tWrYKdnZ2gfe7cuSoHBxcvXkRISAgWLlwot7z2vffew9ixY1Xqs6aWLVtW6R57qrC2tsaWLVuqnNFYXFyMCRMmCJ5DZmZm2LBhQ5VLfysaPXq06DLqEydOVFkVWFk5OTmIjY1FXp5wdY6us7GxwfTp0xEREYEjR45g1KhRtVJ0RleVrwRNzy4GgESkdWGX7+G3XdcE7WOf88fMSa1rfTwjBzXDnBkdBO1/n4nH4RO688m/uhQXA9euAdu3Ax9+CAwZAnh7A3Z2QNu2wKRJwDffPDqnXTuguZ+53PUP84qRl6/bbwgfpAgrF7s4aW5GKRFRbYmKisL7778vaPfz88O7KpasHzhwIMaNGydov3z5MpYtW6ZSn/pAV95A5+fnY9y4cYIw1sLCAj/99FO1gyTg0d51YrO88vLyMH369GotBb579y4mT54sqLxraGiIpUuX4pNPPqn2+NRFIpHgu+++w4YNG9QyAzEkJASXLl1SKtBctGgRLl++LGj/+OOP4evrq9L9f//996LB7YIFC5QObn18fDBs2DCMHDkSPXv2RIMGDZ4cS05Oxvvvv4/AwEBcuyZ8rV4XGBgYoHfv3ti2bRtiY2Px9ttvw97eXtvDqnWVzV6lZwerABORVkmlZfhi1TmUVXhhGdLRE69Pb6+lUQFjRvgjLiETew5dl2v/6od/0aWDByzM697ssdJS4M6dR0FeVNSjvy9eBGJjAan06Xl2do8KngweDPj7P/p3UBDweCuVzdtt8M06+b6vx2UgqIVwE3FdcT0uQ9DmpsEl5UREtSUlJQUrV64UtHft2rXKSqSV+frrr9G1a1dBu4mJCWQy2TO5r6qdnR3WrFlT6/fr5eUldzspKQlvvvmm4DwfHx+l95ATM2XKFBgbG6OwUDizPy0tDU5OTpVeX1hYiC+++ALLli0TzBhr2rQpfvzxR9HnlDa89NJLGDlyJNauXYuvv/66WpWNjYyMMHDgQMyfP1/p6rqlpaVo0qSJ4PljZGSESZMmVWvs5dWvXx9//PGHaDiXkpICb2/vKvuYOXOmoGBMeHg4Fi5ciIMHDwJ4tPS9X79+uHLlChwcHFQer7Z5e3tj6dKleP/99/HLL79g165d2h5Srfnoo49qfQZzdbafoNqh6Df3PgBDFF1kbGwsV8GJiEhVO/6IxrLvzsm1Odpb4LfVw7VeXbaoSIrxs/YgPlG+ytu08UGYPqHyaoralpz8NOR7/PelS0BBwdNz6tV7FPA9Dvn8/YHAQEBkT2k5F8KTMWvBn3Jts6e2w4RRARp4JOqxePkZ7PtLPsz9Y/NouDozBCQi0qSZM2fKhR5FRUUafVNYVlYmqM5qaWnJN6IaduTIEYSGhuLmzZty7fXq1cOCBQvwxhtvwNTUVMHV2lVWVoZr167h9OnTuHDhAu7fv4/MzExkZGTA1NQUjo6OcHBwgK+vL7p27YouXbrAykr/Xz/IZDJMmjQJmzdvftI2b968OrUfIJG+O3XqFLp161bVaXMArAQ4A5CItEgqLcPP24Qbis+f1VHr4R8AmJoa4oO5IXh5zn6Un6C4ZWckxj7nDytL7b+ZyMwUzui7ehXILVdLxcQEaNIEeP55+bDPywuCvQ6V0czHAQYGEpSVqwZ8+nyizgaAZTIZ/gmT/2TfydGC4R8RkR4yMDAQXRJJmlFaWopPPvkEixcvlis8YWJigsmTJ2Px4sWi1Wp1iYGBAQICAhAQEKDS/on6SiKRYOXKldi9ezcePny0lcrWrVsZABLVYQwAiUhrjp9NwL0Ke7MFBbiiZ5dG2hmQiAA/Z/QK8cLRU7eftOUXlODA0Zt4YVjtVRXLyQFu3BCGfffuPT3HyAjw9AS6dQPatHka9vn5ASpsB6SQjZUpAps743Lk071ErkalICUtD86Oluq7IzW5EvkAaRn5cm0dWjdQcDYREREp4+HDhxgxYgSOHj0q1z5mzBgsXboUnp6eWhoZqYu9vT26d++O/fv3AwASExORnp5ep5cBEz3LGAASkdZUXJIJAC+PbamFkVRu+oQgHDt9W24W4K4DsRoJAEtKgOvXhct3Y2KAch+so379RwHfqFFPwz5/f6AG2z1VS9eOnnIBoFRaht0HYzFjYu0XbanKtn3RgrbeIV4iZxIREZEySkpKMHjwYJw8efJJm4+PD77//nv07t1biyOjiuLj43H48OEnt/v164eGDRsqfX3jxo3lbqempjIAJKqjGAASkVZk5xQh7PI9uTYvz3poH6R7M7O8POuhbcv6cuONS8hE4t0ceDSwUalPqRRISJAP+aKigMhIoPz+vI8Lckyd+ujvNm2AVq0AbW89M6CXN77/6SJKS5+mktv/iMa4kS10Ymn0Y4l3c/D3mXi5Nvt6Zmjf2k07AyIiItIDCxculAv/evTogT179sDGRrXXRaQ59+7dw4wZM57cXr9+PaZMmaL09RUrQNekuBARaRcDQCLSinP/JcmFRwDQv6e3SnvS1YaBvZsIAstT/97BuJEtqrxWrCBHeDiQX25Vqq3to336Ro9+OqMvIABw0dHCuo72FujRuSGOnHy6NDo7pwg/b49A6OQ2WhyZvG/WhcntVQgAzw/xg7GRGtdEExERPUNu3ryJFStWPLkdHByMQ4cO6WyRj2ddxUrAERHC/bcrc/v2bbnbur6nIxEpxgCQiLTianSKoK1HZ+WXI9S2zu09BIUvLl97IBcAVizIERUFXLkCpKY+7edxQY5Bg57O6KtJQQ5tmjQ6EMdOxaOs3CfDv2yPQN9ujdHES/sbsJ/+9w5O/JMg12Zhboznh/hpaURERER13/Lly1FSUgIAMDY2xtq1axn+6TBnZ2f4+Pjgxo0bAIADBw7gq6++goESG0Tn5ubi1KlTT263aNECFhYWGhsrEWkWA0Ai0oprMalyt21tTNHIo56WRlM1O1szNG5YDzdvZz5pu3Q5HQsWPA374uKenv+4IEeHDk+LcbRpAzRrBhgaauEBaIBvEwf06e6Fv44/feAlpWX44POT2LByMMxMtfcrJi0jH4uXnxG0TxwdADsdqDBNRERUF0mlUuzatevJ7c6dO8Pf31+LIyJlDBw4EF9//TUA4MaNG9iyZQsmTJhQ5XVLlixBTk7Ok9vDhg3T2BiJSPMYABKRViQl58rd9vNx1PkZcL7eDnIBYE7eQ3z5VQmcnYzh7w8MHiwf9pmba3GwteTVKW1x5nwi8vJLnrTdiMvAR1+expJ3e2jle1pUJMW8D48hM7tQrr2+ixXGjwyo/QERERHpidjYWDx48LQImEwmw7Jly1Tqy8nJqVp70ZHqZs2ahe+++w5SqfTJbRcXF/Tt21f0fJlMhpUrV8p9b62trTF79uxaGS8RaQYDQCKqdfkFJch5WCTX5uZqraXRKM/dTbixdeS1AjRraqyF0egGV2crvDG9PT5deVau/eip26hna4a3ZnWq1RCwuFiKBZ/+jWux8jNMDSQSfDS/K0xN9WT6JRERkRZcvnxZ7vbJkyflioFUR0BAAAPAWuLj44OZM2di1apVAB4t7e3fvz8GDRqE4cOHo1mzZjAzM0N2djYuXbqEzZs34+rVq3J9fPXVV9z/j6iOYwBIRLUuq8LMLABwctD9/UQc7IRT+gqLCwA82xXvhvX3xflLyTh6Sn6T6B1/RD8K5GYH10rRjYd5xXhr8d8IC08WHJv0YiCCAlw1PgYiIiJ9Fh8fr+0hkIqWL1+OyMjIJ4GtTCbD/v37sX///kqvk0gkWLRoEaZNm1YbwyQiDWIZRCKqdVKpTNBmVAeqspqbCz8zKSmRamEkukUiAT6YG4Km3vaCY/v+uo5ZC/5Ealq+yJXqcys+E5Nm/yEa/nXv3BAzJ7XW6P0TERE9C1JTU6s+iXSSiYkJDh8+jNmzZ8PYWLnVK97e3ti/fz8WLVqk4dERUW1QtDBrH4Ahii4yNjZGcXGxZkZERHovISkbz7+8U65t1pS2mPxCoJZGpJz9R27goy9Py7Wt/XIgZ5b9X1pGPl556xDiE7MFx6ytTDBnRgcM6tMEBmpcE1xaWoaft0dg/a+XUVwsDGNbtXDBt0v6abUgCRHRsyw/Px9FRU+3/bCz036VeFJdxe9nTRgaGsLG5tleRaEtd+7cwcaNG3Hy5ElERkYiIyMDUqkUVlZW8PDwQHBwMAYOHIhhw4bBUF+q1xHpoVOnTqFbt25VnTYHwEqAS4CJSAusLU0EbTm56nkxqUnlC108ZmLCF0WPOdpb4IfPByD07T9x+06W3LHch8X4+KvT2Lo3CjMmBKFzB48aBYGlpWX460QcfvwlHHfv5Yqe06F1A3yxqBfDPyIiLbKwsICFhe5v80HK4fdTP3h6egpm9ZWWlsLIiK+ZiPQZf8KJqNbVszWDgUSCMtnTpcDpGQVaHJFyHqTmCdqcHSy1MBLd5WhvgfUrBuO9z47j3H93Bcdjb6bjzUVH4eFmgyF9fdC9c0N4edZTqu8ymQwxN9Jx/Ew8/jh8A+mZip8zwwf4Yv6sjjAxZkBLREREVBWGf0T6jz/lRFTrDAwkcHayxP2Uh0/absZnaHFEyqk4q83YyAAODsLCIM86aysTrFzcF+u2XMbG36+gtLRMcE5icg6+/+kivv/pIpwcLdDC1xmNG9aDi5MlrK2ezhDNzCpESloersdlIOZGGjKyhAVkyrMwN8acGR0wfEBTtT8uIiIiIiKiuooBIBFpRVNve7kAMC4hC4VFpTq7XFMmAyKiU+TaGjeyU+t+dvrEwECC6ROCENLRA599/Q+ib6QpPDc1LR/H0+Jx/GzN7rNTW3e8MzsY9V2satYRERERERGRntH9sptEpJf8fBzlbpeWlolWcNUV12+lIztHfp/CAD9nLY2m7vDzccSmb4di8YJu8HDTzEbfzZs64ptP++GbT/sy/CMiIiIiIhKhm1NtiEjvdWzTAGt+viTXdvxsAkI6emppRJU7diZe0NYmkNV/lSGRAP17eKNv98Y4ez4R2/+IQdjlZNGlwcoyMTFEz86NMGKgL4ICXMGJmERERERERIoxACQirWju6wgHO3O5Qg5HTt7GG9Pbw8baVIsjEyotLcPBozfl2sxMjdC5vYeWRlQ3GUgkCOnoiZCOnsh5WISz55Pw35V7iIxJRfydLLmiMBWZmBjCu6Edmjd1RKd27mgf5AZzM/4KIyIiIiIiUgbfPRGRVhhIJOjbvTF+233tSVthUSl2H4rFpNGBWhyZ0F8n4gQVgDu3d2cAVQM2VqYY0MsbA3p5AwCKS6RISctHaloeSkrLkJ9fAkNDCerZmsHBzhwuTpYwNOSuFURERERERKrgu1ci0ppRQ/2wdU+U3MyvTVuvYsQAX52ZBVhcLBUsVQaAF4Y118Jo9JeJsSHc61vDvb61todCRERERESkdzidgoi0xsPNBsHt3eXach8WY9XGi1oakdDP2yNw78FDuTa/po4ICuD+f0RERERERFQ3MAAkIq0KfakNDCpUcNh9MAbn/kvS0oieirqehvW/Xha0z3qpjRZGQ0RERERERKQaBoBEpFU+XvYY0s9Hrk0mAxYuPYmke7laGhWQkVmABZ/8LahU26WDBzq0bqClURERERERERFVHwNAItK616e1h7OjpVxbTm4RXl94GGkZ+bU+nrz8Esz98Khg6a+1lQnefrVTrY+HiIiIiIiIqCYYABKR1llbmWDRvBAYGMgvBb6TlI1X3jokqMCrSdk5RQh9+xAiY1IFx95+NRiuzla1NhYiIiIiIiIidWAASEQ6oX2QG16b2k7QHp+YjUmv7cPVqBSNj+HG7QxMnr0PUdfTBMfGjWyBfj0aa3wMREREREREROrGAJCIdMb4kS0waqifoD09swDT5x3Emp8voaTCnnzqUFYmw5adkZjy+n7RfQd7dG6E2dOE4SQRERERERFRXWCk7QEQEZU3P7QTZGUy7NgfI9culZZh3ZbL+Ot4HGZNaYseXRoKqger4p+wJPzw00XE3EwXPd67qxc+frubWu6LiIiIiIiISBsYABKRTpFIgLdeDYaDvQXWbr4EmUz+eGJyDhZ88jc83W0xeqgf+nT1gr2debXu42FeMY6euo1dB2MRLbLc97FRQ/0w75WOgr0JiYiIiIiIiOoSRe9q9wEYougiY2NjFBcXa2ZERET/d+JsAhavOIOc3CKF5xhIJAho7oxW/i7wb+aIBq42cHSwgJGRBFaWJsjKLkJWdgHuJOXgelwGwiPu4/K1ByitZCmxqakhFrwajMF9fTTxsIiIiIiIiIhq5NSpU+jWrVtVp80BsBLgDEAi0mHdOzeEfzMnfLryDM5eSBI9p0wmw5VrD3Dl2gO13GfrQFe893pneLrbqqU/IiIiIiIiIm1jAEhEOs3JwQIrF/fF2QtJ+HZ9GG7FZ2rkfjzcbDB9QhD69fAGt/sjIiIiIiIifcIAkIjqhM7t3dGpXQOc/jcRW/dcQ9jle2rpN8DPGSMHN0O/7o1hZMTC6ERERERERKR/GAASUZ1hIJGgWydPdOvkieT7uTh+NgGn/03EtdhUFBaVKtWHkZEB/H2d0LmdO7oFe6JxQzsNj5qIiIiIiIhIuxgAElGd5OZqjXEjW2DcyBaQSstw83YmEpKy8SA1D5nZhXiY96hQkYW5MezrmcPRwRyNG9rBu5EdjDnTj4iIiIiIiJ4hDACJqM4zNDSAbxMH+DZx0PZQiIiIiIiIiHQOp8EQERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeszo6T8bewJo+ujfKU6AVOFFMpkRjh49q9mRERERERERERERkUBERBQA80rOKJC7JXn6zyZvArKvNDIqIiIiIiIiIiIiqgUyAHEAMAfASoBLgImIiIiIiIiIiPQaA0AiIiIiIiIiIiI9xgCQiIiIiIiIiIhIjzEAJCIiIiIiIiIi0mNGVZ5Rzwqwt66FoRAREREREREREZHS4u4pdVrVAaB/Q6BP65oOh4iIiIiIiIiIiNTpw81KncYlwERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkx4y0PQAiIiIi0g1mRkb4un9/QXv4/ftY/d9/WhgREREREakDA0AiIiIiAgCYGBpieps2gvZd0dEMAImIiIjqMC4BJiIiIiIiIiIi0mMMAImIiIiIiIiIiPQYlwATERERaVmIpyeCPTwE7ZuvXkVybq4WRkRERERE+oQBIBEREZGW9fX2xsKuXQXtJxMSGAASERERUY1xCTAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEjbQ+AiIiIlCcB0MbNDd0bNYKfoyNcrKxgamiI0rIypObnIzYtDSfi4/FvUhKkMplSfdYzM0P3Ro3QvkEDNLS1hbOlJQAgt7gYGQUFiHjwAGcTE3ExORnK9Vi3GRkYoIWzM9q5uSHAxQV2ZmaoZ2YGMyMj5BQVIbuoCPdyc/FfcjLCkpORlJOj7SFrVTNHR/T08oK/kxPcrK1hZWICAMgoKEBCdjYiU1Jw/PZtJNbC10kCwN/ZGV08PdHM0RHuNjawNTUFADwsLkZafj5uZGTgv+RknEtMREFpqcbHVFOmhobo5OGBFs7O8LazQwMbG1iZmMDYwAAlZWV4WFyMrMJC3M7MxLXUVITfu1crX2siIiKqWxgAEhERadnmESPgamUl17bm4kXsiIp6cttQIsHU1q0xv3NneNvZVdlnXGYmPj19GhvDwxWGdg1tbfFBt24YExAAc6OqXxLEpKXhq3PnsCE8HGVKhosA8N3AgfB1cJBryyspwfDff1e6D0U+69ULbd3cBO19N2+udljZytUVU1u3xtiAANiZmSl93bmkJKy7dAm/RkSgUIlAaaivL15r316uzdveXvTcbwYMQHZhoaB9yt69Wg15DCQSTAgMxJudOiHQxUWpa/5JTMTq//7DrxERSofTynKysMCs9u0xuVUrNLS1VeqagtJS7IqOxqoLF3AuKUmt41GH/k2aYFa7dujp5QULY+NqXRt+/z52REVh9X//IaOgQEMjJCIiorqEASAREZGWdfb0hFe9enJtf968+eTf3nZ2+P3550WDLkUa29lh/dCheM7PDy9s3468khK547PatcMXffsqFfw91szRET8OGYLnmzfHuJ07ka5ksNDOzQ3tGzSQa8suKlL6fisTVL8+ejduLGiXSCSQKRkyOVtaYnm/fhgXEKDSGDq5u6OTuzve6twZL+/di7OJiZWe72FjIzpmMe0UfM8t/z/LThsa29lhy3PPoaO7e7WuC/bwQLCHBxZ06YKp+/apJXQzNjDAOyEhmB8c/GTmobLMjYwwLiAA4wICsDc2FqEHDiA5N7fGY6qpYA8PfDtgAFrXr69yH0GurghydcW84GB8dOIEvjl//pmYvUtERESKcQ9AIiIiHdbR3R3np02rVvhX3iAfH+wfOxbGBo9+5UvwaEbedwMHViv8K6+ftzf2jRkDU0NDla7XJe0bNEDUrFkqh3/l+To44NRLL2FCYKAaRqabOrm748K0adUO/8pr7uSE01Om4I2OHWs0Fk9bW/w7dSo+6t692uFfRcN8fXFl5kx0a9iwRv3UVGi7djj10ks1Cv/KszMzw8r+/fHT8OFP/g8gIiKiZxNfCRAREemoVq6uODRuHBzMzWvUT/dGjfB5nz4AgBX9+2NWu3Y1Hluwhwc+7N69xv1oUyd3dxyZMKHGX9/yDCQSbBg2DIN8fNTWp64IdHHBQTU8H4FHS9pX9OuHRd26qXR9cycnXJg2TW1BGQA4Wljgz/Hj0UfJ2Znq9lKrVlg1cCAMJRK19z2xZcsn/wcQERHRs4lLgImIiHSQo4UF9r74IupV2IvuzJ072BEVhZi0NKTl58PWzAyBLi54vnlzdPbwUNjf7A4d4G5jg+ebNxcce9xndFoa0v/fZ5CrK0b7+wuW7pb3avv2WH7uHFLz81V/oFpiaWyMX0eOhM3/C0SIySgowLmkJMT8/+tSJpPBztwcTR0cEOLpCUcLC9HrjAwMsHrwYPh+9x3yKyy9Bh4tf47LzJRrszc3F3yvAeBubi6KRPYVLJFKq3qIamVjaoodo0eLjhF4tOdcTFoa7uXmwtzYGO42Nmjn5ibY27KiD7t3R0J2Nn66fFnpsXjY2ODIhAlw+X+xGjFSmQz/JCbi6oMHSMnLgwSAq5UVWrm6on2DBjBQELKZGRlh++jR6LhuHWLS0pQeU0352Ntj1aBBlZ6TUVCAC3fvIjotDRkFBSiRSmFqZARHCws0c3RER3d3WFcyE3J2hw74PTIS5+/eVffwiYiIqA5gAEhERKSD3uzUCSblltjGpqcj9MAB/H37tuDcv2/fxsp//8WIZs2wacQI0RDAQCIRhH+x6el4Zf9+HI+PF+3zq3PnMC4gAD8OHSq6XNjKxATDmjXDukuXVHiE2vVBt25oVGHfxcduZWbi3WPHsCcmBsUKgjZjAwOM9vfHl337ioZc7jY2mN2hA5aeOSM49svVq/jl6lW5tsU9emBh166Cc5/ftg3/6kCBCrE9C8tkMvzw33/47sIF0bDMUCJBr8aNsaBLF/Ro1Ehh36sGDsQ/iYm4np5e5ThMDA2xY/RouFlbix7PLirCsjNnsObiRYXFL9ysrfFa+/aY06mT6DJ2W1NTbBo+HMHr16u9WIkin/TsqXBJ/vX0dCw4ehT7r19HSVmZwj5MDQ0xvFkzLO7ZEz4iRWUMJBKEtmvHAJCIiOgZxSXAREREOqh8+Hc2MRGd1q0TDf/K2x0Tg+e3bVOqQu+ZO3fQad060fCvvC0RERi7c6fCgho9vbyqvC9dY2xggJeCgkSPnYiPR+s1a7Dt2jWF4R8AlJSVYUtEBDqtX4+7CgpHjBKZbakv7j18iB6bNuHVgwcVzpSTymQ4fOsWem3ahFcOHFD49bQwNsbX/fsrdb/zgoMVzko9m5iIpt9+i8/OnKm08m1ybi7eOXYMAd9/r3Ds7Rs0wBQFzxF1c7WywkgFz5Vjt2+j9Zo12B0TU2n4BwBFUim2XruGNmvW4JiC/yuGNWsGI+4FSERE9EziKwAiIiIddjsrC0N+/RWZhYVKnX/41i1sj4qqss+hv/2mdJ97YmKw7/p10WNiM410XQ8vLziJLN/NKizECzt2IKcaFYrjs7Iw588/RY8FuboqnKlWl2UVFqL/L7/gVEKCUufLAKz+7z+M2bkTpQpCrP5NmqCLp2el/dS3shKdJQkAf926hd4//4yUvDylxgQANzIy0GXDBlx58ED0+MKuXWulcMbgpk1FFuc5EQAAIABJREFU9/1LycsTreBdldziYozZsQMPi4sFx2xNTVG/imXZREREpJ8YABIREemwKXv3Kh3UPba+iiW5L+3ZU+0+1168KNquaB88XdbcyUm0fXtUVLUCpMf2xMSIzjiTSCRoUgcD0qpM2L0bVxWEZpXZFR2Nt44cUXj8zU6dKr1+XnCw6DLZuMxMjNmxA4UieyVWJb2gAKO2bUOuSFjmaWuLIb6+1e6zujoomNG4KiwM6ZXMZKxMan4+/lAQ2tfXw1CaiIiIqsYAkIiISEedTEjAiSqW6Io5l5SkcBnwifh4nFRy5lZ5pxMSRJcBW1VSdEBXNVAQgESnpqrUX0lZGSJSUkSP6dtsq32xsdivIFhSxjfnzyP8/n3RY4N8fBRWGDYzMlK4JPf1P/+sdqBd3o2MDHx44oToscmtWqncr7J8HBxE23dHR9eo3xsK9lS0NDauUb9ERERUN7EICBERkY7aUqFQhLIeFhcjq7AQ9iJhypaICJX6zC0uRlZREewUVIGtS0xECj8AqLQicFVe2L4dliJhaFodrJBcmXePHavR9VKZDG8dOYIjEyYIjpkYGmJw06bYdOWK4NiQpk1FKxCfv3u3RoHkY2v++w/vhoQIAsheXl4wNzJCgQqzC5V1PT1dUNW5TCarcRXiolquFE1ERES6jQEgERGRjlK0kb8ycouLRQPAY3FxqvepJwGgogIRzzdvjk9Pn1a4T11lHuTlASosH65LwpKTcU3FWZLlHYuLw+2sLHiJVGHu6eUlGgAOatpUtK9Nly/XeDwAkFdSgp1RUZjepo1cu4WxMTq4u6s0E1dZ0//4QyP9ilU4JiIiomcXlwATERHpIJlMhsTs7BpdX1GZTIbEnBzV+1T5St0SpSDEauHsjDWDB9dK4Ye66FcVZ49WJAOwWSTkA4B2CvbD6yVSbVomk2FvbKxaxgQARxWE4wHOzmq7j9qkqFoyERERPZv4CpeIiEgHZRcVoUSFmWhV9anK7DZ9czw+XuHXdkpQEC7OmIERzZrBQKQy67Psn8REtfWlaB9KH3t7wcw1JwsLuNvYCM5Nys1Fcm6u2sakqLBJizoYAM5q1w79mzTR9jCIiIhIh3AJMBERkQ5SVMRD1/qsi9Ly87H+0iXMbNtW9HiAszN2vfACUvPzcejGDRy4cQNH4+IULh1+FpSUlalU+VeRi8nJKJPJBCGrkYEBnCwtkVRupqq/ggBOUZELVSmqAB3g4qLW+9GEemZmCHRxQTs3N4wNCEDr+vW1PSQiIiLSMQwAiYiI6JnzwfHj6N24MZrY2ys8x8nCAhNbtsTEli0hk8kQlZaGs3fu4MydOzibmIi4zMxaHLF23c7MRKEaC2FkFxUhITtbdB9Ae3NzuQBQbPYfADR3chItJqIqiYIZn5U9R2qTiaEhGtvZwcfeHj4ODnJ/e9raant4REREpOMYABIREdEzJzU/H/1/+QUHxo2Dr4NDledLJBL4OznB38npSaGI5NxcHI2Lw+Fbt3Dwxg1kFhZqethao4nHlp6fLxoAViw042JpKXq9q5UVXK2s1D6uimpSHbomWrq4IKRhQ3T28EAHd3d42trCkMvSiYiISEUMAImIiOiZdCszE23WrMGyPn0wrXVrmFSzaqqbtfWTGYKFpaXYHRODb8+fx7mkJA2NWHuyNRAAZino065C9WoLY2O133d1mBoawtTQEEVSqcbvq76VFSa1aoWXWrVCUyWCaSIiIiJlMQAkIiKiZ1ZeSQlePXgQX5w9i3nBwRgbEAD7CgGUMsyMjDCmRQuMadECu2Ni8NrBg7irxgIV2lasgfArr6REtL1iBWsjHajKbG1qiqL8fI31b2RggPe7dsX8zp1hblSzl+fh9+9jV3Q0PG1tMa11azWNkIiIiOo6BoBERET0zEvIzsZrhw5h7uHD6N+kCYb6+qJP48Yq7a02olkzBHt44LmtW9VaOVebNLEMVlGfBRX2GswuKhI9L7OwEJm1VJjFrIahXGUsjY3xx9ix6NGoUbWuyywsRHRqKqJSUxGZkoLL9+/j8v37T75e74aEaGC0REREVFcxACQiIqI6S92zw4qlUuyLjcW+2FgAgK+DA7o1aoQQT0+ENGyIhkoGgi6Wltg/diw6rVuHWDVXq9WGehX25VMHRTMtK1ZbVlR9ef2lS5h/5Ijax1XbfnnuuSrDv4fFxTgaF4fj8fG4lpKCqNRU3Hv4sHYGSERERHqBASARERHVWRULRqhbbHo6YtPTsfbiRQCAh40NujZsiB5eXhjStCmcFRSoeDy2dUOHImTjRo2OsTY0UFCJtybcrK1F25MrLJ1WFAA6VfK1rytGNGuG4c2aKTx+5s4dLDt7Fodv3dLIMmwiIiJ6djAAJCIiojpLlf36aiIxJwdbIiKwJSIChhIJOnt6Ym6nThjq6yt6fhdPT3Rr2BAnExJqdZzq5mBujkb16iE+K0st/XnVqwcnCwtB+8PiYtyvMLMtTcHee+4aCCVr25udOom2l8lkmHf4MFb++y9komcQERERVY/2d1UmIiIiUoG1iQk8VNijT12kMhlOJSRg2O+/Y+q+fSiTiUc1A318anlkmtGmfn219dXR3V20PTIlRfB1jEpNFRQGAYB2bm4wlEjUNqba5mhhgWAPD9FjH508iRUM/4iIiEiNGAASERFRndSuQQOdCYDWh4dj4+XLosdaqzE406ZhlSxVra6RzZuLtosVTckqLEScyMxDG1NTtHJ1VduYTA0NYWdmJvhjYmiotvsor5WrKwxEnr+ZhYVYduZMjfvXherJREREpDu4BJiIiIhqnbEawon+TZpU+5qprVvjnS5dBO0HbtzA7EOHajSe3yMj8XJQkKDdUWSpa130nJ8fQg8cwMPi4hr142plpXDJ9LHbt0Xbj8bFwbtNG0H7xJYtcfHevRqN57Gfhg/Hiy1aCNqD16/HuaQktdxHeR4KljCfiI9HkRr2+2tsZ1fjPoiIiEh/8KNBIiIiqnUWxsawMjFR+XpTQ0O81KpVta/LLylBYzs7wZ++3t4qj+Wx1Lw80fbSsrIa960LLI2NMa116xr3M7dTJ9EAOLOwEMfi4kSveVyVuaJJrVrBugbPo8fcbWzwnJ+foD2rsBBhyck17l+MpYJxP1BDdV8zIyMM0pOl50RERKQeDACJiIhIoxTtjdehQQOV+5zepo1KM+vu5uSItvs6OMDH3l7l8QCAl4IZV4kK7rMuWtS9O1xqUH23pYsL3ujYUfTYbxERCme+Hb51C/dEgjFbU1N81ru3yuN5bEmvXqJLfY/ExWkswM0tKhJtt1VDZevXO3TQm5mnREREpB4MAImIiEijUhVUcZ3YsqVK/TWqVw9LevVS6drL9++jREGgo6giq7ImK5iReD09vUb96hJbU1NsGDZMpf3lHC0ssGXkSNFry2QyfH3+vMJrS8vK8K2C46Ft22KACsvBHxvt74/xAQGix767cEHlfqvyQMGM0c4eHqjJzpadPTzwUY8eNeiBiIiI9BEDQCIiItKoxOxs0fZxgYHorKAKqiKuVlbYP3asysuHs4uKcObOHdFj09u0UWlfwcfXDlOwr922a9dU6hMAzI10b7vmgT4+1Q4BnSwscGTCBPg7OYke/+Xq1SqD0u8uXBANzSQSCXa98IJKS177eXtj47BhkIgU4zh/9y5OJSRUu09lXb5/X3R2rKetrehehMro5eWFQ+PHw7SSwiVihUeIiIhI/zEAJCIiIo06fOuWaLuhRILdL76IYCVDwI7u7jj10ktyIVJhaWm1x6MokDOQSLDnxRfxStu2Sodb9czMsLxfP6weNEj0+NUHD3CpBkUqPGxtVb5WkyYEBuKfl1+Gn6Njlee+4O+PyNBQhRV7swoLseDo0Sr7yS0uxpt//SV6zMzICHtefBEr+/dHPSWW0JoZGWFRt274Y+xYWBgbC45LZTLMVXBf6nL/4UOFBUxWDx6MLp6eSvflYG6Or/v3x+EJE6rcE1HRUnUiIiLSb7r3sTIRERHplcO3biG9oAAO5uaCY04WFjg5eTI2hIfj+7AwXH3wAOXnRBlKJOjh5YWJLVtiXECA3OylYqkUr//5J9YMHlyt8WwID8fcTp3QRGTPP1NDQ3w/aBDmd+6MLVev4p/ERMSkpSGzsBBZhYWwMzODq5UVAl1c0K9JEzzn5wdbU1PR+5HKZJi5f79SYxLfJREIbdcO+2JjkVVYqOzD04iDN25gYIUZdu3c3BARGoojt27h98hIxKSl4U52NmxMTeFuY4POnp4YFxCApg4OlfY9/Y8/RPf3E/NrRAT6eXuLLh83MjDA6x06YEJgIPbGxmJvTAyup6cjOTcXhaWlsDc3R4CLC3p5eWFSq1aV7mX42enTOJuYqNSYauKHsDC0GzZM0G5jaooTkyfjx4sXsfbiRVy+f1/wHLEyMUEXT08M9fXFxJYtYSkSZIqZFxyM3dHRSC8oUMMjICIiorqCASARERFpVEFpKd47dgyrFQR1RgYGmN6mDaa3aYOMggLEZ2Uhp6gILlZW8LS1FQ02ZP8P11Sp0FosleKNP//EvjFjFC6H9KpXDwu7dq123+V9cuoUziUlKXVuuoJ9Ejs0aIC7b76JmxkZSMnLg5WJCdxtbNBn82bEpKXVaHzVMffwYThbWqKtm5tcu6FEgv5Nmqi8dHrRiRPYHhVVrWtm7t8PD1tb9GjUSPS4vbk5XmrVSqUq0QCwKzoaH588qdK11bXpyhW81qEDgkRmRxpKJJjZti1mtm2LnKIi3MzIQFZhIWxMTeFsaQk3a2uFM1XvZGdj8alT+HHIEMExXwcH3Jw9G4du3sT9hw8R8eABNl6+rPbHRkRERLqFS4CJiIhI4368dAm7oqOrPM/e3Byt69dH90aN4OfoqDD8e/3PP2sUWhy4cQOhBw5ApqBCcU19eOIEPjxxQunz/6lktpmFsTECXVzQu3FjdHR3h7uNjRpGWD2FpaUYsGULrqWmqqU/mUyGRSdOqBS0FZSWYsivv+LAjRtqGUt5v0VG4oUdOxQWilG3MpkMz2/bhvtVzIC0MTVF6/r10dPLC23d3OBpa6sw/DsaF4c2a9fi5ytXkK2g0nA9MzOMadECczp2RKdq7sNJREREdRMDQCIiItK4MpkMY3burPZsr4oeFhdj1Pbt+FYN1VnXXLyI8bt3I0ONSyGTcnIwavt2fFTNYCssOVmjBSfUIS0/H102bMCfN2/WqJ+MggKM3rGjRrPs8kpKMPS33/DusWMq7QNZUXZREWbu349xO3eitJbCv8fiMjPRd/PmGleLzi8pwXt//43+v/yCtPx8FEul2HL1qppGSURERHUdlwATERFp2cEbN+BcYT+yh8XFNe7TqUKfuQpmAynrwPXrNeqzWCrF6O3bMT4wEJ/16lWtmWwymQx7YmPxxp9/4k65qsLZhYWioaKyM/t+jYjAsbg4fNyjB8YEBFRZQEGR+KwsbAgPx4p//1X5e/fijh04MnGiwkq5taFEKhX9eub9/zFlFRZi4JYtmBIUhMU9e6K+lZXSfReWlmJ9eDg+PnkSKSLVfKurTCbDZ2fOYNu1a1jYtSvGBQbCuBqViQEgp6gIm65cwednzyIpJ6fGY1JVREoKWq9Zg0979cLU1q2V3s8PePRztenKFXx66hQSKlTc/uD4cfTx9oaPyH6XRERE9Gwpt/FNkzcB2VeCMzr7A31a1+KQiIiISN8ZGRhgqK8vhjdrho7u7qIBRWFpKSJSUnD41i38cvWqxve8szQ2xnN+fghp2BCt69dHC2dnmBoaip6bUVCA/5KTcfHePRy+dQunEhJQpoblxKaGhght1w4TW7ZEgIsLDCvsUZhXUoJbGRkY/OuvSNRiYAUAJoaGeM7PD8ObNUOIpyfcrK0F56QXFODfpCQcunEDv0VGqnW2ZUUO5uZ4vnlz9PH2RvsGDeChIGCOSUvDuaQknIyPx87o6BqH7epmb26OiS1boqeXFzp7eMBepHhOekEB/klMxF83b2LrtWtIU7CH5OP+Pu7RA2MDAmBXrkJymUyG6LQ0fHP+PNZevKiRx0JERES14MPNIo0yAHEAMAfASoABIBEREekAC2Nj2Jubw97cHCVSKR4WF+Nubq5aQrWasDMzg42pKWxMTSGVyZBZUICswkIUqGHZaVUsjI1R38oK9czMkFVYiNziYrXMnNOUemZmcDA3Rz0zM+QUFSGzsLDSYErTzI2MUN/aGtYmJiiSSpFRUICMgoJaX+JbUzampnD4/89GdlER0vPzkalCVWgJAA9bWziYmyOnqAjJubm18jwmIiIiDVMyAOQSYCIiItK6/JIS5JeUaHUZppjMwkKVwhZ1yC8pwa3MTK3ctyqyCguRpaWvlZiC0lLE1aGvnyI5RUXIKSrC7aysGvUjw6PqwHcqLBMmIiKiZwOLgBAREREREREREekxBoBERERERERERER6jAEgERERERERERGRHmMASEREREREREREpMcYABIREREREREREekxBoBERERERERERER6jAEgERERERERERHR/9i77/Cc7v+P469MJLGF2EqHovZq+dorVNPao7VX0aKoUqWtra2iaO2GlqrxpdrSX8SI0ZpFjBoxasUKEQmJjN8fverb9Jxbkjv3nTtuz8d19brqfc55nze5VfpyPufjxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MTcUzzj0g1px5EMGAUAAAAAAACAraUcAJ67+tc/AAAAAAAAAB47LAEGAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADixf2wCkrBXcpvy17/faS0lPG3pIldXVw0fPtzeswEAAAAAAAD4lwsXLmjZsmUWjiYZKi4WzvxBUktLN/Hw8FBcXFzapwMAAAAAAACQLiEhIapbt25Kpw2RNF1iCTAAAAAAAADg1AgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxNwdPQAAAIAl9+/fV2RkpKKjo5WUlCRPT0/lypVL2bNnd/RoyCQSEhIUGRmp27dvKykpSS4uLsqdO7dy5swpV1f+rhsAAEAiAAQAAJnEgwcPtH37doWEhGjnzp06efKkLly4oKSkJMO5efLk0dNPP60qVaqoTp06atSokfLly2eXuZYsWaL79+8nq7m7u6tHjx52uZ8khYWFKTg42FAvX768atasmeL1Z8+eVVBQkM3m8fLyUo4cOVS8eHE988wz8vLyslnvtAoNDdXmzZu1Y8cOHTlyRGfOnFFcXJzhvCxZsqhkyZIqV66cateurQYNGqhcuXIOmBgAAMDxXCzUf5DU0tJFHh4ept9oAQAApNWJEyc0a9YsrVixQtevX7eqh4eHh5o1a6ZevXqpZcuWcnGx9C1O2uXLl083b95MVsuWLZtiYmJsdo9/++6779SxY0dDfdiwYfrkk09SvH7NmjVq3bq1PUaTh4eHKlWqpICAAHXp0kVFihSxy33+KTIyUvPmzVNgYKCOHj1qdZ+yZcvqjTfeUJ8+fZQ7d24bTggAAJCxQkJCVLdu3ZROGyJpusQ7AAEAgIOcOXNG7du3V5kyZTRr1iyrwz/pr6cH169fr4CAAFWoUEE//PCDDSfFPz148EB79uzR+++/r1KlSqlfv36KiIiwy73u3bunDz/8UMWLF9e7776brvBPko4ePar33ntPJUqU0OjRoxUdHW2jSQEAADI3AkAAAJChEhMTNXXqVL3wwgv6/vvvlZiYaNP+oaGhCggI0Guvvabw8HCb9kZycXFxmjt3ripWrJjucO7fNm/erBdeeEEfffSRIiMjbdr7zp07mjBhgsqWLauNGzfatDcAAEBmRAAIAAAyTEREhF5++WWNGDHCrktoJWnt2rWqUqWKdu7cadf7QLpw4YLq1KmjPXv2pLtXUlKSJk2apCZNmigsLMwG01l2/vx5tWjRQh9++KHNg2gAAIDMhE1AAABAhggPD1fDhg117NixR56XPXt2NW3aVPXr11fZsmVVqlQpeXt7y93dXffu3dOlS5d04sQJ7dy5Uxs2bHhkSHT58mU1bNhQK1asUEBAgK1/So+d/Pnzq2jRomm65s6dO7p8+XKKy2UjIiLUtm1bHTp0SLly5bJqvsTERPXr10/z589/5Hmurq76z3/+o0aNGqlq1aoqWbKkfH195e7urvj4eF29elVhYWHat2+fgoODtXPnTosBX2Jioj766COdOXNGixcvlpubm1WzAwAAZGYEgAAAwO6uX7+uevXq6cSJExbPKVmypEaOHKmOHTvK29vb9Jzs2bMrf/78qlSpkjp06KCkpCRt375dU6dO1U8//WR6TWxsrNq2bauVK1c+8SFg+/btNXPmTKuuvXDhgjZt2qSvv/5aISEhpuf8+eefGjZsmBYsWGDVPVIK/7y9vTVw4ED1799fxYoVs3he7ty5Vbp0abVo0UJjx47V+fPn9eWXX2rWrFkWg8ylS5cqKSlJS5YssekmMgAAAJkBS4ABAIBdxcXFqXXr1hbDvyxZsmjixIn6448/1KtXL4vhnxkXFxfVqVNHP/74ozZv3qySJUuanvfgwQN17txZBw8etOrnAKlo0aLq3r27tm3bph9++EE5c+Y0PW/JkiW6fPlymvtPmTLlkeFfq1atdPr0aU2ePPmR4Z+Z4sWLa/LkyTp9+rRatWpl8bxvvvlGEyZMSFNvAACAxwEBIAAAsKvhw4dr+/btpscKFy6sHTt2aOTIkfLw8EjXferXr6+DBw+qZcuWpsejo6PVqlUrRUVFpes+kFq2bKmNGzfK3d24mOTBgwdatGhRmvpt3bpVo0aNMj3m7u6umTNnavXq1fLz87Nq3r/5+flp9erV+uKLL0xnl6SxY8dq8+bN6boPAABAZkMACAAA7CYkJESzZs0yPVasWDHt3LlTVatWtdn9smfPrv/+97/q3Lmz6fGzZ8/q3Xfftdn9nmQ1a9bUwIEDTY+lJUCLjo5Wz549Td/R5+bmpmXLlumtt96yek4zAwcO1PLly03f95eYmKhevXql+M5DAACAxwkBIAAAsIvExEQNGDDANNjJkSOHfvnlFxUvXtzm93Vzc9PXX3+txo0bmx6fO3euDhw4YPP7Pom6d+9uWk/LbsBTpkzRmTNnTI/NmDFDbdu2tWq2lLRp08bi+xDPnj2rKVOm2OW+AAAAjkAACAAA7OLbb7/VkSNHTI8tWrRIpUuXttu93d3dtWzZMhUqVMhwLCkpyeJyU6RN+fLlTXf8jY6OTtVS66tXr+rzzz83PdaxY0cNGDAg3TM+Sv/+/dW+fXvTY9OnT9eNGzfsen8AAICMQgAIAADsYvLkyab1Vq1aqXXr1na/f758+TRjxgzTY7/88ot+//13u8/wJChYsKBpPTVLaGfPnq27d+8a6nnz5rV6t+K0mjlzpvLkyWOoR0VFafbs2RkyAwAAgL0RAAIAAJsLCQnRsWPHDHV3d3dNnTo1w+Zo06aNXnrpJdNjc+bMybA5nFmWLFlM6zly5HjkdQ8ePNCCBQtMj73//vvKly9fumdLjfz582vkyJGmxxYuXKiEhIQMmQMAAMCeCAABAIDNBQYGmtY7deqkUqVKZegso0ePNq2vWLFCsbGxGTqLM7p69aqhVqBAAXl5eT3yuqCgIF25csVQ9/X1Vd++fW02X2r069dPuXPnNtQvXLjAjsAAAMApEAACAACbSkhI0I8//mh6rHfv3hk8jdS0aVPTzUaioqK0ZcuWDJ/HmVy+fFnh4eGGerVq1VK8dt26dab1zp07pxge2pqPj486depkeuynn37K0FkAAADsgQAQAADY1L59+3Tt2jVDvVixYqpVq1aGz+Pq6qqOHTuaHvv5558zeBrnsnLlSiUlJRnqqXnHo6Vfe0tBnL117tzZtL5hw4YMngQAAMD2CAABAIBN/fbbb6b15s2by8XFJYOn+Yu/v79p3dKsSNm1a9c0btw4Q71gwYJq167dI6+9dOmSLl68aKgXKFBAVapUsdmMaVG9enXTzUBOnTqlmzdvOmAiAAAA2yEABAAANrV3717Tep06dTJ4kv+pWbOmPD09DfVDhw7xHkArXL58WY0bNzYNxqZMmZLiEl5Ln5HatWvL1dUx3566ubmZPqGalJSk/fv3O2AiAAAA2yEABAAANnXixAnTeqVKlTJ4kv/x9PTUCy+8YKjHxcXp/PnzDpjo8XTu3Dl9/PHHev7553X48GHD8b59++qNN95IsY+lz0jlypXTPWN6WPqMmu1oDQAA8Dhxd/QAAADAuZgFam5ubhm++++/PfPMM6ZPcp0/f17PPvusAybKeLt27dJ7772Xpmtu376t8PBwHTt2TKdOnbJ43oABAzRz5sxU9bQUuj7zzDNpms3WSpcubVr/888/M3gSAAAA2yIABAAANhMXF6cbN24Y6gUKFJCHh4cDJvqfIkWKmNYvX76cwZM4zv79+22+nNV5y/joAAAgAElEQVTPz0+ff/65OnTokOprLl26ZFovWrSorcayiqXPyIULFzJ4EgAAANsiAAQAADYTExNjuius2eYKGc3SDNHR0Rk8ifPw8vLSl19+qVdffTVN11n6Nc+dO7ctxrKar6+vaf3OnTsZPAkAAIBt8Q5AAABgMzExMab1bNmyZfAkRpY2prA0M1IWExOj1157TRUqVNAvv/yS6uvu3btnWnf054TPCAAAcFYEgAAAwO5cXFwcPYJFmXm2x8Xhw4fVrFkztW3bNlVPy5k9JSo5/mvh7m6+OIadogEAwOOOJcAAAMBmLD3BlRmeoLI0g7e3dwZP4jhPP/201bsxR0VF6dq1azp+/LjFJ/hWrVql0NBQbdq0yeL79CTLT9pZ6ptRMuuTiQAAAOlFAAgAAGzGUrBz+/btDJ4k9TP4+Phk8CSO4+/vn+qdei25f/++tm3bpk8++UTBwcGG4ydOnFCzZs20Y8cO5cqVy7SHpc/JrVu30jVbekVGRprWn6SQGAAAOCeWAAMAAJvJkiWL8ubNa6hfuXJF8fHxDpjofy5evGhaL1SoUAZP8njLmjWrmjZtqk2bNmnevHny9PQ0nHP06FGNHDnSYg9Lv+aWvkYZxdL9/fz8MngSAAAA2yIABAAANlW8eHFDLSEhQWfPnnXANP8TFhZmWi9WrFgGT+I8evfurVmzZpkemzdvnk6fPm16zOwzIkmnTp2y2WzWsPQZsTQvAADA44IAEAAA2NSzzz5rWj948GAGT/I/8fHxOnz4sKGeLVs2wp106t27txo0aGCoJyYmatGiRabXWPqM/P777zadLa32799vWn/mmWcyeBIAAADbIgAEAAA2Va1aNdP6jh07MniS/zlw4IDpBg8VK1aUh4eHAyZyLkOHDjWtm70jUHr0Z8TSDsEZYefOnab16tWrZ/AkAAAAtkUACAAAbKpGjRqm9Q0bNmTwJP/z888/m9Zr1qyZwZM4p/r16ytLliyG+qFDh5SQkGCoFytWTAULFjTUL1++rEOHDtllxpQcO3ZM586dM9R9fX1VqlSpjB8IAADAhggAAQCATdWsWVP58uUz1E+dOmVxiaU9JSUlafny5abHXn755Qyexjlly5ZNTz31lKEeGxtrcWddf39/07qlr5W9LVu2zLTevHlzubi4ZPA0AAAAtkUACAAAbMrNzc1iuDNv3jyb3uv+/fsp7i4cHByskydPGuq5cuXSf/7znxTvYbZEODY21q67GkdHR6d6lswiT548pvWoqCjTekBAgGk9MDBQ9+/ft9lcqREXF6fFixebHmvZsmWGzgIAAGAPBIAAAMDm3njjDdN6YGCgLl26ZLP79O7dW82aNVNERITFc8aPH29af/3111MVqPn4+BhqiYmJunbtWuoHTaPw8HDTeo4cOex2z/SKiYkxrefKlcu03rRpU+XPn99Qv3r1qhYsWGDT2VKyaNEiXb582VD39fXlKVEAAOAUCAABAIDNNWrUyHTn1NjYWL3//vs2ucfUqVP1zTffKDg4WDVq1NCxY8cM56xfv17btm0z1F1cXNS/f/9U3ado0aKmdbP3xdnK8ePHTeuZdcfixMREhYWFGepZs2ZVzpw5Ta/JkiWLevToYXps/PjxunXrlk1ntCQyMlIff/yx6bEePXqYvtsQAADgcUMACAAAbM7FxUXvvvuu6bElS5Zo06ZN6er/008/aeTIkQ9/fPr0ab344ov68ccfH9YiIyMthnwBAQF6/vnnU3WvMmXKWJzBHuLj4y1umPLCCy/Y5Z7ptXfvXtOlvsWKFXvkdW+99Za8vLwM9atXr1rcWdjWhg0bpitXrhjq3t7eGjx4cIbMAAAAYG8EgAAAwC66deum5557zlBPSkpS586ddfHiRat7BwYGKjExMVntzp07CggI0OTJk5WYmKhu3bqZ3sPNzU0TJ05M9b3q1KljWv/+++/t8h7A1atXmy5pzp8/v8qWLWvz+9nC3LlzTeuNGjV65HWFChXSW2+9ZXps8eLFFt/LZyuBgYEWlxu/9dZb8vPzs+v9AQAAMgoBIAAAsAt3d3fNnDnTdAfVa9euqWnTprp+/bpVvZctW2YaHCUmJmrkyJGqUKGC1q5da3rt22+/neqn/6S/3lWXLVs2Q/306dOaNWtW6odOhZiYGItPTrZp0yZT7ka7e/duBQYGmh6ztBnMP40aNcriMuu+fftq/fr16ZrPkvXr16tPnz6mx5566imNHj3aLvcFAABwBAJAAABgN02aNFGvXr1Mjx07dky1a9fWqVOn0tz373Bxzpw5cnd3Nxw/cuSI6XXPPfecJkyYkKZ75cyZU23btjU9NmbMGO3ZsydN/SyJj49Xx44d9eeffxqOubi4WAyrHOno0aMKCAgwPI0pSSVLllSTJk1S7JEjRw7Nnz/fNNx88OCB2rRpo0WLFtlk3r/Nnz9fbdq0UVxcnOGYq6urFixYIG9vb5veEwAAwJEIAAEAgF3NmDFDVatWNT128uRJVatWTQsXLlRSUlKae7/55pvasGGDcufOneK53t7e+u6770yf5kvJqFGjTIPGqKgoNWnSRMHBwWnu+U83btxQmzZt9MMPP5geb9u2rSpUqJCue9jSnTt3NHHiRFWvXl1Xr141PWfs2LHy9PRMVb+mTZvqgw8+MD0WFxennj17qkuXLo/c7Tk1rl+/rs6dO6tPnz6m4Z8kjRs3Tg0aNEjXfQAAADIbS+tIfpDU0tJFHh4eFr9pAgAA+LdLly6pVq1aOn/+vMVzqlSpog8++EAtWrQwDdss2blzp0aPHq2tW7daPMfFxUUrVqyw+CRfaowaNUqTJk2y2L9Lly4aO3asnnrqqVT3jImJ0bJlyzR69GiLQVru3Ll19OhRFSxYMNV916xZo9atWxvq9evXV4cOHVLd558iIiIUHh6uP/74Q1u2bHnk94L169dXUFCQ3NzcUt3/73dDLl++3OI5uXPn1jvvvKO+ffvK19c31b2vXr2quXPnatq0aYqMjLR4XteuXbV48eJMudQaAADgn0JCQlS3bt2UThsiabpEAAgAADLI+fPn1aBBA505c+aR5xUsWFAtW7ZU/fr1VbZsWT311FPy8fGRJN27d09XrlzR0aNHFRISoh9++EEnT55M1f3ffPNNzZgxQx4eHlbNHxcXp0aNGmn79u0Wz3FxcVHdunXVvHlzVa5cWWXKlFGuXLmULVs2JSQkKCIiQleuXNG+ffu0a9curV69Wrdv37bYz93dXT/++KOaNm2aplktBYAZoVSpUtq9e7fy5s2b5mvj4+PVtWtXLVu27JHneXh4qHHjxmrcuLGqVq2qp59+Wvnz55erq6sSExN17do1nTp1Svv27VNQUJA2bdqkBw8ePLJnt27dtHDhQrm6skAGAABkfgSAAAAg0woPD1f79u0VEhKS5mvd3d3TvetuvXr1tHLlSuXLl8+q6yMiItSkSRPt378/Tde5ubkpISEhTde4u7tryZIl6tixY5qukxwXAFasWFFr1qxJ01OQ/5aYmKgxY8Zo4sSJaV4Wbs1nxNXVVR999JHef/99nvwDAACPjbQGgPwVJwAAyDB+fn4KDg7W+++/n+Yn8dIb/knS1q1bVb16dYWGhlp1fZ48eRQcHKxXX301TdelNfzLnz+/NmzYYFX45whubm7q27evdu3ala7wT/orkBs/frzWr1+vIkWKpOnatH5GSpQooY0bN2r06NGEfwAAwKkRAAIAgAzl7u6u8ePH6/fff5e/v7/N+xcrVkxz585VSEiI/Pz8DMfPnj2rl156SWvXrrWqf86cObVmzRotWrQoTe+hSw1XV1d16dJFoaGhatSokU1724OXl5e6du2qY8eO6auvvrJqgxVLWrRooWPHjmnYsGE235HXx8dHo0aNUmhoqBo3bmzT3gAAAJkRS4ABAIBD7du3T1988YXWrFmju3fvWtXDxcVFL730krp06aJu3bo93H32woULCggI0O+//256zaRJkzRixAirZ797967mzZunuXPnpvpdhGZ8fHzUtm1bDR06VGXLlrW6z9+2bNmi4cOHp7vPP3l6esrX11f58uVT8eLFVadOHb344ovKkiWLTe9j5vr165o1a5aWLl2qs2fPWt3n6aefVpcuXfTmm29avQwcAAAgM+AdgAAA4LEUExOjoKAgbd26Vbt27dKJEycs7tjq5uamZ599VpUqVVK1atXUqlUrFStWzGLfrl27atWqVYZjgYGB6tKli03m37dvn3755Rft2LFDoaGhunTpksVzvby8VK5cOVWrVk0NGzZU48aNH250AsuSkpK0e/dubd68WSEhITp69KguXrxo8fyiRYuqbNmyqlu3rho2bKiqVauy1BcAADgFAkAAAOA0rl+/rlu3bikqKkpJSUnKnj27cubMqVy5cilr1qyp7pOUlKQPP/xQ48aNe7ixxJAhQzRt2jR7ja7ExERFREQoIiJCd+7ckaenp/LkyaO8efPadKnsky4mJkbh4eGKjIxUQkKC3NzclDNnTvn5+cnLy8vR4wEAANhFWgNAd7tPBAAAYCVfX1+bvGfPxcVFH330kcqVK6du3brpxRdf1NSpU20woWWurq7Kly8fS03tzMvLSyVLlnT0GAAAAJkaASAAAHhitG3bVqVKlVLx4sXl7s63QQAAAHgy8J0vAAB4olSuXNnRIwAAAAAZytXRAwAAAAAAAACwHwJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAMj0oqKilJSU5Ogx8AS5c+eOo0cAAAAAbMbd0QMAAPC3a9euKSgoSNu2bdOvv/6q69evKyIiQg8ePJAk5cqVS76+vqpYsaJq166txo0b6/nnn3fw1HicXbp0SZs2bdLWrVu1Z88e3bhxQxEREYqPj5ck5cmTR76+vqpSpYpq1aqlpk2bqlSpUg6eGgAAAEgbFwv1HyS1tHSRh4eH4uLi7DMRAOCJc+bMGX3yySdavHixYmNj03Rtw4YNNXToUPn7+9tpOjij48ePa/LkyVq+fPnDgDk1XF1d1bx5cw0bNkx169a144QAAACAZSEhIan5fnSIpOkSS4ABAA726aef6vnnn9dXX32V5vBPkoKDg9W8eXO9/vrrLNtEihITEzVmzBi98MILWrJkSZrCv7+v//HHH1WvXj31799f9+7ds9OkAAAAgO0QAAIAHGbgwIEaPny4TZ4q//bbb1W9enVdv37dBpPBGSUmJuqNN97QuHHjlJCQkO5+X375pWrXrk3wDAAAgEyPABAA4BBz587V7NmzH3mOi4uL8ufPr7Jly6pEiRLKli3bI88/ceKEWrZsqZiYGFuOCicxefJkLVu27JHnuLq6qkCBAipbtqyKFy+urFmzPvL8AwcOqE2bNml+khAAAADISASAAIAMd/jwYQ0aNMj0mJubm7p3766NGzfq/v37unr1qo4cOaKzZ88qKipKe/bs0aBBg+Tt7W16/e7duzV+/Hh7jo/H0Pbt2zVmzBjTYx4eHnrzzTe1efNmxcXFKTw8XEeOHNG5c+cUFRWlnTt3qk+fPsqSJYvp9UFBQZo5c6Y9xwcAAADShU1AAAAZrk2bNlq9erWhXrx4ca1cuVLVqlVLsUdYWJhat26tQ4cOGY55eXnp1KlTKlSokE3mxeOvfv362rp1q6H+/PPP6/vvv1e5cuVS7HHkyBG1atVKp06dMhzLkyePwsLClCtXLluMCwAAADwSm4AAADK1sLAwrV271lDPnTu3Nm7cmKrwT5JKlSqloKAgFS9e3HAsJiZG8+fPT/escA779u0zDf8KFSqkX375JVXhnySVK1dOQUFByp8/v+FYRESEvvnmm/SOCgAAANgFASAAIEMtWbLEdAOGMWPGqHTp0mnq5evrqxkzZpge27Bhg1Xzwfl8/fXXpvXJkyeraNGiaepVvHhxTZo0yfTYzz//nNbRAAAAgAxBAAgAyFAhISGGWs6cOfXmm29a1e+VV15RyZIlDfW9e/cqMjLSqp5wLmafuaJFi6pz585W9evSpYvy5s1rqG/dutUmuwsDAAAAtkYACADIMLGxsfrtt98M9WbNmlncYCElLi4uaty4saGemJioixcvWtUTzuPmzZs6cuSIod6yZUu5ulr3bZC7u7vq169vqN+7d0/Xr1+3qicAAABgT+6OHgAAHmd37941XWrq7e2t5s2bW933zJkz2r9/v6H+3HPPqXz58lb3dbTTp0/r/v37hnqNGjXS1ffpp582rV+7dk1ly5Y11IODgxUREWGoN2jQwPTJrtR48OCB1q1bp6SkpGT1rFmzqmVLi/tqwc6OHj1q+JpI9v3M+fn5pas3AAAAYGsEgACQDj4+PlqxYoXpjrarV69Wq1at0twzLi5Or776qkJDQ5PVvb29dfDgQatnzQyuXbtmWn/22WfT1Tdnzpym9aioKNP6zZs31b59e0O9TZs2WrlypVUzTJ48WWPGjDHUp0+fblU/2EZm+cwBAAAAjsQSYABIpy+//FIFChQw1Pv162fVcsDx48cbwj9JmjlzpsWnjh4Xln49fH1909X31q1bpnVLIU27du3UoUMHQ33VqlVWBYChoaEaP368od6oUSO9/fbbae4H28ksnzkAAADAkXgCEADSydfXV3PnztWrr76arH79+nW98847Wrp0aap7HTp0SJMnTzbUAwIC1KNHj3TP6mjPPvus6c/PbBOPtDh37pxp/VGB6axZs7Rt2zZduXIlWX3gwIGqX7++8uXLl6p7x8fHq3v37oqLi0tWz507txYvXiwXF5dU9YF9VKpUyfQzl95lumafOTc3Nz311FPp6gsAAADYg6X/K/lBksUXFnl4eBj+RwcAnnSdO3fWsmXLDPU1a9botddeS/H6+Ph41ahRQwcOHEhW9/X1VWhoqOlThpCSkpJUvHhxXbhwIVm9WLFiOn/+/COv/emnn/Tyyy8b6u3bt9d3332XqvtPnDhR77//vqG+bNkydezYMVU98HiJi4tT/vz5DbtMV6pUyfD7FwAAALCHkJAQ1a1bN6XThkiaLrEEGABsZvbs2SpSpIihPmDAANMNJ/5t/PjxpuHBwoULCf8eYf78+YbwT5I6deqU4rUtWrRQz549DfUVK1ZozZo1KV5/9OhRffzxx4Z6hw4dCP+c2GeffWYI/yTxNQcAAECmRQAIADaSK1cuLVq0yLDk88qVK3rnnXceee3hw4c1adIkQ71Pnz7sIPsIq1at0pAhQwz17Nmzm9bNTJs2TcWLFzfU+/fvr5s3b1q87u+lv7GxscnqRYoU0Zw5c1J1bzx+Fi5cqLFjxxrqBQoUUL9+/RwwEQAAAJAyAkAAsKHGjRurV69ehnpgYKDWrl1rek18fLx69OhheLVCyZIl9emnn9plzsdZZGSk1q1bpxYtWqht27aKiYkxnDNnzhzlz58/Vf1y5MihxYsXy9U1+R+JV69efeQGHp999pn27t2brObi4qLFixcrd+7cqbo3Hg8RERH6/vvv1aBBA/Xq1UsPHjxIdtzV1VULFy5U9uzZHTQhAAAA8Gi8AxAAbCw6OloVKlRQWFhYsnrBggV19OhRQzg0btw4jRkzJlnN1dVVW7ZsUZ06dew+b2b1+++/a8WKFYqNjdWtW7cUHh6uc+fO6dSpU0pMTDS9xsXFRZ999lmqn/77p0GDBmnmzJmG+tq1axUQEJCsdvz4cVWuXFn3799PVn/77bc1Y8aMNN8bmcPOnTu1fv163b9/X7du3dLly5d17tw5nT592uI17u7umj9/vrp165ZxgwIAAOCJl9Z3ABIAAoAd7NixQ3Xr1jUEVT169NDChQsf/thSkDR69GiNGzcuQ2bNrObPn68+ffqk+vwSJUpo7ty5atKkiVX3i4mJUaVKlXTy5Mlk9YIFC+rIkSPKkyePJCkhIUG1a9fWb7/9luy8MmXKaN++fcqWLZtV94fjTZo0SaNGjUr1+aVLl9aCBQtUq1YtO04FAAAAGLEJCABkArVr1zZdPrpo0SJt2LBB0l9Lf7t27WoI/ypVqqQPPvggQ+Z0Fj179tSJEyesDv8kycvLS4GBgXJzc0tWv3LligYPHvzwx9OmTTOEfx4eHlq6dCnh3xNk2LBhCg0NJfwDAADAY8Hd0QMAgLOaNGmSgoKCdPTo0WT1Xr166ciRI5ozZ47hHXJZs2bVkiVL5OnpmZGjPvYWLlyoffv26YMPPlDr1q2t7lOzZk29++67hg1Zli5dqrZt2+rZZ5813QBi7Nixqly5stX3zSwiIiI0depUh9y7Xr16atasmUPubY1PP/1UISEh+uijjx6ruQEAAPBkIgAEADvJmjWrFi5cqNq1ays+Pv5h/fLly3r99dcVHBxsuGbKlCkqV65cRo7pNA4dOqQ2bdqoUaNGWrZsmXx9fa3qM3bsWP300086fPhwsnq/fv1UtGhR3bt3L1n9pZde0nvvvWf13JnJ7du3NWXKFIfc29XV9bEL0vbs2SN/f3+99tprWrx4sXLmzOnokQAAAABTvAMQAOxs9OjRmjBhQornNWrUSP/3f/8nFxdL/2l+sly6dEnHjx+Xt7e3PD09FRUVpdu3b+uPP/7Q7t27tXHjRsPy6b8VL15cO3bsUJEiRay698GDB1WjRo0U/6zz8fHRwYMHVapUKavuk9mcOXPGYT+XkSNHauLEiQ6599/+3vDDx8dHHh4eioyM1O3bt3Xs2DH99ttv+r//+z/DDsB/K1OmjEJCQpQ3b94MnhoAAABPorS+A5AnAAHAzsaOHauNGzdq//79Fs/JlSuXFi5cmKnCvxEjRmj+/PlWXevv769vv/02XfcvXLiwChcubPH4zZs3NW3aNE2dOjXZE5aSdP78ebVs2VJ79uyRh4dHmu9dsWJFjRkzRqNHj37keZ9//rnThH/4ayOZEiVKGOqtWrWSJIWHh2vy5Mn64osvDBv8HDt2TK1bt9aWLVsy1e9jAAAAQCIABAC78/DwUGBgoKpWrWrxibUvv/xSxYoVy+DJHu3evXu6deuWVddGR0fbeBqjvHnzasKECWrSpIn8/f0NS3MPHjyo2bNnJ9vAIy1GjBihH374QXv27DE93rJlS/Xq1cuq3pmVq6urcufO7ZB7Z82a1SH3TQs/Pz9Nnz5dDRs2VOvWrQ1PA27btk3ffPON3njjDQdNCAAAAJgjAASADFC2bFmNHj3a9ImyZs2aqUOHDg6YyjnUrVtX8+bNMw1dZs6cqUGDBln1RJa7u7sCAwNVqVIlQ3Dr6empefPmWT1zZlWiRAlFREQ4eoxMr2XLlpo6daqGDBliODZjxgwCQAAAAGQ6ro4eAACeFFevXjWtb9++XWfOnLHbfefNm6d27dqpT58+druHo3Xu3Nl0F96zZ88+cul1SiIiIkzf+RYXF6fVq1db3fffYmJitG7dOn300Ufq1auX2rVrp969e2vMmDH66aefdPfuXZvdC7YxYMAAlSxZ0lDfv3+/zp4964CJAAAAAMt4AhAAMsCmTZs0a9Ys02PR0dHq3bu3Nm3aZPN3hyUmJmrcuHG6ePGi/Pz80nRtxYoV1bZtW6vuW7VqVauus5aLi4s6duyoAwcOGI7t37/fqnnu3r2rrl27KiEhwfT4iBEj5O/vbxoCpVZUVJQ+/vhjffXVV48M+Xx8fNS7d2+9//77bDKRSXh4eKht27amuybv27dPTz31lAOmAgAAAMwRAAKAnd2+fVs9e/ZUUlKSxXM2b96sefPmqW/fvja997Zt23Tx4kWrru3Ro4d69Ohh03nsqU6dOqb1kydPWtVv6NChOn36tMXj0dHR6tmzp4KDg+XqmvYH6v/88081bNjwkff42927d/X5559r1apVWrlypWrUqJHm+8H26tSpYxoAnjp1ygHTAAAAAJYRAAKAnfXv319//vlniucNHTpUjRo1stmusklJSZo4caJNetlCRESE6dLI0qVLy9vbO939CxYsaFqPjIxMc6+ffvopVTsgb926VXPmzNHAgQPT1P/u3buqX7++Yel3+fLlVbVqVfn6+urOnTvasWOHQkNDHx6/cOGC/P39tX37dpUtWzZN93wSXbt2TRcuXDDUy5UrpyxZsqS7vy0/cwAAAIA9EQACgB2tWLFCy5cvN9THjh2r8ePHJ1teGh0drb59+yooKCjdS4Hv37+vYcOGadOmTenqY0v79u1T06ZNDfWff/5Z/v7+6e7v4+NjWjd7h9+j3LhxQ7169TI8sdmuXTsdPXpUR48eTVZ/77331Lx58zQtBR43blyy8K9QoUJaunSpGjRoYDh3y5Yt6tmz58Pw9NatW+rSpYv27t1r1ZOHT5JNmzapc+fOhvqePXtUrVq1dPfPnj27aT2tnzkAAADA3ggAAcBOLl++rP79+xvqXbt21Ycffqg7d+7o888/T3YsODhYc+fOVb9+/dJ0r4SEBIWFhSk0NFS//R7RgJAAACAASURBVPabvvvuO6uX/tpLiRIlTOtmT2hZw9LutQUKFEhTn/79+ys8PDxZzdfXV7NmzdLZs2f10ksvGYLbLl26KCQkJFWB3J07dzRjxoyHP/b29tamTZv0/PPPm55fv3597dq1SzVr1tT58+clSQcOHNDq1autfkejJTdu3ND7779v056p1axZM7322ms27WnpPXx//vmnTQLAmzdvmtZ9fX3T3RsAAACwJQJAALCDpKQk9erVyxBKFSxYUNOmTZMkjR8/XuvXrze8A27YsGFq3LhxqpcC//HHH6pYsaJiY2NtM7ydlChRQq6urkpMTExW/+cS1/SwtMw6f/78qe4RGBiolStXGupffvmlfH195evrq0GDBj38Gv5t586dmj17tt56660U77Fhw4ZkX6vBgwdbDP/+5ufnp5kzZyogIOBhbdWqVTYPAO/cuaN58+bZtGdq5c2bN8MCwNDQULVu3Trd/S195tK64Q4AAABgb6wdAgA7mD17tjZs2GBaz5MnjyTJy8tL8+fPNyz3/XtX4EdtGvJPcXFxmT78kyRPT08999xzhvrmzZtt0n/r1q2m9dQuzT1//rwGDRpkqLdr1y5ZWDRu3Dg9/fTThvNGjhypsLCwFO/z789Fajdaefnll5M9zbh79+5UXfckK1CggGkAHBwcbJP+6f3MAQAAABmFABAAbCwsLEwjR4401Dt37mx4wqlevXrq1auX4dwtW7boq6++StX9fHx81KhRI9N/8ubNa91Pwk7M3gF47NgxHThwIF19ExIStGLFCkPdw8NDDRs2TPH6xMREdevWzbB5w99Lf//pUcFtjx49DE84/ts/N0IpWLBgqsMiV1fXZBt/hIeHpzokflK5uLiYfuZ+/fVXwwYsaXXv3j3997//NdRz5Mihl156KV29AQAAAFtjCTAA2FB8fLw6d+6su3fvJqv7+voa3vf3t08//VQbN240vAtv+PDhatKkSYpLgUuWLKmgoCDTY82bNzd9EtFR/P39NX36dEN9woQJWr16tdV9ly5dqhMnThjqtWvXVs6cOVO8/vPPPzd9mmvWrFmm73OrV6+e+vTpo7lz5yarh4SEaNasWXr77bct3uufX2dLS1QtuX///sN/d3FxSfdmMf+WJUsWValSxaY9U6tQoUJ26evv76+lS5cmqyUkJGjy5MnpWu48e/ZsXblyxVBv0qSJPDw8rO4LAAAA2IOl/3P4QVJLSxd5eHgoLi7OPhMBwGPsww8/1EcffWSor1q16pHvHPv555/VokULQ71+/foKDg62Ouj5ZwDo5+dnGlhkpNjYWJUqVUqXLl0yHFu8eLG6deuW5p5HjhzRSy+9pKioKMOx5cuXq0OHDileX61atWThmiS1bt1aq1atsnjdnTt3VLZsWcNmK97e3jp48KDpMmFJmj59+sMl288++2yq33sXHx+vAgUKPHyvZOnSpXX8+PFUXfski4yMVIkSJXT79u1kdRcXF61du1avvPJKmnvu2rVLDRo0MF16v379er388stWzwsAAACkRkhIiOrWrZvSaUMkTZdYAgwANnPgwAFNnDjRUG/fvn2KGw40b95cnTp1MtS3bNmiL7/80mYzOlqWLFk0fPhw02O9e/fWlClT0tRvy5YtatSokWn4V7FiRbVr1+6R1z948EDdu3c3hH958+bV7NmzH3ltjhw5TJ8gi46OVteuXZPtFPxPgwcP1ogRIzRixIg0bXqxbNmyZJvK1K9fP9XXPsly5sxp+kRmUlKSOnXqpOXLl6ep36pVq+Tv728a/tWoUcM0yAcAAAAcjQAQAGwgJiZGnTp10oMHD5LV8+XLp5kzZ6aqx8yZM5Nt8vC3d99917BT8OOsT58+Kly4sKEeHx+v9957T/Xr19ePP/6omJgY0+vj4uK0efNmBQQEqGHDhrp69arhHA8PD33xxRdydX30H3NjxozRvn37DHVLX4t/8/f31+uvv26o79q1y/DuwPS4ePGiRo0a9fDHLi4u6tOnj836O7vBgwcrd+7chnp0dLQ6deqk5s2bKygoyOJmOvfu3dOGDRvUpEkTtW3bVnfu3DGc4+Xlpblz59p8WTYAAABgCywBBgAbGDhwoOkTY99//73atm2b6j4rVqwwXbJar149bd68Oc3hQmZbAvy3oKAg+fv7W3xKTvrrz5ry5curQIEC8vb21v3793Xt2jUdPnxY9+7de2T/hQsXpri77s6dO1W3bl3DDAEBAVq7dm2qfy43b95UmTJldO3atWR1Ly8vHTp0yOJS4NQ6d+6cWrRooWPHjj2sdenSRYGBgenq+6RZuXKl2rdv/8iNU7Jmzary5cvL19dXXl5eiomJefiZe9RO266urlq9erVeffVVe4wOAAAAGKR1CTABIACkU1BQkJo2bWoIFl555RWtW7cuzf1atWplurvorFmzNGDAgDT1yqwBoCTNmzdP/fr1s+lOtm5ubpo0aZLFZcZ/u3v3ripUqGDYCTZPnjw6cuSIChYsmKb7fv/992rfvr2h/p///Edbt25N8UlEM0lJSVq6dKnefvvtZLsTly1bVr/++quyZ8+e5p5PusmTJ5vu0J0enp6emj17tulu3gAAAIC98A5AAMhAt2/fVs+ePQ0hVt68ea3eYXT27NmmyxVHjBjhdEuBv/vuO+XIkcMm/QoVKqSgoKAUwz9JGjJkiCH8k/7aDTit4Z8ktWvXzvTpr+3bt6d6Cfg/7d69W7Vr11bXrl2ThX/lypXTpk2bCP+s9N5772n+/PnKli2bTfqVLFlSO3bsIPwDAABApkcACADpMGXKFHl4eKhkyZLJ/pk1a1aq3iFnpmDBgvr8888NPQsUKKBJkybZ+GfgWO3atVNoaKj69u2rrFmzWtXD19dXH3/8sY4cOZKqjTF+++03bd682fDr26lTJ3Xp0sWqGSRpzpw5KlOmjKHvwoULTd9TaObChQvq3LmzXnzxRe3atSvZsU6dOmnXrl3y8/OzekZIvXr10qFDh9SlSxd5enpa1aNw4cL65JNPdOjQIVWrVs3GEwIAAAC2xxJgAHBimXkJ8L9du3ZNS5YsUUhIiHbt2qWbN29aPLdkyZKqV6+eGjRooFatWtnsiS5HiYuL07Rp0zR+/HhFR0cnO1aqVClNnz5dL7/8soOmc14XL17U0qVLtWPHDu3cuTPZ05b/Vrp0adWtW1cNGzZUQECA1eEhAAAAYAtpXQLsbveJAABIhfz582vYsGEaNmyYkpKSdPnyZd26dUsRERGKiYlRjhw5lDdvXhUoUEC5cuVy9Lg2c/ToUXXo0EFHjhxJVvf19dUHH3ygvn37EjbZSZEiRR6+EzAxMVGXL19WRESEbt26pXv37ilnzpzKly+fChQoYLOl6gAAAIAjEAACADIdFxcXFS5cWIULF3b0KHa1fPly9ezZM9muxt7e3nrnnXc0fPhw3vWXgVxdXVWkSBEVKVLE0aMAAAAANkcACACAA8ydO1f9+/dXYmLiw9prr72mGTNmqGjRog6cDAAAAICzIQAEACCDbdmyRQMGDHgY/nl5eWnJkiVq3bq1gycDAAAA4IwIAAEAyED3799Xt27dlJCQIEnKmTOnNmzYoBdffNHBkwEAAABwVq6OHgAAgCfJ/Pnz9eeffz788SeffEL4BwAAAMCuCAABAMhAS5YsefjvzzzzjHr16uXAaQAAAAA8CVgCDABABgkPD9f+/fsf/rhu3bq6ffu2Vb3c3NyUI0cOW40GAAAAwIkRAAIAkEH279+vpKSkhz9esGCBFixYYFWvSpUq6cCBA7YaDQAAAIATYwkwAAAZ5MSJE44eAQAAAMATiAAQAIAMEh4e7ugRAAAAADyBWAIMAE6sbdu2Kl++vCQpe/bsDp4GNWvW1IgRI2zSq1ChQjbpAwAAAMD5EQACgBPr3r27o0fAP7Rq1UqtWrVy9BgAAAAAnjAsAQYAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODE3B09AAAAAJBZRURE6Pbt28lqWbJkUeHChR000ePF7NfPy8tLfn5+DpoIAIAnE08AAgAAABZMmTJFpUqVSvZPmzZtHD3WY8Ps16979+6OHgsAgCcOTwACAJxKbGysgoODtX//fh05ckTnz59XTEyMYmJilDdvXuXLl08FChTQf/7zHzVo0EDFixd39MhPvMuXL2vbtm3avn27Lly4oIiICEVERMjNzU158uRRnjx59Pzzz6tWrVqqVauWcufO7eiRkUrR0dFq2rSprly58rD29ttva9CgQQ6cCoAj7d27VyEhITp+/Lj++OMP3bt3T7dv31b27Nnl6+srX19fValSRQ0aNFCFChXk6sozKwBgCwSAAACncOTIEX322Wdau3atYbnZ38LCwh7+++LFiyVJFSpU0PDhw9W+fXu5u/PHYkbauHGjJk6cqO3bt6d47rp16yRJHh4eat26tYYMGaLq1avbe0Sk0+DBg7Vz585ktVu3bjloGgCOcuPGDc2YMUPffvutzp49m+L5y5cvlyT5+flp4MCB6t+/P3/5AwDpxF+nAAAea/fv39fgwYNVoUIFff311xbDP0sOHTqk119/XaVLlzYEFbCPsLAw1apVS/7+/qkK//7pwYMH+u6771SjRg1169ZNUVFRdpoS6bVmzRotWLDA0WMAcLCvv/5aTz/9tMaPH5+q8O+fwsPDNXr0aBUvXlxz5syx04QA8GQgAAQAPLZu3rypBg0aaMaMGUpMTExXr7CwMNWrV0+TJk2y0XQws3fvXlWvXl27du1Kd6/AwEBVrlxZ58+ft8FksKWLFy+qd+/ejh4DgAMlJSXprbfeUvfu3RUZGZmuXlFRURowYIDatGnDX/wAgJUIAAEAj6V79+6pZcuW+vXXX23WMz4+XqNGjdL48eNt1hP/c/XqVQUEBCgiIsJmPU+fPi1/f3+b9kT6JCYmqkuXLnxNgCfciBEjNGvWLJv2XL16tV577TXFxcXZtC8APAkIAAEAj6X33nvPYvjn6uqqV155Rd98841OnjypqKgoxcbG6uLFiwoKCtI777yjvHnzWuw9ZswYffPNN/Ya/YmUkJCgdu3aJdsM4p8KFy6soUOHKjg4WGFhYbp7967u3r2rs2fP6vvvv1fnzp0tvqPx+PHj6tu3rz3HRxqMGzdOW7ZscfQYABxo/fr1+uSTTywer1SpkqZPn679+/fr5s2bSkhIUHh4uPbu3auJEyeqTJkyFq8NDg5Wnz597DE2ADg1AkAAwGPn4MGDFp8qKFKkiEJCQrRu3Tp17txZzzzzjHx8fOTp6anChQurUaNG+uyzz3T27FkNGzZMLi4uhh5JSUkaNGgQTzDZ0Jo1axQSEmJ6bMiQITpx4oQ+/fRTNWjQQCVLlpS3t7e8vb1VokQJtW3bVt98842OHTumihUrmvZYvXq1du/ebc+fAlJhz549mjBhgqPHAOBAsbGxGjBggOmxLFmyaPbs2dq/f78GDRqkypUrK0+ePHJ1dVWBAgVUtWpVjRw5UqGhoQoMDFSOHDlM+wQGBmrTpk32/GkAgNMhAAQAPHY+/vhj03f+PfXUU9q/f79q1aqVYo/s2bPrk08+0XfffSc3NzfD8YiICJYC29Cnn35qWh8zZoymTZsmb2/vFHs888wz2r59u8qXL284lpSUpMmTJ6d7TlgvMjJS7du314MHDxw9CgAHWrRokS5cuGCoe3h46JdfflH//v1N//Ltn1xdXdWlSxft2bNHBQsWND1n6NChSkhIsMnMAPAkIAAEADxWwsPDtX79ekPdw8NDK1asUP78+dPUr127dpo6darpsfnz5+v+/ftWzYn/OXDggPbs2WOoV6tWTR9++GGaevn4+GjZsmVydTV+CxMUFKTY2Fhrx0Q6vfnmmzp37pyjxwDgYPPnzzetT5gwQXXr1k1Tr+eee07r16+Xp6en4djhw4fTvJM8ADzJCAABAI+V1atXKz4+3lDv0KGDqlWrZlXPwYMHq0KFCob63bt3tXnzZqt64n8svQ9uzJgxKT4FYqZs2bIKCAgw1KOjo7Vjx44090P6LV68WMuXL09W8/HxcdA0ABzl5MmT+v333w31okWLavDgwVb1rFKlisUlxevWrbOqJwA8iQgAAQCPFUthkrX/YyH9tdRoyJAhpsc2btxodV/8xezdfzly5FCTJk2s7tm8eXPT+unTp63uCeucPHlSb7/9drKai4uLvvjiC4fMc/v2bUVERJj+RUFmFRkZqYiICN26dcuhcyckJOjWrVuP3a8fMg9Lf2k2YMAAeXh4WN136NChpn9hxJ/RAJB65tvpAQBSJTY2VpcuXTLUPT09VaRIEav73r17V9euXTPUs2fPLl9fX6v7OoPffvvNUCtSpIgqV66crr4vv/yyXFxclJSUlKx+/vx5w7nnzp0zfQdhiRIlTJempkZCQoLpvTw8PFS0aFGremYW+/fvN9Rq1KhhuqQrtcqVK2daN/t9I0k3btzQnTt3DPV8+fJZfMl8aly5ckX37t0z1AsXLqwsWbJY3fdxERcXp06dOunu3bvJ6m+++aZatmxp9/vv3LlTGzZs0O7du3X48GFdv3492e9hHx8flS5dWtWrV1fDhg3VsmXLdIUQthAaGqqNGzfq/9m776gorrcP4F96EVCKAiL2ip2IotiiqFiiJmpiQwU1iRCNxt6NvSsqNhBr1KjRaGKMigU7VjQ2bNjAAoIivey8f/iTl3VmYXdZ2vr9nMM5cmfunWd22V14vPc+ISEhuHfvHh4/fizaN9HY2BhVq1ZFnTp10LRpU/To0QMODg4ajyU1NRUHDhzAP//8g/Pnz+PRo0dysVhYWKBWrVpwc3ND+/bt0a5dO7Xf4zQhKSkJL1++lDxmZWWFUqVKFXBE9ClFxZi6du2ap3EdHBzg7Ows+jyR+twkIiLVHAAgKPoyMDAQiIhIENLT0wUXFxfR+6S+vr5w8eJFtcft2LGjaExdXV0hJCREg9EXP/Hx8YKOjo7osenXr59GxrexsRGN7eLiIjpvxIgRkp+Py5YtU/vaCxYskBxz/vz5ebmlQieTyQQDAwPRfQ0fPjxP4967d0/y8Ro5cqTk+efOnRP09PRE5zdp0kTIyMhQOwZTU1PRmM7OzkJaWlpebq/YGDNmjOj+nZychKSkJCEmJkbyOZo+fXqerimTyYRNmzYJTk5OCn9XVfRlb28vLFq0SKXnfNy4caJxXF1dVY770KFDgpubm8oxf3z/9/DwEK5fv67ydaUkJycLCxcuFEqXLq1SHDVq1BCCgoIEmUym9LWkHj8PDw+VY46NjRWcnZ0l46pXr57w+vVrlcckzXN1dRU9P7a2thoZu0+fPpLPf1xcnEbGJyIqbkJCQpT5/M5aJsUlwEREeaCvr4/NmzfD2NhYrj0jIwMDBw5Uq4BEUFAQDh06JGqfNGkSWrZsqXas2iAiIkI0Qw/4sCecJlhZWYnapGaNzZs3DzVq1BC1T548Wa0lqHfv3sX06dNF7S1atMCYMWNUHq8oiYuLk6wKq6iqo7Lev38v2W5ubi7Z3rRpU4wdO1bUHhoaiqVLl6p8fZlMhsGDByMpKUmu3djYGJs3by70WWYF4ciRI1iyZIlcm5GREbZv3w4TE5N8uWZkZCTatWuHQYMG4fbt2yr3f/HiBcaOHYvmzZvjxYsX+RChWEpKCgYPHoyOHTvi7Nmzao0hk8nw77//wtnZGfPmzctTPDdu3ECjRo0wbtw4REdHq9Q3PDwc3t7e6NatG2JiYvIUhyri4uLg7u6Oq1evio7Vq1cPx44d++xnxxcVERERojYnJyeNjC31GQ1If04TEZEYE4BERHlUq1Yt/Prrr6L2O3fuYO7cuSqNFRUVJZnwadiwIaZOnap2jNoiNjZWsr1ixYoaGT8uLk7UZmlpKWozNTXFpk2boKenJ9eelJQEb29vyeXBimRmZsLb21uULDY3N8fmzZtF1yhu0tLS0KtXL9FXgwYN8jSuouRNTsulZ8yYgbp164rap02bhvDwcJWuv3LlSsnqkwsWLFC4PFmbvH79GgMHDhQl5OfPny9ZUEcTnj17hlatWuHYsWN5HuvChQvo0KGDwvcUTUlKSkLbtm0RFBSkkfEyMzMxadIkyc8cZQQHB6N58+a4detWnuL466+/0Lp1a8n3TE3LKflXv359HDt2DDY2NvkeBylH6jWVn5/RgPTnNBERiXEPQCIiDRgzZgwOHjwoKnYwb948dO3aFY0aNVJqHB8fH9EvuMbGxtiyZUue9ksrKBcvXkSTJk3k2s6ePYtmzZppZHwjIyO4u7uL2qtXr57nsSMjIyVnwyjay9HV1RXjxo0TzcY5ffo0/P39MXz4cKWuu3z5cpw/f17U7ufnh0qVKik1RlFmZ2eHXbt2aXzcw4cPS7bnVAnayMgImzdvRpMmTeRmJaakpMDb2xunTp1SKuH68OFDTJo0SdTu7u6u9PNenAmCAC8vL9FebB4eHvj555/z5Zrp6eno0qULHj58qPAcXV1dODo6wsbGBoIg4PXr13j+/LnC8//77z/8/PPP2Lp1a36EDAAYPnw4zp07l+M5pUqVgoODA4yNjSGTyRAdHY3IyEjJ2c4fzZo1C507d1b6swX4MNu1e/fuSExMVHiOiYkJHB0dYWZmhjdv3uDp06cK47h16xa6d++OY8eOQV8/f/6kyCn516BBAwQHB8Pa2jpfrk2qS01NRatWrUTtrq6uGhk/LCxM1FaqVCmFM7+JiEg53AOQiEhFjx49EszMzCT3JkpNTc21/6ZNmyTfc/38/Aoges0IDQ0VxX/27NnCDkspfn5+ko//0qVLFfZJTU0V6tWrJ+pjamoq3L9/P9drhoeHCyYmJqL+3bp10+StaZ0XL14I1tbWosetWrVqSu1NNnPmTMnnesmSJbn2zczMFFq1aiXqa2lpKTx79kwTt1fkLV++XHT/ZcqUEV68eCF3nib3AJw/f77C30u//PJLYd++fcL79+9F/d68eSMEBAQIFSpUkOyro6MjXL58Ocdrq7sH4MWLFyX3LAU+7EW4ePFi4eHDh5J9379/L/z5559C586dFd53165dlXvwBEGIjo4WypUrp/Ax8PT0FEJCQkSvn+joaCEgIECoWrWqwjj8/f1VfvyU2QMwNjZW+OKLLySv2bBhQyEmJkbp+6fi786dO5Kvp06dOhV2aEREhUbVPQAVYQKQiEgNq1atUusP3qioKMHKykrUz93dXaXN1gtbcU0ApqSkCFWqVJF87m7dupVj37CwMMHQ0FDUr3Xr1jk+d5mZmZIFAWxtbbmZfQ7evHkjmYADIKxfv16pMRQV7zExMRHCw8Nz7Lty5UrJa+/YsUMTt1fkhYWFCUZGRqIE0t9//y06V1MJwMzMTMHe3l40jq6urrBq1SqlxoiPj1dYgGPEiBE59lU3AaioYEGbNm2Ed+/eKRW3IAjCjh07JAvpGBsbC/Hx8UqN0b9/f4WJyODg4Fz7JyYmKhyjdOnSOd6POgnA3JJ/b968Ueq+SXsMGjRI8uehOP0nKRGRprEICBFRIfLx8YGHh4eofc6cObhy5YrCfr6+vqJ9c0qVKoUNGzZAR0dH43GSvNmzZ0suLWzRokWum5fXr18f06ZNE7WfPHkSq1evVthvxYoVooIAOjo6CAwM5Gb2EuLj47FmzRo4OzsjJCREdLx169bw9vZWaixFxXuSk5MxePBghXs4RkREYOLEiaL2Pn36oHfv3kpduzhLSkpCnz59kJqaKtf+008/oXPnzvl23dOnT0vu+Th8+HD4+voqNYa5uTl27NgBU1NT0bGDBw/mOcZPpaen4++//xa1Ozo64s8//4SFhYXSY/Xu3VtyyXlKSgru3r2ba/9Lly7ht99+E7VbWFjg0KFDaNu2ba5jfNz3tEuXLqJj0dHR2LdvX65jKCsuLg7t2rWT/Mx0dnZGcHCwwmIQpJ1OnjyJLVu2iNpNTEzg6elZCBERERVPTAASEWnQxwTOpxtSZ2RkYPDgwZLVULdt2yb5x9OaNWtQvnz5fIuVPti5c6fCYi2TJ09Waozx48ejcePGovYJEyZIVkR88OCB5NhDhw6V/AP7c5GYmIjdu3fjt99+w+rVqzF9+nQMHjwYzs7OsLa2ho+PD548eSLq16BBA+zatUulgim1atXCnDlzRO1nzpzBypUrRe2CIGDw4MFISEiQay9Xrhz8/f2Vvm5xNmrUKNy5c0eurU6dOli4cGG+Xvf69esK41GFo6MjOnXqJGp/9OiRKKmZV7du3ZKsVD127Fi19isbNmyYZLsylYznz58vuY/f+vXrVSrYoqenh7Vr16JEiRKiY7t371Z6nJzklPz74osvmPz7DIWHh+O7776T/I8ZHx8fFgAhIlIBE4BERBrm4OCApUuXitqvX7+O+fPny7W9fPlSctP8vn37fhYzigpbYGAgPD09Jf+w6N69Ozp06KDUOB9nlJmYmMi1JyQkYMiQIXJ/fMtkMnh7eyMpKUnu3KpVq0r+3HxOoqKi8O2336J///7w9fXFzJkzERQUhGvXriEjI0Oyz4ABAxASEqLWrMmRI0eiZcuWovZJkybhwYMHcm1r167FiRMn5Np0dHSwadOmz+IP0L1792L9+vVybcbGxtixY4doJqWmRUVFidrMzMxQoUIFlcf64osvRG2CIODVq1dqxabI/fv3Jdu//vprtcaztbWV/Dn7NCH9qZcvX2L//v2idjc3N3z77bcqx+HgjXx8zQAAIABJREFU4IC+ffuK2o8dO4bMzEyVx8sup+Rfo0aNcPTo0c/itUb/7/Lly2jdujVev34tOmZvby85+56IiBRjApCIKB8MGjQIPXr0ELXPnj0b//33X9b3Ukt/HRwcJGcgkea8ffsWgwcPxtChQyUTSxUrVkRAQIBKY9asWVNyJuHx48exbt26rO9XrVqF06dPy52jr6+PLVu2SM6sIWmNGjXC2bNnsXnzZpWWU2anq6uLjRs3wszMTK49KSlJbinw48ePMX78eFH/ESNGKLV8srh79uwZhg4dKmpfuHAh6tSpk+/XT0tLE7WlpqaqNWtv1KhRiI2NFX05ODhoItQslpaW6NWrl9yXp6enwqriyjAyMlK5zx9//CGZmJs4caLa20tIJQ5TUlIkZzsrK6fkn4uLC5N/nxmZTIYVK1agRYsWomrjAGBgYICdO3eq/d5PRPS50i/sAIiItNWaNWtw+vRpuf+5TktLw4ABA3Dx4kXs3r0be/fulevzcQkxlzjlD0EQsG3bNowfP17h0jlLS0vs378fNjY2Ko8/YsQI/Pnnn6I96saNG4eOHTsiIyNDci+vCRMmoGnTpipf73N29epVzJgxA2PHjkW7du3UHqdy5cpYvHgxfvzxR7n2U6dOYfXq1fD19cXQoUNFyzmdnJxEM3q1UWZmJjw9PUX/UdG5c2f89NNPBRKD1Ptheno6tm/fDi8vL5XGMjIyUiuRpip3d3e4u7trdMxPZw0r49P/bAA+vMfl5TXTuHFj6OrqimZO37lzB1WrVlV5vJySf40bN8bhw4dRqlQpteMtyg4ePKjW85pXNjY2+PLLLwv8usoIDQ3Fzz//jNDQUMnjOjo6WLNmjeTsbSIiyhkTgERE+aR06dJYtWqVaLZEWFgYxo8fj61bt4r6jBgxQrKICOXdmTNnMGrUKFy+fFnhOWXKlMGRI0dQr149ta7xcUZZ/fr15RJG79+/x9ChQ5Geno7ExES5Po0aNeIyJjXIZDIcPXoUR48eRefOnbFhwwbY2tqqNdb333+PP//8E//++69c+4QJE/DixQsEBwfLtRsaGmLbtm35vvS1KJg3b54ooW1nZ4egoKACK1DUoEEDyfaff/4Z1tbW6Nq1a4HEUZguXbqE+Ph4lfudP39e1NapUycYGhqqHYuFhUWel/t+lFPyDwCWLVumtck/4MPejs+ePSvw67q5ueHMmTMFft2cREZGYubMmQgMDFRYiElPTw/r169XuuATERHJYwKQiCgf9erVC3369MGOHTvk2pctWyY6t1atWpg3b15BhfbZiIiIwPjx43PdpL5Ro0b4/fffUbly5Txdr1KlSliyZAm+//57ufajR4+KzjUxMcHWrVthYGCQp2tqCxsbG8yfPx+mpqYwMjJCamoq3r17h8ePH+Py5cv477//JP8wPHjwYNYeYTVr1lT5uh9n3tatWxdxcXFZ7YmJiZLLuqdPn46GDRuqfJ3i5vz58/j111/l2nR0dLBx40aUKVOmwOJo2bIlzM3NRbMw379/j27duqFt27aYPHkyWrZsqVIhmOIiJCQEQ4YMUblfVFQUnj59KmovKj+7uSX/gA8Flk6dOlVgyWYqeAkJCZg/fz6WLl2K5ORkheeVLl0aW7duVXpvXiIiEmMCkIgon61evRqnT5/G8+fPFZ6jqIgEqS8hIQGzZs2Cn59fjnuF6evrY8SIEZg7d67GlgYOGTIE+/btw6FDh3I8b8GCBWolrPLLmTNnRAkfZZmamkoWG1CFpaWl5F57Hz18+BArVqyAv7+/aAbS8+fP0alTJ1y6dAnW1tYqX9vBwQErVqyAp6dnjue5ubnlGGNh6NKli9pVbGfNmgVXV1dR+7t379CvXz/RHpk///xzgc9StrCwwMiRIzFr1izJ48eOHcOxY8dgZWWFTp06oX379mjRogUqVqxYoHFqQnx8PO7du4cbN27g+vXrOHHihNy+saoIDw+XbK9bt25eQtSIt2/f5pr8Az68J23YsEGtBCgVbYIgYNOmTZg8eXKu1azbt2+PoKAgje/VSUT0uWECkIgon5UqVQpBQUHo0KGDXDXY7H799Ve4uLgUcGTaa/fu3fjll19yTLoCQNOmTbF69WqFSwzV9XFGWZ06deRmlGXXvn37AttDTVmvX78WLXdVVkFsxl6lShX4+fnh22+/RZcuXfD27Vu54xEREZg2bRr8/f3VGr9///7Yt2+faG/Oj8zNzbFly5YiN8vs+PHjOc6cycmIESMk24cNGyYq6lC/fv1C2/dwypQpOHv2LI4fP67wnNjYWGzbtg3btm0D8CGp27JlS7i5uaFNmzaoVatWQYWbq8ePHyMsLAz37t3D/fv3ce/ePYSHh2u0GrGi956ikBi9cOGC0ueOHz8eXbt2LdBZp5S/rl+/Dh8fH5w7dy7H8xwcHLB06VK1KlYTEZEYE4BERAWgXbt2GDx4MAIDA0XHXF1di9yMouLq6dOnGDp0KI4cOZLjedWqVcOcOXPQs2fPfFtaVrZsWaxatQr9+vUTHStZsmSB7qGmbdzc3LBv3z60bdtWtCQ4ICAAM2bMQOnSpdUae+3atThz5oxc8Z6PFi9enOcl4sXBpk2bRNsWmJiYYPv27QVSQEOKoaEhDhw4AF9fX2zevFmpPpGRkdixY0fWvVSoUAFdunSBt7c3nJ2d8zNckfT0dPz999/Ys2cPTp06let/TmiCogSgubl5vl9bVTo6OvDz84O/v79o5mJsbCxGjx4tuW9ucXfmzBnJSvT5rbD2L01JScHkyZOxYsWKHO+7ZMmSGDduHEaOHAlTU9MCjJCISLsxAUhEVEAUzT6JiopCYmJivs2gCg4OxpUrV1CiRAmVZpwdPnwYPj4+Kl1Lahlir169VP5jY+XKlejUqZNKffbt24chQ4aIqpVmZ2dnh6lTp2Lo0KEFsu9ejRo1JKtlJiYmIioqSqPLmR48eIDr168jMjISycnJKFmyJBwcHODq6qp2Mqwoa926Nb777jtRoio9PR179+7FDz/8oNa4JUuWhL29vWQC8P79+2qNqcidO3cQFhaGN2/eIDExEVZWVnB0dISrq2uhFT6QyWQYPny4qH3x4sVwcnIqhIj+X4kSJbBp0yb07t0b06ZNw6VLl1Tq/+TJE/j7+8Pf3x9ubm5YtGhRvlffTkpKwpIlS7B69Wq8fPlS7XFq166Nhw8fIiUlRek+it4Li1oCUFdXF+vWrcOQIUNQp04dtG3bVjRbftu2bRg4cKDGKysDH5aiLlu2DOnp6XBzc0Pz5s01fg1FypcvX2DXKmx3795Fnz59EBYWpvAcAwMDeHl5YebMmWoXdSIiIsWYACQiKgB37tzBlClTJI89ffoUo0ePRkBAQL5ce9SoUbh58ybs7OxUSgAmJibi0aNHeb5+VFSUyn0SEhKUPjczMxO//PILVqxYofAcc3NzjBkzBr/88gvMzMxUjkcdycnJ8PT0lCxakZGRAS8vL1y5ciVPM6oyMzMREBCAlStX4vbt25Ln6OjooGnTphgzZgy6d++e46zDEiVKqD3DraAe1+y+//57UQIQ+FC8Qt0E4K+//orr169LHlu2bBm++eabPCWNkpKSsHr1avj5+SmcBaarq4u2bdti3LhxSiU8KlWqpFJiKLsSJUrIfS8Iguj1p6enh71792Lfvn0qjZ2eni7ZvnXrVpw9e1by2MaNG1GuXLkcx/Xw8ECHDh1w/vx5bN26FXv27EFMTIxKsZ09exZubm4YO3Ys5s6dmy/Luu/evYvu3bsr3ItPEX19fVSvXh0NGzaEs7MzPDw84OTkBHt7+zwlEYsiXV1dBAYGwsvLCwDw5ZdfYsCAAZKzPH18fHDjxg2Nz147d+4cRo8eDeBDgZ+CTAB+Lnbs2IGhQ4ciMTFR8riuri769u2LWbNmFYkl6kREn5sDAARFXwYGBgIRESknPT1dcHFxUfie+vHrn3/+0fi1r127ljW+nZ2dSn3/+OOPXGPOr6/ff/9dqRjT0tKE7777TuE4Ojo6gre3t/Dq1St1Hr48GTFiRK73OXHiRLXHj4mJEVxdXVV6XLt16ybExsZq8C4LV0pKimBsbCy6z8aNG6s13tmzZwU9Pb0cH8MaNWoISUlJao0fEREh1KtXT6XnzMfHR8jIyFDreurIyMgotNc9AOHu3bsqx5yZmSlcvHhRmD17ttCmTRvB1NRUpWt6e3vnOP64ceNEfVxdXXPs8+zZM8He3j7Xazs6Ogo9evQQpk6dKuzcuVO4fv26kJqaKjmmnZ2dqP9vv/2mMIaAgADJa0ZGRub+oGqQ1OMHQNDT0xM2b94sOj86OlqwtraW7DNlyhSNxzds2LCs8adPn67x8T93/v7+gq6ursLXQNOmTYWrV68WdphERMVSSEiIMr/rjMT/6IKIiPLVjBkzlFqqNnToUIV7NqnLz89Po+MVJZmZmejRowd+//13yeO1a9dGSEgINmzYUOCbxwcHB2PlypW5nrdo0SKVlzECH2ZntmnTRrSRvoWFBVxcXNChQwe4uLhAX19+ov/+/fvRoUMHhbMwihsjIyPY2dmJ2tV5HSUmJmLQoEGi6sKfCg8Px9SpU1Ue//379+jYsSNu3Lgh125ra4vmzZvDw8MDjRo1Ej1nq1evxqhRo1S+3udEV1cXLi4umDx5Mo4dO4a4uDicOXMGc+fOhYeHR67V1YOCgvDbb79pNKZhw4YprGxarlw5zJkzBzdu3MDTp0+xZ88ezJw5E9999x3q1asHQ0NDjcRgaWkp2f7u3TuNjJ8Xenp62LRpEwYMGCA6ZmNjg0WLFkn2W7hwIe7cuaOxOF6/fi05i5g0Y/ny5fD19ZWcCW9paZm152rDhg0LIToios8PlwATEeWjCxcuYMGCBaL2bt26Yf/+/XJtkZGRGDt2rGShEHUEBgYqvVm+lOrVq6tcnOTFixfYsmWLXFv//v1V3uuuZs2auZ4zY8YM/PXXX6J2PT09TJs2DRMnTiyQff4+9fbtW3h5eYn2sGrbti1CQ0PllldmZGRg0KBBuHr1qkpLgT8mDz4yNzfHkiVL0L9/f7lkR1xcHPz8/DB37tys5ZiXLl3CL7/8gnXr1ql7i0pLSEiQ3G9s8uTJmD17tkauYWlpicePH8u1qVMRd/To0aI9/qysrFC7dm2cPn1arn358uX45ptv0KxZM6XHnzp1Ku7evZv1fdWqVeHv7w93d3fo6v7//8e+efMGs2bNwooVK7J+hlatWoW+ffvC1dVV5fv6HBkaGsLNzQ1ubm6YOHEiEhMTcejQIaxZs0ZhFeEZM2agb9++GinMExYWhr///lvy2PDhw7FgwYJck5KaYGVlJdl+7969Qq+I3LZtW/Tv31/h8UGDBmHz5s0ICQmRa09LS8OPP/6IkydP5vm5SkhIQJ8+fUTVxEkzjh8/jjFjxkge6969O9auXct9/oiIChgTgERE+SQxMREDBw4UVbpr3bo19u3bh549e2Lv3r1yxzZs2IAePXqgY8eOKl9PEARERETgwoUL2LRpE44ePZqn+OvUqYP58+er1OfixYuiBOCwYcNUSpQo48iRI5g7d66o3dTUFLt371a5gIgm+fr6ivZ2s7GxwW+//YZdu3ZhxIgRcsdu376NGTNmYN68eUqNHx0djaVLl2Z9b2xsjBMnTuCLL74QnWtpaYkZM2agefPm6Ny5M9LS0gB8+DkbNWqUUonWvDAzM4ONjY1of7Znz55p7BpSf7xbW1urNMbhw4exfv16Ufvy5cvRqlUr1KlTB+/fv89qz8zMhJeXF8LCwpRK5MTGxsol9u3t7RESEoKyZctKxr58+fKs5w748NpesmQJdu/erdJ90QclSpRAz5490bNnT2zduhVDhgzJei189ODBA9y8eRN169bN8/UU7ZXo4+OT416lmla7dm3J9mvXrqFbt255GvvKlSuiPWJtbW3RsmVLpfpnT3pL0dHRwZo1a9CgQQPRc3Xq1Cls3LgR3t7eqgWND/85cOvWLRw+fBhr1qxBZGSkymNo0vbt21Xa81ZT7Ozs0LVr13wb//Xr1+jbt6/kjOrJkydj1qxZGkm2ExGRapgAJCLKJ6NHj8a9e/fk2kxNTREQEAAdHR34+/vjxIkTouWKQ4YMwc2bNxUu3/rUkydP0KtXL9y+fVtrlnbm5GPRj0+XFBkYGGDfvn1o3759IUUG7Nq1C9u3bxe1r1ixAra2tvD19cXvv/8uKoCwePFifP3112jcuHGu1/jrr7/kqi2PGTNGMvmXnbu7OyZMmICZM2cC+PAY7ty5MyvBlJ8qV64sSgCqWhRBEZlMJlmtV5VZJTExMRg0aJBoxmaXLl3g6ekJAJg7d66oMu69e/cwZcoULFmyJNdrHD58WO61OWXKFMnkX3YTJkzAunXrspaRHj16FJmZmflSrCI7XV3dPP/nwUfx8fHo0aOHqN3T01Ny6ScAODo6auTainh6euL58+eYNGmS6NilS5c0kgC8fPmyqM3ExETpJL8iuS1P/1SZMmVQtWpVPHjwQK5dUQEWVYwePVo0O2/gwIFKJwCVUatWLYwfPx6zZs0SHRs3bhy++uorpSuc+/v7Y9myZYiIiJBcjlpYJkyYoNH/EFGWm5tbviYAZ8+ejVevXonaJ06cqLHZ30REpDksAkJElAeHDx8WdHR0RO+ffn5+cucFBQWptSl9dtevX1dqo3tVi4CoIzQ0VHTds2fPavQamzZtkry/efPmafQ6qoqMjBSsrKxEcXXr1k3uvDt37kgWrnBychJSUlJyvU737t2z+ujo6AhRUVFKxffq1Su5AhetWrVS5zZVNmDAANG96uvrC+/evcvz2JcvX87z66dHjx6i/qVKlRKeP3+edU5mZqbQvHlz0Xm6urpK/XxnLzIAQOmiNJ6enoVavCGvYmJiJJ8fVQot/PHHH0LlypVFX+fPn1c7ridPnkjGNX/+fMnzVS0CUrt2bdH5bdu2VTteQRCEhIQEyc+UnIqACIL4Zwj/K77x4sULtWNJSkqSLLQyd+5cyfOlHj8PDw+lrpWcnCxUq1ZN8vkaMGCA0jH7+voq9TlZ0EVAHB0dlYpL019ubm75dk+PHj0SDA0NRdd0d3cXMjMz8+26RESfIxYBISIqZIpmFDVt2hS+vr5ybV5eXujQoYNojKCgIBw6dEip6+np6cHS0lLyqzD2wMtv/v7+orYqVapg9OjRhRDNB4IgwNvbG7GxsXLtVlZWWLNmjVxbzZo1MW3aNNEYt2/fxvTp03O9VvbZc7Vq1YK9vb1SMZYpUwYVK1bM+j4qKkqpfnnVrl07UVtGRgYOHDiQ57EVLbVs27atUv23bNmCP/74Q9S+dOlSuX0rdXV1ERgYCGNjY7nzZDIZvLy8ct1zMCIiIuvfJUuWVLoozaezBDVdJKg4MDMzw6NHj0Rfp06dUntMRY+/pt4vk5KSRG153evszz//FH2mKEPqtZCZmYmNGzeqHcv+/fsl71ETsyc/ZWxsjNWrV0se27p1q8I9HT9lYmIi+RlZsmRJTYZL+LD/8KfLtvX09LBixYpcl34TEVH+4rswEZGG+fr6iqo/GhsbY8OGDZLL99atWydZKGHIkCFK/cFfu3ZtxMbGSn65u7urfyNF0OPHjyWX1/n4+BRqsnP16tU4fPiwqN3Pz08yQTd27FjJZbuLFi3KdXle9j2rqlSpolKc2SvMZl9GnJ86dOgg+UffokWL1EpofBQbG4tVq1aJ2vX09ODh4ZFr/ydPnoj2YwQADw8PeHl5idpr1KghuWT63r17mDx5co7XSk1NzUo4qFJ84dO9waQqHms7RQWETpw4ofaYny6J/ahcuXJqj5mdhYWFqO3T/xxQRXJystrLJr/++muYmpqK2ufPn4+XL1+qPJ4gCJLV5UuUKIE2bdqoFWNu3N3d0a9fP8lYhg0bptR72aJFiyQ/Iz+tyk15J/WfKu3atSv0wjNERMQEIBGRRm3ZsgW7du0Stc+ZM0fhL78VKlSQLGgRFRWlsILe50rRLJguXboUQjQf3Lt3D+PGjRO1d+nSRWGVS319fQQGBoqSljKZDN9//z1SUlIk+6WlpaFDhw7o1asXevXqha+++krpONPS0uQ27Ve1MrO6SpcujRYtWojab9y4IflzrwyZTIZBgwbh3bt3omOdOnVSWP00e38vLy9RfwsLC8liIB+NHj1aMnHr5+eXY+L2+PHjWQmH8+fP5xhbdhcuXMj6t7W1tcrFTbRBzZo1JZ/PI0eOqJ28+XRW7kd16tRRa7xPSc32O3funMLXdU5kMhl8fHzkKkirwsLCAoMHDxa1x8fHY8iQIaIiVbnZunWr3M/lRx07dpRMNGrK0qVLJX8O7t27l+e9FQvT06dPIQhCgX+dOXMmX+7n5s2bknu8qvJZRURE+YdFQIiINOT58+cYOXKkqN3V1RU///xzjn19fHywa9cunD59Wq49KCgIPXv2VKsqsDa6ePGiqE1PTw979+7Nt4qCLi4uCme2ZGRkwNPTU7QcrlSpUli7dm2O4zZo0ADjxo3DnDlz5No/VgWWqsBsaGgomWBWxvbt25Genp71vZubm1rjqGPSpEmiggEAMH36dFhZWWHYsGFKj5WYmIihQ4fir7/+Eh3T09MTPZ5Sli9fLjmDbPHixTkWodDX18eGDRvg4uIi91jKZDJ4e3vj2rVrGkuC7NixA1euXMn6vk+fPhoZt7jR09ND+/btsXPnTrl2mUyGvn374uTJk7CxsVF6vK1bt0omAOvWrQsnJ6c8xwt82O7hyJEjcm3x8fFYtGgRpk6dqvQ4CQkJ8PHxwdatWxWe8+lSSynjxo3Dxo0bRTNKDx48CG9vbwQGBsLQ0DDXcc6dO6fwtfrTTz/l2j8vypQpg/nz5+P7778XHZs/fz769OmDGjVq5GsMlDupz2gACAsLw4IFC/LlmqVLl1arIjQREf0/FgEhIlJBZmam0KZNG9H7pZGRkXDr1i2lxggPDxdMTExEY5QtW1aIjY1VK66OHTtmjaMNRUBq1qxZ4Jul//LLLwrjmTFjhmSfjRs3KnU/KSkpkgUDdHV1hTNnzmjoUROE6OhooWLFilnj6+joCP/995/GxldG06ZNFT7G3bp1Ey5evJhj/9TUVCEoKEioWrWqwnGGDh2aaxw3b96ULMLi7u4uyGQype5lypQpktcfNWqUUv0VSUtLE0JDQ4Vhw4bJFWwpV66c0oVDihJNFAERBEH4999/FT7nFSpUEPbs2ZNrcYGHDx8KXl5ekoU0AAirV69W2FfVIiCKitPo6uoKS5YsyTXW9PR0YceOHUKVKlVyfX8aPnx4zg/e/yxevFjhGHXq1BFCQkIU9k1KShIWLlwoGBkZSfb/6quvcrx2XoqAZCeTySSL8QAQWrdurfTrN7tPC8IUdBEQbTN8+PAC/4yuW7duYd82EVGhUbUICGcAEhFpwPLlyyU3I585c6bSs0qqV6+O6dOnY8KECXLtUVFRGD16NIKCgjQSa3GVkpKC+/fvF3YYWS5fviw528zDwwMDBw5UagwjIyMEBASgefPmkMlkWe0ymQxDhw7F1atXRYUnVPX27Vt07twZjx8/zmrr06ePxpY7KmvdunVo3Lix5DLI/fv3Y//+/ShfvjyaNWuG8uXLw8rKCunp6Xjz5g1u3bqFc+fOITExUeH4zZo1w4oVK3KMIS0tDZ6enqIYzM3NERgYqPQs0ilTpmDv3r24ffu2XLufnx+++eYbNG/eXKlxAGDixInYv38/YmNjERcXJ5rRVa9ePezevVvpwiHaqEOHDmjTpo3ke+yTJ0/Qs2dPlC1bFi1atICTkxMsLS1hZGSE9+/f49GjR7h48SKuXLmicM9JNzc3/PDDDxqL94svvkD79u1FswBlMhlGjx6NwMBAeHp6okmTJrC3t4euri6io6Px9OlThISE4N9//8XTp0/l+urp6cHa2hqvX7+Wa1+3bh3q16+PPn36wNTUFBkZGXJ7fX40atQoHDt2TLK41M2bN9GqVStUqVIFHTp0QPny5WFpaZm1R96RI0fw5s0byXu1srLCsmXLVH2I1KKjo4O1a9eiYcOGcjNwAeDkyZPYsmWL0u+9lD/++++/wg6BiIjUwBmARERKun37tuTMvYYNGwppaWkqjZWeni40atRI8r33zz//VDk2bZoBGBERUeAzCwDpGYDJycmSM/csLCyEJ0+eqHxvI0eOlLz2uHHj8vSYnThxQihfvrzcmJUrVxZiYmLyNK66du3aJTezTVNfTk5OQnR0dK7XnzhxomT/nGZ/KXL+/HnJe6lWrZqQmJio9Dg9e/ZUeF8DBgwQMjIyVI6tqNDUDEBBEIT79+8LZcqU0fjPTpUqVXJ9zao6A1AQPsw0NTMz00iM1tbWwtGjRxW+T3z8MjExEXbs2KEwpvj4eKFJkyYae+wMDQ2FEydO5PrcaWoG4EeKXsc2NjZKvQ9kxxmAmlWtWjWNv0Zz++IMQCL6nKk6A5BFQIiI8iAjIwMDBw5EcnKyXLuRkRG2bNmicmXaj3uMSfXz8fFRqiqwtvp05kthGjt2LG7duiVqX7x4McqXL6/yeHPmzJGs6Lt48WK1Nmt/9uwZPD090aZNG7mZROXLl8fhw4cLrZhEr169sGfPHpiZmWlszEGDBuHixYu57gN39uxZLFy4UNT+5Zdf4scff1T5uq6urpJVhO/fv59rVWBlbdmyBS4uLjh37pxGxivOqlatikOHDqm0319unJ2dcerUKbVes7mpXbs2du3apdTeejlxdnbGpUuX4O7unmt1608/hz5lbm6O4OBgdOvWLU8xAYCNjQ0OHDiA1q1b53ksVU2dOhWVK1cWtcfExEgWZKKC8+rVq8IOgYiIcsAEIBFRHkyfPh2XLl0StU+bNk3tJZb16tXD+PHjRe1RUVH45Zdf1BpTGxSVPyyCg4Ph7+8vam9SrnhRAAAgAElEQVTTpg2GDBmi1pimpqYICAgQLUGVyWQYMmRIrn/Yf5SQkIBp06ahZs2a2LZtm9ySx5YtW+L8+fOoWrWqWjFqSvfu3XH9+nX07NkTurrq/xri7OyMvXv3YuPGjShRokSO5yYkJGDgwIHIzMyUay9RooRKS38/NWvWLMlExIoVK5RO3P7yyy/YtWsX9u/fjy1btmDcuHGoXr161vFr166hdevWoiIYnyNnZ2fcunULvXr1ytM4pUqVwrJlyxAaGoqyZctqKDqxjh074uzZs6hWrZrKfW1tbbF27VqEhoaiUqVKAID27dujadOmeYrJzMwM+/btQ0BAgFrLynV0dNC5c2dcvXoVHTp0yFMs6jIxMcHq1aslj23atEmy4BDlv5SUFMTHxxd2GERElANFv/EeAKCwXruBgYFSVceIiLTdu3fv5PZu+6hkyZJ5Sm5kZmYq/EXa0tJS6XE6deqUteeTnZ0dXrx4oXZMynjw4AEmTZok1zZr1iyNVGdMS0vLcQ+4/GJsbAwTE5Os7xMTEyU/A01NTWFkZJSnayn6eTI3N5fc1yu733//HaNHj0ZkZKRce8mSJTFz5kz4+vpCT08vT/Fp2oMHD+Dv74/g4GDcvn1b8t6zq1ixIlq3bo3+/fujbdu2Sl8nPT1dVAEV+PD7TF5nIyYnJ0vua2hkZKR2RWBBELBmzRqMGDEiK2lpbGyMmzdvSs4ULaoEQcDbt29F7Z++ptRx69YtBAYGYt++fXjy5Emu55uZmcHV1RUDBgxAjx49VHpupJ5jfX19mJubK9U/NTUV27dvx+rVq3H16tUcf87r16+P/v3744cffpAc/+XLl+jbt69kFWsA2LVrl9IJ0oSEBGzevBlbt27FpUuXcozL3t4e7du3x8iRI9GgQQOlxv9I6vHTxGvv7du3kvs6qvLae/r0KSpUqJD1/fTp0zFjxow8xfW5UvR6z296enqwsLAo8OsSERUFp06dQqtWrXI7bRSA5QATgEREWq2gE4BU8F68eAEvLy8cPnxYrt3Q0BA//vgjpkyZgtKlSxdSdMqLi4vDlStXEB0djdjYWMTHx8PExATW1tawsbGBk5OT3B/qn4N58+bJJdR/+uknrFy5shAjKppiYmJw7do1REVFIT4+HgkJCdDT04OlpSWsrKxQs2ZN1KxZs0gkwOPi4hAaGorIyEjExMRAT08Ptra2sLe3R506dWBnZ6fUOGFhYbhw4QLi4uJgYmICBwcHNGnSRO3lzLGxsbh27RoePnyIuLg4yGQyWFtbo3Tp0qhZsyZq1aql1rhFHROARERUnKmaAGQVYCIiomIqODgYffv2RXR0dFabrq4uevfujdmzZ2ctHSwOLC0t4e7uXthhFCkjR47E3Llzs2YvfprkpQ9sbGzQrl27wg5DKZaWlrnu5aeMBg0aqDwTLydWVlZo27atSjNriYiIqHjhHoBERETF0J49e9C5c2e55J+zszMuXLiA3377rVgl/0iaiYkJGjVqlPX9w4cPc10mTUREREQkhQlAIiKiYiY0NBT9+vXL2o5DX18fS5cuxcWLF+Hi4lLI0VF2Bw8eRLt27bK+7t69q1L/7Mu3ZTKZ0gVhiIiIiIiy4xJgIiKiYiQ1NRV9+vTJSv6ZmJjg999/x1dfKdy6lwqRrq4ugoODs76/e/cuatasqXT/7MWA8lJYhIiIiIg+b5wBSEREVIysWbMGERERWd8vWbKEyb8i7NMK2OfOnVO6ryAICAsLy/q+XLly0NFRVL+NiIiIiEgxJgCJiIiKkYCAgKx/16lTBz/88EMhRkO5qVy5MipXrpz1/c6dO7Nmb+bm8OHDePXqVdb3LJJCREREROpiApCIiKiYuH//Pm7fvp31fdeuXaGry4/yoq5Hjx5Z/3727BlmzZqVa5/Y2FgMHz5crq1v374aj42IiIiIPg/cA5CIiKiYuHTpktz3gYGB2Llzp1pjffnllwgMDNREWJSLUaNGYeXKlUhJSQEAzJ49G/Hx8Zg+fTqsrKxE5wcHB2PYsGF48OBBVlvnzp3RsmXLAouZiIiIiLQLE4BERETFxM2bN+W+f/36NV6/fq3WWLVq1dJESKQEe3t7LFmyBL6+vlltK1asQEBAAJo0aYKqVavCxMQE0dHRCA0NldvjEQAqVaqEDRs2FHTYRERERKRFmAAkIiIqJqKiogo7BFKTj48PXr16hVmzZkEQBABAcnIyTp48iZMnTyrs16hRI+zatQu2trYFFCkRERERaSMmAImItFiDBg2Qnp4OAJJLDal4KV++vMYKQTRo0EAj45Dyfv31VzRv3hwzZszItRpw+fLlMWrUKPj4+MDQ0LCAIiT6vBgbG8u9p2Yv2ENERKRtdBS0HwDwlaJOBgYGSlewIyIiIiJ54eHhOHPmDO7cuYPY2Fikp6fDxsYGjo6OaNmyJRo2bAg9Pb3CDpOIiIiIiqhTp06hVatWuZ02CsBygDMAiYiIiApcjRo1UKNGjcIOg4iIiIg+E7qFHQARERERERERERHlHyYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTF9cVPFisALU0CmsJMg6OPRo2f5FxURERERERERERFJioqKBmCQy1mCKZABANARH6z6BhCsNB4ZERERERERERERFZDEf4GXHQEuASYiIiIiIiIiItJqTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFpMogqwAqXMJEuGEBERERERERERUSFJSQeSU3M8RfkE4LAugFFu5YWJiIiIiIiIiIiowITcAE5cz/EULgEmIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMf3CDoCIiIg0o5SxMZxKl4aViQnMDQ1hbmSETJkMb1NS8DYlBbHJybj35g0S09MLO1QiIiIiIipATAASEREVU/ZmZuhSvTq6VK+Ohvb2cLSwyLVPhkyG29HRCI2MxMnHj3EgPBwJaWkFEC0RERERERUWJgCJiIiKmTaVKmGcmxvaVa4MXR0dlfrq6+qinq0t6tnaYqizMxLT07EpLAyLzp7Fk3fv8iliIiIiIiIqTEwAEhERFRP1bW2xpksXNC1XTmNjljAwgK+LC7wbNsSCM2cw5/RpZMhkGhufiIiIiIgKH4uAEBERFXF6OjqY06YNLn//vUaTf9mZ6OtjRuvWCBk0CHZmZvlyDSIiIiIiKhycAUhERFSElTQyws6ePeFRtWqBXK+ZoyPOeHujzebNeMolwaSFutesiRrW1qL25RcuIDUzs8DjMdHXx4gmTUTtd2NisD88vMDjISIiIu3EBCAREVERVcrYGMcHDkRDO7scz5MJAkIjI3H04UPcePUKj9++RVxKCoAPCcSSxsaobGmJRmXLws3REfVsbXMcr4qlJQ716we3oCC8/d84RNqif7166FGrlqh9zeXLhZIANDUwwHx3d1H777duMQFIREREGsMEIBERURFkamCAv/v2zTH5l5yRAf+LF7H60iVEvH2b43gnHz9G0LVrAIAGdnb4sVEjDHF2hp6CIiJOpUtj/Vdf4dvdu9W/CSIiIiIiKhK4ByAREVERtKJjR7g5Oio8HvzoEWquWoWxR4/mmvz7VNjLl/jx77/RNDAQt6KjFZ7Xy8kJPZ2cVBqbiIiIiIiKHiYAiYiIipjedepgcMOGCo/PO3MGHbZty/MefZeiotAiKAiXo6IUnrO4fXsY6PLXBSIiIiKi4oy/0RMRERUhpYyN4efhofD41BMnMOnYMcgEQSPXi0tJQfutW/FEQTKxQsmS+EZivzQiIiIiIio+mAAkIiIqQn5t3RplSpSQPLb5+nXMPnVK49eMS0nB0AMHIChIKvq4uGj8mkREREREVHCYACQiIioi7M3M8EOjRpLH7sfGwvfgwXy79tFHj/D3/fuSx1pWqIA6Zcrk27WJiIiIiCh/MQFIRERURIx0dYWRnp7kseH//IPE9PR8vb7fhQsKj3WvWTNfr01ERERERPlHv7ADICIiIsBQTw/eCgp/HI+IwOGHD/M9huMREXj89i0qliolOta6YkWNLD+uYmmJFhUqoG6ZMqhqZQVTAwOUNDbGu5QUJKSl4WFcHG6+fo3TT57gYVxcnq+nqhIGBmhfpQpcHBxQw9oaFkZGKGFoiLjkZMSlpOBuTAzOPn2KC8+fIzkjo8DjK2gGurpo7OAAt/LlUd3aGo4WFjA1MIBMEJCamYnn8fF4EBuL0OfPce7ZswJ/TJqXL49uNWqgTpkyMDM0xJvkZPxz/z7WX7lSoHEUF06lS8PN0RF1ypRBZUtLmBoYwMzQEPGpqXiXmoqHsbG48eoVTj15gmfx8YUdLhEREWkQE4BERERFQKdq1WBjaip5bMn58wUSgwDg8MOH+OGLL0THmjk6wkhPD6mZmSqPa2pggMENG2KwszPq29oq3e/m69fYGBaG9VeuICEtTeXrAsChfv1Q+pM9FRecOYPdt2/LtVUoWRKTWrTAgPr1Yayf+69HscnJ2HDtGpaeP4+XCQk5nutgbo79ffpIHpty/Dj+ffAg1+spw0RfH8cGDoShxCzSFaGh2HL9utJjVbWyws9NmqBv3bqwMjFRqk9Sejr+uHMHK0JDc6wsnZO1XbqgUdmycm07b97E4nPn5NrqlCmDdV26oJmjo2iM5PT0rATgODc3fFu7ttzxypaWktcOGTQImZ/sgykIAlwCAlS+j5ycHzwYBtmeI30FVbbbV6mCy99/L2rfe+cO5p4+rfT1ShoZYZiLC7waNEB1a2ul+12MjMTGsDBsvHZNrdc9ERERFS1MABIRERUBPRRU2n367h0OKdibLz/s+O8/hQkfBwsLPFJxVl6/unWxpEMH2CoobJKTOmXKYEn79pjUogUmBAdjw9WrULX2cT1bW5Q1N5dr+7TIyo+NGmFx+/YoYWCg9LhWJiYY26wZBjdsCN9//sHOmzcVnhv5/j10dXTQ0M5OdGxg/foaSwB+VaMGmpYrJ2qXCQJOPn6s1BgWRkZY4O6OIc7OChNTipgaGMCzXj30r1sXu27fxk///IOYpCSVxqhubY0v7O3l2s4+fSr3fY9atbD1m29gokSi1tHCQjSeIg0knh9FhXHywtneXjJJ+ylLY2PJ2JVNrurq6GBYo0aY3aYNShkbqxxnYwcHNHZwwJSWLTHy33+x55OkORERERUvTAASEREVMl0dHXSoWlXy2B937qic9MqLkCdPEPLkSZ7HMdHXx4Zu3dCnTp08j2VtYoKAr75Cl+rV4bl3L96rORvwU7o6Olju4YHhjRurPYaViQm2f/MNrExMsPrSJYXn/XbjhmQCsEv16jA1MECSBvZ37Fe3rmT7kYcP8fTdu1z7N7Szw5+9e6N8yZJ5ikNHRwff1a6NFuXLo+uOHbjy4kWexsuul5MTdvTsCT0dHY2NqY1KGRtjR48e8FDwvqIKB3Nz7O7VCxvDwjDs7785G5CIiKiYYhEQIiKiQuZUujRKK1j++08Bzv7TFFMDA/zbv79Gkn/ZdatRA8cGDkRJIyONjLe4ffs8Jf8+0tHRwcqOHeFeubLCc3bcvClaXgoAZoaG6FStWp5jsDIxUZjsCbx6Ndf+bSpVwmlv7zwn/7Ira26O4wMHorGDg0bGcylbFlu/+YbJv1xYm5jglJeXRpJ/2Xk1aIADffooLFRERERERRtnABIRERWyegr2xUvLzMT5Z88KOJq80dXRwc6ePdGyQoUcz4t6/x7HIiLw9N07vElKgqWJCRwtLPBlpUqokEMSyqVsWezr3RvttmyRTKgpa6izM0a5usq1pctkCH70CPvv3sWD2Fi8SEhACQMDlLOwQMsKFdCvXj2FiVpdHR2s6NgR9desQbpMJnm/xyMi0E4iSfht7dp5Xl7Zy8lJclnpq8REHAgPz7Gvs7099vfuneMS6KT0dByLiEB4TAyi3r+HiYEB7MzM4FK2LJo4OEBHQVLOwsgI+3v3RqP16xH5/r1qN5WNmaEhfuvRQ+Xk07P4eNEMxMqWlrCUWBIb9vKl5B6Amnb1xQvRHoBSe2PGpaRILrnPaTanoZ4e/urbF3XLlMkxhoi3b3Hy8WM8e/cOb1NSYGNqCseSJdGucmXYmZkp7Ne+ShVs/vpr9N6zJ8fxiYiIqOhhApCIiKiQKUoA3o2JQaIGloYWpLHNmuGr6tUVHr/y4gXGHz2KE48fQyaRXNHBh4Ij893d0bx8eckxvqxYEdNatcL0kyfVirG6tTWGODvLtR28fx/D//kHEW/fis6/FBWFfXfvYvLx4/i1dWuMbtpUMuFVy8YG7pUr45CCPf1+u3FDMgHYuVo1lDAwyNNz3a9ePcn2LdevSyYkP7I0NsYf334LM0NDyePP4+Mx/eRJ7PjvP4UVfh3MzTGmWTP4Nm4MA4l9A+3MzLD+q6/Qeft2Je5Emp+HB6pZWYnaw9+8Qcjjx7jx6hUexsUhPjUVUdkSjQvPnsXCs2fl+uz59lvJPTdbbdqE+NRUtWNUVtMNG+S+tzYxQcy4caLzjjx8qHKibWG7dpL7QH504vFjTD52DBeeP5fcWkBPRwdtKlXCovbtFRbs+a52bZx8/BhrL19WKTYiIiIqXFwCTEREVMgUJQBvR0cXcCR5U6lUKUxv3Vrh8V9DQuAaGIhjERGSyT/gQyXis8+eodWmTRh95IjCGVgTmjdHTRsbteL0bdwYptlmu804eRJdtm+XTP5ll5SejrFHj2LM0aMKz/laQTEX4EP1Vqm9/kwNDNAlh6RpbiqULInmEtVwBUHAhlyW/y5s1w4VS5WSPLbn9m3UWLUKQdeuKUz+AR+KnIw6fBhfrFuncHZap2rV0LVGjRxjUcSjalV4N2wo17Y/PByNAwJQc9Uq/PD33/C/dAn/PniAc8+e4XEuz6O2alS2LH5SsKRdJggYfugQ2m7ejPMKkn8AkCkIOProEVzWr8eCTxKn2c13d89xpiAREREVPUwAEhERFTKn0qUl25/FxxdwJHkzo3VrhZVZZ5w8iRknTyIjh9lo2ckEAUvPn8eow4cljxvq6eHXHJKNOcm+h9zic+fwa0iISv2Xnj+P4xERkscUPZcA8D4tTeFy3F61a6sUQ3Z969aVnJF4+ulThL95o7BfQzs7DP4ksfbRhmvX8N2ePSoVJ/nv9Ws027ABDxVUip6h5vNV3do6698ZMhkG/vknuu/ciUtKVsP9XMxt21Zyf0RBEDDs4EGsunhR6YJC6TIZJgQHi2ZPflTSyAgTmjfPQ7RERERU0JgAJCIiKmRWJiaS7e9SUgo4EvU5Wligr4IqtAfCw1VOsn3kFxqKbTduSB7r4eSEypaWao0LADdfv8bk48fV6rvo3DnJdvtcZkUpupdO1aopXIabG0WPe27FP6a0bCmZOLzw/Dl8Dh5UOEszJ5Hv36P3nj1Ik6gU29DODs0kZiqqwufgQWy5fj1PY2gjZ3t7yeXlALD+6lWsv3JFrXEnBAfjmIJk9xBnZ8m9FImIiKhoYgKQiIioEOnp6MBMQfGFt8UoAehZvz7+j737jo6qWvs4/ksjlRJK6FWU3gSJoBSpCiICAorCpYheVFSs2MWOAoIKKoqKSDF0kCYoRekiTXon1ARIIEB65v2DF66TOSeZlpkwfD9rZS3P3ufs/SQze0wedgk02P/tcnq6nlm82KW2X1q6VElpaTblAX5+6m2y9509Xly61DBRZY8Vhw8bPhuaw0Ea0pV93eIvX7Z9LjAwx70TzdQrWVK1DQ58SExJyfFgkTIFC6pz9eo25VkWix7/5Renfy6S9NeJExqzfr1hXZ969Zxud+6ePfrGjhONb0R969c3LI+/fFmv/vab0+1aJD29aJHhPpLhQUEuzVwFAACeRQIQAAAvKhgcbHqC6nkPHEjgLt1r1jQs/2HLFpf3ZDt58aLpDKYHTPrNzYGEBP164IDTMaVkZOj0pUsOP5eelaWf//nHsK6HE8kUs8M/JudwaIckPVS7tuFy0Rk7d2rb6dMOx5HdqLVrlWLQf8ebb5bxuz13H/zxh2tB+Sg/mY+/z9av17nkZJfa3xkfr+k7dhjWmfULAADyHxKAAAB4UU7LPpOukwRgVHi46Ymhk0yWvDrKbOlsrRIlnDqMIGbHDqeWuP6bsyfGTt6+3bD87qpVVSg42O52/P389FDt2oZ1uS3/7Wgy23Cim5bXnrp4UcsOHrQpL1eokG7+155+9tp6+rQ2HD/ujtB8Tp2SJQ3HgMViMR03jjJr544KFRRisu8nAADIX0gAAgDgRTkdshAUEODBSJzXpFw5w1mMhxMTte7YMbf0seXUKe01ONDCz89PTcqVc7i9NbGx7gjLKeuPHdO+c+dsykMCAx06KbdFxYoqV6iQTflfJ05oy6lTps8FBwToDoO9+JLS0vSbQdLOWUYJQEmqY7BkOTd/Hj3qajg+y2xfxfXHj7vtROSlBw8qwWBLgtDAQDUoVcotfQAAgLxFAhAAAC/KaRbZ9TKzpo7J7D93z9gya8+s/5z85cUTZC2SJpvMqHJkGbCzh3/UjopSAYPk8rbTp5Xqwt5/2W2PizPt31HeTNjmd2YJ1fVuHH8ZWVn6++RJwzpnXk8AAOB5JAABAPCijKwsXTKZBVgiLMzD0TinYuHChuVmCQNnmc1qu7loUYfasVgsindi/z53mrx9uywGS5Db3XSTCtuxDDg4IMBw/8NL6emaarLH4FU1S5QwLN9nMMPSFXEmP2NnEkbumsnmiyp4e/w5saQbAAB43vUxtQAAAB+WkJyscIPTY8sULOiFaBwXGRpqWG60ZNcVe0zac/TndCEtTZku7v/nqv3nzmn98eO6Pdvy5eCAAHWuXl0/5rIXX8dbblGRkBCb8pgdO3Ldm9Bo2bB0ZQ/Cvx57LJfI7Wc0y1CSqjqYsJWurxOxPc1j4+/MGcPy6+VzCgCAGx0JQAAAvGzXmTOGSZnrZWaNUSJKcv8pxgkmp5kWd3CmZE77LnrS5O3bbRKA0pVlwLklAB92cvmvJJU0OTSlVESEUweqOMqRg06uIgFoLtJs/Ln5Z2a0B6Dk+PgDAADeQQIQAAAv23b6tNpWqWJT7sxhCe5QoXBhRZcta1j359GjOnnxolWZpxIQZgnFUIPZk9eDn//5R6Pat1eQv/WOLG2rVFFkSIhpwqVISIg63HyzTfmO+Hi79soL9fLekgWdSABeTEvLg0h8g9kMQHcn4M3Gs7ffTwAAwD78HxsAAC/bdvq0YXnlIkVUKiJCp7Il3PJav/r19XbLloZ1Db7+2iYBaLbUMz0ry61xJZvM3DPrP7+Lv3xZvx44oI7ZknkFAgJ0f/Xq+n7LFsPnutWoYXhAjD2z/0m6ZIAAACAASURBVCQp0N+7W0AXLFDAq/37GtPx58YDXSQpOSPDof4BAED+QgIQAAAvM0sA+vn5qXXlypq8fbtH42lsMvvPYrEYHhRhtjzTmaWeOTFrL8UkMXE9+GnbNpsEoHRlGbBZAvDhunVtylIzM/WTycnC2Zm9XkfOn9eZy5ftasNVgf7+ynBzgvhGlZiSomIGswALBQcr3o2vpy+OPwAAbiQkAAEA8LLtp0/rbHKy4R/xXWrU8GgC0E/SbSYJwAMJCYYnFpsllOw5zdYRZksdL13Hy0Pn7dmjpLQ0m1lxratUUbHQUJ3Ntu9huUKF1KJiRZt2Zu/aZXfy7pzJXoqfrl2rMevX2xk58ouE5GQpMtKmvLDJ0nxnme31mV/21AQAADnz7hoQAACgTItFvx44YFjX8eabTffYywsNy5RRCZNN/dcfP25YbrZXXWk3nw5aMjzcsPz0pUtu7ceTLqena9auXTblQf7+6lKjhk35Q7Vry9/Pz6bc3uW/kvnrFWXy80X+ZpaAL+3mA13MDojx9BYFAADAOSQAAQDIB2bs3GlYHhIYqP82auSxOHrUqmVa98eRI4blcSYJuAalSrklpqtuLV3asDz2/Hm39uNpZkt3jV4Lo+W/BxMS9PuhQ3b3F2/yehmdRI38z3T8mYwXZ5mOvwsX3NoPAADIGyQAAQDIB37Zu9dmuedVz9x+u9v30zPi7+en7jVrmtYv3LfPsHxnfLxhuVnCwFmNypQxLP8nLs6t/Xja8kOHdCIpyab8rkqVrGZj1ipRQvVKlrS5b8LmzbI40N8Ok9erafnyDrSC/MJT46+hSXvX+/gDAOBGQQIQAIB8IC0zUxNMlnGWDA/Xmy1a5HkM3WvWVKUiRQzrNp08aTrTZ9OJE4blDcuUcduy0siQEN1erpxh3d8nT7qlD2/JtFg09Z9/bMoDsy0DNpr9l5GVpR9MDgsxs/fsWSUZ7JtYtWhRlXHjsu1ioaGqEhlp8xVqcIIxnLfJ5P1/V6VKhqdFO+OmyEhVK1bMsO56H38AANwoSAACAJBPjFq7VskmJ2oOuf12tapcOc/6DvDz01stW5rWf795s2ndttOnDZchBvn766Hatd0Rnh6qU8cwmZGUlqYNJnsTXk8m57IM2E8y/Fku3LfPcPZgTjKysrTi8GHDuj716jnUVk4WPPywDjz9tM1XcZM9JuGcP44cUWpmpk15kZAQ3Vetmlv66Fu/vvwM9p48nJiogwkJbukDAADkLRKAAADkE6cvXdKXGzca1vn7+WlSly6qWLhwnvT9QtOmqlG8uGHdhdRUTcnhJGKLzJcHP96okQL9Xft1I9DfX4NM9kFcsn+/0rOyXGo/P9h86pTh0tyWlSopKjxcd1aoYDg705HDP/5t7u7dhuWD3PB6SVLjsmUVbXCa9M74ePaMc7NL6emmCd0nb7vN5fbDg4LUv0EDw7r5e/e63D4AAPAMEoAAAOQjw1auND1Vs0zBglrSu7cquDkJ2KpyZb3XqpVp/RcbNpieHHvVJJMZbDWKF9fT0dEuxfdU48aqHRVlWOfo8tf8zGgWYICfn7rVqGG4/PdEUpIW7d/vVF/Td+7U5fR0m/IKhQvrlTvvdKrNq/wkjWjXzrDOLFEM10zautWwvHnFii7Pwn2zRQvTpeG+NP4AAPB1JAABAMhHLqSmatCCBbJYjI91qFasmNYOGKAmJvvhOapV5cqa3r276ayvUxcv6uPVq3NtZ/mhQ9puchjA2y1bGh5eYY96JUtqmMnS5D1nz2qxkwmw/GjK9u3KMnjdH65b1/Bwlu+3bFGGk7MfL6Smms4efL15c9P9Fu3x0h13qFmFCjblmRaLvvzrL6fbhbkZO3eaLgUf1b69Kpvs7ZmblpUqaUiTJoZ1fxw9yv5/AABcR0gAAgCQz8zZvVufb9hgWl+mYEH90b+/Pm7bVkVCQpzqI8jfX883aaIljzyioqGhpvc9u3ixzqem5tqeRdI7K1ca1hUsUEBLevdWdZMlxmZqliihX3v3Nj0B+Z2VK5Vpkii9Hh05f15/Hj1qU35H+fI2r1GWxaLvctiX0R7DV6/WRYPDQAoEBGjJI48YJvFyM6BBA73furVh3YydO/P1fnFhQUHeDsFKuAPxpGZm6qM//zSsKxURoaV9+qisgwe8NC1fXvMfekhBJv848Nby5Q61BwAAvIsEIAAA+dALv/6qBTkslwzw89OLTZvqwNNP65O2bU2XyGZXPCxMjzdsqL2DB2tEu3Y57vc2ftMm/bxjh90xz9i5U0sPHjSsKxkero0DB+qpxo3lb3CYwL/5+/npmehobRg40PQU4d8PHdLUHPYlvF79ZLKUOrvfDx1yOZl2IilJb5okcQoFB2tpnz76sHVrRRQokGtbkSEh+uree/VNp04KMHh9k9LS9Npvv7kUb14rX6iQt0OwUt7Bpf5f/vWXtp4+bVh3U2Sktg4apEcMlpJnVyAgQG+1aKHl//mP6Ws/eft2LTfZdxAAAORPtsfpAQAAr0vPylL3mBj90qtXjqf/Fg0N1QtNm+qFpk117MIFrT12THvOnNHpS5eUlpmpkMBAFQsNVVR4uJqUL686UVG5JuAkacmBAxq8aJHDcfebM0d/P/64YeIuokABfX7PPRpy++2a+s8/WnrggI5duKAzly+rWFiYyhcqpPZVq+qh2rUND7y4Kv7yZf1nzhz5zty//5mxc6c+79BBwQEBOd7n7OEf2Y1Zv15tqlRRh5tvtqkLDgjQ0Dvv1KO33qq5e/Zowd692nfunE5fvKi0zExFhYerTsmSurtqVT1Yu7YK5pAofHbxYh3IJ7P/jJZZS9LLd96p3rNmmZ7E7el46kZFqWuNGpq1a5dd7WRkZemhGTO0YeBAw8RdsdBQTerSRUPvvFPT/vlHKw4fVuz580pMSVHJiAhVKFxYHW++WT1q1TLd80+SDiYkaPDChfZ9cwAAIN8gAQgAQD6VnJGheyZP1riOHTXA5BTOfytXqJDhXnGO+mXvXvWcMUNpmZkOP3s8KUn3T5umX3v3Np09VCUyUq81a6bXmjVzuP2LaWm6f9o0HfPRk2QTUlK0YO9eda1Rw/SeM5cva47JKb6OyrJY9PCsWVrWp48ali5teE/xsDANaNDArvegkU/XrXN5ubI7nb182bC8W40aav/iizpy/rySUlMVEhioSkWKKHL48DyN53xqqjKysmxm4/r5+Wlmjx46kZSk2AsXFODnd2Vm5sGDesokAbfrzBk9OGOGZvXsqQImSeRaJUro3bvucirWuEuXdN/UqbkeCgQAAPIflgADAJCPpWVm6tF58/TovHl5/kd3RlaW3lu1SvdPm2Z4Qqy91h47prt/+knxJokWZ52+dEntJk3SmthYt7ab3+S2DHjStm1KdSI5ayYxJUXtJk3SyiNH3NbmVR/++aeeW7LE7e26YnUO75+IAgVUq0QJ3V6unOqXKqXCJvtPulOWxaK1x46Z1pcpWFDRZcuqUZkyuqVYsRyX7UvSgn371C0mRkkG+zu64lBiolpNnKgd8fFubRcAAHgGCUAAAK4DEzZvVs2xY/XDli1Kd/Lk15z8efSomk6YoDeWL3fLwRqrY2N12/jx+u3QITdEd2VJ8m3jx+eYKPEVC/ftyzHZ667lv/92LjlZbX/8Ue//8Ydb3l/Hk5J039SpejUf7vuXHw8jGW5ygIezftm7V7d/+602njjhlvZiduxQ42++IfkHAMB1jCXAAABcJ05dvKh+c+fqzeXL9XR0tB6sXVvlXDi4ID0rS/P27NFXf/2lZSaHd7jiyPnzavvjj+pao4Zea95cDUqVcriNTSdP6r1Vq5xe8vrTtm02JyXbc6qxPabv2KHV2fZKc0fbqZmZemXZMt1qsCT39KVL2plHSZj0rCy9/vvv+mnbNr3evLl61KplegKsmRNJSRq/aZNGr1vn1M/il717te/sWZtyZ5ajm0nJyFCnqVO15JFHXBo/7rRg3z69vGyZPmjd2vAQFWfsjI9Xk2+/Ve969TT0zjtVrVgxh9tYeeSI3l250m2JfAAA4D0Gv2FUPStZitoUv/KgFBzkgZAAAIA9/CQ1LFNGd1etqnolS6pOyZKqWrSoaQLh9KVL2nv2rDafPKlVR45o2cGDbkuG2aNBqVLqUqOGWlSsqNpRUSoaGmpzz7nkZG2Pi9OKw4c1a9cubTM51RR5r0RYmLrVrKlWlSurcdmyKl+okM0BMmmZmdp6+rTWxMZqxeHDWrB3b57MUM0LhYKD9XR0tHrWqqUaJUrYjJvTly5p/7lzuvO77zwWU8PSpfXs7ber3U032Rykk56VpcOJifrqr780au1ah9r1k9SkfHl1rlZNzSpWVM0SJQyXN8dduqQtp05pxeHDmrlrl/YaJGMBAEA+tHKbtHyrQcWlxdKpeyQSgAAA+JzCwcEqFBys0KAgZWRlKS0zU/GXLrl13zh3KBQcrOJhYQr091dGVpbOXL6sCx5MSMIxwQEBigoPV0hgoNIyM3U2OVkX3bzPnLeEBgaqZESEgvz9lZyRoXPJyS7tg+kOxcPCFBkSokyLRUmpqUpISVGGG5OrkSEhigwNVaC/v9IzMxV36ZIuefl7BgAATrIjAcgSYAAAfMz51FSPzuxz1oXUVBJ+15HUzEzF+ujpy8kZGTqcmOjtMKycuXxZZ9x8kM6/JaSkcJovAAA3EA4BAQAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHxYoN137o6VAgPyMBQAAAAAAAAADok/n+st9icAZ692JRQAAAAAAAAAXsASYAAAAAAAAMCHkQAEAAAAAAAAfBgJQAAAAAAAAMCHkQAEAAAAAAAAfJjRISBzpeT2UmYZs4f8/f3VrVu3PAwLAAAAAAAAgJH4+HitWLEil7syTl39Lz+TO+ZJ6mT2eFBQkNLS0hyPDgAAAAAAAIBLVq1apRYtWuR22xBJoyWWAAMAAAAAAAA+jQQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MMCvR0AAADwnKysLJ0/f96qrECBAgoPD/dSRFdcuHBBmZmZ165DQ0MVEhLixYiuH0av6VVhYWEKDg52e5+JiYmyWCw25cHBwQoLC3N7f96SkZGhpKQkq7LIyEgvRfM/2X/+ERERCgoK8mJEAAAgv2MGIAAAN5BDhw6paNGiVl+DBw/2dlhq0aKFVUxffvmlt0O6bhw4cMDmNb369fzzz7u9v8OHD5v2N2TIELf3503r16+3+v5Kly7t7ZAkSeXKlbOKa8mSJd4OCQAA5HMkAAEAAHzUzJkzrWZWuqtNo9l/AAAAyL9IAAIAAPioU6dOafXq1W5tc+bMmW5tDwAAAHmPBCAAAIAPmz59utvaOn78uNavX++29gAAAOAZJAABAAB82IwZM9y2DHjWrFnKyspyS1sAAADwHE4BBgAAXvf666/r7Nmz166bNGnixWh8y9VlwM2bN3e5rVmzZrkhIgAAAHgaCUAAAOB13bp183YIPuWWW27R3r17r13PmDHD5QRgXFyc/vjjj2vX4eHhKlKkiI4fP+5SuwAAAMh7LAEGAADwMd27d7e6nj59usvLgGfNmmXVRseOHRUWFuZSmwAAAPAMEoAAAAA+plGjRqpSpcq161OnTmnNmjUutZn99F9mbQIAAFw/SAACAACnnTp1Sjt37tSmTZu0a9cuxcXFeTuka9LT07Vnzx5t2rRJ27Zty5OlqpcuXdKuXbv0zz//KDEx0e3tu6Jr165W166cBnz27FmtXLny2nVoaKg6dOjgdHtmzpw5ox07dmjr1q06ceKEMjIy3N6HJGVkZOj48eP6+++/dfDgQaWkpORJP/+Wnp5+rc89e/YoKSkpz/sEAAC4ij0AAQCA3dLS0jRr1ixNnTpVa9euVXx8vM09ZcqUUfPmzdW/f3+1adNGfn5+ubY7efJkHTt27Np1q1atdNtttxne+9VXX+n8+fPXrl944QUFBARIkiwWi2bNmqWvv/5aK1euVFpamk1s99xzjwYPHqx69erZ9T1nt2/fPv3www+aPHmyjhw5YlVXokQJdenSRc8//7xuueUWSdLhw4f1888/W933xBNPqGDBgk71b6/u3btrxIgR165nzpyp0aNHy9/f8X//nTdvntLT069d33333YqIiHA5xrS0NE2fPl2zZ8/W4sWLdenSJat6f39/RUdHq3PnzurVq5fKly/vdF9JSUmaPHmyfv75Z61atcrmNOPatWvr4YcfVp8+fVSmTBmn+/m3Y8eOaerUqZoxY4Y2btwoi8ViVV+oUCG1aNFCDz/8sLp166bAQH41BwAAnjVPksXsKygoyAIAAK4/+/fvt/n/er9+/ex6dtGiRZYKFSqY/n5g9NW8eXPLwYMHc227WbNmVs+NGjXK9N7KlStb3ZuSkmKxWCyWEydOWFq1amVXXP7+/pYXX3zRkpGRYd8PzmKxpKWlWYYNG2YpUKBAru0XKFDA8tFHH1mysrIsW7dutak/duyY3f3mZu/evTbtz54925KVlWWpWLGiVfmqVauc6qNDhw5W7fz0008Wi8Viufnmm63KH3vsMbvbXLRokeWWW26x+70UFhZmefvtty2XL192OP5Zs2ZZypYta1c/4eHhljFjxlgsFovlzz//tKoLDg62q7+UlBTLe++9ZwkLC7P7+6tRo4blzz//tKv98PBwq2fnz5/v8M8EAABc31auXGnP7xjPXk30sQQYAADkavTo0brnnnt09OhRh55btWqV7rjjDh06dCiPIrvi2LFjatasmX7//Xe77s/KytInn3yi//73v3bdn5ycrPbt2+utt96ymVVoJC0tTUOHDtXTTz+typUr29WHu/n5+emBBx6wKpsxY4bD7Zw/f17Lli27dh0cHKxOnTq5FNsHH3yge+65x+qk4txcvnxZb7/9tlq1auXQcus333xTXbt2tXsJ+KVLl/TMM8/omWeesbuPf0tISFDz5s31+uuv6/Lly3Y/t2vXLrVs2VKTJk1yql8AAICckAAEAAA5mj17tp577jnDusKFC6tBgwZq1KiRqlWrdm0p7r+dPHlS3bt3t1ly6S4ZGRl66KGHdODAgWtlZcuW1QMPPKBBgwapd+/eqlatmuGz3377rX755Zdc2+/Ro4eWL19uU+fv769y5cqpYcOGqly5ss0Szi+++EKTJ09W8eLFnfjOXJc9AThz5kyHX4f58+dbJT3btm2rQoUKOR3T+++/r9dee82wLiwsTDVr1lT9+vVVsmRJw3vWrVunNm3a6OLFi7n29cEHH+jdd981rS9VqpSqVaum8PBwm7rPPvtMY8eOzbWPf0tISFCbNm20YcMGmzo/Pz9VrFhRDRs21C233KKgoCCbezIyMtSvXz8tXrzYoX4BAAByQwIQAACYSklJ0TPPPGOzd1nnzp21bt06JSQk6O+//9bGjRu1e/duxcfH65NPPlFYWJjV/Zs2bXJq9pk93nrrLf3555+SpEqVKmnevHk6evSopk+frnHjxunHH3/U7t279fvvv6tixYo2zw8fPjzH9j/99FObJGFgYKBefPFFHThwQLGxsfrrr7908OBBHT9+XB9++KHV9//MM89Y7Z/nSdHR0apQocK16+PHjzt8GnD203+zJxUdsXbtWr355ps25fXr19ecOXOUkJCgHTt2aPPmzTp16pS2bdumxx57zGYfyU2bNunVV1/Nsa8NGzYY9lWsWDGNHDlSp0+f1smTJ7V7925dvHhR69at04MPPmh179SpUx36/gYPHqy///7bqqxw4cL64IMPFBsbq8OHD+uvv/7Snj17FB8frwkTJqhcuXJW92dmZqp///52JTgBAADsRQIQAACY+vXXXxUbG2tV9vzzz2vOnDmKjo62ScxERkbqhRde0Jw5c2zq8ioBOGrUKElSvXr1tGnTJnXq1MnwoIu77rpLq1atUokSJazK165da7qk9MiRIxo2bJhVWUREhJYvX66PP/5YlSpVsqqLiorS0KFDtXHjxmsz2NLS0qwOLfEkPz8/devWzarMkdOAL168qCVLlly7LlCggO677z6nYklPT1f//v1tZiA++uijWr9+vTp37qwCBQpY1dWpU0dff/21fvnlFwUHB1vVjR07VuvWrTPsKzMzU48++qgyMzOtyhs3bqzt27frueeeU1RUlFVddHS0pk6dqkmTJhnOZM3N3LlzNXnyZKuyWrVqadu2bXrllVdUtmxZq7rChQurf//+2rVrl9q1a2dVd/LkSasDXAAAAFxFAhAAAJhaunSp1XVUVJQ++OCDXJ9r27at2rdvb1V2dZaeu1ksFhUsWFDz5s1T0aJFc7y3QoUKGjp0qFVZZmamzWm+V3388cc2J9NOnjxZd955Z4791KxZU7Nnz3YqkeRu3bt3t7p2ZBnwggULlJycfO26devWioyMdCqOuXPnavfu3VZlHTp00FdffWWT+MuuQ4cOmjBhglVZVlaWRo4caXj/woULtX37dquyqlWrasGCBSpdunSOfT3yyCPXksqOeOONN6yuS5YsqaVLl1rNwDQSERGhefPm6dZbb7UqHzVqlEN7CAIAAOSEBCAAADB17Ngxq+vbbrst12TNVc2bN7e6jouLs5mR5S6vvPJKromWq7p27WpTZjQDMDk5WVOmTLEq69y5s90z4Jo0aaI+ffrYdW9euv32262WmTqyDDj78t/sswkdMX78eKvr0NBQjRs3zu4k6cMPP6w2bdpYlc2bN09xcXG59iVJ48aNs3svxsGDB+u2226z617pSnI7e8Lx888/zzXZeFVwcLAmTpxoNXM1KSmJvQABAIDbkAAEAACmUlNTra4d2ZfsySef1IEDB6597d2712ZZsDsEBQVpwIABdt9foUIFm8M6su9xKF1JLmVPDL7yyisOxfbCCy84dH9ecPY04OTkZC1cuPDadWBgoO6//36nYjh79qx+++03q7LevXsb7smYk+yHh6SlpWnWrFlWZUlJSVq0aJFV2V133aW2bdva3Y+fn5/NjL6c/PDDD1bX1atXdzhZWrt2bXXs2NGqLHsCFgAAwFkkAAEAgKns+6StXr1aGzdutOvZQoUKqUqVKlZfRnvzueq2226ziTMn/v7+NvvJGcm+ZLly5cpq3LixQ7HVrFlTNWrUcOiZvGCUAMxtGfDixYutlj/fddddKlasmFP9b9iwwaa/Xr16OdxO8+bNVaZMGZu2/23jxo02M0379u3rcF9333233d/vqlWrrK67d+/u1Hu9S5cuVtd5tWweAADceEgAAgAAU02bNrW6zsjIUPv27TV27FivnWybnSNLNR2RPbHUsmVLp2YwZl8K7Q1NmjSxOoTi+PHjWrt2bY7PuHP5b/afZXBwsM17yx7+/v5q0aKFVVn2hPT69ettnuvQoYPDfQUFBemuu+7K9b4zZ85o//79VmX2PGckOjra6jo2NlZJSUlOtQUAAPBvJAABAICpnj172hyskZCQoKeeekqVKlXSoEGDtGjRIoeWBrtb9tNV3cFisWjr1q1WZfXq1XOqrVq1arkjJJf4+/s7dBpwamqq5s+ff+06ICDAZnaaI/bu3Wt1Xbt2bQUFBTnVVt26da2ud+/ebbWE+8CBA1b1lSpVsnvvv+zq16+f6z1bt261WUJetWpVp/orVaqU1bXFYtHOnTudagsAAODfSAACAABThQsX1oQJEwyXM544cUJfffWVOnTooMjISEVHR+uFF17Q/PnzPZoQLFy4sNvbTEpKstn/0N5DRrJzdJ+7vJJ9GXBOpwEvXbpUFy5cuHbdrFkzh5ZZZ5d9L0VXfiaVK1e2us7IyLCaJZeQkGBV72wyTpJuuummXO85d+6cTVndunVVtGhRh7+MYo2NjXU6fgAAgKtIAAIAgBzdf//9mj9/vkqUKGF6T0ZGhjZs2KCRI0fqvvvuU/HixXXPPfdo5syZysjIyNP4sh/o4Q7Zk0jSlT0NneHsc+52xx13WO2fd+zYMa1bt87w3uzLf7MnDx2V/efpys/EKOF7/vx5075cSRDb86xRAjAxMVEJCQlOfWXHEmAAAOAOJAABAECuOnTooP379+udd95RuXLlcr0/NTVVixcv1gMPPKAGDRpo9erVHojSfYySLqGhoU61FRYW5mo4buHv76+uXbtalRktA05PT9e8efNyfM5RycnJVtchISFOtxUeHm5T9u/XK/usRlf6sue1y+vZriQAAQCAO7j/n8wBAIBPKlSokN544w299tprWr58uRYsWKDFixdr165dOT73auU71gAAIABJREFUzz//qFWrVvrxxx/Vs2dPD0XrmtySTI7490m63ta9e3d98cUX165nzJihUaNGWR1u8vvvv1vNamvatKlKly7tUr/ZZ/y5ktQySrgVLFjw2n9nn7Xn7r6yi4iIsLoOCgpSv379nO4zu1tuucVtbQEAgBsXCUAAAOAQf39/tW7dWq1bt9aoUaN06tQprVixQitXrtTy5cu1Z88em2fS0tLUt29f1atXT9WrV/dC1I7JfvCJZL3M1BHOPpcX7rzzTpUuXVonT56UdGUZ8Nq1a61O5HX38l9JKlKkiNV19j0BHWG0TDYyMtK0r7Nnzzrdl9Hy3pz6lq4shx87dmyeLE0HAABwFkuAAQCAS0qVKqUHH3xQX375pXbv3q2dO3dq6NChCg4OtrovJSVFH374oZeidEyhQoVsTqk1SmzaY//+/e4IyS1yWwacmZmpOXPmXLv28/NzefmvJJtTeHfv3u10W9lfh+DgYKtZeCVLlrSq/+eff2xO6bVXbrNbJalYsWJW1xaLRXFxcU71BwAAkFdIAAIAALeqUaOGPvzwQ23cuNFmeeTChQudTsZ4kp+fn+rWrWtVtmXLFqfa2rp1qztCchuj04CvviarVq1SfHz8tbro6GiVL1/e5T7r169vdX3w4EGnZ0Zu2rTJ6jr769SwYUOr6/PnzzudcPzrr79yvadevXpWS6jtfQ4AAMCTSAACAABDe/bs0fjx462+Ll++bPfzderU0ZAhQ6zKzpw549LyT0/697JYSfrtt9+UmprqUBuZmZlaunSpO8NyWbNmzaxmycXGxl47DTgvlv9KUuPGja2uLRaL5s+f73A7Fy5c0O+//25Vdvvtt1tdN2rUyOY5o8NOcnPu3DmtXLky1/uKFy+uqlWrWpUtW7bM4f4kafXq1Ro6dOi1r08++cSpdgAAALIjAQgAAAzt2rVLjz/+uNXXhg0bHGqjXr16NmWOJtG8pUWLFlbX58+ftzod1x7Lli3T6dOn3RmWywICAgyXAWdlZWnWrFnXyvz8/NStWze39Fm/fn2rgzok6ccff3S4nWnTptmcKNysWTOr6ypVqqhixYpWZd9//73D77tJkyYpLS3NrnubN29udT158mSbOO3xxhtvaPjw4de+ss92BAAAcBYJQAAAYKhs2bI2ZatWrXKojezJr8DAQJUoUcKluDzl3nvvtYn1rbfeUkZGhl3PWywWvf3223kQmeu6d+9udT1jxgytXr362uEg0pWltJUqVXJLf8HBwXrooYesypYuXerQ7MiLFy9q2LBhVmXFixdXp06drMr8/Pz0n//8x6rs8OHDGjlypN19JSYm6v3337f7/gEDBlhdnzt3TsOHD7f7eenKDNPly5dbld19990OtQEAAGCGBCAAADBUt25dhYeHW5V9/fXXdi/hTUtL09dff23TZkBAgNtizEvBwcE2iZ1du3Zp6NChdj0/YsSIa0tr85vmzZsrKirq2nVsbKzN9+Wu5b9XPfbYYzZlAwcO1PHjx3N9NisrSwMHDtSJEyesyvv376+QkBCb+/v27WvzPhs2bJhdCcfMzEz16dPHai/E3DRp0sRmtuuHH35os1zZTFxcnPr3729VVqxYMfXo0cPuGAAAAHJCAhAAABgKDg5WmzZtrMpOnDihrl27KiEhIcdnExIS1LNnT23bts2qvGfPnm6PMy89//zzNrMAR44cqRdffNF0eajFYtGIESNyTBT6+3v3VzCjZcBr1qyxunbX8t+rGjZsaPP6HzlyRK1bt87xgJXExET16tVL06ZNsyovUaKEXnjhBcNnKleurCeffNKqLC0tTV26dNGECRNM+zp79qy6devm1P6EI0aMsDoMJC0tTZ06ddLEiRNzPPhm586datmypY4ePWpVPmTIEIWFhTkcBwAAgBESgAAAwNTLL79sU7Z8+XLddNNNevHFF7Vw4ULt2LFDhw4d0u7duzV//nw9++yzqlq1qubMmWP1XIUKFfTEE094KnS3KF68uMaMGWNTPmLECNWpU0effPKJ1qxZo0OHDmnTpk0aP368GjdurBdffFFZWVmSpEcffdTmeaNZa56W0wy/+vXr2xxs4Q6ff/65ihcvblW2Z88eRUdH65FHHtHs2bO1Y8cO7du3TytWrNArr7yiGjVq6Oeff7Zpa+zYsTkuJ3/33XdtlrFfunRJjz76qBo1aqQxY8ZoxYoV2rp1qxYsWKDnn39e1atX19y5c6/df8stt6hmzZp2fW9t2rTR448/blV2+fJl9e3bV9HR0RozZozWrFmjgwcPavfu3ZozZ4769u2rBg0aaNeuXVbP3XrrrXrppZfs6hcAAMAegd4OAAAA5F9NmjTRwIED9c0331iVJyQkaMSIERoxYoRd7YSFhWnSpEmKiIjIizDz1EMPPaRNmzbZ7CG3d+/eXJM0//3vfzVgwAB9++23VuXBwcFuj9NRLVq0UIkSJQyXurp7+e9VJUqU0Ny5c9WhQwedP3/+WnlaWpomT56syZMn29XOsGHDbPYxzK5QoUL65Zdf1Lp1a507d86qbtOmTbkesFGkSBHNmzdP/fr1sysmSRo1apSOHj2qhQsXWpVv3LhRGzdutKuNihUraubMmQoKCrK7XwAAgNwwAxAAAORo3LhxuSZbclK6dGktWLDA5qTU68mIESP00ksvWS3xzE337t312WefKSUlxarc398/X8wADAwMVJcuXQzr3L3899+aNm2qZcuWGR4yk5sCBQpo9OjRevPNN+26v379+lqyZInDfRUpUkRz5sxRtWrVHHouNDRUs2fPVu/evR167qqGDRtq+fLlbjt8BQAA4CpmAAIAcAOJiIiwSeY1atQox2cCAwMVExOjiRMn6t1339WBAwfs6isyMlL9+vXTG2+8oSJFiuR471133aVSpUpdu77llltM7+3QoYPi4uKuXVeuXNmueP6tS5cuSk1NvXZtz8nEw4cPV/v27fX4449r//79pveFhYXpjTfe0EsvvSR/f39dvnzZqj4qKsqtewAavab2Jrz69+9vs59j8eLFVb16dbuev+eee1S/fv1r1w0bNrTruUaNGmn37t167733NGbMGJskaXZ+fn7q0KGDRo0aleN7w6yvnTt36rXXXtP48eNN9268qmXLlvrmm2+uLYFu1aqVypUrJ0l2zcorUKCAfvzxR/Xu3VtDhgzRjh07cn2mTJkyGjJkiJ599lkFBub+63n292+ZMmVyfQYAANzYzP4Ze56kTmYPBQUF5frLEwAA8D0Wi0UrV67UqlWrtHnzZh0/flznz59XRkaGihQpohIlSqhevXq6/fbbdffddys0NNTbIbtdVlaWVqxYoZiYGO3Zs0cnTpyQv7+/KleurJYtW6pPnz5Wyczvv//e6oTXRo0a2b0c9EZw8eJFLV68WIsWLdLRo0d16tQppaWlKSoqSqVLl1bz5s3VuXNnlS9f3uW+EhISNHv2bP3222+KjY3V6dOnFRoaqvLly6t69erq2rWrmjRp4obv6n+2bNmiOXPmaPPmzYqLi1NcXJzCw8MVFRWl+vXrq2XLlmrXrp0KFCjg1n4BAIBvW7VqlVq0aJHbbUMkjZZIAAIAAOSp119/Xe+///616y5dumjWrFlejAgAAADXO0cTgCwBBgAAMJCYmGiz3NneJa7/9scff1hdR0dHuxQXAAAA4CgSgAAAAAb27dunxo0bW5Vt375dtWvXtruNEydOaO3atVZldvxLLQAAAOBWnAIMAABgoFatWjb7sn3//fcOtfHxxx8rPT392nVUVJRTswgBAAAAV5AABAAAMBAWFqb777/fquyzzz7Tr7/+atfz06ZN0+eff25VNnjwYLtOkgUAAADciQQgAACAiRdffFGBgf/bMSUjI0OdOnXSq6++qlOnThk+s3//fg0aNEi9evVSVlbWtfLChQvriSeeyPOYAQAAgOzYAxAAAMBEo0aN9Oqrr+qdd965VpaWlqYPP/xQH3/8sWrVqqWKFSsqJCREiYmJOnz4sPbt22fTjp+fn7755hsVLVrUk+EDAAAAkkgAAgAA5GjYsGFKTU3V8OHDrcozMzO1bds2bdu2LcfnCxQooLFjx6p79+55GSYAAABgiiXAAAAAufjoo4+0bNkyh04AlqTmzZtr7dq1evTRR/MoMgAAACB3zAAEAACwQ+vWrbV9+3atWbNG8+fP14YNG3TgwAElJibq4sWLKlSokIoXL66qVauqadOmuu+++1S3bl1vhw0AAACQAAQAAHBE06ZN1bRpU2+HAQAAANiNJcAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPiwQG8HAMAxP/30k44cOWJT/sQTTygyMjJP+rx48aLGjBljU162bFn17ds3T/oE7JGYmKgNGzZo165dSkxMVFpamiIjI1W+fHlFR0erUqVK3g4xVwsXLtT27dttyu+//35Vq1Ytx2fnzJmjPXv25FVodrn11lvVtm1bm/KYmBgdOnTICxH9T3R0tFq2bGlan5SUpHHjxtmUFy1aVAMHDszDyLwnpzHTuHFjVa5c2dsh5spszHTu3FnVq1fP8dn8PGauSk1N1ejRo23KCxYsqCeeeCLHts3e05722GOP5dnvJPC+Q4cOacOGDTp69KgSExMVFBSkyMhI1ahRQ9HR0SpcuLC3Q8zRtGnTDH+X7t27t8qUKZPjsz/++KNOnjyZV6HZpWXLloqOjrYpnzBhgs6cOeOFiP6nbdu2uvXWW03rT5w4oUmTJtmUV6pUST179szL0ADkYJ4ki9lXUFCQBYB3tGjRwnBc7tu3L8/6PHbsmGGfjRs3zrM+gZwsWrTI0rFjR0tAQIDp/6skWWrVqmUZPXq0JTk52dshm+rbt69h7NOnT8/12W7duuX4/Xvi66mnnjKMrX379l6P7eWXX87x52f22VatWjWnXsv8zJEx8+mnn16XYyYmJibXZ/PzmLkqMTHR8LmyZcvm+v3FxsZ6/fuTZNm7d6/dryeuD8nJyZZRo0ZZatasmeNrHxAQYLn33nstS5Ys8XbIplq1amUY+7p163J99rbbbvP6+Bo+fLhhbLm9Np74+uKLL3L8+a1du9bwuTZt2jj1WgI3upUrV9ozNp/V/2MJMADguhEXF6d7771X99xzjxYsWKDMzMwc79+xY4eeffZZ1a5dW6tWrfJQlED+4cyYGTJkiGrVqsWYASBJWr58uWrWrKnnnntOO3fuzPHezMxM/fLLL2rfvr06d+7s9RlpAID/IQEIALgu7Ny5U40aNdKCBQscfvbAgQNq06aNJk6cmAeRAfmTK2Pm4MGDatOmjX744Qf3BwbgujF+/Hi1a9fOqS0d5s2bp8aNG2vv3r15EBkAwFEkAAEA+d7Ro0fVrl07xcbGOt1Genq6BgwYoNmzZ7sxMiB/cteYefTRRzVr1iw3RgbgejFlyhQNGjRIGRkZTrdx6NAhtW/f3uv75gEAOAQEAJDPZWZmqlevXjp+/LhNXVRUlJ544gl16NBBN998s4KDgxUXF6e1a9fq+++/16+//mrTVt++fVW/fv3r4rCD3NStW1fnz5/P837WrVunixcvGtb5+xv/W2KDBg1yXW7qDqtXr1ZycrJhnVlsvs7dY6Zfv35q0KABY8YBzowZdwgJCVGbNm3yrP2rzp07p7///tu0PiAgIM9jQN7avXu3Bg4cqKysLJu62267TYMGDVKLFi1UqlQppaen6/Dhw1q2bJnGjRungwcPWt1/+PBh9e7dW7/++ut1/7ncuHFjjxxysmLFCtPEq9n4atKkSa6HmLjKYrFo+fLlhu8LibEPXK84BATIpzgEBDeaMWPGGL7/7r33XsvZs2dzfHbWrFmWiIgIm2fbtm3roehz58ohIJ4wd+5ci5+fn2GMkZGRlgMHDngttilTppj+rhIVFWWJjY3N8XlfPQTEbMx07Ngx1zEze/ZswzGTnzZod+UQEE9wdcy4cgiIJ2RmZlratWtnOvZ69erl7RDhBnfccYfNaxsQEGAZNWqUJSsry/S55ORky+DBgw3fG+PHj/fgd2DOlUNAPGH06NGm46tChQqW+Ph4r8X23nvvmcZ28803WxITE3N8nkNAAPfiEBAAgM+4cOGC3n33XZvy9u3ba/bs2SpatGiOz3fp0kULFixQUFCQVfnSpUttZjrB1r59+9SnTx9ZLBabOj8/P3333XeqUqWKFyKT/vnnHw0cONCwzt/fX5MmTVK5cuU8HJX3mY2Zdu3aac6cObmOmfvvv18LFy5UgQIFrMqXLVumJUuWuDVWX7R///58O2bc5fXXXzf9/KxTp46++eYbD0cEd5s7d65Wr15tUz527FgNGTJEfn5+ps+GhITos88+03PPPWdT99Zbb+ny5ctujdXXrFu3Ti+99JJhXXBwsGbOnKnixYt7OKorli9frrfeesuwLjQ0VDExMR6ZHQnAeSQAAQD51nfffWdzgmB4eLh++OEHBQbat4tF8+bN9fzzz9uUf/LJJ26J0VclJyerZ8+epsslX3vtNd1///0ejuqKpKQk9ejRQ5cuXTKsf++999SuXTsPR5U/uGPMNGvWjDHjhOTkZPXo0SNfjhl3+eWXX/TRRx8Z1hUsWFAxMTEKCwvzcFRwt48//tim7O6779bjjz9udxvDhw9XtWrVrMpOnjypn376yeX4fFVcXJy6d++utLQ0w/rPPvtMjRo18nBUVxw7dkw9e/Y03drjyy+/VP369T0cFQBHkQAEAORb48aNsyl77rnnVKpUKYfaefnll21mPv3222/at2+fS/H5skGDBmnz5s2Gda1atdLbb7/t2YD+n8ViUb9+/bRr1y7D+nvvvVdDhw71cFT5h9GYGTJkiEqXLu1QOy+99JLNmPn99985zTMH+XXMuMvhw4f1n//8x3R24/fff6/q1at7ITK40+bNm7VmzRqrMn9/f3344YcOtRMYGKj333/fpvzLL790KT5flZWVpUceeUTHjh0zrH/44Yf12GOPeTiqK9LT0/Xggw8qPj7esP7JJ5/Uf/7zHw9HBcAZJAABAPnS33//bZOgCwoK0rPPPmvyhLkiRYro0UcftSqzWCyKiYlxKUZfNXbsWE2cONGwrnz58po2bZrXNvr+5JNPNHPmTMO6SpUqaeLEiTkuT/Nl7h4z2ZdYM2bMjRs3Lt+OGXdISUlRt27ddO7cOcP6l19+Wd26dfNwVMgLRmO8Xbt2Ts3u6tq1q82S9y1btmjPnj1Ox+erXn31VS1dutSwrm7duho/fryHI/qfIUOGGC4Jl64cijJy5EgPRwTAWSQAAQD50vz5823K7rrrrlz3MDNjtPRu3rx5TrXlyzZs2GC4/FO6kkyaOnWqSpQo4eGorlixYoVee+01w7qQkBDNnDnT6feHLzAaMy1btlSxYsWcao8xY58NGzYY7ncmeX/MuMsTTzxheupvy5YtDfedxPXJaIw7m9z18/NT586dbcqNPqtuZPPnzzdcdi1d+ceYWbNmeW1p/bRp0zR27FjDuqJFi+rnn39WcHCwh6MC4CwSgACAfGnt2rU2Za7snxUdHa2oqCirss2bNys5OdnpNn3NuXPn1LNnT6WmphrWf/rpp7rjjjs8HNUVp06dUq9evZSRkWFYP27cON16660ejip/cfeYady4sUqWLGlVtmXLFsbMv+TnMeMuX3/9tb7//nvDulKlSmnKlCl27y+J/C0xMVG7d++2KjNL4tmrU6dONmXZlxjfyHI7OGjChAm66aabvBCZtHv3btNlx/7+/poyZYoqVark2aAAuIQEIAAg37FYLNqwYYNNeXR0tNNt+vv7q0GDBlZl6enpprNabjRZWVnq1auXDh8+bFj/4IMP6sknn/RsUP8vIyNDPXr00MmTJw3rH3vsMfXr18/DUeUvnhwzmzZtcrpNX5Kfx4y7bNmyRUOGDDGsCwwMVExMjMP7SyL/Wr9+vbKysqzKqlSp4tIM1kaNGtlsy7Bu3Tqn2/MlKSkp6tGjhxITEw3rhw4dqq5du3o4qisuXryorl27KikpybB+2LBhat++vYejAuAqEoAAgHxn9+7dSkhIsCoLDAxUzZo1XWq3Tp06NmX8IXLFm2++qSVLlhjW1a5dW99++62HI/qfF154QX/88YdhXf369TV69GgPR5T/mI2ZWrVqudQuY8Zcfh4z7pCQkKCuXbuazvgcMWKEmjVr5uGokJeMxna9evVcarNgwYKqUKGCVdnJkyd19OhRl9r1BTkdHHTXXXfpnXfe8XBEV+R22FbHjh316quvejgqAO5AAhAAkO9s2bLFpuymm25SSEiIS+0anVBp9sv3jeSXX34xPeExIiJCMTExCg8P93BUV8TExGjMmDGGdZGRkZo1a5ZCQ0M9HFX+YzRmqlSpwpjJIwsWLMi3Y8YdsrKy9PDDD+vQoUOG9T169NAzzzzj4aiQ17Zu3WpTVqNGDZfbNWrjRp99/+WXX+qHH34wrCtVqpQmT57staX1I0eO1IwZMwzrKlasqIkTJ8rfnzQCcD1iww4AQL5jNDOgTJkyLrebfT8zs75uJAcPHlSfPn1sln1JV/Yf+uGHH9zyB6Azdu3aZXN681X+/v766aefVLlyZQ9H5bytW7dq7969167DwsLUsWNHt7TNmPGcQ4cOqXfv3vlyzLjLO++8o0WLFhnW1ahRw2OzG/NyzFyvFixYoMuXL1+7rlatmurWreuWto8cOWJTxueI+23YsMF0aX1QUJCmT5/utaX1a9asMZ3dd/WwLWcPlgLgfSQAAQD5zrFjx2zKSpUq5XK72Q8BMevrRnF1/6HsS0evev75550+/dFVFy9e1AMPPGC6/9Abb7yhDh06eDgq10yaNEkjR468dl2hQgXDP7idwZjxjJSUFHXv3j1fjhl3WbZsmd577z3DuoiICE2fPl0FCxb0SCzZx0z58uVv6MSRdGXZaGxs7LXrF154QZ988olb2s6rzxGjPQSPHz/ucrvXo3PnzunBBx80PThoxIgRuvPOOz0c1RWnT59W9+7dlZ6eblj/xRdfqGHDhh6OCoA7MXcXAJDvGP1hULRoUZfbjYyMNOzLaCbPjeDJJ580PdChadOm+uCDDzwc0f8MGjRIO3fuNKxr3bq13njjDQ9HlL95csycOHGCMWPA22PGHY4ePaqHHnpImZmZhvXjxo1zeV9J5E+pqamKj4+3KXfH54hRG/9OYt4oclta37NnTz399NMejuqKq4dtnThxwrC+d+/eGjBggIejAuBuJAABAPmO0S+gwcHBLrdr1EZaWprOnDnjctvXm2+++UbfffedYV3JkiU1ffp0BQUFeTiqK0aPHq2ffvrJsK58+fKaNm2aAgICPBxV/ubpMWOUKPB13377bb4dM+6Qmpqqbt26mX4ePvvss+rdu7eHo4KnnDp1ShaLxabc1X1EJalAgQI2ZWaJJl/29ttva/HixYZ11apV0/jx4z0c0f+8/PLLWrVqlWFdvXr19PXXX3s4IgB5gSXAgI8YOXKk4UwNd7h48WKetAuYMXrPuSOZYfRHiCRdunTJ5bavJ1u3bjXdwD8wMFAxMTFu2ffJGevWrdPLL79sWBcUFKRp06apePHiHo4q/2PM5K2tW7eazszx9phxl8GDB+uvv/4yrLv99ts1fPhwD0cETzIb03n1OXKjfYYsXbrUdIZwRESEZs2apUKFCnk4qivmzp2rTz/91LCOw7YA30ICEPARX331lbdDANzGaG+cadOmaePGjS61a7avTXJyskvtXk8SEhLUtWtX0+/5o48+UvPmzT0c1RWnT5/WAw88oLS0NMP6zz77TE2bNvVwVNcHozHz888/myZ07MWYyd9jxl0mT56sb775xrAuKipKM2bMME0GwzekpKQYlj/xxBOKiIhwqW2jvQVvpM+QI0eOqFevXqZL6ydMmKCaNWt6OKor9u7dqz59+hjO/vTz89N3332nKlWqeCEyAHmBBCAAIN8x+sPg0KFDpvvmuMrsDx9fk5WVpUceeUQHDx40rO/cubOee+45D0d1RWZmpnr37m26MXyvXr303//+18NRXT8YM3kjP48Zd9m2bZsee+wxw7qrp22XLVvWw1HB08wScuvWrfNof74mJSUlx6X1Q4YMUY8ePTwc1RWXLl1S165ddeHCBcP61157Tffff7+HowKQl9gDEACQ73g6uXCj/CHy7rvvauHChYZ1N998syZOnCg/Pz8PR3XFK6+8oqVLlxrW1alTx3R2Eq5gzOSN9957L9+OGXdITExU165ddfnyZcP6Dz74QG3btvVwVPAGs1Np88qN8hny1FNPmR4c1KRJE3300Ucejuh/Bg0apB07dhjWtWrVSm+//bZnAwKQ55gBCAA+YMaMGZo+fbpX+v7000+v+72vruc/4O3122+/6d133zWsCw8P1+zZs1W4cGEPR3XFvHnzNGLECMO6ggULKiYmRmFhYR6OCjm5UcbMO++8Y1jn7THjDhaLRf3799eBAwcM6zt16qSXXnrJw1HBW4yWgOalG+Ez5KefftKECRMM664eHOStpfWfffaZJk2aZFjHYVuA7yIBCPiIu+++W+Hh4XnSdkpKihYsWJAnbcM9/vnnH8XExHil72HDhrk9AWi06Xjp0qVd7icjI0Nbt261Kff1va1iY2P14IMPmu4/NG7cONWqVcvDUV2xb9++HPcf+v7771W9enUvRHZ9Ycy4V34eM+7ywQcfaPbs2YZ1VatW1Y8//nhDJGlwhdlhHzVr1nT5AIj4+HgdPXrUrv58xdatW/X4448b1gUEBGjSpEnRse8JAAAgAElEQVReW1q/bt06vfjii4Z1QUFBmjp1qkqUKOHhqAB4AglAwEd8/vnnqlq1ap60ffz4cZUrVy5P2gaMBAUF2ZT1799f7733nkvtnj59WqVKlbIpDwkJcand/Cw9PV0PPvig6f5DTz31lPr06ePhqK5ITk5Wz549df78ecP6l156Sd26dfNwVNcnozHTr18/vf/++y61GxcXp5IlS9qUM2a8M2bcZfny5XrrrbcM60JCQvTzzz+rSJEiHo4K3mT0GSJJU6ZMUb169Vxq+4svvtDgwYOtynw5AXj14KD8uLQ+Li5O3bt3Nz1s69NPP9Udd9zh4agAeAp7AAIA8h2j2UVmp5E6wuwXXl/+Q2Tw4MFas2aNYV10dLTp0ltPGDRokDZv3mxY17JlS5cTvjcSxoz7PP300/l2zLjDsWPH1LNnzxxnN956660ejgreZjam8+pzxFc/Q64urTc7OOi+++4znX2X17KystS7d2/DU5kl6aGHHtKTTz7p4agAeBIzAAHAB5QvX15NmjTxSt95sTeb0XIjs0SEI8z+kHF1eVN+NWXKFH399deGdUWLFtW0adO89kfYuHHjNHHiRMO6UqVKacqUKQoM5NcUezFm3GPKlCn66quvDOu8PWbc4ersxvj4eMP6//73v+rXr5+Ho0J+YDam8+pzxFc/Q95//33NmTPHsM7bS+tfe+01/frrr4Z1tWvX5rAt4AbAb9YA4AMGDBigAQMGeDsMt4mKirIpu3DhgsvtGi019fPzM+zverdt2zYNHDjQsC4gIEDTpk1TpUqVPBvU/9uwYYOee+45w7qgoCBNnz5dpUuX9nBUjjl48KASEhIceub06dNW12lpaaanQ+akYcOGNmWMGdfl5zHjLs8995xWr15tWNeoUSONHj06z/rOb2MmP3Dme8mekDt16pTD7URGRqpKlSpWZWZ7vuXV54jRdhzXu99//9305NyQkBDFxMR47eCg+fPna/jw4YZ1ERERiomJybO9xAHkHyQAAQD5jtEfBmfPnnW5XaM2ihYt6tSBBv/H3p3H1ZT/fwB/3XYVUzGUfd8NIdswDTJjGyFkFyLZTRk7Y8YSIsZalmRNdjO2MNaRGQwGjX0bKVuIVKp7fn/4dn9d55zbrbuUvJ6PR49H5/P5nM/nfctJve9nefLkCdq1awdBEODv74/u3bvrHJ++vH79Gp6enrL7D02fPj3X9h+Kj4+Hp6cnUlJSJOvnzp2Lpk2bGjmq7JswYYLOB+/ExcWhfv362bpHoVBAqVSKyo35zNjb22s1Cy4uLg47duzAuXPncOvWLbx9+xZWVlYoUqQI6tWrh2+++QYNGzbUOUZ9yMvPjL6Eh4djyZIlknX29vaIiIgw6OzGiRMnYsuWLTr18fjxY709M3mBi4uLzqfvbtiwARs2bMjWPZ6enggPD1cry3iuP/zZbKifI/ktAZjVwUHLly+Hs7OzkaN679atW1ketlWtWrVciIyIjI0JQCIiA3n79i3i4uJU16VKlZLdZJvUSR06ILchf3bo84+QiIgInDt3DoB4lkpuEgQBXl5euHbtmmR9u3btMGHCBCNH9Z5SqUTPnj1x7949yfqOHTti1KhRxg0qn5B6ZnLrD/f4+HhMmjQJK1eulP1jePfu3Zg6dSpcXFwwb948uLq66hxrTuXlZ0Zfrl+/jsGDB0vWmZiYYOPGjShXrpyRo6K8JGNm73///adWro+fI/Hx8aKy/JQATE1NRY8ePWSX1vv6+sLLy8u4Qf1PcnIyPD098fLlS8l6Pz8/dOnSxchREVFu4SEgREQGcvz4cVSoUEH18eEv1SRP6g8DuQ21s0Mq8ZTTpaYbN27UMRrDmDNnDnbs2CFZV6ZMGYSFhcHEJHf++586dSoOHjwoWVe5cmWEhYXl2t5IH7u88szExMSgcePGWLFihWzyL7OzZ8+iZcuWCAgI0CVMneTlZ0Yf3rx5g06dOuH169eS9VOnTkWbNm2MHBXlRYb6OXL37l1RWV7f5iE7Ro0aJbu0vkGDBggKCjJyRP9v6NCh+PvvvyXrmjRpglmzZhk5IiLKTZwBSEREeU7VqlVFZbGxsXj16pVO++dER0eLymrVqpXtfvbs2YMzZ87kOA5DOXr0KKZMmSJZZ2Vlhe3bt6Nw4cJGjuq9vXv3Yvbs2ZJ1tra22LFjBwoVKmTkqPKPvPDMpKamonXr1rhx44aqzMTEBC1atMDXX3+NkiVL4s2bN/j777+xfft21b5g6enpmDBhAuzs7DBkyJAcx5oTefmZ0QdBENC/f3/8+++/kvVubm6YPHmykaOivKpatWo4e/asWtn169d16lMQBMk+atasqVO/ecXmzZuxfPlyybrcPjhoxYoVCA0NlawrVqwYtm7dypUpRJ8YJgCJiCjPqVu3rmR5dHS0TqcdS/0RnN09ebZt24YBAwbkOAZDiYmJQY8ePZCWliZZv2TJklzbCP/u3bvo06eP7D5cK1euRI0aNYwclW5mz56NH374IVv3LFy4UG2vLkdHR/z22296iScvPDOLFy/GlStXVNclSpTA1q1bJccPDAzEsGHDsHnzZlWZn58f2rdvj5IlS+Y43uzIy8+MvixYsADbtm2TrCtTpgzCw8NhampqlFhmzZqFsWPHZuueD5+ZYsWKYe/evfoOLdd8mGzTRrt27dS2nejduzdGjx6drT7s7e0ly52dnbFu3Tq1sqtXr2Y7xszu37+PN2/eqJWZmpqidu3aOvWbF1y+fFn24KDcXlp/8eJF2cO2zMzMEBERgeLFixs5KiLKbUwAEhHlA6GhoVizZk2ujL1x40aULl1ar30WL14cjo6OansoAu9P2MtpMuPVq1e4ePGiqNzFxUX2njdv3uDff//F5cuXceXKFezbt0/n2RCGkJqaiu7du8vuRejt7Z1rp0QnJyeja9eusqd/jho1Kk8doKKtD0/Q1MaH+/RZWFjoLcFkqGfmwoULonKpZ0YQBCxYsEB1bW5ujl27dske2GBvb4+NGzciNTVVlaB6+/YtAgMDDXoSbYa8/Mzoy+nTp2X3LrS0tMTWrVuNOrsxrz0zeUFOXsuHh1Y5Ojrq7Wsi9UbCf//9h5s3b6JSpUo56vP3338XlVWrVu2jP3H29evX6NatGxITEyXrp02bhtatWxs5qvfi4+PRuXNnJCUlSdYHBATgq6++MnJURJQXMAFIRJQP3L9/H6dOncqVseVOzdRV3bp1sW/fPrWyAwcOYNKkSTnqLzIyEqmpqWplBQsW1PhHzeDBg9VmKOVVfn5+st//2rVr45dffjFyRP9v2LBhOH/+vGRdo0aNMHfuXCNHlH8Z45mxtbVF5cqVRW3Pnj2LmJgY1XWvXr2yPK1VoVBgyZIl2Lt3r+oP1V27dhklAejv759nnxl9ePz4Mbp27Sr6/mVYtGiRxjc/6NNUp04dmJiYiGZr79+/P8cJwAMHDojKPvYkbsbSermDg9zc3HL8c1dXSqUSvXv3ltx3EQDc3d1lZwYSUf7HBCARGY1SqcTJkyexa9cu3Lp1C48fP4alpSWKFSuGL7/8Ep06dULZsmWz1eebN29w8OBBHDx4EA8fPsTTp09ha2sLJycnNG7cGN999122+0xKSsLu3bvxxx9/4Pr163jx4gVMTU3h4OCA2rVr45tvvsHXX38teVhBYmKi6hfCW7duqdVduXJFNQvK3t4+R7MhPiVubm6iZMaZM2dw7969bH9Pgfen9kqNYazlb4ayZcsWLF68WLLO3t4eO3bsQIECBYwc1XurVq2SnZlatGhRbN26VTSbhXIuN5+Zw4cPq1336tVLqzGKFSuGli1bqpZC379/Hy9evJBdoqgPW7ZskU3w5fYzow9paWno1q0bHj16JFnfq1cv+Pj4GDkq+hgUKlQIDRs2RFRUlFr5li1bMHLkyGz39+rVK8mDn7799lvJ9rdu3VLtDVqyZEnVDFBBEHDw4EHs3bsX9+7dw+PHj2FlZYXy5cujZcuW6Nq1K6ysrLIdX07NmzcP27dvl6wrXbo0Nm/enGu/W0yfPh379++XrKtUqRIP2yIiSXsACHIf5ubmAhHlDldXV8nn8ubNmwYb8+HDh5JjNmjQQOs+jh8/LtSoUUP25woAwdTUVOjfv7/w6tWrLPtLTU0VFi9eLDg4OGjsU6FQCH379hViYmKy7DMtLU0ICgoS7OzsNPYJQKhZs6bw119/ifr466+/srwXgODh4aH1104b06ZN02pcQ3z8+++/en0tGW7fvi0oFArReD4+Ptnu68qVK4KJiYmor3Xr1mm8b+XKlcLgwYNFHx4eHmr9LFy4MKcvU/Dy8pL8um7dujXLe69duyYUKlRI9t/+zp07cxyXri5evCgUKFBAMjYTExMhMjIy12LLIPezrUqVKgYZz8/PT22c0qVL67V/YzwzYWFhku19fHzU2mnzczzD999/n62fKXLPTERERJZj5eVnJsPLly8l4ytRooRW93/49cz8UatWLSExMdHAr0B/PnxmSpUqldsh5bpSpUqpfU38/f312v+cOXMk/+0cOXIk2339+OOPon6srKyEFy9eSLZv06aNqt3cuXMFQRCE2NhYoVmzZhp/D3FychIOHDigdVwtWrSQ7OfMmTNZ3nv06FHBzMxM8n5LS0vh7NmzWsehb4cOHRJMTU0lY7OxsRGuXLmSa7FliIqKkozPzc0tt0Mj+igdP35cm7/XVBvFcgYgERnc8uXLMWzYMAiCoLFdeno6QkNDcebMGZw8eVJ2b6KUlBR0794du3btynJsQRCwbt06HDp0CJGRkbKnzqWlpaF3797YsmVL1i8I72fzubq6IjIyEk2bNtXqHkOqXr06PDw8cmVsQ53cWr58eTRv3ly0f9DatWvh5+eXreVIEydOFC1psrOzy/Jr5u3tDW9vb1H5xYsXZd/9N5Y3b96gc+fOSEhIkKyfPHkyOnbsaOSo3nvx4oXG/YdmzpyJVq1aGTmq/M8Yz0yXLl0k2//333+qzx0cHLL1c+HD/SENNZMnLz8z+rJ7924EBQVJ1hUsWBARERGwtrY2clT0MenTpw8mT54sWj4+ZcoUuLq6aj2zLS4uTnI5v4eHB+zs7LTq4+bNm2jevLna9gJSYmNj8d1332Hfvn1wc3PTqu+ciIuLQ8+ePWUPDlq8eHGWWx8YyoMHD9CjRw+kp6dL1i9btuyjO2yLiPSPCUAiMqiNGzeKkn8uLi5wd3dHyZIl8ebNG/zxxx/Yvn073r17B+D9qZM9evRAZGSkZJ9eXl6i5F+jRo3Qvn17lChRAgkJCfjzzz+xa9cu1f50sbGxaN68Of755x84OTmJ+pw/f74o+deyZUs0a9YMpUuXRkJCAm7evImtW7fiyZMnAN4vFe7Xrx+io6NhaWkJAPj8888xePBgAO//IM68DKN79+6qP4rlTuzMqW7duqFbt2567TMvGDVqlCiZkZKSgq5du+Lo0aNaLROcO3cu9uzZIyr38fH5qP8QHjBgAKKjoyXrWrRogWnTphk5ovcy9h+6c+eOZH379u0xbtw4I0f16TDkMzN48GDZZ8bPzw9eXl4A3ieasuPvv/9WfW5tbY0SJUpk635tCIKg8Zlp1apVrj0z+nL9+nX06dNH8s02hUKB9evXo2rVqrkQWd7XrVs3yb1Kq1atqtWpw3Xr1lUtXc2sffv2WLRokV5iNBYnJyd4enqqnb4MvD9UZvz48Zg3b16Wfbx9+xbdunXDy5cv1coVCgVGjRqlVRwZB0jFxMTA0tISXl5eaNu2LZycnPDq1SscPnwYy5cvVyX0U1NTMWTIEFy/ft0gy28zltbHxsZK1vfq1Uv2RGBDS0lJgYeHB549eyZZP3z4cPTt29fIURFRXsQEIBEZzKNHjzBixAjVHyOWlpZYuXIl+vTpo9Zu2LBhuHbtGtq3b4/bt28DAA4dOoS9e/eiXbt2am0jIiIQHh6uui5YsCDWrl2Lzp07i8a/d+8eevTogTNnzgAAnj17Bl9fX1HyMCUlBQEBAaprBwcH7NmzB19++aWoz5kzZ6J169aqPu/cuYN9+/ahU6dOAICyZcsiODgYwPtNszMnAGfOnMl9/7KpQ4cOaNKkCU6fPq1WfunSJbi6umLjxo2oVauW5L1JSUmYNGmS5GwYBweHjzoJtXnzZmzdulWyTqFQwNnZGYGBgUaJpUKFCmqzwlavXi3ahy6DiYkJatasabSDP6pWrQp3d3ejjJVXGOqZsbe31/jMtGjRIkfxHj58GJcuXVJdf/311zA3N89RX5qEh4drfGa++OKLXHtm9KVfv354/fq1ZF3lypVx7do12UML9K1bt24oV66cUcbSh0ePHkm+aWFra6vV/ffu3ZM86TzjDcOPzfTp0xEREaF6YzZDYGAg4uPjERQUJDvL9+bNm+jbt6/q96TMunTpovXhM0FBQXjx4gXKlCmDgwcPokqVKmr1bm5uGDhwIJo1a6Y6zfv27duIiooyyMqM+fPn4+TJk5J15ubmqFixIubMmaP3caU4Ozvjm2++UV3PnDkT586dk2xrZWWFokWLGi22Bg0aoHnz5kYZi4iyjwlAIjKYGTNmqP1CvGLFClHyL0PVqlWxe/duODs7q5adhIaGqiUABUHA1KlTVdcmJibYtm2b2i9BmZUtWxb79+9H48aNVX/07N69G+fPn1c7gS4qKkrtXerp06dLJv8A4LPPPsOCBQvQpEkTVdnx48dVCUDSv5CQENSvXx/Jyclq5ZcvX0adOnXQrl07tG7dGuXLl0eBAgUQFxeHqKgobNq0CU+fPpXsc/HixQY9ZMDQ5Db3B94/J/PnzzdaLO3bt1dLZmiKTalUqiXbDc3T0/OTSwAChntmHBwc9BpnXFyc6DCK4cOH63WMDHnpmWnXrp1BEoByM5OA97MDx48fr/cx5Tg7O39UCUBSV758efz444+YOHGiqG7NmjXYuXMnevTogS+//BIlSpRAcnIy7t27h0OHDmH37t2SS2SLFCmSrdmQL168gJWVFQ4cOCBK/mWoVKkSZs+ejQEDBqjKoqOjDZIA1PR8paamYvr06XofU46vr6/a776aYktOTlb73dnQxo4dywQgUR7GBCARGcSbN2+wceNG1XWzZs1Uy8Pk1KhRA507d1YtxY2MjIQgCKrTyo4ePYrr16+r2vft21c2+ZfBzs4OixcvVttvLDg4GCEhIarrhw8fqt2TOTkopX79+mjYsKHqF9yP+bTIj0GNGjWwfPlyDBgwQLS0TalU4tdff8Wvv/6qdX9Dhw5Fz5499R0mUZ6h72fG19dX61N9tXXr1i14eHiozbpq164d2rRpo9dxiChnfvjhB0RFRUn+rHjx4gWWLVuGZcuWadWXhYUFNm7cKLkFiybDhg3Lctn6h2/yyM2CJSIiwCS3AyCi/OngwYNqG60PHTpUq/sy//H3+vVrtY3lP1xWqO0+Mm5ubqhWrZpsP2Zm6u+FyC2jyGBubo4zZ87g3LlzOHfuHGbPnq1VHJRzXl5eWLp0qeh7lV2DBg3C4sWL9RQVUd6lr2fG29sbS5Ys0VNU7w97WrFiBZydnfHPP/+oyitVqoSwsDC9jUNEujE1NUVERAS+++47nfqxtrZGeHh4lm/YSunfv3+WbRwcHFT7MAPI8sA5IqJPGROARGQQmfd+MTExQdu2bbW6r1evXoiPj1d9ZN4MPnOfZcqUQZ06dbSOp0OHDqrPY2Ji1E6U+/Bk4AkTJiAiIoK/ROYxvr6+OHLkiOxSIE0KFy6MlStXIiQkBCYm/K+PPg26PDMODg4ICQnBypUr9fbMHDlyBPXq1YOvry/evHmjKq9RowaOHj0qe/I7EeUOKysr7N69GwEBAVrvh5hZvXr1cPr06Rxtk1K4cGFUr15dq7b8f52ISDtcAkz0kWncuLHkL2E2NjYGG7NAgQKiwzgAaPyj8sKFC6rPy5cvL7tZ9IfMzMxk92bLfHpjdk/RdXZ2Vru+evWqKrlYs2ZNNG7cGFFRUQCAxMREeHp64qeffkLHjh3RunVruLi4qL3DTLnjq6++wpUrV7Bx40aEhYXhxIkTSE9Pl21fvXp19OnTB0OGDIGdnZ0RI9Ve9erV4ebmJiovVqyY7D1lypSRvCc3fJiIL1++fJ6JTe6wiwyWlpaSsZYsWdJQIRldTp6Z3r17Y8iQIXrbJ/PGjRvw9/cXLSVUKBTw8vLC4sWLs/V/WH57Zj5kZmYmGWuRIkU03te0adM8c+jEx5bMrV+/vuR2Htoe3OXq6qqW1M7w4RuMHyOFQoFx48ahX79+WL58OTZt2oRbt27JtjczM0OrVq3Qv39/eHh45Dg5V7ZsWdUWMPpWt25dybg+++wz2XsqV66cZ36GfLgsulq1ankmtooVK2qs/+yzzyRjze7v9USUM3I/VfcAkJ3vbW5uLjoViogoszp16qhOdmzRogWOHDmiU39KpRLm5uZQKpUAgJEjR2ZrM+moqCi1gzs2b96M7t27q67v3LkDV1dX0X6AGaysrODi4oLmzZujc+fOqF27dpZj7t+/X23m4+3bt3kKsJ4lJibi0qVLuHPnDl69eoWUlBTY2dmhePHicHZ21pgQ0MXFixfVksoLFy7Uekk6fbouXbqEGzduqK6tra0l31wxJGM+M0lJSZg1axbmzZuHlJQUtbpatWph0aJF3CyeNMoLz0xes3fvXrx9+1Z1XaVKFXzxxRdGjSE2NhYXL15EbGwsXr16BXNzc9jZ2aFChQqoXbs2rK2tc9Rv27ZtsX//fgDvTwQ/evSoVvdZW1sjKSkJADBv3jz4+/vnaHwioo/NiRMn4OrqmlWzMQAWApwBSEQGkvn034IFC+rc3+vXr1XJv5z0+eG7upnjA96/y3/hwgVMmjQJoaGhqpOIMyQnJ+PkyZM4efIkfvrpJ1SuXBmDBg3CiBEjODMwF9nY2KBJkyZqyV2ivKp27dpavXlgSMZ6Zq5evYru3bvjypUrauUlS5bElClTMHDgQJiamho0Bvr45YVnJq/JCwlQJyenbB/okV1c1ktEpH/8yUpEBpF52UbmxF1OfZhky+4s5A8TelIb4xcpUgTBwcGIi4tDWFgYOnbsKPsu9o0bNzB27Fg0btwYsbGx2YqFiCg/Cw8PR/369dWSf/b29ggMDMTNmzcxePBgJv+IiIiIjIwJQCIyCAcHB9Xnr1690rk/Kysrtf15PpzBl5X4+Hi168zxfcjBwQF9+/bFzp07ER8fjxMnTuDnn3+Gm5sbLCws1NpeuHAB3bp144EhREQAwsLC0KtXLyQnJwN4/2ZQ7969ce3aNfj5+cHKyiqXIyQiIiL6NDEBSEQGkXkfqevXr2fr3hcvXqg+Mv6IBKC23OTq1avZ6vPD9o6OjlrdZ2lpiWbNmmHy5Mk4dOgQHj9+jLlz56rNDDx16hROnDiRrXiIiPKbs2fPwsfHRzXr29raGrt27cL69etRtGjRXI6OiIiI6NPGBCARGUSDBg1Unz9+/Bh37tzR6r67d+/CwcFB9bF161ZVnYuLi+rzixcvSp64J+fkyZOqz83NzdUOcHj58qUq4ZhVn3Z2dhg7diyWLFmiVn7q1CmtYyEiym+USiUGDx6sOuyjQIECiIyMRIcOHXI5MiIiIiICmAAkIgNp2rSp2vWmTZu0ui8yMlLtulq1aqrPM29an5SUhG3btmnVZ3x8PH799VfVtbOzs9oMPmdnZ1XC8csvv9SqT3d3d7Xrly9fanUfEVF+tHv3bly8eFF1PWXKFK1/nhIRERGR4TEBSEQG0aJFC5QqVUp1vXDhQjx//lzjPUqlEsuXL1ddFylSBHXq1FFdd+/eXe0wkJ9++glJSUlZxvLjjz+qtfPy8lKrzxzn1atX8eTJkyz7/PC1cHkbEX3KMr/JY2Njg++//z4XoyEiIiKiD4mPwSQi0gNTU1MMHz4c48aNA/A+YdatWzfs3btXdhP42bNn49KlS6rrbt26qZ3WW7RoUXTv3h1hYWEA3i8X7tWrFyIiIiRP9QWA0NBQteW6hQsXRp8+fdTafPXVV6olwunp6ZgwYQJWr14t+9qUSiWmTp2qVtasWTPZ9hnS0tKybENE9LERBEFt9naNGjXUTgDODoVCgbp16+orNCIiIiL6HyYAichgRo8ejc2bN6uWhf3++++oV68eZs+ejdatW6tO1L1z5w5mzZqllnSzsbHBpEmTRH3OnTsX+/btw9OnTwEAO3fuRMOGDTFjxgy0atVKlQi8evUq5s+fj7Vr16qd0LtkyRLY2tqq9dmrVy8EBAQgPT0dALBmzRq8ePECEyZMQN26dWFqagoASE5ORmRkJObNm6e251/9+vXRsGHDLL8ely5dQuXKlbP+whERfURu3bqFhIQE1fVff/2F+vXr56gvMzMzpKam6is0IiIiIvofJgCJyGAsLCwQHh6O5s2bIzY2FgAQHR0Nd3d3WFhYwNHREcnJyaIltwqFAqtXr0bx4sVFfRYtWhSbNm2Cu7s73r59CwD4+++/0bZtW1haWsLR0REvX77Eq1evRPeOHj0a3bt3F5VXq1YNI0aMwMKFC1VlO3fuxM6dO1GgQAEULVoUycnJePz4sehee3t7hIaGQqFQiOoyLy0GgD59+iA4OBgmJib44osvEBgYKPVlIyL6qNy8eTO3QyAiIiKiLHAPQCIyqCpVquDEiROoXbu2Wvm7d+/w4MEDUfLPxsYG69evh6enp2yfbm5uiIyMRJkyZdTKU1JScP/+fVHyz8rKCgEBAQgKCpLtMzAwEIMHDxaVJyUl4f79+5LJv2rVquH3339HzZo1JfusWrUqSpYsqRbfkSNHcOjQIdy7d082FiKij4nUz0ciIiIiyls4A5CIDK5ixYo4f/48Vq9ejdDQUPz5559qy3IBoFixYujWrRv8/f1RunTpLPv88ssv8e+//+KXX35BeHi42umTGRwdHdGhQ6jnQLYAACAASURBVAeMHz8e5cqV09ifqakpgoOD4enpiSVLliAyMhKJiYmidubm5mjYsCG8vLzQp08f1TJmKWZmZtizZw969+6N6OjoLF8TfTxKlSqF4OBg1XXmE6qJPjUuLi5qz4MuTEz43jTRp2rEiBHo2LEjAEiuApGzZMkS1T7LjRo1MkhsRET5gXjN2nt7AHwnd5O5uTnevXtnmIiIKN979uwZ7ty5gydPnqBgwYJwcnLSeW+8x48f4969e3j27BkKFSoER0dHVKhQIcd/TKanp+PmzZuIjY1FQkICbGxs8Pnnn6NKlSqyh5jIEQQBt2/fxt27d2Fubg5HR0eUKlUKNjY2OYqNiIiIiIiIPm0nTpyAq6trVs3GAFgIcAYgEeWCIkWKoEiRInrts1ixYihWrJje+jM1NUXVqlVRtWpVnftSKBSoWLEiKlasqIfIiIiIiIiIiLKH6yyIiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxs9wOgIiISFdRUVGYMWOGqLxDhw7w8fEx2LizZ8/GqVOnROULFixAlSpVDDYukaE8ffoU+/fvx4kTJ/Dw4UMolUqULVsWrq6u6NixI2xsbHI7RJ0sWrQIv/32m2Sdh4cHhgwZYpBxHz58iIEDB0KpVIrqihcvjjVr1sDU1BQA8PbtW/Tp0wcJCQmitgqFAsHBwShXrpxB4gwNDcWmTZsk6/r27Ys+ffqorg8fPow5c+ZItq1atSoWL15skBjT0tLQr18/PHnyRFRnZmaGNWvWwMnJSVU2duxYXLx4UbKv0aNHo127dgaJ86+//sKkSZMk6+rVq4eAgACDjEtERJRdewAIch/m5uYCERFRXrFjxw7J/6+GDx9u0HE9PDwkx42KijLouESG0qhRI9nf/4oWLSps3rw5t0PUydOnT4VixYpJvj5LS0vh6tWrBhnX3d1dckyFQiHs3btX1H7VqlWy34fmzZsLSqVS7zHevXtXsLW1lRyzQoUKwuvXr9Xap6enC66urrJxbty4Ue8xCoIgzJgxQ3bMqVOnitpfvXpVsLKykmzv6OgoPH/+XO8xJicnCzVq1JAc08rKSrh8+bLexyQiok/P8ePHZf9PzPQxOiPRxyXARERERAQAuH//vmzdkydP0KNHD0yYMMGIEelXkSJFEBwcLFmXkpKCgQMHIj09Xa9jrlu3Drt375as8/X1Rdu2bUXlAwcORKdOnSTvOXr0KFavXq3XGAVBwODBg/HmzRtRnZmZGTZs2ABbW1u1chMTE4SGhqJgwYKSfY4cORKPHz/Wa5zXrl2TnO0NAHXr1sXkyZNF5dWrV8fUqVMl74mLi4Ofn59eYwSAn3/+GVevXpWsmzNnDmrWrKn3MYmIiLLCBCARERERISUlBXFxcVm2CwgIQFBQkBEiMgx3d3f07t1bsu7MmTNYtmyZ3saKi4vDmDFjJOsqVKggu4QWAJYuXYrChQtL1vn5+eHhw4d6iREAgoODcejQIcm6iRMnolGjRpJ15cqVw9y5cyXrnj9/jlGjRuktRqVSCW9vbyQnJ4vqrKysEBYWBnNzc8l7x40bh2bNmknWrV27FgcOHNBbnJcuXZL9mrRs2RIjRozQ21hERETZwQQgEREREeHBgwcQBEGrtj/88AP+/PNPA0dkOEuWLEGpUqUk68aPH4/bt2/rZZxhw4YhPj5eVC43qy4zJycnLFmyRLIuISFBb/sVxsTEyM7qlJtVl5mPjw/atGkjWbdlyxbs2LFD5xiB93ur/vHHH5J1Wc2qMzExwdq1a2W/3j4+Pnj9+rXOMaalpWHAgAFITU0V1X322WdYs2YNFAqFzuMQERHlBBOARERERIT79+/D3NwcFStWRPPmzdGmTRtUrVpVsm1aWhpGjhypdcIwr9GUjHn79i0GDRqk82vTlPzSNKsus+7du8PT01Oybu/evbIHdmSHt7c3Xr58KSrPalZdBoVCgVWrVsHBwUGyftiwYXjx4oVOMd69exc//vijZJ22s+rKly+PWbNmSdY9ePAA48eP1yVEAMCsWbPw999/S9YtW7YMpUuX1nkMIiKinGICkIiIiIjQsGFDJCQk4ObNm/j999+xb98+/Pvvv7h69SqaNm0qav/XX38hIiIiFyLVDzc3N9lTwo8ePYo1a9bkuO9nz57JLn/VZlZdZkuXLoWjo6Nkna777IWGhsouf83OXnXFixfHwoULJet03WdPqVTCy8sLiYmJorrszqobPnw4vv32W8m6FStW4MSJEzmO899//8Xs2bMl6zp16oSePXvmuG8iIiJ9YAKQiIiIiFCwYEFYWVmJyqtXr47IyEg0btxYVDdv3jxjhGYwgYGBqFSpkmSdLvvsjRgxQjIxp+2suswKFy6MlStXStbpss9ebGysbGIuJ3vV9enTB126dJGs05RozMqyZctkE3PZnVWXMVvR3t5eVKcp0ZiV9PR09OvXT3J/wuLFi8t+/4iIiIyJCUAiIiIi0qhAgQIIDQ2FhYWFWvn58+dx8uTJXIpKdzY2Nli7di1MTU1Fda9evcrRPnu//fYbwsPDJevmzp2boxNg27dvjwEDBkjW5XSfPbmluXZ2djneq2758uUoVqyYZF1O9tm7f/8+Jk6cKFnXuXPnHM2qK1myJAIDAyXrNC011iQwMBBnz54VlSsUCqxcuVL2MBciIiJjYgKQiIiIiLJUpUoV9OjRQ1S+atWqXIhGf5o0aYLRo0dL1u3duxebN2/Wui9NSUM3NzcMHz48RzECQFBQEMqUKSNZl9199jZt2oSdO3dK1umyV12RIkUQHBwsWffgwQPZw0akCIKAwYMHSyYNixcvjpCQkBzFCAADBgxAp06dJOsWLFiA06dPa93XjRs3MH36dMm6oUOHom3btjmKkYiISN+YACQiIiIirUglsLZv346EhIRciEZ/Zs6cKTszb8SIEXjy5IlW/YwaNQoxMTGicjs7O6xevVqnE2ALFSokOzMvO/vsPXv2DGPGjJGs69y5s2SSNzvc3d3Ru3dvybrly5drvc/eqlWrEBkZKSrPWMar66y6FStWoGjRoqJypVIJb29vpKSkZNlHRtukpCRRXYUKFRAQEKBTjERERPrEBCARERERaaV+/fqiRFliYuJHfRgIAFhaWmLdunWSe/Npu8/e4cOHsW7dOsk6fZ0A26JFC9lZhNruszd06FDJhKaus+oyW7JkCUqVKiUq13afvUePHmHcuHGSdUOHDkWbNm10jrFo0aJYsWKFZJ2mAz0y++WXXySXwJuZmWHjxo2wtbXVOU4iIiJ9YQKQiIiIiLTWq1cvUVloaGguRKJfzs7OsktUw8PDZZfMAkBCQgIGDhwIQRBEdfqYVZdZQEAAKleuLFmX1T57e/bswdatW0Xl+ppVl0HT6bx3796VXTKbYejQoZJLmvU9q65Tp07w9PSUrJs5cyYuXLgge++9e/cwZcoUybpJkyahYcOGeomRiIhIX5gAJCIiIiKtSc2+On36NK5du5YL0ejXlClT4OLiIlmnaZ+9H374AQ8ePBCVG+IEWGtra4SFhUkeXKJpn734+Hj4+PhI1g0bNkwvs+oyc3Nzkx1v/vz5svvsrV+/Hrt37xaVG2pW3YoVK1CyZElReVpaGgYMGIDU1FRRXcb+hG/evBHV1a1bF5MmTdJrjERERPrABCARERERaU1qXzYAWLt2rXEDMQAzMzOEhYXByspKVBcbGwt/f39R+dGjRyWXzmbMqnNwcNB7nI0aNcIPP/wgWSe3z96oUaMQFxcnKq9QoYJWy11zIjAwEJUqVRKVZ+ydl5ycrFb+9OlT2b0MDTWrTtP+jBcvXsSCBQtE5cHBwTh06JCo3MrKSnYpORERUW5jApCIiIiItCaX6AsLC0NaWppxgzGAatWqyS5RXbNmDQ4ePKi6fvv2LQYNGiS59NcQs+oy+/HHH/HFF1+IyqUOpti3bx82bNggamvovepsbGywdu1aydmKUvvs+fr64unTp6K2hp5V980332DAgAGSddOmTUN0dLTqOiYmRnaW5dy5c1GjRg2DxEhERKQrJgCJiIiISCtnzpxRS4ZkFhcXJzs78GPj7++Pr776SrIu8z57EyZMwO3bt0VtDDmrLoOFhQXWrVsHCwsLUd3Nmzcxbdo0AO/3JxwyZIhkH8bYq65JkyYYPXq0ZN2sWbNU++xFRERg+/btojbGmlW3cOFCVKhQQVSekpICb29vKJVKAIC3tzdevnwpaufm5iZ7QAsREVFewAQgEREREWklq8M+8sNhIABgYmKCtWvXSs6Mu3//PiZOnIioqCgsXbpUVG/ME2Br166NqVOnStZl7LPn5+eH//77T1RvzL3qZs6cKTo9Gvj/ffbi4uIwcuRIyXvnzZtnlFl1tra2WLt2LUxMxH8eZXyv5U5a1rSMmIiIKK9gApCIiIiIspSUlISIiAiNbfbs2YNnz54ZKSLDKleuHObMmSNZt2zZMnTt2hXp6emiOmOfADtu3DjJ8ZRKJTw9PbF69WpRnbW1NTZu3Gi0veosLS0RGhoKMzMzUd3FixfRoEEDPH78WFTXqlUrDBs2zBghAgCaNm0qO4tv4sSJsvsTLl26FKVLlzZkaERERDpjApCIiIiIsrR9+3bR0scPZ0u9e/cOmzZtMmZYBuXr64vWrVuLypVKJWJiYkTluXECbMbBJQUKFBDVPXz4UHJ/wrlz56Jq1arGCE+lfv36sl8bqRmKuTWrbs6cOahevbqo/M2bN5KnQHfu3Bk9e/Y0RmhEREQ6Eb8NR0RElE/s3LkTly9fNlj/V69eNVjfRHnNmjVrRGXDhw/H0qVL1WbCrV27VnY558cm4yTfWrVqSSZ/MsvNE2CrVKmCWbNmYcyYMVm2dXNzw9ChQ40QldjkyZOxb98+nD17Nsu2y5cvR6lSpYwQlbqM72Pjxo2RmpqqsW3x4sWxcuVKI0VGRESkGyYAiYgo34qJiZGcpUNE2XPv3j0cP35crUyhUGD06NG4cuUKfv/9d1X5hQsXcPHiRdSpU8fYYRpEiRIlEBQUBC8vL43tjLVXnZyRI0diz549OHr0qGwbOzs7rFmzJtf2qsuYrVi3bl0kJyfLtvPw8ED37t2NGJm6evXqYezYsZg1a5Zsm4zksIODgxEjIyIiyjkuASYiIiIijUJDQ1WnoGZo2LAhypUrB09PT1H7tWvXGiky4+jXrx++/fZb2fpmzZoZda86KSYmJlizZo3GGYhBQUG5Mqsus2rVqmHixImy9YULF0ZISIgRI5I2bdo0VK5cWbZ+wIABaNOmjREjIiIi0g0TgEREREQkSxAEbNiwQVTeo0cPAEDXrl1hYWGhVrdhwwakpKQYJT5jePbsGS5duiRbf/ny5Twx2/jYsWMal60ePnzYiNFIUyqVajNGPxQfH4+//vrLiBFJu3XrFh48eCBb/8cffyApKcmIEREREemGS4CJiIiIcuCLL77Icl84Q/jqq6+wceNGo4135MgR3LlzR63MxMQEXbp0AQDY29vDzc0N+/btU9U/f/4ce/fuRefOnY0WpyH5+voiLi5Otv7ly5cYMGAADh48mGvLax8+fIjvv/9eY5uNGzeiQ4cO6Natm5GiEgsKCsKxY8dk6wVBgLe3Ny5fvgx7e3vjBZZJamoq+vXrp3GZ8rVr1zBhwgQsXLjQiJERERHlHBOARESUbzVt2hSdOnUyWP9hYWH4559/DNY/5W0xMTGIj483+rhPnjwx6nihoaGisubNm6N48eKq6+7du6slADPuyw8JwLCwMGzbti3LdocOHUJwcDCGDBlihKjUKZVK9O3bV6uE9JAhQ9CkSROULFnSCJGpi46OxpQpU7JsFxMTg5EjR2L9+vVGiEps2rRpOHfuXJbtfvnlF7Ru3VrypGgiIqK8hglAIiLKt+rUqZPljBhdnD59mglAytdevXqFXbt2icozlv9m6NixIwoUKKC2JPLAgQOIjY2Fk5OTweM0lIcPH2p1sm4GPz8/tGjRQuPecYawcOFCjYd/ZPbixQsMHDgQBw4cMOpsxbS0NPTr10/rZbMbNmzAd999Z/TZilFRUZg7d65WbfPCbEUiIiJtcQ9AIiIiIpK0efNmvH37Vq3MwsJCNLO2YMGCaNu2rVpZWlqa5N6BHwulUol+/fpJzqpzcXGBs7OzqPzt27fo378/0tPTjREigPez6iZNmiRZ5+3tDRMT8a/7kZGRWLlypaFDU/Pjjz9Kzqqzt7dH165dJe8ZNmyYxqXX+paYmIi+fftKfv/c3d1RrFgxUXlMTAxGjRpljPCIiIh0whmARERERDkwbNgwJCYmGn3cKlWqGG0sqeW/rVu3hoODg6i8e/fu2L59u1rZ6tWrMXbsWIPFZ0iLFi2SPKzCwsICa9asQXp6OlxcXESHbpw+fRpz5szReNKtvqSlpcHLy0tyrzpXV1eEhITA1tZWcp+677//Hs2bN0elSpUMHmdUVBQCAgIk64KCgtCpUyecOXMG//33n1rds2fP0K9fP6PNVvTz88OtW7dE5UWKFEFISAjOnDkDd3d3Uf369evRvn37XN1bkYiIKKf2ABDkPszNzQUiIqK8YseOHZL/Xw0fPtyg43p4eEiOGxUVZdBx9eGnn34SypcvL5QvX15o3LhxbodDedCVK1ck/31v3rxZsn1SUpJQqFAhUfszZ84YJL6EhAQhPj5eSExM1Hvf0dHRQoECBSRf/88//6xqN2nSJNnflc+ePav3uD40efJkyfGtra2FmzdvCoIgCImJiULFihUl2zVu3FhIS0szaIyJiYlC5cqVJcd3c3MTlEqlIAiCsG/fPtm/PYKDgw0aoyAIQmRkpKBQKCTHj4iIULXr0qWLZJsiRYoIsbGxBo+TiIgow/Hjx2X/78z0MToj0cclwERERJ+g58+f486dO7hz5w4ePHiQ2+FQHiQ1+8/a2hrt27eXbG9lZYUOHTpo1Y+ukpOTUapUKTg4OGD06NFZ35ANmvaqq127NsaNG6e6njJlCmrUqCFqp80psro6f/485syZI1k3c+ZMVKxYEcD779nKlSslZ9BFRUVh3rx5BosRAPz9/XHjxg1ReaFChbB69WpVXG3atEHfvn0l+/j+++9x8+ZNg8WYcYqzIAiiug4dOqgtUV6+fDk+//xzUbtnz57By8tLsg8iIqK8gAlAIiIiIlKTlpaGjRs3isrd3d1ha2sre5+np6eoLDw8XLSPoK5+/fVXvHr1Sq99Zvjpp59w9uxZUbmZmRlWr14Nc3NzVZmlpSVWr14NU1NTUXttT7zNibdv36Jnz56i5ccA0KhRI4wYMUKt7Ouvv8bgwYMl+5o6dSrOnz9vkDgPHTqEFStWSNbNmzcPpUuXVitbtGgRSpQoIWqbmJgILy8vg+2tOGTIEDx8+FBUXrhwYYSEhKiVFSlSBAsWLJDs5+DBg1i1apVBYiQiItIVE4BEREREpOa3336TPHzhw9N/P/Ttt9+icOHCamVyJwnrIiwsTK/9ZTh//rzsXnUTJkxAvXr1ROUNGzaUPQRiwYIFOHbsmD5DBACMHTtWcladpoTk3LlzRQk34P1sxb59++p9tuLLly8xcOBAyRlxzZs3x6BBg0TldnZ2WLZsmWR/p0+fRmBgoF5jBIBNmzZhy5YtknWLFi2SPPijd+/eknsBAsCYMWMMOluRiIgop5gAJCIi+gR99913CAgIQEBAgFEOK6CPi9SyXXt7e3zzzTca7zM3N0fnzp216i+n9uzZg7179+qtvwxv375Fr169JGfVVatWTeNz8vPPP6uW3GamVCrRv39/JCQk6C3OQ4cOYfny5ZJ106dPR/Xq1SXrChUqJDsbLzo6GlOnTtVbjMD7WXUfHuoBaF6SDLxfctulSxfJuqlTp+LSpUt6izEmJkY0WzJDu3bt0KtXL9l7ly1bBjs7O1G5oWcrEhER5RQTgERERJ+gli1bYty4cRg3bhyGDh2a2+FQHvL48WPs379fVO7h4QFLS8ss75daBvz777/j/v37OsX1+vVrzJ8/X7J/ffjhhx9w/fp1UbmpqSnCwsJgZWUle6+1tTVWrVolmdS6d+8exowZo5cYNc2qc3Z2xvfff6/xfk377M2fPx/Hjx/XS5ybN2+WnVUXEBCAChUqaLxfbp+9d+/eoWfPnnqZrSgIAgYNGoT4+HhR3WeffSabLM1QvHhx2T0YDTVbkYiISBdMABIRERHlQNGiRWFqamr0j9atWxv0da1fv15yFlxWy38zNG/eHMWLF1crUyqVWLduXbbiuH37NlasWIHhw4ejefPmKFq0KPz9/Q1ysMbhw4dll576+fnBxcUlyz5cXV3h4+MjWbdmzRps375dpxgBwNfXV3JWnYWFBcLCwtT2J5Qjt8+evmYrPnr0CMOHD5esa9y4MYYNG5ZlH5r22YuOjsa0adN0ihEAli5dKpnoBt4v3S5ZsmSWfQwaNAitWrWSrJs2bZpeZysSERHpiglAIiKiPEgqAaNJenr6R7/kLLuvWVvp6ekGOZkzPT0dSqXS6B+G/j5LJeocHR3h6uqq1f0mJibw8PAQlYeGhmbr+xAeHg5fX18sXboUx44dM9iJuppOgK1cuTJ+/PFHrfuaM2eO5D57wPvk3ePHj3MaJnbs2IHw8HDJukmTJqFWrVpa9aNpn727d+/Cz88vxzEKggBvb2/JWXUZ+xOamGj354emffYCAwN1mq14+/ZtTJgwQbKuRYsW6N+/v1b9KBQKhISESB6Mk5KSorfZikRERPrABCAREZERxcbGIiQkBCEhIWqJloSEBCxcuBAuLi6ws7ODhYUFbG1t4ezsjDlz5uD169dq/QiCgPDwcHz33XcoWrQozM3NYWZmhmLFiqFz5844fPiwxjjOnj2riuPD015fvnypqgsJCcFvv/2m1Wt7/vy52n2HDh3S2P7ChQsYO3YsatWqhUKFCsHCwgLW1tYoX748+vbti927d0OpVGrs4/Xr12pjpqWlqeq2b9+OBg0awNbWFhYWFvjjjz+0eh2fsj///BOXL18WlXt6ekoeLCGne/fuorK7d+/ixIkTOsVnCEOHDpWcVWdiYoJVq1ahQIECWvdVqFAhrFmzRnIp8NOnT2VnCGbl0aNHsqf4fvHFFxg/fny2+uvQoQO6du0qWbdq1Srs2LEj2zEC7/fFk5tVN3PmTFSrVi3b/dnb24vKM2YrfvhzURtpaWno1asX3rx5I6qzsbHRuD+hlLJly2LGjBmSddHR0dlKIBMREeWGPQAEuQ9zc3OBiIgor9ixY4fk/1fDhw836LgeHh6S40ZFRcnec/z4cVW7woULC4IgCGfPnhXKly8v+/8uAKF69erC7du3BUEQhJiYGKFly5Ya2wMQxowZIxvHxIkTVe1KlCghqu/UqZOq3tTUVONrytCzZ0/VPWZmZsKff/4p2e7JkydC3759BYVCkeVraNCggfDPP//Ijnnnzh219m/evBGUSqXg4+Mj6uvYsWNZvobscHBwyDJ+Q3y4ubnp9XVkJvV1AyCcOXMmW/0olUqhbNmyon769eundR/R0dFCRESE6GPz5s1qfQ4aNCibr/L/bd++XfbrPHr06Bz3269fP9l+165dm62+lEql0LZtW8m+zMzMhHPnzuUoxqdPnwqff/65ZL+ff/65EBcXl63+bt26Jdja2kr217BhQyEtLS1HcYaEhMh+Lb29vbPd3/Tp02X7W7ZsWY5iTE9PF5o2bSrZp4mJid5/9hAREQmC+t8VGj5G43/MQERERLnm0qVLaN68udpsFDMzM7WZbMD7mSRdunTBnj170KpVK1y7dk1jewAICgpC7dq10a9fv2zHtWLFCpw6dQpPnz5Feno6+vfvjwsXLsgehLB7925s2rRJdT158mQ0aNBA1O7hw4ei+DX566+/0KxZMxw7dgx16tTR6h5/f38EBwdr1VYXM2bMQFJSksHH+VCZMmUM0m9SUpLkwQ3ly5eX/F5qolAo0K1bN8ydO1etfNu2bVi8eDEKFiyYZR/VqlWTnDGWlpam9X6EmmiaVVe2bFn8/PPPOe570aJFOHz4MGJiYkR1I0eOxNdff63193H58uXYt2+fZN24ceNQr169HMWYsc9enz59RHUZsxV37dqlVV9paWno3bu35Ky6jKW/2ZlBmpm3tze2bduGyMhIUd2qVavg7u6O9u3ba9XXhQsXZGfrubq6YsiQITmKMWO2qLOzs+hnQsZsxUuXLmn1756IiMjYOAOQiIg+Gh/rDEAbGxuhdOnSAgChUqVKQnh4uJCQkCAIgiA8ePBAGDdunGBiYqLWd8GCBVWzSoYMGSJcvnxZSE9PF1JSUoR9+/YJ1apVU2tftWpVyTiymgEoCOLZUT/88INku+fPnwtOTk5qs31SU1NF7ZKSkoTq1aur9enk5CTMmDFDOHXqlHDz5k3h1KlTwowZM4TixYuL2r148ULU54czALdv3642s9DJyUlo3bq10L9/f+H69euy3xcShA0bNkj+e54wYUKO+vv7778l+1u5cqVOYNOy9gAAIABJREFUcaampuo8A1DTrDqFQiFERkbqFKMgCMKePXtkf5du1qyZkJ6enmUft2/flp1VV7VqVSEpKUnnON3d3WXjDAsL06qPn3/+WbaPmTNn6hzj3bt3Zb8O2s5WTE5OFmrWrCnZh7W1tXDz5k2d45w9e7bs10GXmapERERSsjsDUA4TgERE9NH4WBOAGR+NGjUSXr16Jdl+xowZkgmKDRs2SLZ/8uSJUKxYMbX2MTExonbaJAAFQRB69eqlamdqaiq5rLdPnz5qSU25RJu/v79aXO7u7sLr168l2yYkJAjfffedWns/Pz9Ruw8TgBlLGuvUqSMcPXpUUCqVsq+N1MktK7906VKO+6xSpYqovxIlSghnzpwR4uLihPDwcGHLli3Z6lMfCcBly5bJ/p7r6+ub7f7kdOvWTXacBQsWaLw3PT1daNasmeS9JiYmwqlTp/QSY0xMjGBvby85zmeffSbcu3dP4/1///23YGFhIXl/7dq1hXfv3uklzoULF8p+Ld3d3bO8f/To0bL3BwUF6SXG1NRUoX79+rLj/Prrr3oZh4iISBCYACQiok/Qx5wAtLGxEf777z/Z9omJiYK1tbXaPUOHDtUY14d7XEkl7bRNAMbHxwslSpRQta1evbqQnJysqv9wlpPcHlpPnjwRLC0tVe0aNmwopKSkaHwdKSkpan9MW1lZqWZIZvgwAZjR99u3bzX2Teru3r0rmm0KQKhRo4ZO/Wraby3jo2nTptnqU9cE4O3bt1UzaT/8KF26tOjfmC6ePn0qFC1aVHIsS0tLjftbSiX/Mz78/f31FqMgaN5nT9NsxeTkZKFWrVqS95mZmQnnz5/XW4ya9tkDIKxbt0723hMnTkj++wbevwGT0/0JpVy6dEk2IVq0aFHh8ePHehuLiIg+bdlNAPIUYCIiolzUu3dvlCxZUrbe2toaNWvWVF0rFIosT/xs1KiR2rUu+9TZ29tj1apVqlMxo6OjMX36dADAixcv1PbMatOmjeweWqtWrUJKSorqNSxZsgQWFhYax7awsMAvv/yiuk5OTsavv/6q8R6FQoGVK1dm6+RWAtauXSt54nLPnj116rdfv34wMdH862ZUVBTi4+N1GkdbSqUSXl5esqfHBgcH63Wftox99qSkpKSgX79+ePfunajuwoUL+OmnnyTvq1y5smxdTnl7e+Obb76RrDt58qTac5jZhAkTJE+NBoBJkyahbt26eosxq1OZR4wYgfv374vKX716hT59+kj++9Z1f0Ipmk5lfvLkSY5PgiYiItIVE4BERES5yM3NLcs2n332merzypUro1SpUlq314fWrVtj0KBBqut58+bh3LlzGDNmDB49egTgfaJj9erVqkThh/bu3av6vG7duqhfv75WYzdu3FjtIIj9+/drbN+oUSPUqlVLq77pPaVSibCwMFG5QqGAp6enTn2XKVMGHh4eGtukp6fj8OHDOo2jrdmzZ+PkyZOSdQMGDEDr1q31PmavXr3QsWNHyTqpQyk0JQZNTEwMkuBWKBQIDg6Gra2tZP348eNx5coVtbJTp05h0aJFku2rVauGCRMm6DVGAKhSpQqmTp0qWSeX6Bs5cqRkYhAApk+fjurVq+s9zkmTJsn+HNq1axfWr1+v9zGJiIiywgQgERFRLnJycsqyTeakWvHixbPVXl8CAwNRrlw5AO9P/HR3d1dLGq1YsUL2taSkpOD8+fOqa22Snpk1adJE9bncbKMMX375Zbb6JuDYsWO4d++eqNzFxQUVKlTQuf/58+ejUKFCGttk9X3Vh4sXL8rOnHNyckJgYKDBxl62bBns7e0l62bPno0zZ86oridOnCj79Rg2bBi++uorg8RYtmxZzJw5U7IuJSUFffv2VSUlExIS0Lt3b8lZdWZmZggLC4OlpaVB4vT395d9A+HkyZNYvHix6nr37t1Yt26dZFtnZ2d8//33BonRwsICYWFhMDMzk6wfMWIEHjx4YJCxiYiI5Ej/r0RERPQRqVGjhuQfrtrOMsupXr16SS5xK126tNZ9yP2BqK/2+lKwYEGEhoaiRYsWUCqVqpl/wPtlnppmed25cwfJycmq6+Tk5GzN+EpMTFR9fu3aNaSnp8su2StbtqzW/dJ7JiYmCAgIEJU3bNhQL/2XKlUKR44cgbe3Ny5duqQqt7e3R5cuXeDj44N69erpZSxN7t27J5sA/Oqrr2QTdPrg5OSErVu34ty5c5L1Dx8+BPB+ub6jo6Pk90OhUGDo0KEGixEAhg8fDkEQ1J7XzO7evYsqVargxo0b8PX1lWxTvnx5uLi4GCxGMzMzrF+/Hrt375asVygUUCqVMDExwfPnzyW/lgDQsWNHmJubGyxOZ2dnbNq0CXfu3JGsv3XrVrb+ryAiItIVE4BERPTRq1y5MiZOnGj0cTt16oROnToZfdzc4urqilGjRiEoKEhVVqZMGdn9wTJ8uL/bokWLZJcOZiUlJQUJCQmyyRp9L3/+FHz99df4+uuvDTpG/fr1cfHiRdy/fx9PnjyBnZ0dKlSokOX+gPoktwzXWFq2bImWLVtqbFOgQAGMHTvWSBGJmZiYYNSoUVm2q1+/vsHfYNGkatWqqFq1apbtBgwYYIRo5HXt2jVXxyciIsqMCUAiIiLSWp06ddSuBUHI8p5Xr17pNYbXr1/LJgANteyQ9KNMmTIoU6ZMbodBRERE9MlhApCIiIi08vDhQ9HsoAcPHsDf3x8hISGy91lbW6tdd+nSRae95XjCLxERERFR9jABSERERFkSBAH9+/fHy5cvAQCmpqZIT08HAKxatQpdunTBN998I3nvh7P1OnXqhJ49exo2YCIiIiIiUuEpwERERJSlxYsXqw7uMDExwa5du1Qb2AuCgEGDBiEhIUHy3tKlS6udTHzz5k3DB0xERERERCpMABIREZFG//77L8aPH6+69vX1Rfv27REcHKwqy1gKLMXe3l5tw/5jx45la/yIiAiEhIQgJCQER44cyV7wRERERETEBCARERHJS01NRZ8+fZCUlAQAKFeuHAICAgAArVu3Rt++fVVtV61ahcjISMl+mjdvrvr8+PHjuHHjhlbj//PPP+jevTt8fHzg4+ODs2fP5vSlEBERERF9spgAJCIiIlk///wzzp8/DwBQKBRYtWoVbG1tVfVBQUFwdHQEoHkpsI+Pj+pzQRAwfPjwLE8QFgQBkydPVrVTKBTo2LGjzq+JiIiIiOhTwwQgERERSTpz5gxmz56tuvbx8UGLFi3U2jg4OGDJkiWq6wcPHsDPz0/U1xdffIG2bduqrg8dOoSBAwciJSVFcmylUolx48bh119/VZW1a9dObSkxERERERFphwlAIiIiEklMTETfvn2RlpYGAChTpgzmzp0r2dbDwwMeHh6q69WrV+PgwYOidsHBwbCzs1Ndh4aGolatWli4cCEuXLiAmJgYnDt3DqGhoWjUqBHmzZunaluwYEH88ssv+np5RERERESfFLPcDoCIiIjyHn9/f9VpvQqFAsHBwShYsKBs++XLl+P48eN49uwZBEHAwIEDcfnyZdjb26valCxZEgcOHEDbtm0RHx8P4P2JwGPGjNEYS4ECBbB9+3aUK1dOD6+MiIiIiOjTwxmAREREpObAgQNqJ/wOHDgQ3377rcZ7Pv/8cwQGBqquY2JiMHbsWFG7hg0b4tixY2jUqJFWsdSsWRMnT55Eq1attIyeiIiIiIg+pJAp3wPgO7mbzM3N8e7dO8NERERElI8lJyfj0aNHqusSJUrA0tJS4z2xsbGqU3gLFCgAJycnje1TUlIQExOjui5evDisrKzU2sTHx+Ply5cAADMzM5QuXVpV9/jxYyQmJmq8X86dO3dUnysUCtlZe4IgYM+ePdi2bRt+//13xMXFQalUAgAcHR3x5ZdfomfPnnB3d4epqanseGlpaXjw4IHqulixYrCxsdEqVvo4CYKAu3fvqq4LFiyIzz//PBcjIiIiIjK+EydOwNXVNatmYwAsBJgAJCIiojwgPT0dCQkJsLGxgYWFRW6HQ0RERESUp2U3Acg9AImIiCjXmZqaqu0XSERERERE+sM9AImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiI6P/Yu+/wqqr8/fv3SSMhCYTQO6H3IhAggICANBEQFSkqoAKjYhnRGR2/OmMZdXQGHR0dBFEUG1jo0iII0pv03gJJgCQESG9nP3/4g4dw9k5ySgpn3q/rynXBWnt/9jol7c7aawHwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIv5SbJJDfvmb75QVcqzPMkw/LR69YbiHRkAAAAAAAAAB3v3HpAUZNKTIynXodUmdfSXLmUX98AAAAAAAAAAFKcESVeu/udpSe9K3AIMAAAAAAAAeDUCQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBifpY9Pj5Si7olOBQAAAAAAAAAhYq/KF1MKfLh1gGgr490z62eGBIAAAAAAAAAT/lpm7TlUJEP5xZgAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXsyvtAcAAABcE+Drq+ZVqqhhpUoKDQhQaLlyCg0IUHJmpi79v4/zqanan5CgXLu9tIcLAAAAoJQQAAIAcJPw9/HRrfXr685mzdS3YUM1rVxZ/j6FT+bPyM3Vzvh4bY2N1aLDh7Xu9GnZDaMERoyy5tU+fdSsShWH9rHff6+cUg6J21avrhdvvdWh/cs9e7Tw8OFSGBEAAID3IAAEAKCMq1K+vB7r3FmPRUaqavnyTp8f5Oen7nXrqnvdunq6a1edunRJ/9q0SR/v2KGsvLxiGDHKqtsiIhRVt65D+/0//FAKo8mvenCw7mnZ0qF9R1wcASAAAICbCAABACij/H189Gz37vpLz54q7+/vsboNwsL070GD9ESXLvrD0qVafeKEx2oDAAAAKHvYBAQAgDKoTbVq2jl5sl6/7TaPhn/XaxwerhXjxumvvXvLVixXAAAAAFAWMAMQAIAyZmjTpvpy5EiFBgQU+7V8bDa93KuXaoSE6A9LloiVAQEAAADvQwAIAEAZcl/r1vryrrvkYyt4Tt651FT9dOyYfo2J0f4LF5SQnq5LmZkKDQhQhXLlFB4UpHY1aqhjzZrq36iRaoaEFFhvcseOupCWppfWrPHkwwEAAABQBhAAAgBQRgxu0kSfjxhRYPi3Mz5er61bp8VHjijXZNfWixkZ1/79y+nTkiQ/Hx8NadJEf+7RQ13r1LGs/WLPntoQE6MVx4+78SgAAAAAlDUEgAAAlAERYWH6auRI+fuYL8+bnpOjp1es0KydO2U3nLtRN9du18LDh7X4yBE91rmz/tG/vwL9HH8EsNlsmnXnnWr+wQdKy8lx6XGgbPto+3YtMtlR1yxMBgAAgPcgAAQAoJT5+fjom7vvVsVy5Uz7Y1NSNHDuXO27cMGt69gNQ+9v3aojSUlacN99piFgnQoVNC0qSn/75Re3roWyae6ePaU9BAAAAJQCdgEGAKCUPdq5syJr1zbti09NVY/Zs90O/6634vhxPbhggWX/Hzp3VoCvr8euBwAAAKB0EQACAFCKqpYvr7/17m3al5WXpzu//lqnLl3y+HXn7d+vefv3m/ZVDw7W3S1bevyaAAAAAEoHASAAAKXoiS5dFBYYaNr3l+hobY+LK7ZrP7tqleXab4927lxs1wUAAABQsggAAQAoJaEBAXosMtK0b++FC3p38+ZivX7M5cv68dAh076oOnVUpXz5Yr0+AAAAgJLBJiAAAJSSe1q1UiWL2X8vREcrz8ndfl3x6a5dusfkdl+bzaZe9evr+4MH3aofEhCgnvXqqVvdumoSHq7aFSqovL+/JCkzN1fxKSk6npysLWfPan1MjBLT0926nis61Kih/o0aqU21aqpToYJCy5WT3TCUnJGh82lp2h4Xp19jYrQzPt7j17ZJalG1qjrXqqXI2rVVMzRUYYGBqlCunHLtdl3OzNTFjAztT0jQ9rg4bTpzRpezsjw+Dk8ICQhQ7wYN1L1uXTWrUkU1Q0Lk7+sru2EoIS1NRy9e1NbYWK06flwJJfw6+9hsale9uno3aKCWVauqfliYwoOCJEk5eXlKysjQsYsXtfvcOa09dUoni+G2+4I0q1xZY9q0UZf/F7yn5+TozOXLGvvDDyU6DgAA4L0IAAEAKCUPtmtn2n4oMVFLjxwpkTH8cvq0MnNzTXcE7t2ggcsBYMeaNfV0t24a0bz5tcCvMLl2u1adOKEPt23T0iNH5Er82adBA719++352gzDUOeZM/O12SSNbdtWL/TsqRZVqhRY8/62bSVJ+y5c0L+3bNHsXbvcDmerBwdrYocOmtChg5qEhxf5vMzcXH1/8KA+3LZNG8+ccfq60wcMUM/69R3aoz75RNl5eU7Xk6Qm4eH6U48euq91awUX4bXOtdu18PBhvbF+vXYUQ6h6vUqBgXo8MlITO3RQg7CwIp+3PS5OM3bs0JzfflOOxW3yBRndurWeiYrK1xafkqKhX3+dr61yUJCmDxyocW3ayGaz5evLyM11+roAAABWCAABACgF1YKD1aNePdO+WTt3uhR+uSI9J0d/++UXRZiEI2evXHG6Xo2QEL03cKDuadnSIdAojJ+PjwY1bqxBjRtra2ysHlm8WHvOn3eqRqWgIHWsWTNfm3FDWFenQgXNGT5ct0VEOFW7dbVq+njoUI1v3173//ijTiQnO3W+9PtMtD906qS/9+2rCuXKOX1+oJ+fxrZpozGtW2vWrl16duVKp2YENg4Pd3h+pN8DUVfG8tptt+nJLl3k51P0VWX8fHw0skULjWjeXP/dvl3PrFypTA+HXT42m6ZGRupvffqoogvPc6datdSpVi39qXt3PbJ4sdaeOuXU+dVDQhye59M33FLfokoVLRkzRg0rVXJ6fAAAAM4iAAQAoBTc3qiRfEwCMsMw9N2BAyU6ljd//dUjdW6tX1/f3Xuvqnpg7cDI2rW17ZFH9NiyZZq1c6cHRve7llWravm4capboYLLNaLq1tW6CRN066efOhUCBvn56ftRozSocWOXr32VzWbTI7fcoq516qj3Z5/pYkaG2zWdUTs0VIvHjFGHGjVcruFjs+nRzp3VuXZtDZw712NjqxwUpHn33ON0wGumcXi4oh94QC9ER+utDRs8MLr/v+6a8eNVPTjYYzUBAAAKwiYgAACUgltNbsOUpIOJiTp9+XIJj8Z9gxo31qr77/dI+HdVgK+vZg4dqj917+6RevUqVtTqBx5wK/y7qnZoqJaMGaMAX98iHR/g66slY8Z4JPy7Xptq1fTT2LHyd2IGnrtqh4bq14kT3Qr/rte5Vi2tvP9+BRXxVvGC1AwJ0caHHvJI+HeVj82mN/v109969/ZIvdCAAC0bO5bwDwAAlChmAAIAUAraVq9u2v7L6dMlPBL33VKzpr4fNarAMCzXbtfPJ09qz/nzOnvlivIMQ9WDg9WsShUNatxYIQEBlue+2a+f4lNT9fnu3S6PMcjPT4tHj1bNkJB87ScvXdK8/fv1y6lTOnvlitJychQWGKg21appSNOmGtG8ueXtrS2qVNGTXbro7Y0bC73+8z16FBhKZeflad3p09oRH6+4lBRl5uYqwNdXtUJD1alWLfVu0MAy5IusXVuPRUYW+67RklTe31/Lxo4tdD29K1lZWn3ihGIuX9b5tDRVDgpS3YoV1TciwnR36Y41a+rNfv3cGltoQIBW3H+/mlaubHlMrt2u9TEx2hobq3OpqcrOy1O14GA1q1xZg5o0KfB24Zd69dKRpCR9uXevW+P896BBTq37CAAA4AkEgAAAlDAfm02tq1Uz7SuOnWaLU0hAgL67914FmWwiIv0ebL3566/6z7ZtupCWZnpMeX9/jW7dWm/262caDknSh0OGaMvZszqclOTSON/o1y9f6JqcmakXoqP18Y4dspts6LEzPl5zdu9Wk/BwfTlypDrXqmVa99HOnfXOxo0FrtkYERam53v2NO3LysvT2xs2aPrmzQXexlstOFiv3XabHrnlFtP+l3r10ozt24t944h3Bw60DK8lKebyZb0QHa0fDh40HUuAr6+GNGmif/Tvr8Y3hGCFbcZSmFl33qk2Fp9XaTk5+temTZq+aZOSMzNNjwnw9dXdLVvqjb59Va9iRdNj/jNkiNaeOqXYlBSXxnhvq1Ya3769Q3t8aqp+OnpUu8+f1+HERCWmp+uSxTgBAABcQQAIAEAJa1SpkuVuqQcSEkp4NO55qVcv0w1EpN9n19359dfad+FCgTXSc3L0ya5dWnzkiL4eOdJ0plywv7/eHzxYt3/xhdNjtNlseiIy8tr/z165otvmzNHRixcLPffoxYvq/dlnWjt+vGkI2CAsTO1q1NBv585Z1ri/XTuVM5kdmZGbqwFffKH1MTGFjuNCWpomLV6sM5cv65U+fRz6KwUG6raICC09erTQWq7qXreuHu7QwbL/iz179PiyZbpSwKYk2Xl5+vHQIa08flwfDB5sGoa5YmSLFrq3VSvTvgMJCbrjq6908tKlAmtk5+Xpq717teDQIX06bJhpvYrlyumNfv30wI8/Oj3GiuXK6b933JGvbd+FC3p21SqtOn7c7Z2lAQAACsIagAAAlLAWVata9rmy825pqRUaqie6dDHti09NVf/PPy80/LvehbQ0DfvmG20+e9a0v3/Dhi6v7XZ1R+KU7Owih39Xpefk6IEff1Su3W7a37yQmWt3t2xp2v7SmjVFCv+u9/f16y13Rh7cpIlTtZz19759LXd2/nz3bo1fsKDA8O96aTk5emjRIn3l5u20kuTv46N/Dhhg2rfn/Hl1nz270PDveuk5ORr9/feavWuXaf+YNm0KvM3YSlhgoCoFBl77/4fbtqnjxx9r+bFjhH8AAKDYEQACAFDCwoOCLPsu30S3/T3ZpYvpzDbDMDT6u+903Ikdcq9Kzc7WiG+/tQySpkVFOV3zes+uXOlU+HfVocREy9l1N64reD2bZBoW2Q3Dpd2N8wxDc/fsMe1rWKmS0/WKqkvt2pYb12w6e1YTFy40vZW6IHbD0PgFC7TXiZDYzAPt2qm+yS27lzIzdde337p0K63dMPTYsmWmMzt9bTZN7tjRpbFe9e3+/Xp82TJl5+W5VQcAAKCoCAABAChhFSw2GrAbRpFnUJU2X5tN97drZ9r31b59bm1mci41Va/88otp3+2NGhUYuBXkYGKiPt6xw+VxrT5xwrS9oN1rq5QvbxqSJrixxpvVDMCaoaEu1SsKq1t1c+12TVmyxOUZbDl2u5746Sd3hqYpnTqZtr++fr1LIfRVmbm5mrxkiWnf2LZt5WMxG7IwFzMy9PCiRQWuGwkAAOBprAEIAEAJs9pp9HJW1k0TCnSvV88yiLMK75zxwdat+sutt+a7ZVL6PXgc0aKFPty2zemaM7Zvd+v5Pe3EbaRXWe0gHBoQIH8fH+VY3FZckOiTJxX+1lsO7c7OwCsqH5tNIy1uY567Z49lIFlUa0+dUvTJk+rrwu3dzatUUSeTtRnPp6W59B650dbYWNOxVQ8OVudatbQlNtbpmv/eskWp2dlujw0AAMAZzAAEAKCEBQcEmLbfTKFA/4YNTds3nz2rIy7u1Hu9rLw8zd+/37TPlaBI+v22S3e48vpY7exb3t9f91hsWlGYXLtdyZmZDh+Xi2n2aPsaNVTVYndmV25jNvP57t0unWe17uH3Bw4oPSfHnSFd86XFLde9GjRwqZ7V2oIAAADFiQAQAIASZhVM+FvMFiuLutWta9o+z82Q7XrzDxxw6toFOZGcrHOpqe4OyWlZeXk6lJho2vefwYPVy2JdvbKka506pu0nkpO18cwZj1zjh4MHleXCenhWm8IsPHzY3SFdE33ypGl7m2rVnK4Vc/myztxEG/0AAADvcfP8pgEAgJew2uijoLXkypq21aubtm914ZZIK9vj4mSY3NZaMyRElQvYSMXMjvh4Tw3LacuPHTNtDwsM1M8PPqhZd96pFoXsJFyarF7rX2NiPHbLemp2tlM7Rl/VoUYN0/btcXHuDumamMuXTdfmbGPxvBTEU4EpAACAswgAAQAoYVYbfVQICDDdMKKsCfTzM70lNM8wtNvN9eCudykzU6cuXzbta2Kys25BEtLSPDEkl0zfvFmZubmmfT42mx7q0EEHHntMBx97TG/3768+DRooyK/sLNNcy2JzEVfWvyvITidD2orlypmOLTE93fLWa1ddMHn/NK9SxXKNRyunLd7PAAAAxa3s/HQJAMD/iCSLcMJms6lWaKhOurDZREm6cWOOq+JTUjy+juHhxERFhIU5tDu7E3CyizvuekLM5ct6esUKfTRkSIHHNa9SRc2rVNG0qChl5+USov7TAAAgAElEQVRpR3y8Np45o19jYrQhJkYJ6eklNOL8wi1mWx5ISPDodQ46Wa9OhQqm7SEBAdo+aZInhnSNWdBYztdXtUNDnQr1XN35GQAAwF0EgAAAlLCCgo6mlSuX/QDQIhAqjk0orAKTKhabUljJ8NCGEK767/btCvLz01v9+xdprccAX191q1NH3erU0TPdukmS9ickaOXx41p+7JiiT5xQXjHt+nsjq8DX02GWs/WqW4TAgX5+6lizpieGVKgKFjt6WyEABAAApYUAEACAEnY8OVlpOTkKNlnzr0316lpx/HiJj2lYs2amgcqVrCx9s29fvjarQMhqbUN3WIWKN9N6iVdN37xZG8+c0b8HDVJk7dpOn9+qalW1qlpVT3ftqtiUFH26a5fe3bzZckapp1gFvskevq6z4VhZuE061MkAMO0m2ukbAAB4l9L/yQkAgP8xdsPQvgsX1MUkBIpyYYdbd9kkfTJsmOnGGutOn3YIAP0t1inMtds9PjartfNuph2Tr7clNlZdZs3S4CZN9Gjnzrq9USOXHkvt0FC9eOutejwyUi+vXav3t2zx2IYcN8qx2J3X06+3s7sA+9hsHr2+K5ydAQgAAFBaCAABACgFu8+dMw0AezdoIF+brcRu75SkRuHhlrvqHklKcmizmvlVHGGIVU2rYPBmsezoUS07elRVy5fXXS1aaEDjxurToIHCLGZXWgkLDNR7AweqR716GvfDD8p2MkQrikuZmapXsaLptWNTUjx2nYpOvn+sZodezsrSsYsXPTGkQlmFowAAAGUNASAAAKVgzalTmtSxo0N7pcBA3RYRoVUnTpTYWMyCyKv2mOzqa7WhRkUnw6uisLrdOK2U1/TzlIT0dM3YsUMzduyQr82mTrVqqWf9+upZr56616tnGcze6J6WLZWana2JCxd6fIxWr7ezYWVhrG41tmK10++u+Hj1mTPHE0MCAADwGgSAAACUglXHjyvPMORrchvjuLZtSzQAHNSkiWXflthYhzartdqqBwd7fPZiTZPdVyXpXGqqx65RVuQZhrbExmpLbKze2bhRNkktq1bVrfXra0jTpuobEaHAAta9m9C+vb7eu9fj7x2r17tBWJg2nDnjsevUtnitrVgFgFWDgz0xHAAAAK9ycy6gAwDATS4pI0PRFkHNqNatVdNih1NPC/Tz053Nmpn2pWRn67dz5xzbs7KUbjIDr7y/v5pXqeKxsfn5+KhNtWqmfWcuX/bYdcoqQ7/v/PvR9u2646uvVO3tt/XQokU6c+WK5Tl/7tHD4+Oweq5d2cikIB1r1XLq+KT0dNlNwubaoaEq/dUBAQAAyhYCQAAASsnnu3ebtpfz9S2WIMfM4CZNFBoQYNq36vhx0zXlDEkHEhJMz3E2xClIy6pVVd5kt9+svDzTtQm9XUp2tmbv2qW2H32kTWfPmh7To149hVi8nq7ad+GCaXuXOnU8dg2bpI41azp1TlZeno6arPUXFhioVhbBMQAAwP8qAkAAAErJ9wcPWt7K+ofOndWqatVivb5N0p+6d7fs//HQIcu+HfHxpu1DCrid2FlWtfaeP6+cYthx+GZxKTNTY77/3nQX3gBfX7Xw4CxMSdpqchu4JHWuVUsNwsI8co0e9eqpSvnyTp+3Iy7OtP3W+vXdHdI1QX5+alipksNHUddnBAAAKAtYAxAAgFKSmZur97Zs0Rt9+zr0+fv4aO5dd6nrrFnKKqadRoc2a2Z5G+eVrCz9cPCg5bnRJ05osskmJnc2a6awwEDLdeOKyiZpfPv2pn2rS3B9RHfYJMVPm6YAX1+HvltmzNCpS5dcrn3q0iXtjI83ff1cCdIKsvv8eSVlZDgEXj42mya0b6+X1651+xpWr3VhVp04oTFt2pjW+3DbNneHJUmaFhWlV/r0cWifsmSJZuzY4ZFrAAAAFDdmAAIAUIr+s3Wr4lJSTPva16ihj4cOLZb1zMICA/XP22+37P/st99M1/m7auXx48rMzXVoD/Tz0yO33OL2+AY1aaKmlSub9i0+csTt+iXBkJSRk6NKgYEOH509cKu01SYYZq+LO+yGoUWHD5v2/aFzZ4W7OROuToUKGtW6tUvnLj1yxHQ2aOdatdTNA7coB/n5aXKnTqZ9JblRDwAAgLsIAAEAKEUp2dl6btUqy/4H2rXT+4MHy8dkt2BX2STNGT5cjcPDTfuz8vL0jw0bCqxxOSvLMoj7v169VMvJHV2vF+jnp/cGDjTtO5KUpE0e3Hm2uMVahLtWG684o4lFQHq2gE1CXPXlnj2m7VXLl9c/+vd3q/Y7t9+uYJO1HosiIT1dy44eNe37YPBg+fu496PuM1FRprsTH0pM1InkZLdqAwAAlCQCQAAAStlXe/dqSQGz2h7r3Fnf33uvKgUGun2tQD8/fTZ8eIEB1DsbN1oGV9d7d/Nm0/bQgAB9OmyY6a2vhbFJmj5ggGU4+e7mzXLc97Xs2myxWce9rVqpfsWKLtftGxGhRpUqObSnZmcrphh2SP755EntOX/etG9i+/Z6sF07l+qOb99eo1q1cmdo+ufGjabtt9SsqddNbq8vqm516ujFW2817fv3li0u1wUAACgNBIAAAJQyQ9L4BQt0poCZW8ObN9feRx/Vfa1bu3xLcPMqVbR2/Hg9UEBYcyQpSa+vW1ekehvPnNHK48dN+25v1Ehf3nWXUzOwbJL+0b+/pljccnnq0iXN3rWryPXKgqUWwW6Ar6++GjlSgX7OL8dct0IFzR42zLRv4eHDxbJmpCHplV9+Me2z2Wz6ZNgwjWvb1qmad7dsqZlDh7o9tvUxMZbvw2ejovRmv35O1+xUq5YWjh6tciYh9oW0NH32229O1wQAAChNBIAAAJQBSRkZuuOrryzXdZOk2qGh+nrkSO3+wx/0eGSkqgcHF1rXz8dHUXXr6quRI7X/0UfVxWLTD0nKyM3VPfPnK8OJNeSe+Okny8Dp7pYttX3SJHUqwnp3jcPD9fODD2paVJTlMY8tW1ZsG6IUl19jYiyD3ai6dfXrxIlqU61akWr52Gy6r3VrbZs0SfUsZg9+snOny2MtzPcHD1puwOJrs+mLESP09ciRqhESUmCdiuXKacYdd2je3XfL74aA2DBcm9/5+LJllu/bP3XvrjUPPlik59nfx0d/7NZNa8ePV1WLzVSeXbXKqc8RAACAsoBdgAEAKCP2nD+vIV99peXjxqliuXKWx7WpVk3vDxqkfw8cqH0JCdp7/ryOJCUpNTtbOXa7KgcFqXL58ooIC1PP+vUVGhBQ6LVz7HaNmj/f8jZPK4eTkvTU8uX6aMgQ0/621atr68MPa8OZM/p2/379du6c4lJSlJ2Xp3oVK6pZ5cq6t1Ur9WvY0CEMut6/t2yxXOutLMux2/Xizz9rzvDhpv0da9bU7ilTFH3ypFYeP66tsbFKSE9XckaGfGw2VQwMVIsqVRRZu7buadVKEWFhltf6fPdurTl1qpgeye8mLFyo36ZMcdgR+Kr7WrfWyJYttfzYMS06fFgnk5MVn5qq8KAgNQgL04BGjXRXixYqb7Lm36HERB27eFF3NG3q9LiOXryoR5cu1acWMyN7N2igXVOm6NeYGC04dEg74+N1IS1NFzMyVCkwUE0rV9at9etrbNu2qllAgPnt/v36fPdup8cHAABQ2ggAAQAoQzafPauus2Zp0ejRamKxDt5VNptNbapVK/IMMitpOTka+/33Lu+u+9/t29W0cmU93bWrab/NZlOPevXUo149l+ovOnxY01audOncsmDunj2a0L69ejdoYNpvs9nUr2FD9WvY0OVrHEpM1FPLl7t8flGdvXJFd337rZaPG6cgi9uX/X18NLRpUw11Isi7mJGhu7791nLNvaL47Lff1Dg8XH/p2dO039dmU6/69dWrfn2X6m84c0aTFi92eXwAAACliVuAAQAoYw4lJqrLzJn67LffXL4lsqgOJCSox+zZWnj4sFt1nlmxQn9fv97j4/1izx7dM3++cux2j9YtSXbD0PBvvtHO+Phiqb/r3Dnd+umnSs7MLJb6N1p3+rSGfvWVLmdleaTepcxMDZw7VwcTE92u9eLPP+uF6GjZPfw+/PnkSQ344gtd8dBjBgAAKGkEgAAAlEHJmZmasHCh+n7+ubbFxXm8/pWsLL28dq06fvyxfjt3zu16hqS//Pyz7po3T/GpqW7Xu5yVpSlLluiBH39U9k227p+Zy1lZ6v/FF5q7Z4/HaubY7Xpn40bd+umnSkhP91jdoog+eVJdZ83Sdjffm4eTktR11iyPvsff+PVXDfryS526dMntWhm5uXpu1SoNmDtXaTk5HhgdAABA6eAWYAAAyrA1p04pcuZM9apfX49FRmpQ48YKKcKaflaOJCXpk1279MnOnUoqYMMRVy04dEhrTp7Uk127ampkpKpYbKRgJSU7W7N27tQ/NmzQOReCxJPJyfp4xw6H9l0eCDnjUlLMaxdxZt/FjAzd/+OP+nLvXk2LilKfBg3kY3N+T+crWVmaf+CA/rVpkw4kJDh17orjxxWXkuLQnufCjLlDiYnq9sknmtC+vV7o2VMNClif8EYp2dn695Yten3dunwbavx88qRSs7PzHetKQL3y+HG1/vBD/aFzZz3dtatqhYY6dX5Kdra+2L1b/9q0SceTk52+/t7z503fK0cvXnS6FgAAgCfYpI7+0qVshx5/P+kvo0thSAAAwEqgn59ui4hQz3r11LpaNbWuVk11KlQw3UAjOTNTMZcva8/589oRF6cVx4/rkAdusywqfx8fDWjcWP0bNlT3evXUJDxcFW7Y3CQjN1dHk5K0JTZWq0+c0OLDh/9ndlhtEBamEc2b65aaNdWhZk01rFTJYV09wzCUmJGhAwkJ2h4Xpy1nz2rp0aNKL2Oz0XxsNt0WEaE7mjZVz3r11KxKFQXfsNFHbEqKdsXHa+nRo/pm3z5dKqFbln1tNvWJiNCgxo3VvV49NatcWWGBgfmOScvJ0YnkZG2IidGGM2e06PBhbvcFAABl20/bpC2HTDoSJF25+p+nJb0rEQACAOAVgvz8VKFcOQUHBCg5I0NZeXllLiSSpIr/b4y+NptSs7NLbN26m4W/j48qlCun0HLllJyR4bF19kpDpcBAhZYrp+y8PKVkZZWpW2grlCt3bSbtxYwMZf6PhM4AAMCLOBkAcgswAABeICM39/eZc2lppT2UAl3OyrqpQ63ilmO3Kykjo1huzy5pyZmZZTbgvZKVxQw/AADwP4VNQAAAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8mJ9lj90u/bqvBIcCAAAAAAAAoFBxSU4dbh0A5tml1bvcHQ4AAAAAAACAUsQtwAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL+Yn7ciTGv45f/PlB6W8FlYn+fr66vXXXy/usQEAAAAAAAC4wcmTJzVjxgyTnizT420WdRZJGmp1EX9/f2VnZzs/OgAAAAAAAABuWbdunXr16lXYYU9LelfiFmAAAAAAAADAqxEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAF/Mr7QEAQEkxDEPHjh3TmTNndOnSJSUnJysrK0shISEKCwtTpUqVVK9ePdWvX7+0hwoAAAAAgMcQAALwarGxsZozZ47Wr1+vLVu2KDk5udBzatSooS5duqhnz54aN26cqlevXgIjRVny6quvau/evfnaRowYodGjR5fSiLzX5MmTHT4vn3jiCfXo0aOURgTgZvfBBx9o3bp1+doiIyM1bdq0UhrR/553331XGzduzNcWFRWlp556qpRGBAAgAATglTZu3Ki3335bS5YsUW5urlPnnjt3TgsXLtTChQv1wgsvaMSIEXrqqafUtWvXYhotypp169Zp9erV+dqaNGlSSqPxbosXL1Z8fHy+tmHDhhEAAnDZ1q1bNX/+/Hxtzv4sAPds3rzZ4TXw8WH1KQAoTXwVBuBV0tPT9dRTT6lnz55asGCB2z/wZ2dn69tvv1VUVJQmTpyo1NRUD40UAAAAAICSQQAIwGucOnVKt9xyi9577z3Z7XaP1jYMQ59++qkiIyMVExPj0doAAAAAABQnbgEG4BXi4+PVq1evQsO5SpUqqVOnToqIiFBYWJhsNptSU1N15coVHThwQHv37lV2drbl+QcPHlSvXr20adMm1ahRw6kxzpkzR++//36+tlatWmnOnDlO1QEAoKwYPXq0jh49mq/tmWeeYc3Um9yYMWN05MiRfG1PP/20xo4dW0ojAgC4iwAQwE0vLy9P99xzj2X4FxAQoPHjx2vChAnq0qWLbDabZa3s7GxFR0dr9uzZlrcQnzp1Svfee6/Wrl3r1Ho2586d044dO/K1+fr6Fvl8AADKmgMHDmjPnj352s6fP19Ko4GnHDx4UL/99lu+Nl5XALi5cQswgJvejBkztGHDBtO+bt26affu3ZoxY4a6du1aYPgn/R4WDho0SPPnz9fWrVvVoUMH0+PWr1+vjz76yO2xAwAAAABQ3AgAAdzUcnJy9Prrr5v2DRgwQNHR0WrevLlLtTt06KANGzaod+/epv2vv/66MjMzXaoNAACKx+effy7DMPJ9/PDDD6U9rP8p33zzjcNr8M0335T2sADgfxoBIICb2rJlyxQXF+fQXrNmTX311VcKCgpyq35QUJAWL16sBg0aOPTFx8drwYIFbtUHAAAAAKC4EQACuKktXbrUtP3Pf/6zwsPDPXKNkJAQ/fOf/zTt+/777z1yDQAAAAAAigsBIICb2q5du0zb77vvPo9eZ8SIEapVq5ZD+/r16z16HQAAAAAAPI0AEMBNLT4+3qEtPDxc1apV8+h1bDab7rjjDof28+fPKz093aPXAgAAAADAk/xKewAA4Cq73a4LFy44tIeFhRXL9aw2E4mPj1ejRo2K5ZpFZbfbtWfPHu3fv1/Hjh3T+fPnlZOTo5ycHIWEhCgkJER169ZV69at1bZtW1WqVKnExpaUlKQ1a9bowIEDio2NVVZWlkJCQhQeHq5WrVqpR48eql27tseva7fbtXPnTm3btk2HDh1SWlqa7Ha7goOD1bhxY91yyy3q1q2b/PyK/1thTk7OtXGcOnXq2uvj4+Oj4OBgBQcHq2HDhmrbtq1atWql4ODgYh+TJCUnJ2vRokXasWOHUlNTValSJd19993q1q2bU3Wys7O1efNm7dixQ8ePH1daWpr8/PwUHBys5s2bq0uXLmrfvn2hu3CXRXFxcVq7dq3279+vxMREZWVlKSgoSA0aNFCbNm3Uq1evYnu98vLytGPHDh08eFAnTpzQhQsXlJ2dLcMwFBISouDgYEVERKh169Zq06aNQkNDi2UcN0pJSdHixYu1bds2Xb58WWFhYRo8eLD69evnVJ2zZ89q+/btOnbsmM6ePauMjAxlZGQoKChIYWFhCgsLu/bYzNZhLS779u3Thg0bdPDgQaWlpSk3N/fa141u3bqpc+fO8vEp/G/odrtdu3bt0vbt23Xu3DklJiYqLS1NYWFhql69uqKiotS5c2cFBgZ6/DEkJiZq/fr1OnjwoGJiYpSRkaHAwEAFBgaqUaNGatWqlbp166by5ct7/NrFxTAMrVu3TmvWrNGZM2cUGBioiIgITZs2rbSHVuySk5O1ZcsWHTt2TKdOnVJKSsq1z5XQ0FCFhISoZcuWat26tZo1ayZfX9/SHnKxSU1N1caNG7Vv3z6dPHlSGRkZysvLU1BQkOrWratmzZopKipKNWrUKNExrVmzRvv27bv2+RYUFKTw8HA1bdpUUVFRatKkSYmNBwCsEAACuGnl5eUpJyfHoT0hIUF2u71Iv6A5o3HjxmrYsKFD+6VLl0yPHzdunLKzs6/9/9ChQw7HHDt2TPfee69D+9/+9je1aNGi0DHt3btX//rXv7Rs2TLTMNSMr6+vevXqpdGjR+uBBx5QQEBAkc67aseOHXrrrbfytQ0cOFATJ07M17Z9+3a98sorWrZsmfLy8gqs2b17dz311FMaOXKk2yFRQkKCpk+frk8//VTnzp0r8NhKlSpp4sSJeuaZZ1SzZk23rmvm559/1vvvv6/o6GilpKQU6ZzAwEANGjRIDz74oO68806nn48ffvjBYafFyZMnq2/fvtf+n5OTozfeeEP/+Mc/lJaWlu/Y8PDwIgeAx44d0zvvvKOvv/5aV65cKfDYunXrasqUKXriiScUEhJSxEfjecePH9fzzz+fr61r16764x//mK/tp59+0ltvvaV169bJMAzLeuXKldPw4cP1xz/+UZGRkR4Z46ZNm/Tee+9p5cqVSk5OLtI5AQEB6t+/v8aOHatRo0Y5/fVv1apVmjlzZr62MWPGaPjw4df+b7fb9d577+lvf/ubLl++7FCjKAHgxYsX9cEHH2jevHnav39/kcfXtGlTjRo1SpMnT3bpDwajR4/O93WoUqVKmjFjxrX/G4ahL7/8Um+88YYOHDhQYK2IiAi9+OKLmjBhgunnZ05Ojj766CO9++67OnnyZIG1wsPDNWXKFP3pT39ShQoVnHxU+eXm5uqbb77RjBkztGHDhgLft9Lv792hQ4fq8ccfV69evYp0ja1bt+qdd97J13b69GmH4+bMmaONGzfma6tSpYo+/PDDfG2ZmZl64IEH8rXVrVvXYd3dzZs3a/LkydqzZ0++9mrVqpkGgLNnz9by5cvztUVGRhYYFn711VfFvrFXUb+3S1JWVpY+++wzzZkzR1u3bi30++hVNWrU0MiRIzVp0iS1bdu2SOds27ZNb7/9dr62U6dOORz3+eefa/PmzfnaKleurI8++sjh2I8//lirV6/O1xYVFaWnnnqqSGO60YoVK/Thhx/qp59+Mv3Z70aRkZGaMGGCJkyYoHLlyjl1rdjYWD399NP52tq1a6e//OUv+dqOHj2q1157TfPmzVNmZmaBNVu3bq2pU6dq4sSJJfKHRwBwxiJJhtWHv7+/AQBlQXBwsOnXqY0bN5b20IygoCDLr6OFfaxbt67A2hcvXjTuvfdew2azuXwNSUaTJk2MlStXOvW4Fi1a5FDn8ccfv9afnZ1tTJs2zfDx8XF6PEOGDDHOnz/v0vNtt9uN999/3wgNDXX6uqGhocZ///vfa7X69evncMwLL7xQ5LEcO3bM6N69u1uvjSQjKirK2Lt3r1PPw2uvveZQ5+OPP77Wn5ycbPTp08fymq+99lqh18jMzDSeffZZw9/f3+nHVKtWLWPZsmXXatWsWdPhmLlz5zr1mJ2xdetWh+vdc8891/rPnz9v3HnnnU4/LpvNZowbN85ITk52eWyxsbHG7bff7vb7pkOHDsaWLVucuvZHH33kUOfvf//7tf60tDRj2LBhltd8+umnC6xvt9uNd955x6XPz+s/goODjddee83Iy8tz6vHd+F6tVavWtb4LFy4Yffv2dXosw4cPN9LT0/Nd5+DBg0br1q2drtWkSROnP9ev9/PPPxvNmjVz+XkdMmSIERsbW+h1fvjhB5evUa9ePYd6KSkpDse1bt063zEzZ840/Pz8TGtWq1bNdJxTp051OHbEiBEFPrbnn3/e7c+9wj4K+95+1YIFC4zatWu7dS1fX1/jkUceMa5cuVLo9X788UeXr1OnTh3TmpMnT3Y4dtSoUUV6/Nc7ePCg0bNnT7fG9+OPPzp9zRvrDBgwIN8x06dPNwIDA50eT2RkpHHkyBGnnwcAMPPLL78U5WvPtb+8sAYggJtaRESEaftLL70ku91ewqMpGQcOHFBkZKTmzZtX6AyPwhw9elSDBw/W559/7pGxZWZm6q677tI777zj0vO/dOlS9evXr8iznq6/7qhRozR16tQiz7S7XkpKiqZMmaKpU6e6/ZyuXLlSnTt31oYNG9yqI0kbN25Uz5499euvv7pdS5LS09M1ePBgrVmzxuUaCQkJ6tWrl95+++0izcK4UVxcnO644w795z//cXkMxeXo0aPq1q2bFi1a5PS5hmFo7ty56tixo44ePer0+Rs3blTHjh21cuVKp8+90a5du9SnTx8tW7bM7VrS7zPaRo4cqYULF7p0fkZGhu69915NmzbNpc/P66WlpenFF1/U2LFjXXr/3SgmJkZdu3ZVdHS00+cuWLBAo0aNuva1bufOnerWrZv27dvndK2jR49q0KBBhc5avpFhGHr55ZfVt29fHT582OnrXrV06VK1a9dOW7ZscblGcZg9e7YmTWu1scoAACAASURBVJqk3Nzc0h5KiXnppZc0YsQIxcbGulUnLy9PM2fO1G233abExEQPja5kffvtt7rlllvc2nDt7NmzGjFihKZOneqR95Hdbtfjjz+up59+utBZf2a2bt2qXr166cSJE26PBQCcRQAI4KbWvXt30/bVq1frkUceUVZWVgmPqHidO3dOt99+u44dO+axmrm5uZo4caK2b9/uVh3DMPTAAw9oyZIlbtXZu3evw+3EBbkaTsyfP9+t60rSBx98oJdfftnl87dt26bhw4c7HWAW5NKlSxo+fHiRb/EuyOTJk7Vp0yaXz09OTtZtt93mdkhgt9s1depUff31127V8aS4uDjdfvvtbv9SduLECfXq1cv09jkrhw8f1uDBg50OfwqSnp6ue++9t9BbUIviueeec7id0hkPPvigvvvuO7fHcb1vvvlGr776qls1kpKS1L9/f7de88WLF2v69Onav3+/BgwYYLkkRFGcPXvW4bbDghiGoSlTpuiVV15x+w8X0u/rBvbv3187d+50u5YnbNq0SZMnT/bIY7tZvPXWW3r11Vc9+pi3b9/ucJv1zWDOnDkaPXq0MjIyPFLvgw8+0Pjx493+4/CLL77o9h+w4uPjNWLEiCLf1g0AnsICBABuaqNGjcq3jtP1Zs+erW3btumNN97Q4MGDS3wDgokTJ+abobJ7926H4KRatWr51ti6ymo9uieffNJyVkBwcLCGDBmirl27qnHjxgoODpZhGEpPT9eRI0e0efNm/fTTTw5rvkm/zxR49NFHtXXrVmceYj5vvvmmQwg3YMAAjRkzRt27d1ft2rXl6+urc+fO6ddff9XMmTMtZ6ItWLBAa9asUZ8+fQq97rRp0wqc6RQYGKg77rhDXbp0Ua1atWS323XmzBmtW7dOq1atcvgB/PXXX1flypWL8Ijzy83N1YQJEyx/WalSpYqGDRumTp06qX79+ipXrpzsdrsuX76sw4cPa+3atVq7dq3prKakpCS98MILmjVrltPjumrevHmaO3dugcf4+PgoKCjItM9ut2vUqFEFzm6qWLGi7rrrLrVr1041atRQZmamTp06peXLlzusG2UYhiZNmlQmZurm5eVp9OjRpqFds2bNNGLECDVs2FCVKlVSfHy8jhw5ou+++84ysIuPj9edd96prVu3FmmDh4ceesh0TT3p902Nhg4dqsjISEVERCgoKEh2u10pKSk6cuSIfv31V61evdp0JkpaWpqefvppt9Y1i46O1nvvvVfgMTabzfJ9880331iG8zabTd27d1e/fv3UokULhYeHy8fHR9nZ2Tpz5ox+++03LVmyRDExMabnv/XWWxo/frzp2qyFsdvtGjdunI4cOXKtLTw8XH/4wx901113qWnTpgoKClJ8fLzWrl2r6dOnWwZjL7/8sv75z3/mm2Xl5+en+++/X+PGjVPbtm1VpUoVJSYmavPmzZoxY4blH0rmzZunV155pUgbBrz22mv6+OOPLfs7duyooUOHqlmzZqpatapSU1N1+vRprVixQqtXr863Ru1VKSkpGj58uH777TeFh4c79EdERGjSpEn52r777jtdvHgxX1u3bt3Upk2bfG1m9aykpaXpgQceKHTGlic3MQkMDPTIBlmGYbgUBB84cED/93//Z9nfsmVLDRkyRK1bt1atWrXk4+Mju92uuLg47d+/X8uXL3dYI/Gqn376SQsWLDD9eUOSGjRo4PC6fv/990pKSsrXZva6FsemYuvWrdPDDz9sGYQGBwdr+PDh6tmzp2rXri1/f3+dO3dOe/bs0bx583T27FnT87788ks1btxYf/3rX10a1/z58/XGG2/ka+vSpYvuv/9+9e3bV3Xr1lVQUJAuXLigLVu26IsvvtCPP/5o+n1uz549+uSTTxyedwAoDawBCOCm0bFjx0LXPqhfv77x3HPPGTt37iy1cb755puma8EU1Z49eyzX/HvooYeMixcvFlojKSnJeOyxxyyfpwMHDhRaw2wNwJ49exoBAQHX/l+3bl1j+fLlhdb64osvjHLlypmO5cEHHyz0/BUrVlg+Jz4+PsZTTz1V4PNy5swZY/jw4UVat6ewNQC//PJLy3WYXn31VSMzM7PQx3Py5EnjjjvuMK0TGhpqZGRkFFrDbA3Av/71r0Z4eHi+tsDAQOOee+4xPvvsM2Pnzp1GSkpKgXWnT59u+dwEBQUZ77zzjsN6aNfbs2eP0aVLlyI91yW9BqDZep316tUr8D2cm5trzJ0716hcubLl43j22WcLHc+KFStMz7XZbMZzzz1npKWlFVojNjbWuO+++0zr+Pn5GYmJiYXWMFsD8LnnnjPq1Knj8DPgnXfeacyaNcvYtm2bcenSJcuadrvdcl26Dh06FOnrcV5envHZZ59Zrh1YlDUrDcNxDcAbP4YNG2YkJCRYnp+bm2s8/vjjRXr/NmvWzNi9e3eB45k1a5blOqnvvvtuoY9nzZo1lud36tTJWL9+fYHnnz171hg7dqzlY5g4cWKhY7iqbdu2DudPnz69SOdarQE4adIk0/bXX3/dWLVqlREXF2fk5uZa1nVlDUBPeemll0yf08jIyAK/ho8ePdr0vJo1axqLFy8u0rWjo6ONhg0bmtYZPny4U4+jffv2DjX++c9/Fvl8V9cAvHLlisPXnasfPj4+xpNPPlnguoZ5eXnGnDlzjEqVKpnW8PX1NTZt2lTgGMzWAGzfvn2+r/cVK1Y05syZY9jt9gJrRUdHW36fiIqKKvT5AICCOLsGoBUCQAA3jd27d+cLnwr7aNy4sfHoo48aP/zwg1sL9jvL3QDwueeeM308Tz31lNNjeeGFF0xrFeWXNrMA8PqP+vXrGydOnCjyWGbPnm1ap0aNGgWel5ubazRv3tz03KCgIKc2N3n77bcLfd8UFgAOGDDA9LzZs2cXeRyG8fsvL1abLURHRxd6vlkAeGPANWbMmALDjhslJCQYFSpUsPzldP/+/UWqk5OTYzz88MOFPtclHQDe+NG9e/cCg63rxcfHmwYgkoyAgADj2LFjBZ5vFcK8/fbbTj0uu91ujB8/3rTWt99+W+j5ZgHgje+bO+64o0gbRVy1adMm0/G0adPGuHz5slOPb9OmTaYh3q233lqk8wsKAO+7774Cw6Sr8vLyjFtvvbXA907z5s2LvJHRtGnTTGtcvymNmezsbKNFixam544ZM6ZIf2y46r///a/h6+vrUMfHx8fYt29fkWp4OgAMCgrK94edevXqGStWrCjyYzKM0gsAv/nmG9M/StWuXbvAz50rV66YbigRFhbm9IYR8fHxppsrlS9fvtCw6nqlFQD+6U9/Mn1v+/v7G4sWLSry9U+fPm00aNDAtFbnzp0LfC7MAsDrPypWrOjURktr1641Dex9fHyK/L0GAMwQAAL4nzR//nyXdiT19fU1unbtarz44ovG2rVrjaysrGIbo7sB4C233OJwfr169Yo0K+xGWVlZRpUqVRzqPfPMM4WeW1AA6Ofn5/QsS7vdbkRGRjrUstlsBf4iazUOPz8/Y8mSJU6NwTAM49lnny3wvVJQAJidnW36y1u/fv2cHodhGMbx48dNf4mcM2dOoeeaBYDXf7zxxhtOj+eNN94wrRUWFmbs2bPHqVq5ubnG0KFDCxxjaQaAzZo1M5KSkpyqGRcXZ0RERJjWe/LJJws8t3r16g7n3HLLLU7vcmsYhpGYmGj6x5Ci/NJuFgBe/zFt2jSnx/Pqq6+a1ipsdpqVBx980KFWREREkc61+v7QvHlzIzU1tchjWLVqleVzFBgY6NROvomJiUb58uUd6vTo0aPA82bNmmV6/cGDB7v0vnn33XdN6xVlFrZheD4AvP6jZcuWRZrdfqPSCAC3bt1qOps4KCjI2LZtW4HnLlu2zPTxF/V5vNH7779vWq8os4GvKo0AMCkpyQgJCTEde1G+/93o8OHDljMBC5rhXVgA+MMPPzg9ljFjxpjWKmrQDgBm2AUYwP+ku+++W0uXLlWtWrWcOi8vL0+bN2/Wa6+9pt69eys8PFxDhgzR9OnTXdrJsbjk5eWZjmfcuHFFWmPsRgEBAaYbqCQkJLg0vqv++Mc/qkOHDk6dY7PZNHbsWId2wzAK3LnQau3Hxx57TEOGDHFqDNLva/81b97c6fOk3zdxMFuD7eGHH3apXsOGDVW/fn2Hdndfn3HjxunPf/6zU+fY7XbNnDnTtO+tt95yWA+qML6+vpo1a5YqVKjg1HklwWazaebMmU6tVSb9vman1fqMc+fOtdyM6Ny5czp//rxD+0MPPSQfH+d/RKtcubLatm3r0O7u+2bw4MF66623nD7PbD2yFi1aqEePHi6Nw2xNUHcf2+uvv67g4OAiH9+7d2/L4x9++GG1bt26yLUqV65s+lzcuO7ajd555x2HtmrVqumLL75w6X3zxBNPaODAgQ7t8+fP15UrV5yu5ykVK1bUkiVLimWNOU+LjY3V8OHDHdaAtdls+uSTT9SpU6cCzzf7XAkICNCDDz7o0nh69+5t2u7u50tx+/zzz5WamurQPnToUJc2MmnatKleeeUV074PP/zQ6XqSNGLECI0YMcLp88aNG2faXtZfEwDehQAQgNfo37+/9u3bp2nTpik0NNSlGmlpaVq2bJn++Mc/qk2bNqpZs6YmTZqk1atXl+pubUlJSaYLtkdFRblc02yjC3c2ZPDz89OTTz7p0rkdO3Y0bbcaz5kzZ/TTTz85tFerVs3yh/3C+Pv76x//+IdL58bHx5u2e/r1cec96O/vr9dee83p86Kjo013Se3UqZPLAWe1atX0/PPPu3Rucbr77rvVs2dPl8697bbbNHLkSIf2pKQkLVy40PScknrfuPN5bbPZ9Pe//92lYMns8XXr1s3lsXj6sdWtW9dyUwQrfn5+atasmWnf1KlTnR6DWWBY0Of5li1bdOjQIYf2Z5991ung+iqbzWb6tSE9Pd2t3Z/dNWXKFEVERJTa9YsqPT1dw4cPV1xcnEPf888/r9GjRxdaw+xzpUWLFi6Hn1WqVDFtLwubLhXEbGd4Hx8f/etf/3K55pQpU0w31Vm+fLlLm7U888wzLo3D2Z9zAKA4EAAC8CqVKlXS22+/rZiYGH388ccaOHCgypUr53K9c+fOaebMmerfv7+aNGmiWbNmme7SWtzCw8N1/Phxh49+/fq5XNPTP3QOHDjQ6RmYVzm76+7atWtNxz9+/Hi3ZpYNGTJEdevWdfq8qKgo09fHlVpXGRa7H7pq5MiRprMKCxMdHW3aPnXqVJdCoaseeugh+fv7u3x+cZgyZYpb5z/xxBOm7WZhtfT7L/hm7xtnZ1Vez9Pvm759+6pdu3Yunfv11187PDaz2WtFVRxfs1x5D5uFMo0aNVLTpk2druVsaGe2o3NgYKDb792OHTuahrMrVqxwq66rfHx8XP6DUkkyDEMTJkzQ9u3bHfqGDRumV199tUh1/vKXvzh8rrgTvt6MoVJqaqp27Njh0N6nTx81btzY5bp+fn6mMymzs7O1adMmp2o1a9bM9O6JonD25xwAKA5+pT0AACgOYWFheuSRR/TII48oPT1d69ev1+rVqxUdHa3du3e79MPxyZMn9cgjj+jDDz/U3Llz1bJly2IYuTk/Pz81bNjQozVPnz7t0Xq9evVy+VxfX1+njrf6oX38+PEuj0H6/ZfO0aNHOz0TMDg42KOvj91uV0xMjMfqSb8HOa7YvHmzQ1toaKjpbDdnVK1aVbfffruWLl3qVh1PqVOnjuVtc0XVs2dPNWzY0GHG5LZt20yPDwwM9Pjn9alTpzxaz9X3jfT7c+pJnn5srn4N9/Nz/PHZ1VrOfu1btWqVQ1vfvn0VEhLi0vWvN2DAAIevrbt27XK7ritatWqlmjVrlsq1nfHKK/8fe/cZFsXV9gH8Ty+CIAgoCoodQQTFrmBUBFTsWGLU2FtsiT62mIiJsbfERGPsJVHEhsaoqFFQsSJEESk2sCCIWOjtvB+84BXnDGyZXYr377r2A2fm3HN2dneWufeUxfD39xeUN2vWDHv27JE5wWxhYQELCwvJ2iX1Z0Udrl+/zu39+vnnnysde+jQofj2228F5deuXYO3t7fMcdT5fw4hhKgC9QAkhFR6hoaG8PT0xMqVKxEWFobExETs27cP48aNU2h40a1bt+Dq6lqmQ6OUdfr0aVy4cEHSmG3atJE0Xkl4SSkbGxvY29srHbtLly5Kx1DWunXrSpz/UBGKDCvNy8vjJq/at28v17xpYsrDuS7k7u6uVI9G4P1Qyu7duwvKo6Ki8O7dO6Viy2LXrl2IiYmRNKYyw5GllJycjJ9//lnSmFImXKSMJSYnJwe3b98WlCuTlPgQ7xoeFRVVJtNfKDNUXF0OHDgAPz8/QbmFhQUCAwMlScoqIicnR+aeh+XJ1atXueWKTsvwoXr16nF/kBD7cUaMOv/PIYQQVaAEICHkk2NhYYHBgwdj8+bNePDgAeLi4vD777/D19dX5iEamZmZ6Nu3L86dO6fi1krnzZs3OHPmDAYPHoxevXpJPkRI6t4+JYmOjhaUtWrVSpLY8i5iIpUXL14gICAA3bp1U3iOITEaGhqi85aVJCEhARkZGYJyqc51ixYtJIkjBanawpvnqaCggDvJvxRSUlJw7Ngx9OzZE6NGjZI8vhRJdUXl5uYiIiIC8+bNQ9OmTXH//n1J4/N68ilKHcPZY2NjuXPB8uY3U4SVlZWgLCsrS/LzLouyfN/J4ubNm/jyyy8FQ+51dXUREBCAunXrqrU9BQUFiIuLw9q1a+Hg4FAhf6CMjIwUlFWtWhX169eXJL6zs7OgTN7rsjr/zyGEEFWgIcCEkE9e/fr1Ub9+fYwfP75oVeCjR49i9+7dSExMFK2XnZ2NL774Av/995/ohNvqxhjDkydPEBsbi5iYGMTGxiI6Ohp3797Fw4cPVXpsU1NTlcYvlJ2dzU1K8VY/VYSlpSUsLS2RlJQkSbwP5eXl4fHjx4iJiSl6xMbG4vbt2yW+15RlbGys0PCj1NRUbrlU51qeFVNVzcHBQZI4YvPlKdOjs6CgAI8fP0ZsbGzRZzomJgaRkZF48uSJwnFlYWJiotL4wPv32YfPLTY2Fvfu3cPdu3e5Ca9Pldh7aOfOnaLzTMpDbMXfmJgYheY3VIY63neKevbsGfr06cP9HtqwYQPc3NxUduyMjIyiz0rh90dUVBQiIyO5q+dWJLzvm8aNGyvdM7uQvb09jh8/Xqzs1atXcsWoCCtSE0JISSgBSAghH9DS0kKHDh3QoUMHLFmyBP7+/li0aBHi4uK4+z9//hyLFi3Chg0b1NzS9+Lj43HhwgWEhITg2rVriI2N5d6UqIO6hjuJJaUUXQGTx9zcXJIE4N27d3HhwgVcvHgRN2/exMOHD8skoaHozbSqz3W1atWgoaEh+cIVirZFCmI/Bsiz2mRsbCyCg4MRHByMmzdvIi4uDtnZ2ZK0Tx4GBgbQ1dWVNOa7d+8QEhKCixcv4tKlS4iKikJycrKkx6isxJIVvIVBpPTmzRuVxucprwnAwt7/T58+FWybOnUqxo0bJ9mxcnJycPXqVQQHB+PixYtFCf/ycL1UBd73jZQJN16s9PR05OTkyHydk2LqC0IIKUuUACSEEBE6OjoYNmwYBg4ciFmzZokm+bZv3w4/Pz+1rfCWk5MDf39/bN26FRcuXKi0NwNixJJSUvZAVObm882bN9i5cye2bNnCna+rLCh60yKWtJLqXGtpacHIyEgt8+OVRqqEg9i5EXvfFkpPT8fevXuxZcsWueelUhUpb3ZDQ0OxefNm+Pv7l9mPFBWdvL2VpFIWn8+ymj+vJIUr/vI+nx4eHlizZo0kx4mNjcXmzZuxa9culfREL6943zdVq1aVLL7YNf7169ewtLSU7DiEEFKe0RyAhBBSCj09Pfzyyy9YsGABd3tGRgZOnDihlraEhITA0dERw4cPx/nz5+VO/hkZGcHLywtbtmxRehXXsiI215aU83np6ekpVG/v3r1o0KABpk+frlDyz9zcHEOGDEFAQACaNWumUBt4NDQ0FKondk7Lw7mWmlRzuBkYGHDL09PTRescO3YMjRs3xoQJExRK/pmamqJfv37Yu3evJBPmF1L0ffOh5ORk9O3bF+3bt8eOHTvkTv5pa2vDxcUFixcvxurVq5VuT0VWVonTij60VCo//PAD9u/fLyhv2LAh9u/fr/R1MTs7GzNnzkTTpk2xatUqhZJ/DRo0wMyZM3H48GGl2lIWcnNzBWVSftfo6+tzy+kHCULIp4R6ABJCKqSkpCQkJCQIyh0dHVWWUFi8eDFOnz7NvUE/f/48hg8frpLjFjpw4AA+//xz5OXllbqvtrY26tWrB0dHR9jb28PR0RHOzs5o1KhR0Xw6oaGhKm2vqoj1sJJymJoisfz8/LBo0SKZ9tXT00OTJk2KXhsHBwe4uLigTp06RfssW7ZM7jZITR3nWmzeMXWT6jmJxRHrybJhwwZMmzZNpmS+jo4OGjVqhKZNm8LBwaHoffPhJPm7d+9WrOEq8PjxY3Tu3BmPHj2Saf+aNWvCwcEBTZs2RdOmTdG8eXM0b968KKn68fxdnxqxHky9e/dWaSL9w+vSpyogIIB7fTcxMUFgYKDSQ1UzMjLg7e2N4OBgmfavVq1a0efEwcEBzZo1Q4sWLYqu2aqcU1ZVeN83Un4/iMWSspchIYSUd5QAJIRUSEeOHMGECRME5Xfv3lXZ6oGampqYPn06vvjiC8G2Bw8eqOSYhe7evYsRI0aIJv/09fXRuXNn9OzZE506dUKTJk3KTc8qqZU0jEcq8sY6cuRIick/U1NTdO/eHd7e3mjfvj3q1asnac8GVRFLAEp1rjMyMsrNIg9SJQDFzg0vQRAcHIzp06eLJv+MjIzg4eEBb29vdOzYEQ0aNFDLarNSyMvLw8CBA0tM/rm4uMDb2xuenp5o1qwZTbBfCrHzs3btWtSrV0/Nrfl0hIWFYeTIkYLPqZaWFvbt24cmTZoofYxp06aVmPyzs7NDjx494O3tDRcXF1hbWyt9zPJG1QlA3rVZU1NTbQuYEUJIeVD+7z4IIYRD7B82Vc+R1KFDB265Mit8ymLevHnIysoSlGtra2PmzJn43//+V25WIlY1HR0dGBkZCYalxcbGShI/JycHz549k3n/vLw8zJo1i7vN2NgYixcvxvjx42FoaChJ+9RJ7HMm1blW9crU8rh//z46d+6sdByxHwN4C6d8/fXXKCgoEJTr6+tj4cKFmDp1KoyNjZVuU1nYs2cPbty4wd3WtWtXrFq1Cs7OzmpuVcUmtvhOcnIyJQBV5Pnz56Ir/q5YsQJeXl5KH+O///7Dtm3buNuaNGmCtWvXwtPTU5Ih+eUZL8Eta+9hWfBGjZiYmEi2yjAhhFQEdMUjhFRIYr9+R0ZGqvS4Yj0wVNnb7sWLF9yhb7q6uggMDMSKFSs+meRfIV4vT6kWTrh9+7ZcvdIuXLiA+/fvC8otLCwQGhqKGTNmVMjkHwDUrl2bOxm/VOf65s2bksSRQlhYmCRxrl27xi2vXbt2sb/Dw8O5z79q1ao4f/485s+fX2GTfwBEExpTpkxBUFAQJf8UYGNjwy0XW6WeKKdwxd8nT54Itn355Zf4+uuvJTnO9u3bub2AP/vsM9y4cQNeXl6VPvkH8IeaP3nyRLJVwnnX+I+vy4QQUtlRApAQUiE5ODhwy2WdP0dRYj0MVbmC3IULF7i9hL755ht4e3ur7LjlWatWrQRld+/eRUpKitKxr1y5Itf+586d45b//PPPou/TikJLSwstW7YUlF+6dIn7npTX1atXlY4hFXlfdzGXLl0SlBkbGwveC//++y+3/pIlS9CmTRtJ2lJWsrKyuHOMOjo6Yt26dZ9EMkMVbG1tuT9+Xb58uQxaU7kxxjBmzBhuQr99+/bYtGmTZMfifYcYGRlh7969kq7EXd6JXffEehLLIz09nfsDcUW/1hJCiLwoAUgIqZCqVauGBg0aCMoPHz4sSRJIjFiPJVXNOwgAUVFR3PJx48YpFTc1NVWp+mWJlwDMz8/HX3/9pXTsffv2ybU/7/UxMzNTepXl8vL6tG7dWlD25MkTnD9/Xqm4ubm5CAgIUCqGlMLCwhAdHa1UjKdPn3Jv5lu1agUtLa1iZbz3ja6uLkaOHKlUG8rD+yY2NpY7X+moUaOUmvtSynk+K6r27dsLyoKCguReEZ5n165dmDBhQrHHmjVrlI5bES1ZsoT7fWJra4tDhw5J1uufMca97vj4+KBmzZoKx62InxWxZNyBAweUjn348GHuKsPt2rVTOjYhhFQklAAkhFRYPXr0EJRlZGRg/fr1Kjumv78/t/yzzz5T2TF5N/QGBgaws7NTOGZBQYEkv6qXFTc3N24voi1btih1IxwTE8PtwVUS3o1Ww4YNlVqsISkpCY8fP1a4vpTc3Ny45Zs3b1Yq7okTJ5CUlKRUDKnt3LlTqfpbt25Ffn6+oLxjx46CMt7n2sbGRqlhv2K9XNRNLAmp7A8lYsOrPyW8eWhjY2Nx9uxZpeLm5ORg9uzZ2Lx5c7GHVMMvK5KDBw/iu+++E5RXqVIFR48ehZWVlWTHysjIQHZ2tqC8adOmSsWtiJ+V2rVrw9bWVlB+8OBB7hyM8tixYwe3nJdQJ4SQyowSgISQCmvw4MHc8qVLl8qdxJFFeHg4Dh06JCg3NjaGu7u75McrxEt0KTuELjAwEPHx8UrFKEv16tVDp06dBOURERGic4/JYu7cuZL0pFH29dm4caPois/q5unpiRo1agjK/f39FR56mJeXh2+//VbZpknul19+wdOnTxWq+/TpU6xatUpQrqGhgeHDh3PLZSmTx44dOwSL45QFseehzGT7qamp2LNnj8L1K4sBAwZwz+NPP/2k1LXr999/5ybku3XrpnDMiujWrVvcFX81NDSwc+dOyeeuVOOjKwAAIABJREFUFPusKHMtKCgowK+//qpw/bLE6zn/9u1bLF++XOGYZ8+e5SbIHR0dJVnBmRBCKhJKABJCKqz27dtzh4Lm5eXB19dX0h5uKSkpGDhwILd3z4QJE1Q6WT9vfsGMjAyFe4ilpKRg6tSpyjarzI0dO5ZbPnfuXIWSm8ePH8fhw4flrsd7fWJjY7nvFVncvn0by5YtU6iuKujo6HCHpTLGMHHiRIUSTmvWrMGdO3ekaJ6k0tLSMG3aNLkTKfn5+Zg0aRLevXsn2Obh4cGdroD3vklISFA4gffw4UMsWLBAobpSs7Cw4JaLTWcgi6lTp5aL4c1lzcbGhrvy7L///qtwr9yEhAQsWrSIeyyxHsCVUWJiIvr06YP09HTBtu+//17paR14DA0NufP8KfNZWb9+fYXsAQgAo0eP5iY/V65ciZiYGLnjZWRkYNq0adxtyk6jQgghFRElAAkhFZrYr8LPnz+Hm5sbtm3bpnAiptDNmzfRqlUr7kqvBgYGmDlzpsKxeXPSfKx+/frcckV6ur169Qrdu3fnrmpY0QwcOJCbRHn58iU8PDzkGl56/fp1DB06VKF28JI7KSkpOHLkiNyxoqOj4eXlhaysLIXaoirjxo3jDmm+ffs2+vbtyx3CJsbf3x/z5s2TsnmSOnTokFztY4xh0qRJOHbsGHf75MmTueW89012djb27t0r87ELJSQkwMPDA2/evBFtozrZ2tpy50jbsWOH3NdjxhhmzZql0HmprObPn88tnz59OgIDA+WK9fr1a/Tv35+7wNW0adMUnsqgvPRgllVWVhb69u2LhIQEwbaBAwdyhwRLhXctOHbsmELDr/fs2YPZs2dL0SwuVb+ujo6O6Nmzp6A8MzMTXl5eePbsmcyxcnJy0L9/f9y9e1ewzdLSEmPGjFGqrYQQUhFRApAQUqF99tlnov/EZWZmYsyYMXB0dMTu3btFb47FFCaF2rZti4cPH3L3WbJkCXdVRlklJiaWuk/37t25E+evWLFCdCVRnjNnzsDFxQVhYWGi+zx//lzmeGXNwMAAixcv5m6LiYmBq6srTp8+XWqcbdu2oWvXrgr3vBJbiXnatGmIi4uTKQZjDNu3b0fr1q1LvMGR5f2iCvXr18fEiRO5286ePYt27dohIiKixBh5eXnw8/PDsGHDJFlBWJWWL1+O4cOHl3rNePLkCXr06IE//viDu93NzQ29e/fmbhN738ybN6/Uc/mhAwcOoEWLFtwfKAqp+31jaGjInRYhIiJCruTqkydP4O3tjdWrV4vuk5mZKfe1vaLr0KED9weL7OxsDBw4EEuWLJEpKf/ff//Bzc2N21vexsYG48ePV7iNZXWtUtSkSZO4q5LXrVsX33//PR4+fIgHDx5I8vg4ica7Frx9+xYjRoyQ+ceVtLQ0TJkyBSNGjCgxya7s66KO13XFihXQ1dUVlD98+BAdOnSQ6f+euLg4dO3aFadOneJuX7p06Se1wjIhhJQmEAATe+jo6DBCCCkvMjMzWevWrUWvWYUPLS0t1rp1azZr1iy2bt06tnv3bnbixAkWFBTEAgIC2B9//MGWLFnC+vXrx6ysrEqNN2jQIFZQUCBzO5cvX86NExAQUGrdAQMGiF6P58yZwxISErj1Xr58yfbv38/c3NxKfT4AmJ6eHgsPDy+xLYGBgdy6OTk5Mp+Lj8XExHBjxsfHl1gvPz+fde3aVfT5aGhosC5durDt27ezu3fvsvT0dJaens4iIyPZxo0bRd83PXr0EJTNnz+f24a8vDzWuHFjbhxTU1O2du1alpqayq0bHx/Pfv/9d9a0aVOZXh9ra2uWnJxc4jn58ccfBfXs7e1leyFK8PbtW1a/fv0S/zfo168fO3jwIIuLi2NZWVksNTWVhYeHs6VLl7JGjRrJfK737NmjdHvFXLt2TaZzDYBZWlqyWbNmsdDQUJaYmMhyc3NZfHw8O3XqFBs1ahQzMjISrWtkZMRiYmJKbEvbtm25datUqcKWLFnCkpKSuPWeP3/OduzYwVq0aCHT8zA1NWWPHz8usS0bN24U1LOwsFD4PO/du1e0PV5eXuzSpUvcetnZ2ezChQts7NixTE9PT6bnt2TJklLbo6OjI6i3b98+hZ6bp6enINaECRMUirV06VJBrEaNGpVaLzk5mdnY2Iiek/r167NFixaxmzdvsrS0tKJ6r169YsePH2dDhw7lnpPC6+aZM2dkfg7NmzcXxKhdu7bo+/dD796947bh1KlTMh+fZ+rUqYKY/fr1E92/YcOGMl8XlH08fPiw2LEjIyOZlpYWd99mzZqxo0ePstzcXEGb8/Pz2a1bt9iCBQuYmZmZTMceMGAAy8/Pl+kcuri4COpbW1uzFy9eyFR/woQJgvqDBw+Wqe6yZctEn4OGhgbr3bs3279/P3v27FnR/2EpKSns3LlzbMyYMczQ0FC0fs+ePUv93y0qKopbNzIyUqb2i+HFPHv2rFIxCSGftgsXLshy/Z+BUlACkBBSoaSmporeTKvi0b9/f5aVlSVXGzdv3iwar2XLlqxPnz7Mx8eHubq6sqtXrxarGx0dLXqzVvho2LAh6969OxswYABzc3NjjRs3Zpqamtx969Wrx+bMmcPdpq+vz4YPH84WLlzIdu/eLXge5SkByBhjiYmJzM7OTrLXtnPnziwiIkJQLpYAZIyxw4cPlxhTW1ubOTk5MW9vb9a3b1/WoUMHVrduXdH927dvz0aOHMndVr16dTZhwgS2cOFC7k26qhKAjDEWHh7OqlatKtm5Hj9+PPP39xeUl0UCkJcwUPShpaUlU2I/ODiYaWhoiMbR1NRkTZs2ZV5eXqxfv36sY8eOrEGDBqL7N2/enE2ePJm7rWrVqmzMmDFs4cKFLDAwUNAWqROA+fn5pSYoq1evzjp37sz69+/PPD09WfPmzUVv3PX09Ni6detEr2ldunRh8+fPZ3PnzuW2p7IlABlj7MaNGzJ/HqtUqcL09fVl2venn36S6zl07tyZG8fY2Ji5u7szX19f5unpyT777DNBXUoAvjd27NgS6xgZGbH27duz3r17s549e7JWrVqxatWqie4/Y8YM1qRJE+62Zs2asW+++YbNnTuXPX/+XPScdOnSRbQtH76u7u7u3PrKJAALCgrYkCFDZDqfOjo6JSb8Pnw4OjqylJSUUo9PCUBCSEVBCUBCyCcrMzOTTZgwocQbamUfWlpazM/Pj+Xl5cndPl5SSewRHBwsqL9t2zZJnlv37t1ZSkoKi42NLXXfESNGCNpR3hKAjDEWFxdXYu80WR8tWrRgr1+/ZpGRkYJtJSUAGWNsxowZkrzHJkyYwLKzs9mhQ4dK3XflypWCdqgyAcgYYyEhISXeeMr66NevH8vNzS03CcD4+Hi2cOFCpZ+Xjo4O27Vrl8zt4b1eijyGDBnC0tPTZfpHcN68eYJ2SJ0AZIyx2NhYZmFhofRzs7a2ZpcvX2aMMebk5FTivkZGRty2VMYEIGOMhYaGMktLS0neQ4D8yT/GmOiPSR8/bG1tBXUpAfje27dvuT3u5H0YGBgUXT9Hjx5d6v5RUVGi52TevHkyHbN27drc+sokABljLCcnhw0bNkyy8+7q6soSExNlOjYlAAkhFYW8CUCaA5AQUmno6+tj06ZNOH/+PHd1YGV5eHggLCwM3333HbS0tOSu7+TkBE9PT4WPP2rUKGzcuBH6+voK1TcwMMBPP/2EEydOwMzMDA0aNKg0KzzWr18foaGh8PHxUTiGj48Pzp8/DxMTE4Xqr169Gl9//TV3BUNZ2NraYt++fdi0aRN0dXXh5eWFmjVrKhRLlTp27IgrV67A1dVV4RhTp06Fv78/d27LsrR48WJs2bIFBgYGCtW3tbVFUFAQhg8fLnOdBQsWYPHixQpdUwDAysoKf/zxB/766y8YGhqiQ4cOaNSokUKxpNagQQOcPn1adCEjWQwYMAA3b95Eu3btALxfJZT8v7Zt2+LGjRvw8PBQKo6NjQ3++ecfhRbomTJlCs2npiRjY2OcOHFCqe/kzp0748qVKxg2bBiA9/8zKGPSpEll+rrq6Ohg9+7dWL9+vVLt0NTUxFdffYXg4GBYWVlJ2EJCCKl4ytd/3oQQIgE3Nzdcu3YN58+fx759+3DkyBG8ePFCoVhWVlbo06cPJkyYgBYtWijdtr1796J37964fPmyQvUnTJiA9u3bY/78+Thx4oRMiykYGBhgxIgRmD9/PmxtbYtt+/333+Hu7i7XirkNGjTAnDlzBOWamor/plStWjVuzKpVq8ocw8LCAoGBgQgMDISfn1+Ji518yNbWFn5+fhg5cmRR8q569eqC9pR2Y6apqYnVq1fD09MT3333HXdCeR5zc3N88803mDFjRrHEk4GBAbZt24Z+/frJtSpw+/btBW3nrZasjEaNGiE0NBTbt2/HsmXL8ODBA5nqOTk5YeXKlejevXtRWZMmTQTtdXBwkLS98hgzZgzc3d0xZ84cHDlyRKbPmJmZGaZMmYLZs2fD2NhY7mMuXLgQXbp0wbfffovz58/LVKdq1aqYOnUq5syZU+yYWlpa2LFjB7p37y7XwjYuLi6C10GKm39nZ2eEhYXBz88Pf/zxB969e1dqHQ0NDXTu3BkLFy7EZ599VmzbpEmT8PfffyMoKEiudsyePVuwOIK9vb1cMQoNGjQIzs7OxcratGmjUKy2bdsKznv16tXlimFjY4NTp04hMDAQS5culfnaA7y//k2ePBmTJk2S63r78fEPHz6MIUOGcFcTLomuri732m9nZ6dQWwp169YNhoaGxcpKuq6MHz8eL1++VOqYshL7kalGjRo4d+4c1q9fj9WrV8u84q2joyN+/PFH9OnTp1h5x44dMWvWLKxatUqhdtrY2ODIkSMYMmQIUlJS5K7v6ekJU1PTYmVOTk5yxdDQ0MC0adPQr18/LFu2DLt375bpGgIA2tra6NWrFxYuXCj3/2/m5ubc96W8n82P8WLWqVNHqZiEECIPsW4KgQBEu1Ho6OggJydHNS0ihBCJFRQU4MqVKwgLC0NkZCSioqKQlJSEtLS0ohtkY2NjVKlSBba2tqhTpw6cnZ3Rpk0bODs7K5XYEmvPwYMHERAQgIiICCQnJ4MxhmrVqsHa2hoNGzbEd999h7p165YYJyYmBidOnEBwcDDi4uKQkpKC7OxsWFpawtLSEg0bNkTnzp3h4+NT4o1dYmIi1qxZgzNnziA+Ph6ampqwsLBAy5YtMWTIEPTo0UPS568u4eHhOHHiBEJDQxEXF4fk5GQUFBQUvc7Ozs7w9vaGl5eXSnqiXbt2DadOncKlS5eQkJCAlJQUMMZgaWmJmjVrokmTJvDw8ICnpyd3xcNCd+/exdq1a3H58mU8f/4cenp6qFmzJlq3bo1x48ahZcuWkrddHowxhISE4OTJk7hx4wYePnxYdLNoYmICOzs7tGzZEj4+PujUqZPCPSSlcv36dbRu3VpQHh8fDxsbm2Jljx49wqFDh3Dx4kVER0cjKSkJ+fn5MDQ0hK2tLZo3bw4PDw/06NFD4Z65H4uIiMDJkycREhKCR48eISUlBfn5+bC0tISVlRUaN26MLl26oGfPniX2VHzw4AHWrFmD4OBgPH36FDo6OrCysoKrqytGjRqFjh07StJeebx58waBgYEICQlBREQEkpKS8ObNG5iYmKBmzZqwtrZGhw4d4OPjgwYNGojGycvLw5YtW+Dv74979+4hKysL1apVg729PTp27Ii5c+eq8VmVP/fu3cPJkydx6dIlxMbGIikpCVlZWTA0NIS5uTlq166Ntm3bolOnTujUqZPCvU8/lpycjG3btiEoKAgxMTFIS0uDrq4uqlWrBjs7O7i6uoqu3E6Ky8nJwT///IMLFy7g2rVrSEpKQkpKCgwMDFCzZk3UrFkTLVu2RI8ePUod8RAYGIitW7ciPDwc7969g5GREerVq4e2bdti7ty5giTdx0p6XevWrQtXV1f88MMPUj59Uenp6Th58iQuXLiAO3fuID4+vijpbGRkhFq1asHe3h6dOnVCz549Jf/xixBCypvg4GC4u7uXtttMAOsASgASQggh5BMiTwKQEEIIIYSQ8kreBCDNAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJaZd1AwghhBBC1KV+/frw9/cXlJubm5dBawghhBBCCFEPSgASQggh5JNhZmYGX1/fsm4GIYQQQgghakVDgAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcS0y7oBhBCijFu3buH06dNldvyWLVuiW7duZXZ8UvHduXMHf//9d7EyY2NjTJ48uYxaVPYSExOxc+dOQfmMGTOgp6dXBi0ihFQG69atQ3Z2drEyb29vODk5lVGLPj1r1qxBbm5usbJevXrBwcGhjFpECCGfDkoAEkIqtNDQUMydO7fMjj916lRKABKl3Lx5U/AetrGx+aQTgE+fPuV+ridNmkQJQEKIwvz8/PD69etiZRYWFpQAVKOFCxciIyOjWFmtWrUoAUgIIWpAQ4AJIYQQQgghhBBCCKnEKAFICCGEEEIIIYQQQkglRkOACSGkkjp58iQOHz5crKxu3bqYN29eGbWIEELIpyAlJQXz588XlP/444+wsLAogxYRKaSmpnKnZ/jhhx9gaWlZBi0ihBAiD0oAEkIqpQYNGqBu3boqP07jxo1VfgxFhYeHY/PmzcXKWrduTQlAQgghKpWWlib4/gGA//3vf5QArMDEXtdZs2ZRApAQQioASgASQiqlUaNGcXsfEEIIIYQQQgghnxpKABJCCCGEEEIqvVu3bqGgoKBYGfVIVK87d+6AMVasjHoPEkKIelACkBBCCCGEEFLpqWNqEFIyOzu7sm4CIYR8smgVYEIIIYQQQgghhBBCKjFKABJCCCGEEEIIIYQQUolRApAQQgghhBBCCCGEkEqM5gAkhBCiMMYYYmJiEBUVhaSkJLx9+xbGxsaoUqUKGjRoAAcHBxgbG6u1TampqYiIiMD9+/eRnp4ObW1tmJmZwdbWFi1atIC+vr5KjssYQ3R0NCIjI5GSkoK3b9+iatWqqFmzJhwdHctk3qPHjx8jKioKCQkJSEtLg56eHgwNDWFnZwcHBwdUr15dLW24ffs2nj17VnROzMzM0LRpUzRp0gSamhXzt8jMzEzcvn0bUVFRePv2LTQ0NGBkZIRGjRrByckJRkZGKj3+y5cvERsbi/v37yMjIwPv3r2DoaEhjIyMYGxsjCZNmqBBgwbQ1lbfv3o5OTm4evUq7t27h8zMTNSoUQPdunWDmZmZXHGys7Px4MEDxMXF4fnz58jNzUVubi6MjIxgYmICa2trODo6wsTEREXPhC8lJQXh4eF4+PAh3r17Bz09PZiamqJJkyZo3rw5tLS0ZI714sULREdHIykpCS9evICGhgbMzMxgZ2eHFi1aQEdHRyXPIS8vD5GRkYiOjsbr16/x5s0bmJiYwMTEpOiaraprpCrFxMTg6tWrSE1NhampKZydneHk5FTWzVK5/Px8PH78GHFxcUhISEBubi7S09NhbGwMExMTmJubw9HRETVq1CjrpqpFbGwsoqOj8ezZM6SlpUFfXx9VqlSBnZ0dHB0d5b4WKaugoABRUVGIjIzE69evkZaWBjMzM5iZmcHFxQU2NjZqbQ8hhFACkBBCJJSXl4effvoJGRkZxcq1tLSwYMECGBoaKhT33r172LFjh6C8efPmGDp0KABg4cKFyM3NLdp25coVwf4JCQmYO3euoHzixIlyTY5+8eJFbNmyBSdOnEBycrLoftra2mjVqhWGDRuG4cOHo2rVqjIfo9CiRYuQlZVV9Le+vj4WLVpUbJ+CggIcPHgQv/76Ky5evIj8/HxuLD09PXTu3BlTpkxBz549JUk+3blzBxs3bsTBgwfx4sUL0f3q1auHoUOHYsqUKahZs6bSxxUTFRWFzZs348iRI3j06JHofhoaGnBwcICvry/Gjh0La2trydrw5MkTbNq0CX/99RcePHggup+lpSUGDhyIqVOnokmTJpIdXxFBQUE4e/ZssbJBgwahRYsWxcpCQkKwfv16/PPPP4LPeSFdXV24ublhzJgxGDhwoGRJuP/++w/bt2/HyZMnce/evVL319PTQ7t27TBo0CAMGjQI5ubmch9zx44dgmPNnDkTVlZWRX/n5+fjl19+wfLly5GYmFhs37Nnz6JLly6lHictLQ07duzA8ePHERwcjMzMzFLr1KtXD3369MHQoUPRqlUrGZ/R/4uJicG2bduKlbVp0wb9+vUr+psxhiNHjmDt2rW4fPmy6LXF3NwcI0eOxJw5c0RXNM3Ly8POnTuxceNGhIWFCVZCLWRoaIi+ffti9uzZcHZ2lvt5faygoAAnTpzAjh07cPr0abx79050X319fXTs2BEjR46Er68v9PT0ZDpGQEAAbty4UfT327dvufutXLkSpqamxcratm2Lvn37FiuLiIjAX3/9Vaysc+fO8PLyKlZ2+fJlzJo1C6GhocXKx4wZgy1btgiOv3z5cqSmphYrGzhwIFxdXUWeGbBu3TrB+1pKvO+0kuTn5+PAgQM4dOgQzpw5I3g+PJaWlvD29sbgwYPh6ekp83ffwYMHcf369aK/xd47q1atQrVq1YqVffxZKvTTTz8J3h+DBw+Gi4uLTG362OXLl7Ft2zYcP368xO9gDQ0NODo6wtfXF6NHj0atWrXkPlZwcDBOnDhRrKxPnz5o165dsbL4+HisWrUK/v7+JbapTp06GDFiBCZOnCjpdzAhhMgrEAATe+jo6DBCCCkPfv31V+51asmSJWXWpnXr1nHbNH36dIXi5eXlsdatWwviGRoasqioqKL9DAwMRK/bpT1CQkJkaktERARzd3dX6Bjm5uZsw4YNrKCgQK7nb2pqWiyOiYlJse0xMTGsbdu2crfHzc2NPXz4UK62fOjly5ds+PDhTFNTU67jVqlShS1btozl5+czxhjbsWOHYB8bGxu52/P06VM2ZMgQudsDgOnr67M5c+awzMxMhc8HY4xlZmayOXPmMH19fbmOr6WlxaZMmcLS09MZY4zduHGDu9+bN2+Ual9JvvvuO8HxduzYUbT96dOnrHfv3nKf2yZNmrCzZ88q1bYHDx6w3r17Mw0NDYU/4yYmJmzlypUsJydHrmP36tVLEOv27dtF21NTU1mXLl1Ej1vac8/Pz2crVqxg5ubmCj83AMzHx4fFxMTI9dxOnjwpiDNhwoSi7fHx8SU+N97DwsKCBQUFCY4VHh7OHBwc5P5c+Pn5FV0rFHH27Fnm5OSk0DmtW7cuCwgIkOk4o0ePVvi1mzx5siDen3/+Kdhv7ty5xfZZsWIF09LS4sYcM2YMt51169YV7Lt169YSn1uzZs2Uem/K8tmU1YEDB1iDBg2UOl6LFi1YcHCwTMcbO3aswseZOHEiN6a1tbVg3927d8t8DgpFRkayrl27KtQ2PT09NmPGDPb27Vu5jrly5UpBrF9++aVoe35+Plu+fDnT09OTqz1VqlRhGzdulPv/I0IIuXDhgizXmRkoBSUACSEVQnlMAObn57PPPvtM0CZNTU2ZE20fWrZsGfc5fvhPJ2OqTwCuXbuW6erqKn2z06NHD7n+6S4pAXjp0iXBdnkeFhYWxZKosrp+/Tr3Jkaeh4+PD8vMzJQkAXjs2DFWrVo1pV+bZs2asUePHsl9Phh7nyxp3ry5Usd3dnZmiYmJ5S4BePPmTVazZk2Fn5empibz8/NTqF2nTp1SOjn24aNnz54sIyND5uOXlAB88+YNc3FxKfF4JSUAX716xXr06CHZczM1NWUXL16U+bmVlAAMDw9X+DXX09NjZ86cKXYcZa7PHye+ZJGXl8dmzpypVNK48DF+/HiWm5tb4vHUnQD8/vvvS4xZ2RKAubm5bObMmZIdU0tLq9TnzVj5TQBu3rxZ7iQb71G3bl0WEREh83FLSgBmZ2ezQYMGKdWeGTNmyHUeCCFE3gRgxZx4hxBCyjFNTU1s27ZNMPddQUEBRo8eLdPQtkJRUVHcoUGenp6YMmWKsk2V2YwZMzBz5kzk5OQoHevEiRPo3r070tPTlYpz69YteHp64vXr1wrHSE5OhpeXF9LS0mSuExoais6dO+PZs2cKHxcAjh07Bl9fXxQUFCgVZ8uWLejbt69Mw8BKc/v2bbi5ueHx48dy1Xv8+DE6dOiAiIgIpY4fHh6Obt26iQ4fLAuRkZHo1q0bnj9/rnCMgoICfP/99/jmm2/kqnfu3Dn06tULKSkpCh/7Y3///TdGjRqldBzGGIYMGYJbt24pVD8rKwve3t6C4XTKeP36Nby8vEocdi6L2NhYdO/eXeHXPDs7G4MHD0ZiYiIuXLiA/v37y3Xd/9jy5ctx7tw5mffPzc1F//79sXbtWtFhxvLYvHkzhg0bpvS1Sip79uyBn59fWTdDrSZOnIgH9+2TAAAgAElEQVS1a9dKFi8/Px9jx47F33//LVlMdfnxxx8xfvx4ZGdnKx3r0aNH6NixI3fKFHkwxjBixAj4+/srFWfdunXYtGmTUjEIIaQkNAcgIYSoQN26dbFmzRqMGzeuWHlsbCy+/fZbrF69utQY+fn5GD16dLH57wDAzMwM27Ztg4aGRrFyFxeXYv8QJyYm4unTp8X2qVKlCneutZIWLFiyZAnWr18vur1atWrw8PBAw4YNYWpqitevX+PBgwc4deoUXr16xa1z5coVjB49Gvv37xeNW5KXL1+id+/exRJ3+vr68PLygo+PD+rWrQsTExO8efMGEREROHjwIC5dusSN9fjxYyxbtgw//vhjqcd99OgRevXqVWLy0sjICO7u7rCzs4OJiQmePHmCqKgoXLt2TbDv8ePH5U62fejo0aOYOHGi6LxkBgYG6Nq1K5o0aQIrKyukpaUhISEBQUFBSEhI4NaJj49H3759cfnyZRgYGJTahrS0NPTo0UM0HgDo6OjA3d0d9erVg4WFBZKSkhAXF4fg4GBB2+/cuYPp06eXelx1ePv2LXx8fLjJVSsrK7i5uaF27drQ0dHBkydPcP36dcTGxorGW7NmDerXr4/JkyeXeuw3b95g+PDhxeb1/JCOjg46dOiAZs2aoVatWtDV1UVOTg5evnyJO3fuICQkRPR9un//fowYMQI9evQotR1iNmzYgH/++Ufh+n5+frh69aro9vr166Nt27Zo1KhR0dypGRkZRYs9xMXFceulpaVhypQpCrctLS0N/fr1Q1JSUlGZiYkJBg0aBC8vL1hbW6OgoAAPHjzAsWPHcPDgQe7nLyUlBUOGDEFYWFixuSK1tLTQs2dP9OvXDw0aNICenh6ePn2KoKAg7Ny5k/uaMcbg5+cn01yKADB27FgEBgaKbre2toaHhwfq1KkDY2NjJCcnIzY2FqdOnRKd19Lf3x+NGjXCDz/8wN1ep04dtGzZsujvnJwc3L59W7Cfo6OjYF5BeRZCePTokVp//CoPDh48iK1bt4put7CwgJubG5o0aQJjY2Po6uoiIyMDjx49QlhYGG7dusVNBDPGMHnyZNy7d0/0Wq/M62prayvrU5TZzp07sXDhQtHtWlpacHd3h6OjI6ytrZGVlYWnT58iJCREdN7Ud+/eoWfPnrh586ZccyF/6McffxT8P9O4cWMMGjQIrq6usLKyQkFBAZ48eYLz589jz549oj90LViwAL6+vgrN2UoIIYqiIcCEkAqhPA4B/hBveJumpia7dOlSqXV5Q00AsP3798t07KVLlwrqtm7dWq72BwUFic4pZ2dnx/7880/RoWE5OTnszz//ZDY2NqLfJ/v27Su1DbwhwAMHDixW1qtXL/b48eMS4/z999+sevXq3HZYWFiwvLy8Euvn5+ez9u3biz4XCwsLtmXLFpaWlsatf+/ePTZixAiZhgHJMgT4/v37zMTEhFu/WrVqbNWqVUVz6n2soKCAnT17tsThm/PmzSu1DYyVPETMwMCA/fTTTyw5OZlb99mzZ2zu3LlMW1tbpvOi7iHAlpaW3CFjhw4dEp1LLzQ0lHl4eJR4TmQZdr548WJufW1tbTZ79mz28uXLEutnZGSwX3/9VXRoeO/evWU6L7whwAcOHOAOaW3Xrh2bN28e279/P7t8+TKLjIzkDjd+/vy56DyRrq6uMg3jvXbtGuvcuTM3hoaGhkzze/KGAH88p9yQIUPYixcvRGPIMx2Ai4sLu3XrlmisJ0+esFatWok+p+fPn5f6nDZu3Ch6fGdnZ3bq1CnRecbS09PZzz//LPqe0dLSYteuXSu1DYwx9ujRI26MuLg4merzhgDPnj2bOwdtrVq12MSJE9mmTZvYuXPn2K1bt1hSUhI3riJDgBMSEtj9+/eVesTFxYnOV+fr6yt67Ly8PNaoUSNuPVtbW3bgwIFSv7sePHjARo4cKfq+kHWeR8beT/XAiyHP/JuKDgGOiopihoaG3ONramqy6dOns6dPn4rWv379OnNzcxM9D+3atSt1vk3e/2UjR44s9h1WvXp1tmPHjhLn80tNTWW+vr6ibfn1119LPR+EEMIYzQFICPnElPcE4NOnT5mZmZmgfY0bNy5xHq579+5xb7C/+OILmY+tbAIwIyOD1atXj3t+e/XqJZro+lhaWhrz9vbmxrGxsWFZWVkl1i9tjr/p06fLPHH2jRs3RG8gSks6bN26VbQNXbt2LTFJ8KEDBw6UOpeiLAlAsXPq5OTEEhISZGpLfn4+mz59OjeOrq5uqUnV0NBQ0TnG7O3tWXR0tEztuHLlimhy9sOHuhOAHz/69OkjUxsKCgrYunXrRM+Nt7d3qfVtbW0F9TQ0NJi/v79cz+vevXvchI6+vn6pnz3G+AnAGjVqFPu7b9++ciUAVqxYwT0vnp6eci1Ek5eXx4YOHcqN9fEcqTy8BOCHj6+//lqma8vVq1dLTWK7ubnJNPdpcnIyq1WrFjdGaa/906dPWdWqVbl1J0+eXGqiqNDz58+Zs7MzN07Hjh1liqGKBODH77u6deuywMBAmZ8XY4olAKXw008/cc+Hs7Nzid+l586d49Zr2LAhe/bsmVxtWL58OTfWyJEjZY5RlglAsR9WjI2N2fnz52U6dn5+Plu0aJHo57S094LYD7OFD2tra5m/9woKCtiAAQMU+o4ghJBC8iYAaQgwIaRSOnXqlMrnEWvZsiV8fX1L3Mfa2hobNmzA559/Xqw8Ojoa3333HVauXCmoU1BQgDFjxgjmjLK1tcUvv/yifMNltHHjRu5cWj169MCRI0egpaUlU5wqVarg6NGj8PHxwalTp4ptS0hIwK5duwRDpWU1cOBArF27VjAcWkzLli0xc+ZMLFmyRLDt/v376NChA7ceYwzLli3jbmvXrh2OHj2KKlWqyNzm3NxcDBs2TOH5uc6ePcsd4ti4cWMEBwfDxMREpjiamppYt24dNDQ0sG7dumLbcnJysHLlyhLfc8uXL+c+hzp16uD06dOoXbu2TO1o06YNjh8/ji5duogOQSxr7u7u2LdvH/T19UvdV0NDA9OnTwdjDDNnzhRs/+eff3Dr1i24uLhw69+9exfx8fGC8lGjRpV6zflY48aNsWjRIsGw6qysLDx79gx2dnZyxQPeTy9QaO3atZgxo9QflovhvXerVq2KHTt2yHR+C2lpaWHTpk04duyYYB7Phw8fytWmj3l5eWHlypUyXVtat24NX19f/PXXX9zt1tbWCAgIEMwLy1O9enXMnz+fO8y1tOkCFi9ezP3e++qrr+T67qhRowbOnz+PDh06IDIysti2ixcv4sKFC3B3d5c5nlQ+fN916dIFhw8fRtWqVdXeDnkdOXIE3377raDc0tKy1O8OsaHsW7duRc2aNeVqx+zZs7F//36EhYUVK1f2s6IOFy9eRFBQkKBcT08PR44ckfn9qKmpie+//x5paWlYtWqVYPsPP/yAESNGQFtb/ltkXV1d/PPPP2jUqJFM+2toaOC3337DqVOnBNcvsSkOCCFEVagHICGkQhDrAaiOx5dffilzO3lDPbS0tFhoaKhg3zVr1gj21dTUZOfOnZPr3CjTAzAnJ4f7K33t2rVZSkqKXO0olJiYyB1S2apVqxLrifUANDMzY4mJiXK34/Hjx9x4K1asEK0TFBTErVO1atUShxyVpKShs6X1AOzWrZugjp6eXtHqrPLKyclhrq6ugpimpqaiPVUTEhK4vZ40NTXZ5cuXFWrH2rVrS/zMlVUPQGNjY7l72xT6eLh64eOrr74SrbNr1y5uHXlWq/zQw4cPufF415+P8XoAFj5mzpypUHt4n+mxY8cqFIsxxnx8fATxPv/881LrifUA1NbWZvfv35erDYcPHxY9Tzt37pQr1suXL7m9R0taDTgxMZG7KmqrVq1Ydna2XMcvFBERwY05bNiwUuuqogdg4aNRo0bs1atXCj0ndfcADA8PZ0ZGRtzrtSxD3XnDhl1cXBRuD6/3W+PGjWWuX1Y9AMWuowsXLpT5uB/Ky8tjTk5O3JgHDx4UrVdSD8BFixYp1JYvvvhCEEuWlaEJIYQxWgWYEELKpd9++w1WVlbFyniLfBQuEvKxGTNm4LPPPlN5OwudOnWKu8rtwoULYWZmplBMKysrzJ07V1B+/fp1hVbtHD9+vOCcysLW1pbbM01ssQUA+P3337nlixYtgrW1tdxtAN5PGi5Lj6CPPX78mLsi6OjRo+Ho6KhQW3R0dLg9HF+/fi3otVloy5YtyMvLE5SPGjUK7dq1U6gdU6ZMQePGjRWqq0oLFiyQu7dNodWrVxctYvGhvXv3Chb4KfTkyRNBmbm5OZycnBRqg1jbS3rPl8bc3Fx0QYiSvHv3jrtytzLXN97z4703ZdW/f3/Uq1dPrjrOzs7ccmtra0EP8NKYm5tzFyMoaRX2vXv3cldFXb58OXR1deU6fiEnJyfuitFHjhyRZAVWRS1duhTVqlUrs+PL6sWLF4LFqgpt3LhRtMf5h3jXAqk/K8pcB9ThzZs3OH78uKC8du3a3P8pZKGlpYU1a9Zwt/35559yxzMyMuL29pYF731Q3l8TQkjFRQlAQghRg+rVq2Pz5s2C8qioKCxatAjA/w/9/XgIpKOjI3fIqiodOHBAUGZpaYkvv/xSqbjjxo3jJr1Onjwpd6yxY8cq3A55Eof5+fk4ffq0oNzExAQTJ05Uqg1Dhw6Vu97BgwdRUFBQrExDQwP/+9//FG4LAHTt2pWbxBAbgsYr19DQwJw5cxRug46OTrlb4VNfX1+p19nW1pb7OqempuL8+fPcOr169YK/v3+xx759+xRug6xD5OUxefJkmYe9f0hbW1vw3Pz9/dG9e3eF2yL18/Px8ZG7TvXq1bnlXl5eCg0nFIsnJiAgQFDWqlUrpX84+vrrrwVl6enpCAkJUSquoho2bIi+ffuWybHlkZWVhX79+nGH8s+cOZObWOVZuXKl4LOizPVIU7Pi3fpdvHiR+2PJ6NGjuT+uyKpr165o0qSJoPzMmTOC79jSDBo0SOHh6Ir8kEkIIYqiOQAJIURNevfujS+//BI7duwoVr569Wr0798fV65cEdxU6erqYvfu3XLNi6Usxhh3rp1evXop3JOkkJGREdzd3QW/5l+/fl2uOPXr10f9+vUVboc8zyMyMpI7r9aQIUNgYGCgcBsAYNiwYdzEcEl4ycgWLVpwewzJq2fPnggPDy9WduPGDcF+mZmZgv2A9z0ZGjZsqFQbBg8ejK+//lqpHlxS8vHxkXlORTEjR47E1q1bBeXXrl2Dl5eXoLxZs2Zo1qyZUsf8UFJSkmSxCvXq1UuhegYGBnLPY1iaFy9eSBqvZcuWctcRu6YoEgt4P7eZrFJTU3Ht2jVB+YABAxQ69ocaNmyIRo0aISYmplj59evX0a1bN6Xjy6tHjx4VIok1fvx4hIaGCso9PT25c/+KUSQZXRKpPyvqcOXKFW75sGHDlI49dOhQfP/998XK3rx5g5iYGG5yUIyHh4fCbdDR0VG4LiGEyIsSgISQSsnR0RH29vYqPUarVq3krrNu3TqcPXsWCQkJRWV5eXkYPnw4nj59Kth/8eLFokPLVCU+Ph7Pnz8XlCvTQ+dDHTt2FCQAP55ovjRt27aVpC2y4N3EAe8Tusrq2LEjqlatKvOCNYwx7o2+MjcfH7fnY1FRUcjPzy+26MvNmze5wxGlOCeWlpZwdXUVvelTN29vb6VjdOzYEebm5khJSSlWLm/iW1GbNm2SNJ6BgYHoAibqdv/+fe4PFsqwtLQsl7HE3Lx5E/n5+YJyqa7ZnTp1EiQA5b1mS0XR6QXUadmyZdi9e7egvHHjxti3b5/MC2hJLT09nduu8u7q1auCsjp16si82EZJPDw8BAlA4P21WZ4EoDr/JyGEEGVQApAQUikNHToU8+fPL+tmCJiYmGDbtm3o3r17sdVTP765At7fdM2aNUudzQMA3L59m1su1dxstWrVEpTdvXsXBQUFMvfskHd+LmWInQ9XV1elY2tqasLZ2RnBwcEy7f/kyROkpqYKylX52mRmZuL+/fvFbrbEzokiSXEeFxeXcpMAbNGihdIxNDQ00KJFC0Gi6ubNm0rHLkloaCh++eUX0dVpFdW0adMy77Xy8uVLbNu2DWvWrEF6erqksaXsca2O3tu8z6OGhoYkCRIA3HlO79y5I0lseTVv3rxMjiuro0ePYsGCBYLyatWqITAwEKampmpvU2ZmJvbv34+VK1ciOjpa7cdXFq+3uVQ/QDg5OUFTU1Mw5DcsLAzDhw+XKYaWlhbq1KkjSXsIIUTVKAFICCFq1q1bN0yePBm//vqr6D5Vq1bFzp07y6SngNgQoUOHDokuCCGPqKgoQVl6ejri4+NlHsaqzgngX716JSirXbu2ZD17mjdvLnMCUOy1uXjxoiRDu3iLMwDvX7MPkwm8cwJId1NWXm7ytbW10bRpU0li8RKAL168kCvxzVNQUID4+HjExMQgNjYWUVFRuHPnDiIiIkRfT2Wp8/P3+vXroucWHR2Nu3fvIjw8HA8ePCj2I8qnLDExUVCmr6+PDRs2SBI/LCxMUHbv3j0wxlQyv2RJyvPiHxEREfjiiy8EySRtbW3s379fsoSsmMzMzKLPSkxMDKKiohAREYF79+5V2EUlGGPc7xtFF7z6WJUqVWBnZ4f79+8XK09OTpY5hqmpqdo/B4QQoihKABJCSBlYvnw5Tp06hbi4OO72devWwc7OTs2tek8suaPIip/yHlfWBKAiq+cqitfjTsphfRYWFjLvK/ba8OaXk9LH54B3TvT09JSeK6+QOoZNysLU1FSynm41atQQlBUUFODt27cy9wpKT09HaGgoQkJCcOfOnaKbfXWvyCrV6/whxhiioqIQEhKCa9euITo6GjExMXLdiH+qeJ/HzMxMhVdIlUV2djbS09NhZGSksmPwqOK9J4UXL16gT58+3BV/V61aJdk0DYUSEhIQHByM0NBQ3Lt3D7GxsUhISKh0SfG3b99yh7ebm5tLdgwLCwtBApD3mRKj6OIfhBBSFigBSAghZaBKlSrYvHkzunTpIthmb28v8wqBqiDPP75S4t04iVHnr+288yHlTag8scrqtXn37l2p7ZByaFt5ucmXsh1iPZdev35d4rnLzc3FsWPHsGXLFgQFBZWLxVGkTMDfu3cPW7ZswZ49eyrkAgXlgdgPA6r27t07tSYAdXV11boglqyys7PRv39/PH78WLBt7NixmD59uiTHSUxMxM6dO7F9+/YKOZRXEWLfear+Dpan9zT1/iOEVCSUACSEkDIiNpw2KioKhw4dQv/+/dXcovdkXZBCah8nmcqLj4dzAVB69d8PValSReZ9y8trwzsnUt6Yy3NOVEnK11ksUVLSa3r48GHMnDmTm1iQhYaGBtq1a4e+ffvif//7n0IxeKRYhfXZs2eYPn06AgICFI5Ro0YN9O/fH9HR0Th79qzSbaqoyuq6IM+PNlIor4mW8ePH4/Lly4LyTp06lTjVh6wyMzPx7bffYsOGDdzFl2RhbGyMXr16QVdXFzt37lS6TeqSmZnJLVf1901ZfaYIIUTVKAFICCFl4OLFi1i1apXo9smTJ8PNzQ3Vq1dXY6ve4yUq1DHJdXkdusTrnSXlzYE8N9FiSSRbW1toa6vuK11XV7fY37xzImUCV92JBTHqeE6Ghobc8m+//RZLliyROb6BgQHs7e1hb28PJycntGjRAi4uLjA3N0dubq6kCUBl/ffff+jevbvMPf40NDRQp04d2Nvbw9HREc7OzmjRogUaNWoETU1NTJo06ZNOAPKuC/r6+tzFO6SkaDKqMlm+fDl27dolKK9bty4OHjwouHbK6+XLl+jevTtu3bolcx1LS0s4OjrC3t6+6LPi6OgIXV1dbNmypUIlAMWG10p5beYtIqTuoe2EEKIulAAkhBA1e/fuHUaOHMmd16bQixcvMHXqVMlX75QFb6iirq6uYI6cTwUv2fXmzRvJ4ssz1EhsGGlQUJDKJ5j/kNg5kWpRAFUtXiEvKV9nsaFsZmZmgrLNmzeXmPzT1NREy5Yt0aNHD7Ro0QIODg6ws7OTpGeeqqWkpMDb27vE5J+VlRW8vb3h7u4OBwcH2Nvb0w15CXjXhcaNG3NXTyXSCQwMxPz58wXlRkZGOHr0qFzzu/Lk5+ejf//+JSb/jI2N4eHhga5du8LR0REODg6Szo9X1sSmR5DyRzje9015XmyGEEKUQQlAQghRs6+//hoPHjwodb99+/bB19dX7UOBeQmJzMxMpKWlfZI34bwbkPj4eMmSXU+fPpV5X7GbkuTk5DJPAObn5+PJkyewsbFROr4850SV3rx5g7dv30oyyTvvOWlqagrmn3r9+rVobz0DAwPMmjULkydP5i4qUhF8//33ePbsGXdbly5d8N1336FTp04VIplZXvCu2bR4imr9999/3BV/NTU1sWvXLjg5OSl9jN27dyMkJIS7zd7eHn5+fujTp4/SvQzLsypVqkBXV1fQ2/T58+eSHYO3ijbvM0UIIZUB/XdFCCFqVDiZ/8c2b97MHa41adIkvHz5Uh1NKyKWWIiPj1drO8qLevXqCcrevHmDmJgYSeLLM7SrvLw2vHMCADdu3JAkflhYmCRxlMUYk6wX1fXr1wVlFhYW0NLSKla2e/dubs/DWrVq4fr161i8eHGFTf5lZGRg+/bt3G0//PADzpw5A3d3d0r+yYn3fkhKShKdP40oJykpCX369OEOQ/Xz80O/fv0kOY7Y/IGDBw9GWFgYfH19K3XyrxDvfyN5vjdLkpKSwv3+LC8r0RNCiNToPyxCCFGT5ORkjBs3TlA+YMAAjBs3Dhs3bhRsS0pKwldffaWO5hVp1aoVtzw0NFSt7SgvxM7HlStXlI6dlZWF27dvy7x/nTp1uDf76n5tVP0ekSqRKAVe4k5eubm5uHnzpqCcdx55iwNpaGhg3759cHBwULotZSkkJAQZGRmC8sGDB+Pbb78tt4s8lHetW7cWlOXl5ZWrz1FlUbji76NHjwTbBg8ejAULFkhynJcvX3KvGU2bNsWuXbvK5WrIqsK7ToaHh3MXo5LXzZs3ufMPi33HEUJIRUdDgAkhRE3Gjx8vmPeqevXqRb/y9+7dG0OGDMG+ffuK7bN//374+vpiwIABamlnjRo1UK9ePcEw5X///RdjxoxROv6JEyfw5MmTYmWNGzeGu7u70rFVwdXVFZqamoKbjX379mHkyJFKxT5+/Diys7PlqtOuXTscPny4WNm///6rVDsKXb16FREREcXKqlevLhiGXqNGDdjY2CAhIaFYub+/P5YtW6ZUD66oqChERkYqXF9qAQEB+Oabb5SK8ffff3MXAWnbtq2g7M6dO4Ky1q1bo2PHjgofn5d0KwtiyW5lzy9vEv9PiaurK3R0dJCbm1us/N9//0WnTp2Ujv/XX38Jeru1bt0azs7OSseuaCZMmIBLly4Jylu2bInt27dLlsS+c+cONzH11VdfKdXrr7xcC+TRpk0bHDhwoFhZamoqgoOD0blzZ6ViHzlyhFverl07peISQkh5RQlAQghRg+3bt3P/0fz5559hZWVV7O8zZ84Ihv1OnjwZ7u7ualsVuH379oIE4KFDh/Dq1Sul5sZ5+/YtBg8eLEiGrF+/vtwmAE1MTNC0aVNBYiYoKAgJCQlKzXnHWz2yNO3btxckAO/cuYMrV65wE0ryGDdunCBJM3r0aO48lO3bt8f+/fuLlT1+/Bhnz56Fh4eHwm1Q5Jyo0tWrVxEbG4uGDRsqHIM37B94fw4/xpu7zdXVVeFjA+KJN3XjTWegqakJFxcXpeLykqafEgMDA7i4uODatWvFyrdv344FCxYIhpnLIyoqCsOGDRMko/755x+FY1ZUK1eu5K6gW7NmTRw5cgQGBgaSHUtsDsfKci2Qh9j32p49e5RKAGZnZwu+w4D3r2fdunUVjksIIeUZDQEmhBAVe/ToEWbMmCEo79u3L4YOHVqszMLCAuvXrxfsm5SUhClTpqisjR/r06ePoCwzMxO//fabUnF/++03bk+obt26KRVX1YYNGyYoy8/PV2q41/Xr1/H333/LXa9Pnz7cXiarV69WuC3A+xt63s2h2GvDOycAsGDBAoWHZr148YI7FL4sMcawaNEiheuHhITgxIkTgnJra2tu76y8vDxBmaGhocLHB4CtW7cqVV8qH/dQA96vMK6trfjv0WFhYZLNB1aR9e3bV1D26NEjBAQEKBV35cqVguSfnp6eJD0LK5Jjx45h7ty5gnJ9fX0cOnQItWvXlvR4vOsAAKWSjO/evRP0pKsI2rRpU+yH0kJ//vknHj58qHDcX3/9Fa9evRKU9+7dW+GYhBBS3lECkBBCVKigoAAjR47E27dvi5WbmZmJJtM+//xz+Pj4CMr9/f2VvpmTlY+PD3cS7CVLluDevXsKxUxISMDSpUsF5U2bNkXTpk0ViqkuX375JXR0dATle/bswdmzZ+WOl5eXh2nTpimUKGvYsCH35jsgIABHjx6VOx7wPrnLG4ZpZGQEb29vbh1vb2/UqlVLUH79+nXRyetLM2fOHO4CGGXtr7/+QnBw8P+xd9/xNZ7//8Bf52TKHpKIRETEjL0FGTa1CfqxR6lZarbVUEqrRqsoWrs2pfZeKVWxNxEjRjNIIpG9rt8f/fEV932SszK9no/HeTy4zn297+u+73Puc84719C4XkpKCkaNGiU7lG/o0KGyiS+5Xr66/Mg9c+ZMoelV6eDgIClLSUnRekXPjIwMjBgxQtdmFQv9+vWTvUeNGzdONsmhjvPnz8v2eGvXrh3Mzc21ilkU3bhxA3369JG9X//6668697yWI/deAXS7F0ycOLFQ3l9zY2hoKPsHp+TkZHz++edaxfz333/xzTffyD43aNAgrWISERUFTAASEeWhBQsWyCYOfthvIBAAACAASURBVPrpJzg7O6ust2zZMlhbW0vKR40apXJokDoyMzPV2s7ExES212JKSgq6d++OiIgIjfabmJiIHj16SBKhALT+Ap+fSpUqJZuUFUIgICAA169fVzuWEALDhw/XaRGRKVOmyJYPGTJE495QWVlZGDZsGO7cuSN5btCgQbCxsZGtZ2hoiMGDB8s+N2HCBOzdu1ejdixYsEA22VAYCCHQo0cP3L9/X+066enpCAgIkO1VaWhoKLsgEAC4ublJyo4cOYJXr16p3+D/7/bt2+jevbteJsvXB1XD5bXplZSZmYmBAwdKhr1+qFxdXWWTJBEREQgICNB4nsTw8HD07NlT9rWjyz27sLwW1fXixQt06tRJdsXfyZMno1+/fnmyX32+VwBg/vz5+PXXX3VpUo7y+rp+9tlnsgnuP//8U2UiT5W4uDh06NBB9vuIr68vGjZsqHU7iYgKO84BSETFUlBQkE7zHmnCw8MDAQEBkvLr16/j66+/lpR36NAh1x8NLi4umDdvHoYNG5at/M2qwHLz1qgjOjpa7W0/++wzrFixAmFhYdnKb9++DR8fH2zatEmt+YiePn2KgIAA2R/q7u7u6Nu3r9ptKkgzZ87Enj17JEOzYmNj0bJlSyxfvlx2rrx3xcfHY9SoUdiwYYNObWnfvj1atmyJY8eOZSuPjo5GixYtsGbNGtlh3HLtGTZsmOzryczMLNcf+p9//jmWLVsmmdstPT0dPXv2xNy5czF69OgcFwVJT0/HzJkzMXv27FzbW5BevHiBFi1a4Pfff891vsqnT59iyJAhOHr0qOzzI0eOVDlksFWrVpLkcHx8PEaPHo3169ervcDKtm3bMGLEiBx7f2mTVNRFixYtZBfUmTlzJtq2bYuKFSuqFefp06cYPHiw5PX/rtjYWJ3aWhTNnDkTO3bskEyzcOLECbRu3Rrr169H+fLlc41z/fp1dO3aFU+ePJE85+vrq9Pw35cvX+o0n2Z+SktLU7nib4cOHWR7tOtLpUqV4ObmJrkGGzduxMcff6yyZ/b7EhISMHHiRKxYsULlNvp4r7x8+RKVKlXSOY4qbm5uGDNmDBYuXCh5bsaMGUhKSsLMmTNhYmKSY5yQkBD07dtX9g9lSqUS8+bN01ubiYiKkj0AhKqHkZGRICIqDJYuXaryXpVfj3bt2knalZKSImrUqCHZ1sbGRjx79kytY8vKyhLNmzeX3ee2bdtyrf/9999L6ikUCnHlyhW1z++RI0eEUqmUbYNSqRQDBw4Ux48fFxkZGZK6ISEh4ssvvxQWFhYq6586dSrXNtjY2Ejqrly5Uu1jkNO4cWNJzNmzZ+da78svv8zxtfDRRx+JXbt2idTU1Gz1IiIixPz584Wbm5ukjq2trXB1dc1WVqZMmVzbEhoaKqytrVW2pW3btmLnzp0iKSlJUjciIkIsWLBAuLi4qKy/ZMkStc7lxo0bczwnDRs2FGvWrBHx8fHZ6sXFxYmVK1eKmjVrSuoYGhqKKlWqSMrj4uLUapM2AgMD1Xq/K5VKMWDAABEUFCSysrKyxbh165aYMmVKjtfF3d1dvHr1SmU7rl27pvI999FHH4l79+6prJuWlib27dsn/Pz81DqWAQMG5HpeOnToIKk3ePBgtc/r+/z9/WXb4uTkJDZu3CjS09NV1g0NDRXjx49XeU9592FlZSWeP3+eY1sOHTokWzchIUHj40pNTZWNtXfvXo1jCSFE06ZNJbE+//zzXOstW7ZM5TkxNTUV48ePF+fPn5e8drOyssSVK1fEiBEjhJGRkWx9CwsLERoaqlb7Hz9+LBtj6tSpatXftGmTpK6JiYladXPi7u4uibtq1SrZbe/cuaPyXFpYWAhbW1u9Pby9vSX7nzhxosrr+P3334vXr1+rPM6oqCgxd+5cUbp0abXuBSdOnFDr/D158kS2/uTJk9W7AELItun333/PtV58fLzw9PRUeQxVq1YVv/32m4iJiZHUvXnzppgyZYooUaKEyvoTJkzItQ3z5s2T1PPw8FD72OXs3btXEtPMzEynmET04Th9+rQ69/m3w7rYA5CIKA8EBgbKDgtduHCh7LxpchQKBX777TfUqFFDMnxr1KhR8PPzUzlPEABYWlpKyoQQ8PHxQa9evVCmTBlkZGQgMjISY8eOhZeXl2T7Vq1aYfbs2fjiiy8kz2VlZWHt2rVYu3YtLCwsUKZMGTg5OSE5ORlhYWG5DhMODAwstCv/qjJjxgycO3cOJ0+elH1+//792L9/PwwMDFCqVCmULFkSz58/l139FPivx8G6devwzTff4NmzZxq1pXz58tiwYQO6du0qO2H8oUOHcOjQIZiYmKBMmTIoVaoUsrKyEB4enus8Ut26dcPIkSPVasf//vc/BAUFqexhcv78eZw/fx6DBg1CqVKl4OTkhKioKERERMjOjQf8N9fk7du3ZYcl56dy5crByMgIISEhb8uysrKwbt06rFu3DiYmJnBzc4ORkRHCwsJyHWZpZmaGzZs3yw7vf6NGjRr4+OOPsXHjRslz+/fvx4EDB1C3bl3Ur18fDg4OEELgxYsXCA0Nxblz52Tb0LBhQ8TFxUnm71y3bh0SEhLQsWNHmJubo2nTpihVqlRup0Unc+bMgbe3t+TaR0ZGok+fPvj888/RrFkzlC9fHpaWlnj58iUiIyPxzz//yL5uzczM0KFDB2zbti1beXx8PLy9vTFmzBh4eHjA3t4ePj4+eXpshcGnn36KCxcuYPXq1ZLnUlJS8OOPP+LHH3+Era0tXFxc4OjoiPj4eISGhubYI1SpVGL58uVq9SAE5D9/AGDu3Lm4du0aatWqBTMzM8TExKBy5cqS3u6FndxiVrqQG446ZcoU/Pbbb5J5+1JSUjB16lTMnj0bzZo1Q9WqVWFjY4PY2Fi8fPkSV65cwY0bNyTvMYVCgX79+snOCdq1a1eMGTMGNWvWhJGRkcoe5Kqu67x583Djxo1s17VSpUoYPny4uqcgV5aWltixYwd8fHxkz9ft27fxySefYOTIkXBxcYGrqyuSk5Px7NkzREZG5hjbz88vT3t0EhEVduwBSERFQmHsARgUFCTbg6dt27ZaHePChQtl9xsQEJBjvaCgILWP4a+//sox1vTp04VCodDbOfvyyy/VPv7C1ANQCCFevXolGjVqpJfzsHTpUiGEEHXr1s1Wrk4PwDe2bNkiTExM9HZtunbtKtLS0jQ6n+np6aJXr1562f/IkSOFEEIMGDBA8lx+9wCsVauWePjwoWyvIU0fZmZm4sCBA2q1JSIiQnh4eOjlfA4ZMkSkpKSITz/9NNdtz5w5I2mLvnsACiHE1KlT9XJs7u7u4sqVK+LGjRu5bvvxxx9L2lEcewAKIURGRobo37+/3u4JSqVSrF69WqP2Z2VlSXo25/aef1dh7wGo70e1atVk27Bt2zaVPYI1eVhaWoqdO3eKtLQ0YWlpmeO2FSpUyPEcyvVkl3t8+umnsvW17QH4RlBQkOz3Am0ffn5+OfamfBd7ABJRYaNpD0AuAkJEpEevX7/GgAEDJHNcWVlZaT0B99ixY2VXGdy+fXuOE4J7e3ujevXqWu3zfTNmzMDmzZtha2urUxwbGxusXbu20M/3lhNra2scP35cp7kLjY2NsWbNGrV72eWkV69eOHnypNo9c3Jq04wZM7B161bZydZzYmhoiE2bNmHatGk6zb355ZdfYsmSJVrXzwvlypXDmTNn0KBBA61juLu748SJE2rP2+Xk5ISDBw/C09NT633a29tj5cqVWLlyJUxMTNCrVy+tY+nbnDlzMHr0aK3rKxQKBAQE4MKFC6hVqxaqVauGatWq6bGFRZuBgQHWrl2L+fPnw9TUVKdYZcqUwcGDBzVeGVWhUOi199eHKiAgAMuWLYOxsbHWMRo1aoR//vkHXbt2hZGREbp3765Tmwr6ujZr1gznzp1DrVq1dIqjVCrx2Wef4ciRI7CwsNBT64iICjcOASaiIs3T01N2AY789O6X0EOHDqFevXqSxTF69OihclW/3BgYGGDVqlWYMWOG5LlTp06he/fusgsDGBgYYMuWLWjZsiXCw8O12ve7evXqBV9fX3z77bdYuXIlUlNT1a5rbm6Ovn37IjAwEKVLl9Zov126dJEMayxXrpxGMd7XvHlzySIMVapUUbu+mZkZfv/9d/Tq1QtTp07FrVu31K7bsGFDrFixAjVr1nxb1rJlS3h4eLz9v729vdrxAKBx48a4fv06FixYgB9//FGjSd0NDAzQpUsXBAYGokaNGhrt911KpRKzZs1Cx44dMWXKFJw6dUrtup6enli6dClat279tqx+/fpISkrKtp2miUl9cXFxwV9//YV58+bh+++/V3v4X4kSJTB69GhMmzYNVlZWGu2zYsWKuHz5MiZOnIi1a9ciLS1NrXomJiYYM2YMvvrqq2wrOPv5+aFPnz6yQ4tz0qRJE5QoUSJbmTqL/+REoVBg8eLF8PX1xaRJk2QXWVClUaNGWLBgAby9vbOVL126FK1atVL7PAH/re4t9/lhaKj512OlUikbS9P73Rv+/v6SleLfvWfkRqFQYMKECejUqRMCAwOxbds2jVZqtbe3xyeffIIvvvhC49fuG5MnT0ZwcLDGK4ID/y368P751Mf7v3379njx4kW2MlWfJ5aWlvn2/SKn7wfDhg1DnTp1MGLECFy8eFHtmB4eHvjuu+8QEBAAhULxtnzmzJk4dOhQrtN0qDJp0iQEBwdj9+7dWtXv0KGD5DOqbNmyGsWoXLkygoODsWzZMsydOxf//vuvRvVbtGiBb7/9VvaPqzmpVKmS5DXh5OSkUYz3lS5dWhIzt8VMiIj0jUOAiYiKiZcvX4qpU6fKTp5tYWEhatWqJW7cuKFRzOjoaLF8+XLRvXt3UaZMGdnhwe7u7qJPnz5i2bJlspNyFxdZWVni5MmTYvTo0cLLy0sygb5SqRTly5cXn3zyiTh+/HietycpKUls3bpV9O/fX3h6egpDQ0PJtXFychKdOnUS8+bNE2FhYXnSjqtXr4opU6aI+vXry0687urqKnr37i127Nghu4hMflM1BPh9sbGx4ueffxZt2rQRtra2kjr29vaiXbt2YsmSJSI6OlovbXv+/Ln49ttvRcuWLYW5uXm2/RkYGAhnZ2fRvn178fPPP4uoqCiVcdLT08UPP/wgypUrJxke2Lx5c7UXeNCn9PR0sX37dtG/f39Ju960rXbt2mLcuHHi77//zjHWP//8I1q1apXtPahUKkXVqlXFzz//nE9HVDg9e/ZMLFiwQLRv3144OTlJzrOBgYGoXLmyGDx4sPj9999lFw/SRlZWlli3bp1o2rSpZKoCQ0NDUb58efHjjz/qZV8fglOnTolRo0aJ6tWrS4YGlyhRQlSsWFEMHjxY7N27N8cFdcLCwsT//vc/yYI6ZcuWFaNHj861HVlZWWL9+vWiWbNmKq/rggUL9HnoKqWlpYm9e/eK4cOHCy8vL2FsbCx5fdva2gpfX1/xzTffiDt37uRLu4iI8oOmQ4D/789B0gRgR1XZQSMjI43+wkpERIVDYmLi294PNjY22XoI6SIlJQXR0dFITU2FlZUV7O3ts/U4+JBkZGTg5cuXSEpKgrGxMUqWLKnzMDxdpKenIzo6GklJSTA3N4ednV2+96TLyspCdHQ0Xr9+DUNDQ9jb28Pc3Dxf25Cb6dOnY+bMmdnKatWqhStXruRYLy4uDtHR0QCAkiVLat1bShMJCQmIjo6GsbExnJycZHsA5yY2NhaxsbGwsLBAyZIltYqRF9LT0xETE4Pk5GQ4OjrCzMxM4xhpaWmIiIiAQqFAyZIlJT0Y6b/PgujoaGRkZMDOzk5vnwU5SU9Px4sXL5CSkgJLS0vY2NgUWK/e4kAIgejoaMTHx2t978nMzERERATS09Nhb2+vcpGPnBS265qZmYno6GgkJCS8vQdoc1xEREVBUFCQOosqjgfwE8AhwEREHxRzc/M8SbyYmpqqvbpxcWdoaJjnK6lqwsjIqMDbo1Qq4eDgkOOq1UWVtbV1jqv65gULCwud56yytbXVeU7PvGBkZKTzkDpjY2O4ubnpqUXFU159FuTEyMhI6yHRJPUmuVWyZEmtYxgYGOj82V3YrquBgQEcHR3h6OhY0E0hIip0Csefe4mIiIiIiIiIiChPMAFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMMQFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMMQFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMGRZ0A4iIiIgKWtOmTTFlypRsZc7OzgXUGiIiIiIi/WICkIiIiD54rVq1QqtWrQq6GUREREREeYJDgImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMcOCbgARkS4ePHiAy5cvF8i+K1SogFq1ahXIvj90t2/fxq1bt7KVWVlZoU2bNgXUouJhz549SE1N1UssKysr2NnZwdbWFs7OzjA3N9dLXCLSr7t37+LGjRvZyiwsLNCuXbsCatGHh59pRESUH5gAJKIi7fDhwxg1alSB7HvcuHFMABaQP/74A4GBgdnKvLy8+GNJR5988gmioqL0HtfAwADVqlVDs2bN0LFjR7Rq1QoKhULv+yEize3evRtTp07NVlahQgUmAPMRP9OIiCg/cAgwERER5anMzExcu3YNS5YsQZs2bVCjRg1s2LChoJtFRERERPTBYAKQiIiI8tXNmzfRr18/dOnSBbGxsQXdHCIiIiKiYo9DgImIiKhA7N69G97e3jh79izs7OwKujlEeW7v3r24fft2trIaNWpwuG0Rt2/fPskcfryuRERU2DABSETFkp2dHWxsbPJ0H/b29nkan6gwUCgUKFeunEZ1EhMTERMTg/T09Fy3vXv3Lnr27IlDhw7B0JBfS6h427JlCzZt2pStbOjQoUwUFXFbt26VTGswePBgXlciIipU+E2biIqlCRMm4MsvvyzoZhAVeUZGRnjw4IFWdaOionD27Fns2LEDO3bsQFpamux2x48fx4IFCzBlyhRdmkpERERERCowAUhEREVO9+7dUbly5WxlVlZWBdQaUsXR0RFdu3ZF165dMXv2bPTr1w9nzpyR3Xb+/PkYNWoULCws8rmVRB+2zp07w8PDI1sZ34f5i59pRESUH5gAJCKiIqdq1aqoWrVqQTeDNODu7o6TJ0+ic+fOOHDggOT5ly9fYuXKlRg3blwBtI7ow1W5cmVJ8onyFz/TiIgoP3AVYCIiIsoXhoaG2LJlC5ydnWWfP3jwYD63iIiIiIjow8AEIBEREeUbS0tLfPHFF7LPnTlzBqmpqfncIiIiIiKi4o8JQCIiIspX3bt3h0KhkJQnJSXh7t27BdAiIiIiIqLijXMAEhEVkJSUFDx48ADx8fFITEyEra0t7O3tUaZMGRgYGBR08wpMeHg4Hj9+DABwcXFBmTJlZJNFeSkzMxOPHz9GTEwM4uLiYG1tDUtLS3h4eMDY2Dhf2wIAjx8/xvPnz2FsbAwXFxeULl0639ugT6VLl0bZsmXfXud3vXjxQuf4z549Q2RkJFJSUpCWlgYrKytYW1vD0dGxQCbWF0Lg3r17iIqKgo2NDUqXLo2SJUtqFSshIQGPHj1CamoqXr16BUtLS1hYWMDa2hqurq56brl6MjIy8ODBA8TExCA5ORk2NjZwc3PT6hgzMjLw4sULvHjxAjExMbCxsYGDgwNcXFzyoOXZxcTEICwsDPHx8VAqlbCwsICbmxvs7e3zfN95JSIiAo8fP4YQAqVLl4abm1u+308LSmpqKh49eoTExETExcXB1NQU5ubmsLGxgYuLCwwNP5yfQYmJiXj06BHi4+ORkpICa2trODg4wNXVFUplwfQHiY2NxaNHj5CQkAAjIyPY2dnBxcWFC9AQEeWhD+eTj4ioEPjnn3+wadMmHD9+HHfu3IEQQrKNiYkJ6tWrhzZt2qBPnz6S1RnVtWfPHslwykaNGqFMmTJaxQOAU6dOSRI0VatWhZeXl8o6+/btQ3Jy8tv/K5VKdO/ePds2Qghs3LgRCxcuxJUrV7I9FxsbCxsbm2xloaGhku2srKzQpk0bjY7nXc+fP8fvv/+OAwcOIDg4WHYoqoGBAby8vNCyZUv0798fNWvW1Hg/GRkZ2LVrV65tT09Px9KlS7FkyRI8ePDgbbmDgwOioqI03m9hU6pUKdkE4MuXLzWOdf78eezduxdHjx7FzZs3kZSUpHJbd3d31KxZE507d0aXLl1ga2ur8f5evnyJkydPZitzc3NDw4YNs5XFxcXh+++/x6pVq7K9b1q1aoUjR46ova+dO3fi8OHDOHfuHMLDw1Vua2VlBS8vL/j5+aFnz56oVauWBkf1f44ePYpXr15lK+vcuXO25Hd6ejo2btyIDRs2qBy67ebmhq5du+Kzzz5DuXLlVO7v9evXWLduHTZv3ozg4GBkZGRItildujSaN2+O0aNHS86zttLT07F//35s374dJ0+eVHluHRwc4OPjg65du6J79+4wNTVVK35CQoJkXssnT55Itnv48CG2b98uKe/SpQuMjIyylR04cACJiYnZygICAiR1N2/ejAULFuDSpUvZyiMjI+Ho6CjZ//vbWVhYoF27djJH9X/Hcf78eZXP60OdOnVQvnx5tbdPTk7G7t27cfjwYZw+fRphYWHIysqS3dbExARVq1ZFw4YN0bNnT/j4+Kj9hze56xoWFibZ7tGjR2pfV31/pgkh8Ndff2HTpk04efIkQkJCZLcrUaIEGjRogHbt2qFPnz5a/xFhx44d2b7PlChRAh06dJBsd/PmTaxYsQJ79+6VPWeGhoaoWbMm2rVrh+HDhxfYHzWIiD40ewAIVQ8jIyNBRFQYLF26VPY+NXv27IJuWjanT58WjRs3VnlfVfVQKpWiV69e4sGDBxrv09HRURJv8+bNOh2Hj4+PJOb06dNzrFO6dOkcP0Pi4uJE+/btVZ6D2NhYScyff/5Zsp2Xl5dWx/Ts2TMxePBgYWhoqPH1admypbh69apG+0tISMi17U+ePBF169aV3aeDg4NWx6kOudeMsbFxnuyrUaNGsse3evVqtWOcOnVK9jWp7sPU1FRMmTJFxMXFadT2M2fOSGL16dMn2zbBwcGiTJkysvtt1apVrvuIjo4WEyZMEObm5lofn7e3tzh//rxGxyaEELVr15bEio6Ofvv8qVOnRIUKFTQ6zwsXLpTd1+bNm0WpUqU0Oq5evXqJ+Ph4jY/rjaysLLFq1Srh5uam8Tl1dHQUixcvFhkZGbnuJyQkROtrB0D2denu7i7Z7l2vX78WnTp1UhkzMjJSEnP58uWS7SpUqJDjsW3YsEGnY1PnsXTp0lzPsRBCpKWlifnz52v8Onr3Ub58efHHH3+otb/79+/rdFx5/Zl26NAhUatWLY3bZWhoKAYOHCiePXum8T7f//x0cXHJ9vyrV6/EwIEDhVKp1Kg9EydOFCkpKVqdByKiD8Hp06fVuaeOw//HOQCJiPJQRkYGxo0bBz8/P5w7d07j+llZWdi6dStq1KiBVatW5UELC9arV6/g6+uLAwcOFMj+t23bhmrVqmH16tWyvY5yc+zYMTRo0AA//fST3tr06NEjeHt7S3rkFDcRERGy5Q4ODrnWFUJg1qxZaN68OYKCgrRuQ0pKCubOnYtatWohNDRU6zjvO3XqFPz9/fH06VOt6l+9ehX16tXDggULJL29NPH333+jUaNGen19/vLLL2jRogXu37+vdp2UlBR8/vnnmDp16tsyIQQ+//xzfPzxxypfC6ps3boVfn5+Ofb0VCU8PBwtW7bEkCFDZHvj5SYqKgpjxoxB8+bNNW53XouPj4e/vz/27NlT0E3JNxEREWjevDkmTpyo0/V48OABunfvjkGDBmn1WVAYpKSkYMiQIWjbti2uXr2qcf2MjAysXbsW1apVw7Zt2/TWrgcPHqBOnTpYu3atyh6Zqtozf/58+Pj4ID4+Xm/tISL6kDEBSESUR1JTU9GhQwcsWrRIdqivJhITEzF06FBMmzZNT60reJmZmejatatWP1T0Yc6cOejdu7dkqKOm0tLSMH78eHz55Zc6tykuLg5t27bFs2fPdI5VmP3777+yw78ASIYnyvn0008RGBio0Y/JnDx69Ag+Pj56GVp99+5ddOnSRevE3fnz59GkSRM8evRI57YA/yXaxo8fj2XLlukca9myZRg1ahQyMzO1qj937lxs3LgRADBp0iT8+OOPWrfl8uXLGDt2rEZ17t69i4YNG+LEiRNa7/eNoKAg+Pj44Pnz5zrH0oesrCx0794dFy9eLOim5Jvw8HA0atQIZ86c0VvMtWvXYvjw4XqLl19ev36NFi1aYPXq1TrHevXqFXr37o0FCxboHCssLAw+Pj54+PCh1jGCg4PRvXt3nb9HERER5wAkIsoTQgj07dsXhw8fVrmNQqGAl5cXypYtC2tra0RGRuLhw4c5/vCfPXs27O3tMX78+Lxodr767rvvcOrUqQLZ9+LFi/HVV1+pfP7NtXF3d4e1tTVevnyJkJCQHK/Nd999h7Jly+r043HMmDEq52oqTv744w/ZH3OGhoaoWLFijnV///13/PrrryqfNzQ0hKenJypXrgwzMzMolLIZBwAAIABJREFUlUokJiYiNDQUd+/eRXp6umy98PBwjBs3Dps2bdLsYN6Rnp6Ovn37Ii4uTqv6r1+/RkBAQI492xwcHFCjRg3Y2dnBwsICCQkJiIqKwo0bNxATE6Oy3uTJk9G+fXuULVtWq7YdO3YMY8aMyVZma2uLTp06oUaNGrC0tERMTAzOnTuHgwcPIi0tTTbOZ599hosXL0p6JRobG6N169Zo1KgRHB0dkZiYiCtXrmDPnj0qk/Rr167F5MmTc33NAP8tDNO6desce2WWLFkS1apVQ+nSpZGUlITw8HBcuXJF5bHcv38fnTt3xl9//YUSJUrk2oa8NG/ePBw7dqxA25CfhBDo37+/yj8kAIClpSWqVasGV1dXmJubIzExEfHx8bh161aOf2RZvXo1evbsqdOcsvkpMzMT3bt3x99//61yGwMDA1SvXh2urq6wsrJCeHg4QkNDVb4fhBCYNGkSSpYsiQEDBmjVrsTERHTs2BH//vtvtnJPT0+0b98e7u7usLCwQFxcHK5cuYKDBw8iNjZWNtaxY8ewYcMG9OvXT6u2EBFRzjgHIBEVCYV1DsCFCxeqvIeWKFFCTJ8+XTx+/Fi27qVLl8TgwYOFQqFQeQ9WZ16vwjwH4MWLF4WRkZEkVunSpUX37t1FYGCgWLFihdi8ebNIS0uTxNRlvqTTp0+rnO/PyspKzJo1Szx9+lS27vXr18Xw4cOFgYGBymsbEhKS4/5VzQG4fft22Zienp6id+/e4ttvvxUrVqwQu3fvVus4tZEfcwDGx8cLZ2dn2WNt0qRJjnVTUlIkr6c3D1tbW7FgwQIRFRWlsv6rV6/E6tWrhYeHh2wMhUKh8tq/S9UcgF999ZVs3Fq1aonBgweLefPmiZUrV4rTp0/Lxp0+fbrK+0ZAQECO7/usrCxx7tw50bNnT5X3ji+++CLXYxNCfg5AKyurt/82MTERM2bMEMnJybL1Hz9+LJo0aaLOnDQCgOjdu7d4/vy5bKzY2FgxYMAAlXWnTZuW6/GkpaXlOAdr27ZtxenTp2Xn9YuNjRWrVq1SOZ8jADFx4kS1zqsQQvzvf/+T1B86dKja9eXmALx69aowNjaWlDs7O4uuXbuKr7/+Wixfvlxs3rxZdj41beYADAsLE9u2bdP5sXDhQtl54ZRKpTh+/LjK/e/du1fl9WjYsKE4cOCASE9PV1n/7t27Yvz48cLExEQ2hjrzdL6rb9++khiDBw9Wu74un2nTpk1TeS6srKzE999/L/v+ysrKEn///bf4+OOPVdY3MzMTt27dyrUNcnMAjhw5MltZ1apVxYkTJ1TGeP36tZg2bZrKeQKrV6+u1vkgIvqQaDoHoCpMABJRkVAYE4BPnjxROXF/jRo1xL1799SKc/ToUWFvby8bp3bt2rlOQl9YE4AGBgaiSpUq2cr8/f3F0aNHRWZmplrt0PbHUnJysihfvrzsOW3cuLEIDw9Xa/8XLlxQmYjq0KFDjnXlEoDOzs6Sa92zZ0+tFnDQRV4nANPT03Nc8GXOnDk51t+0aZNsvfLly4uwsDC12xEfHy/8/f1lYy1evDjX+nIJwCpVqmRLDBsaGorx48fnmhB+IyMjQzg5OUniKhQKsXz5crWPTQghVq9eLZsErFSpklr15RKAbx4WFhbi2LFjucZISkoS1atXz/VLaW7X/I0+ffrI1s8taSyEED/88INs3RIlSoht27aptf/ExESViUhDQ0Nx9+5dteLkRQKwWrVq2f7frFkzcfjwYbUWKhFCuwSgPiQkJKh8rc2aNSvHum3btpWtN2zYMLU/R4QQ4u+//xaWlpay1zQmJkbtOAWVALx165bsH9MAiEaNGqn8Q+P7/vzzT2FhYSEbx9/fP9f67ycAjYyMst2DOnfuLFJTU9Vqy9q1a1XeL7RZEI2IqDjTNAHIIcBEVCzdvHkT27dv13vcKlWqoFq1ajluM2vWLNn5vypUqIAjR47AyclJrX21bNkS+/btQ8uWLSXxrly5gu3bt6N3797qN76QyMzMxJ07d97+f968eZgwYQIUCkWe73vx4sV48OCBpNzPzw8HDhxQexhfvXr1cObMGTRr1kwyB9i+fftw6dIl1K1bV+12hYeHv/23sbExfv/9d/Ts2VPt+kXBo0eP0L9/f5XzdVlbW+c6fHrv3r2SMqVSic2bN8PNzU3ttlhaWmLz5s0oV64ckpOTsz139+5dteO8693XtKOjI/bs2YOGDRuqXf/8+fOIjIyUlA8cOFDjYeWDBg3CqVOnsH79+mzloaGhyMjIgKGh9l//Vq1ahRYtWuS6XYkSJfDjjz+iZcuWKrcZPnw4vvjiC7X2u2jRIuzatUsyPDq3xVuio6Mxa9YsSbmJiQkOHz6MZs2aqbV/MzMzrFmzBubm5vjll1+yPZeRkYE5c+Zg3bp1asXSt5s3b77995w5czBlyhQolYV7mm8hBAYMGIArV65InuvVq1eOUzQkJibKzuNYu3ZtLF26VKNjb9y4MWbPni2ZTzIjIwOhoaGoX7++2rEKQmBgoOy0BjVr1sTBgwdhY2OjVpzOnTtj586d6NChg2TI+8mTJ3HkyBG0bt1a7Xa92yZfX19s27YNxsbGatUdMGAA9u/fL/sd7ubNm/Dw8FC7HUREpB72ACSiIkFVD8C8enz11Vc5ticqKkp2SJGhoaG4du2aVsco1zsDgGjQoEGO9QprD0BNzqcq2vSWSE5Olu1hVbp0aREREaFVO06cOCE7XCmnHj1yPQDffaxZs0artuiDvnsARkZGip07d4r//e9/KnupvHnMmDEj13ienp6Seq1bt9a6fZ07d5bE69atW6715HoAvnmYmpqKc+fOadyWRYsWycZTt8fw+44ePSobT9VQ23ep6pXVtWtXjdvh6uoqG8vZ2VkkJSVpFEtuqKKhoaHIyspSWScwMFB2/0uWLNH4WIT4bzhx/fr1Za97dHR0rvXzogfgm8ekSZO0OqaC6AGoathq3bp1RWJiYo51Vb3/Nm3apFVbYmJiZONpMt1CQfQAfPDggeznj6mpqXj48KHa+37XnDlzZM9F27Ztc6ynaloNMzMzERoaqnE7/v77b9l4K1as0Oq4iIiKK017ABbuPw8SERUx27ZtQ2pqqqR8xIgRqFGjhlYxhw4dipo1a0rKg4ODce/ePa1iFgYVK1bEzJkz821/e/bske1h9c0336jdK/N9/v7++PjjjyXl27dvV7nYRE7atm2LgQMHatWWvJKeno7y5ctr9ChdujRMTEzg5OSEbt26YdOmTTmej8aNG2Pq1Kk5tkMIITvh/0cffaT1sbm7u0vKUlJStI4HAOPGjUOjRo00rie3wEyFChXUWuBCTrly5WTLdTk+bVa6btCggWz5uHHjNF44o3HjxpKyjIwMlYt0ZGZmYtWqVZLymjVrYuTIkRrt+w0jIyMsXbpUUp6SkoI//vhDq5j6UK5cOcyZM6fA9q+JzZs3Y/bs2ZJyZ2dn/PnnnzAzM8uxvtx7RaFQoF27dlq1x9bWFtbW1pJyXe8FeW3jxo2yK6FPmjRJ5fs/N+PHj5ete/ToUURERGgcb9iwYShfvrzG9Ro0aABzc3NJeWG/JkREhR2HABMR6dGBAwckZQqFAhMmTNA6poGBAcaNG4dBgwZJntu/fz8qVaqkdeyCNHHixHwdprZlyxZJWZkyZbRe4fCNyZMnY+PGjdnK4uLicObMGfj7+2sUa8qUKTq1JS8IIfDw4cM8i+/m5oY//vgDJiYmOW6XlpaGzz//XFKuybC09xkZGWldV46pqSk+++wzrep6e3tLzoG2yT8AOg3zlePm5oZ69eppXE9Vcr1bt24axypVqpRG2//111+SIfrAf4lMXaYcqF+/Pvz8/CSrmB84cACffPKJ1nF1MWHCBL1f87wQHByMIUOGSFYBNzU1xc6dO+Hq6pprDA8PD8m90tzcXO3hrnL0fS/ID3LfN4yNjTFuXK5zvatkamqK0aNHS76zZGZm4tChQxr/gWrYsGFatcPAwADOzs65DvEnIiLNFP5vCkRERYQQAufPn5eUN2vWDGXLltUpdrdu3TBy5EjJfGXBwcE6xS0oSqUSPXr0yLf9paen4/jx45Lybt266fzDr0aNGihfvrxkbsFz585plAB0dHSEn5+fTm0papo1a4bt27er1QPTxMQE33//vV73HxcXp9d4Pj4+Giep3ggICEBAQIDe2qLvY2vSpIlW9eR6czk5OcHT01PjWJr2GDx8+LBsezp27Kjxvt/XrVs3SQLw77//1jmuNhQKhV5fO3nl2bNn6NKli+RzDAB+/fVXtXvOent7w9vbW2/tyszMREJCgt7i5YfU1FTZ+RPbtWsHOzs7nWL37t0bkydPRmZmZrby4OBgjRKAnp6eqFKlitbt0PT9TkREuWMCkIiKJTs7O516A6hia2ur8rnQ0FBER0dLyjt06KDzfq2srODj4yP5QXvhwgWdYxeEKlWq5Hgu9e3GjRuIj4+XlLdv314v8f38/CQJwHcn5leH3PDG4qpkyZKYNGkSxo8fX2A9b5KSknDo0CG9xixM13DXrl16jadtYjOvY+Xk7NmzkjJ/f3+9JBbkkvVRUVF48eIFHBwcdI6vCU9PTzg6OubrPjWVlJSELl26ZFvw6I3JkyejX79+BdCq/xw8eLDIDS29evWq7HQj+vi+Ubp0adSpU0fy/ULT7xvaTIVARER5iwlAIiqWJkyYoNV8Vbq4ePGibHmdOnX0Er9WrVqSBODDhw8RHR0Ne3t7vewjv2iyQq4+XL9+Xbbcy8tLL/Hl5pLTNAGozfDKosTMzAy+vr5o164dBg4cCEtLywJry6lTpzBt2jQ8ffpUr3ELwzWMiIjA0qVL8d133+k1roWFRaGMlRO5933VqlX1ElvuPQ/8977XdOi/rgrD6y4n4v+v+Hvp0iXJcx06dND7a1VdCQkJ2LBhg9orURcm+fF94/2E3/Xr15GWlqb2ar669P4jIqK8wQQgEZGeyC0wAUB2AQ9tqFpE5N9//y1yCcD87iEjNw+YoaEhbt++jTt37ugcPyoqSlJ27949ZGRkqD0vV8mSJXVuR14wNDTEpk2btKprYmICBwcHlCpVCi4uLmr/cNSXtLQ0PHjwAPfu3cOdO3dw9epVXLx4Mc/mNMzvaxgeHo6QkBDcu3cP165dw/Xr1xEcHKxyUYwPyevXr2WHQaekpODYsWN62YehoSEyMjKyld26dSvfE4CF9d7xxowZM7Bjxw5JedWqVbFx48Z8mQs2Njb27Xvlxo0buHbtGs6fPy/bM7wokPu+YWhoqLc/asl930hLS8OLFy/g4uKiVoz87OVPRETqYQKQiEhPYmNjJWWGhoZ6S845OzvLlr969Uov8fOT3IqLeSkmJkZSlpGRodMCErlJS0tDXFyc2tc/L4as64NSqSz084tlZmbi6tWrOH/+PO7du4eQkBCEhIQgLCxMMo9VXsqraxgeHo4zZ87g5s2bCAkJwf379xESEoLXr1/nyf6KA7n7MQAsXrwYixcvzrP9yv0xIK/l9/1UE1u3bsWsWbMk5fb29tizZw+srKz0ur+4uDicPXsW165dw/3799/eD16+fKnX/RQ0ude3jY1NrospqSun7xvqJgAL62caEdGHjAlAIiI9kUvEWVlZ6bTa5LtU/cgriglAff/oy41cAjA/vH79Wu0EYH6fk6IuNTUVu3fvxvr16xEUFFQokmH6vIa3bt3CypUrsW/fPq6EqYWCfM/nt8J677hw4QIGDRokWfHXyMgI27ZtQ/ny5fWyn+fPn2Pt2rXYsWMHrl+/jqysLL3ELczkPvf1mQjWx/eN/OjZSUREmmECkIhIT+R++Jmbm+stvqofeUUxAWhgYJCv+yuoc6RJMiC/z0lRlZGRgZ9++glz587VulePQqFAvXr1IIRQOZeWNvRxDS9cuICJEyciKChI6xgODg7w8/PD9u3bdW5PUVVQ7/mCWE22MN47nj9/rnLF359++gnNmzfXeR9hYWGYOnUqtm/frnVPXzMzM3z00UfYv38/kpKSdG5TfuH3DSIi0gYTgEREeiL35VufPyhUrVKoryE/xZmpqWmB7Lcw9EorTmJjY9GpUyecOXNGo3qOjo6oVq0aatWqhTp16qBp06YoW7YsJk2apNcEoK6WLFmC8ePHS+aVy4mJiQmqVKmC6tWro06dOqhbty68vb3x7NmzDzoBWFD3Rb7ngeTkZHTp0gX//vuv5LkRI0Zg5MiROu/j2LFjCAgI0CghZWhoCA8PD9SoUQO1a9dGnTp14OPjAzMzMzg4OBSpBCC/bxARkTaYACQi0hO5Ca/lJqHXlqofOvk50XZRHVold44qVKiA8+fP5+l+C3Kl2+ImIyMDHTt2xNmzZ3Pcrlq1avDz84OXlxeqVq0KLy+vIrFIzoYNGzB27FjJcMl32draokWLFqhdu/bbY/Pw8CiUPcAKmp2dnWz5jh079NL7TBUjI6M8i10UCCEwcOBA2cS6v78/Fi1apPM+rly5gk6dOsn2LnzD1NQUvr6+qF+/Pry8vFClShVUrly52CSwPoTvG0REpH9MABIR6YnchNcZGRmIjY3Vy5dmVcMdVf3QzQtFdfiP3PnX13Wh/LF06VKVyT9nZ2eMHz8ePXv2RNmyZfO5ZbqLiYnB6NGjZZN/SqUSvXr1wvDhw9GkSRO1V5X+0Kl6b6ekpPB9n4dmzpyJbdu2Sco9PDywfft2nROkQggMHTpUZfLP19cX48aNQ+vWrWFmZqbTvgozue8br169Qnp6ul6S0IXh+wYREekfv0USEemJg4ODbPn169fh6+urc/zr16/Lludn76aCmlhfV3LXJiYmBikpKQU2PJjUJ4TAwoULZZ/r2LEj1q9fX6RXnFy5cqVs7x1bW1vs3LkTfn5++d+oIs7W1hYGBgaSueHCw8MLqEXF3/bt2/HNN99Iyq2srLBnzx69fFadPHkSly9flpQbGBjgl19+wbBhw3TeR1Eg95mWnp6OO3fuoEaNGjrHLwzfN4iISP+4PBMRkZ7UrVtXtvzKlSt6iX/p0iVJmZ2dXb71eIqLi0NERES+7Evf6tSpIynLysoqVPO/kWrXrl3DkydPJOW1a9fGH3/8UaSTfwCwd+9eSZlCocAff/zB5J+WjIyMUL16dUl5Xg/7/1BdunQJAwcOlPRiVSqV2LBhA7y8vPSyH7n3CgB8//33H0zyDyiY7xseHh6FdsVpIiJSDxOARER6UrlyZVhbW0vKDx06pHPs5ORknD59WlLeqFEjKBQKneOr48KFC0V2DsB69erJDov666+/9BL/zp07uHTpUrbH8+fP9RKbgKtXr8qWT5s2TafhbmlpaVrX1RchBK5duyYp9/f3h7+/v9ZxC8OxFTRvb29J2dmzZ3OcZ1Fd0dHRkve8vpIvRc2///6Lzp07yy5CMWfOHHTs2FFv+5K7F9jb2+Ozzz7TKW5Re7/UqVNH9t6nj+8b0dHRuHDhgqRc7v1ERERFCxOARER6olQqUb9+fUn5sWPHdO459+eff8oOEWzUqJFGcVJTU7Vuw/79+7WuW9DMzMxQq1YtSfn69et1TgZER0ejTp06qFevXrbHsWPHdIpL/0duNVEAOg+tv3//vk719eH169eyK8f6+PjoFDc0NFSn+sVB48aNJWXh4eE4cuSIzrGnTJkiec8PGTJE57hFzZsVf+X+4NG3b19MmTJFr/uTuxd4e3vr9IeAqKgoxMfH69KsfGdmZibbw3XPnj06r0S9ZcsW2e8Kmn7fICKiwocJQCIiPWrbtq2kLDMzE4sXL9Y6ZlZWFn766Se195cTbRORycnJWL9+vVZ1C4t27dpJyu7evatzMmDFihVISUmRlLds2VKnuPR/5M6vQqHQaehvVFQUjh8/rkuz9ELu2ADdV9vcvHmzTvWLg1atWskumvLzzz/rFDcyMhJbtmyRlH9o73khBAYNGiTbW6xhw4b47bff9L5PufeLrlMAFNX3itznf1JSElasWKF1zPT0dCxZskRSrlAo0KZNG63jEhFR4cAEIBGRHvXu3Vv2B+fChQvx4MEDrWKuXbsWwcHBkvKqVavK9jh8w9jYWFIWFBSkVRsWLlxYZBcAeaNfv35QKqUfe2PHjlW5omRuwsPDMXfuXEl5nTp14OLiolVMkpJLhgkhdOpZO3ny5EIx7M/W1lZ2GL8ux3b+/Pkim9TQJycnJ9nE/4EDB7Bz506t43711VdITEyUlHfq1EnrmEXRrFmzsHXrVkm5i4sLdu3alScLLMmtQqvLe+XFixeYPXu2Lk0qMH379pW9d8yaNUvrc7Jo0SLcvXtXUu7t7Q1PT0+tYhIRUeHBBCARkR65uLigV69ekvKUlBT07NlT42FGly5dwvjx42WfmzBhQo51nZycJGVHjhzBvXv3NGrDjRs38O2332pUpzDy9PREly5dJOUhISH49NNPNZ7fMD09Hb1795a9puPGjdO6nSTl7OwsW37gwAGt4i1ZsgTr1q3TpUl6Y2RkhJIlS0rKDxw4oNXw9LCwMPTq1QsZGRn6aF6RN3HiRNnyESNG4M6dOxrH27JlC1atWiUpr1evHpo2bapxPAB6mZMwv+3YsQMzZsyQlJcoUQJ//vmnyvesruTinjlzRnaKjNwkJSUhICAAL1680EfTJPL6ulapUkW2F2B8fDx69eql8R+2Tp8+jcDAQNnnVL2PiIioaGECkIhIzwIDA2FiYiIpv3z5Mjp06IDw8HC14pw5cwbt2rWTTTBVqVIF/fr1y7F+pUqVJGUZGRkYMGCA2j8Mbt26hVatWqkcpljUzJo1S3auqPXr16Nfv35ISEhQK058fDw6d+4s26OybNmy6N27t85tpf/j6+ursqeLJj/e09PTMW3aNIwdO1blNnILGeQ1uZV+r127JptoysnZs2fh6+uLsLAwldsUxPEVJB8fH7Rv315SHhUVBT8/P/zzzz9qx9q4cSMGDBgg+9zkyZO1bmNsbKzWdQvC5cuXMWDAAEmCS6FQYPXq1ahXr16e7Vtu3s/k5GRMnTpVoziPHj1Cy5YtZRfXekPX90p+XNdZs2bJ9mwPCgpCt27dEB0drVacw4cPo1OnTrLfDRo1avTB9W4lIiqumAAkItKzihUrqvwx8tdff8HLywtLly5V+eMgNDQUY8eOha+vr2xyw8DAACtWrMh10vPOnTvLlp8/fx6+vr459n5JT0/Hjz/+iEaNGiEyMvJteYMGDXLcZ2FXtWpVfPHFF7LPbdq0CZUrV8aaNWtU9iZJTk7GmjVr4OXlhYMHD0qeVygUWLlypU4T0pOUs7MzGjZsKCl/+vQp/P39c119NTMzE1u3bkXdunUxe/bsHHvmXL16Fa9evdK5zZqQ65kK/NdLbeHChbn25rt37x6GDh2aa/IPAE6dOqVtM4usJUuWyK7QHhUVhSZNmmD48OG4efOmyvqXL19Gjx490LdvX9lh4506dUJAQIDW7bt48WKhGI6urjlz5sgmx8zNzbFq1Sq0atVKb4/3E7SdO3eW/WPA8uXLMWLEiFwXwIiKisLXX3+NmjVr4ty5czlum1NyUB0XL17UaeEtddStWxejR4+Wfe7QoUPw8vLC6tWrVZ6X27dvY+jQoSr/2GhiYoLly5fLJhmJiKjokU5URUREOvv6669x5swZ2UUGYmNjMXr0aEyYMAGNGzeGm5sb7OzsEB4ejvv37+Py5cs5xp41axaaNWuWaxs6deoEDw8PPHz4UPLchQsXUK1aNbRu3RrNmzdH2bJlYWJigqdPn+LatWvYtWuXpOdA06ZNERgYiNatW+e678IsMDAQ586dw9GjRyXPPX/+HIMHD8aIESPQsGFDuLm5wcnJCfHx8Xjw4AGCg4Nz7CX4+eeff3ALAeSXGTNmyA53u3XrFurWrQtfX180b94cFSpUgIWFBWJjYxEZGYng4GCcOnVKNpler149XLx4MVvZq1ev0KFDBwQGBqJChQpQKBRwd3fPq8MCAPTs2ROzZ8/G7du3s5VnZGRgwoQJWLBgAbp27Yo6derA3t4eGRkZiIyMxP3793Hy5EncuHFDMoS9QoUKiIqKkiSzv/zyS2RmZqJVq1YwMDBAuXLlZOcLLU7KlSuHNWvWoEePHpLzlJWVhV9//RW//vorKlasiKpVq8LV1RUKhQJRUVG4cOGC7D30DRcXF40WuyhRooSk7MmTJ2jTpg369euHUqVKITExEc+ePcPIkSNle5MXNFXTJSQkJOh99fP3e+tWrlwZH3/8MTZt2iTZdvny5di0aRO6dOmChg0bolSpUjAwMEBUVBTCwsJw+vRpBAcHS5KtNjY2KFmypGTl7HXr1sHR0RG9evWCtbU17OzsVC7OI3ddnz17hjZt2qB///5vr+vz588xfPhw2e219cMPP+DcuXOyi7FERkZiyJAhGD16NJo0aQIXFxfY2tri+fPnuHv3Lm7cuJFj7EWLFqFmzZp6aysRERVOewAIVQ8jIyNBRFQYLF26VPY+NXv27IJumoiPjxeNGjVSeS/V5jFp0iSN2rB//36hVCp13q+Xl5d4+fKlOHnypOS56dOn59iG0qVLS+osXrxYhzMrxM8//yzbRnW9fv1aNG3aVK/XZvjw4SIrKyvXfSckJMjWP3TokC6nRC8cHR0l7TI2Ni7oZr3Vt29fvVwrU1NTsXr1anHjxo1ct+3YsaOkHWfOnJHdNiIiQutjCwoKEiYmJno5vvbt24vY2Fjh7++f67aPHj2StKV27dqS7b7++mutjmvChAmSWE2aNNEq1t69e2WPISUlRa36K1euFAYGBnp7z7u6uoqQkBCNjuG7775TO35cXJykvru7u2S7BQsWaNSG9y1fvlwSs0KFCiq379q1q97OYW6PPXv2SPb/9OlT4ezsrJf4Xl5eIiQkREycODHXbbdv367ynMydO1ftfcbGxkrq6/qCE5HKAAAgAElEQVSZ9uLFC1G9enW9nvs5c+aovX9DQ0NJ/S1btqhdX47c8SxatEinmERExc3p06fVuae/nZyc/bmJiPKIpaUlTpw4gT59+ugcy9TUFL/88gt++OEHjeq1b98eS5culR0ypa7GjRvjxIkTsLe31zpGYWNhYYGjR49i8ODBOscyNjbGrFmzsGzZMp3OM+Vu1apVsr0ANeHp6YnTp09j0KBB8PLyQvny5fXUOt00a9YM69at06k3nqGhIb7++mvs3bsXNjY2nLfrPUOGDMGePXtkF13RlLe3N4KCglChQgWN6vXs2bPY97jMa66urti/f7/On0m9e/fGP//8gwoVKqicMkNdAQEBBXpdS5YsiTNnzujlPW9hYYENGzaonC6DiIiKLg4BJqIizcrKCh4eHpJyVcN08luJEiWwYcMG9OjRA1988QXu3r2rUX2FQoEOHTpg/vz5qFixolZt+PTTT1GhQgUMHjwYT548UbueoaEhJk6ciOnTp8PU1BTAf8fz/vnO7Vy7ubm9rf+G3HxcmrC2tpa0w9XVVaMYpqamWLVqFXr06IEpU6bkOhRKTosWLbBw4ULUqFFD7TpKpVL2NWtmZqbx/vWtbNmysLCwyFZWmOYzNDY2xr59+/Ddd9/h22+/1Wh+LTs7O0ybNg2jRo16+0NdoVDghx9+QI8ePTRasdPU1FT2GhoYGKgdQ06vXr3g6emJfv36abxCbatWrTBv3rxsw/WGDRuGX375Bffv39colouLi2TosLb3VDs7O8m5Kl26tFaxzMzMZM+7Jon39u3b49atW/jqq6+wbt06pKena9SGUqVKYerUqRgzZoxW86J5eHjghx9+0HqlcDc3N8l+bWxstIr1htznaJkyZVRu7+TkJHsd8oK5ublsee3atXHt2jUMHDhQ42HH1apVw9y5c7MtDtO0aVN07twZu3fv1qqd5cqVw/z583NcYCgn+vhMs7Kywu7du7Fx40Z8/fXXePTokUb1lUolevTogR9++AFly5bVqG65cuWQmZmZrez9zxJNubq6IjExMVuZrt8diIhIHocAExHpWUZGhti3b5/o27dvjsOXFAqFqFatmpg0aZK4ceOG3vafkpIi1q9fL/z9/YWZmZnK/Xt6eoqJEyeKx48f623fhV1mZqY4fPiwGDBggHBxcVF5bgwMDETNmjXFuHHj9HptSHMRERFi+vTpombNmiqHuRsZGYmmTZuKRYsWiZiYGJWxNm3aJFxdXWWv9/Dhw/PxqP6TmZkpdu7cKTp06CCsra1Vvh7Lli0rRo4cKYKDg1XGevr0qfjoo4+EQqGQ1HdychLPnz/PxyMrXMLCwsSsWbNEw4YNZYcwvnueunbtKjZu3ChSU1P1su/9+/eL+vXrq9yniYmJiI+P18u+iruzZ8/m+rlasmRJ0bt3b7F//36RmZkpGychIUF8+umnskPxraysxNGjR3Nty4EDB0SDBg1yvK6vXr3S9ymQSEtLE7t27RI9e/YUDg4OKtujVCpFrVq1xFdffSXu3buX5+0iIiL90nQIsKo/me4B0FHFczAyMipSq5URERVG4eHhePDgAWJjY5GSkgILCws4OjrC09Mzz//KnZ6ejrt37+LFixeIiYmBiYkJbG1tUalSJTg4OOTpvouCiIgIhIaGIjY2FqmpqbC3t4ednR3KlSsHKyurgm4evScuLg4hISGIjo5GUlISHB0d4eTkhDJlykh6n6qSmZmJmzdvIiwsDEIIODo6onr16jr3YtFVZmYm7t279/a9WqJECbi4uKBUqVIavVcjIiJw8+ZNxMbGws7ODuXLl8/zxU2KkuTkZNy/fx8RERGIi4uDmZkZ7O3tUapUqTw9T5GRkbhz5w5evnwJExMTWFlZwd3dHWXKlOHKq1p4+PAhwsPDER0dDaVSCWdnZzg7O6NUqVJqn8+4uDhcv34dkZGRMDc3R9myZVG5cmWNrkdhuq5CCDx//hwPHz7Eq1evkJqaCktLSzg5OcHT0xOWlpb52h4iItKfoKAg+Pr65rbZeAA/AUwAEhERERERERERFSmaJgD5p0UiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYsywoBtARJSfMjMzERYWpvJ5a2tr2Nvb52OL6EOXlJSEiIgISbmHh0eO9V6/fo0XL15kK1MqlXB3d9dn80hN4eHhSE5O1kssMzMz2NnZwdjYWC/xiChvqLp/lytXDgqFogBa9OFJTExEZGSkpDy3z1Aiog8RE4BE9EE5duwY2rZtq/J5Pz8/nDx5Mh9bRB+6o0ePokuXLpLyjIwMGBgYqKy3c+dODBw4MFuZpaUl4uPj9d1EUkP//v1x7NgxvcY0NzeHo6MjGjRogCZNmqB169aoVKmSXvdBRNo7deoUPvroI0l5cnIyTE1NC6BFH56jR4+ia9eukvLMzEwolRzsRkT0Lt4VieiDsnHjxhyfDwoKwrNnz/KpNUREqiUmJuLRo0fYunUrxo4diypVqqBdu3Y4ceJEQTeNiIiIiIoYJgCJ6IORlJSEXbt25bhNVlYWtmzZkk8tIiJSnxAChw4dQosWLdC/f38kJiYWdJOIiIiIqIjgEGAi+mDs/n/s3XdcleX/P/DXYYpsWYobNyAmijkjFSUnmoqVe6ZmpR8zx6cyNctsaKVm46MWJalJkisXAQ4cOEDEgblxIQIyZZz790c//Ir3dcNZrOPr+Xicx8PHdd/Xdb1vOec+57zPNcLDkZWVVeZ5oaGheOeddyogIiIi3YSEhOD06dOIiIiAs7NzZYdDVO6uXr2KS5culSizs7NDhw4dKikiMgT+XYmIKg4TgET0zChr+m+xkydPIjExEZ6enuUcERGR7s6cOYPBgwdj//793DCEjN5vv/2GefPmlSjr0KEDjh49WkkRkSFs3LgRc+fOLVHm5+eHY8eOVVJERETGi1OAieiZkJKSgj179mh8/saNG8sxGiJ6Vhw9ehQPHjzQ+HHnzh2cO3cOkZGRWLp0Kbp161Zq+wcPHsQHH3xQQVdDRERERNUVRwAS0TNh06ZNKCgokJX7+fnh+PHjsvINGzZg4cKFFREakU5at26NOXPmlCiztLSspGhIiZ2dHRwdHbWq4+bmhpYtW8Lf3x9z5sxBbGwsJk6ciLi4OOH533zzDWbOnAk3NzdDhExEGmrSpInsPgwAZmb8ilVRmjVrJvwbqFSqSoiGiKhq47sTET0TlKb/fvXVVwgODpbt/Hvp0iUcO3aMa9BQleXr6wtfX9/KDoMqQPv27XH06FEMGTIEO3bskB3PycnBl19+iU8//bQSoiN6drVo0QJLly6t7DCeaV5eXvwbEBFpiFOAicjoXb58GUeOHJGVN2vWDJ06dcKwYcOE9UJDQ8s7NCIijVhaWmLjxo1o1qyZ8PjWrVsrOCIiIiIiqk6YACQio7dhwwZIkiQrHzlyJAAgODhYWG/Tpk0oKioq19iIiDRlbW2NxYsXC49dvHgRN27cqOCIiIiIiKi6YAKQiIyeaPqvSqV6nAB8/vnn0bBhQ9k5t27dQmRkZHmHR0SkscGDB8PGxkZ4LCYmpoKjISIiIqLqgglAIjJqJ06cwPnz52XlnTt3hoeHB4B/k4FVdRpwfn4+0tPTKzWGqhBHeno6srOzK61/AMjMzERGRkalxlDZcnNzkZWVVeH9FhUVIS0tDYWFhRXed1VjYWGBzp07C4/dvXvXYP3k5uYiLS2tyoyCzsnJEW7kpAu1Wo20tDTk5OQYpD1DyM/PN+hzPCMjA2q12iBtaSMrK6tKvGcZSmFhYaW/91S2jIwMZGZmVnYYle7Ro0dIS0sz2H3IELKzs5/55ycRaYebgBCRUVPa/KN49F+x4OBgfP7557LztmzZglWrVum1u2paWhrS0tJKlLm4uMDW1lZ2bmxsLDZu3IioqCgkJiY+/mBnYmICZ2dntG3bFl27dsWoUaOEoxZLk56ejgcPHpQoc3Z2hp2dnezcEydOYNOmTYiMjERiYuLjpI+JiQmcnJxKxNGoUSOt4ijL+fPnERYWhqioKJw9exbJycmPj5mamqJBgwbw9PSEv78/Xn75ZTRp0sSg/aempmLv3r3Yu3cvzp49i0uXLiE1NbXEOba2tnB3d0fr1q3x3HPPYfDgwfD09DRoHGXJycnBnTt3SpSZmJiU+fe4c+eOLPFRr149WFhYlCiTJAm7d+9GWFgYjh49ivPnzyM/Px8AYG5uDjc3N3To0AHdu3fHiBEjtN7ptjR3795FaGgodu/ejdOnT5e4ThcXF7Rr1w79+/fHiBEj4ODgUKLu1atXZYkPe3t7ODk5GSy+yubu7i4sv3//vtZt5eXlITo6Grt378apU6eQlJSE5OTkEssmWFlZwcXFBZ6envDx8UGfPn3wwgsvwMRE+9+R1Wo1rl69WqLMwsIC9erVk50bGRmJlStXIiIi4vE91NPTE2fPntW4v/Pnz+Ovv/5CdHQ0kpKScOnSJeTl5T0+bmJiAkdHR3h4eMDHxwcdO3bE4MGDdX6+pKSkyJIl7u7uqFGjRomya9eu4eeff8aePXuQkJBQImnm7OyM5557Dv369cPYsWNlz/GnJSYmIiQkBFFRUbh+/TpSUlIev1Zr1aqF1q1b48UXX8S4ceO0ft8ozf379/H7778jIiICp0+fxpUrV0okMN3c3NCiRQt06dIF/fr1Q5cuXbRq/8qVKyWeh0+/fwH/JmUuX74sKxf9n2t670tOTsZXX32FrVu3IikpCcC/0+93794tu4a8vDzcunVL1n/jxo0Vd6HNz8+XbTxmaHZ2dnB2dtaqzq1bt7B7927s378f58+fx6VLl2Q/etnb26NBgwbw9vZG+/bt8fLLL2v9GcDQf1elv0Hxj7y6yMnJQXh4OPbu3YvY2FhcunQJubm5j4/b2tqiSZMm8PPzQ69evdC/f39YWVnp1FdycjIePXpUoqxhw4YwNTUtUVZQUIA///wT4eHhOH78OC5duvT49WZpaYk6deqgc+fO6NGjB1555RVYW1vrFA8RPZv+BCApPczNzSUioqqusLBQqlOnjuweZmFhIaWmppY4V61WS40bNxbe88LCwvSKY+HChbI2//e//5U45+LFi1Lv3r0V77tPP0xNTaVXXnlFunv3rsZxfPTRR7J2vvvuuxLnXLp0SXrppZe0imP48OHSnTt39Po/kiRJioqKkl588UWN+wYgqVQqqU+fPtLJkyf17v/y5cvS5MmTJQsLC61iKH60adNG2rZtm9b9bt26VdheYWGh1vVsbW3L7C8oKEhW79SpUyXOiYyMlHx8fDS+dmtra2n27NlSbm6u1tf/pHv37klTpkyRLC0tNerXzs5OWrp0qVRQUPC4DQ8PD9l5M2bM0CsuTQQEBAhjPHfunMH7mjJlirAvba4zIyNDWrJkieTs7KzT871OnTrSl19+KeXn52sVe0ZGhqyt1q1blzgnOztbGj16tLBfNzc3jfrZs2eP1K1bN52uzdzcXBo6dKiUlJSk1bVJkiSNGTNG1l5kZGSJ6582bZpkbm6uUSz29vay94tiN27ckIYNGyapVCqN2jIzM5OmTp2q9+v08uXL0tixY7W+V3p5eUmbN2+W1Gq1Rv3UqFFDp78fAOnAgQOy9gYMGCA7Ly4ursQ5P/30k2RnZydsc+/evbI2Dx06JDy3tP/j+Ph4na9L08fUqVM1+j8ujmf48OGSiYmJ1v2oVCqpa9eu0sGDBzXur2bNmjpfV1RUlKy9yMhI4blFRUUax1QsNTVVmjNnjmRra6tVXPb29tL8+fOltLQ0rfv09fWVtXf//v0S54SFhQnf25QeDg4O0ieffFLm5wgiqv6ioqI0uS/MQBmYACSiam/Pnj3Ce9igQYOE58+ZM0d4/rBhw/SKo6wE4ObNmyVra2udPgy7urpKR48e1SiOshKAW7ZskWxsbHSKw8XFRYqJidHp/yczM1MaN26czl8IgH8Tke+//77OH3Z/+eUXvb6UPPkYMmSIVl+wq1oCcNGiRTp9EQQgeXt7S7du3dL42p+0a9cuycXFRad+u3bt+vgLU8+ePWXHjS0B+PLLLwv7WrRokUb1T548KTVq1Mggz3dPT0/pypUrGsdeVgIwIyND6tixo2J/ZSUAc3NzpfHjxxvk2iwsLKTVq1drfG2SVHoC8OLFi1LTpk11imXu3Lkl+omKitL59eLn5ydlZmZqdV2S9O8PZStWrJCsrKz0+n/t37+/lJKSUmZ/FZ0AFL1HPvkwtgSgWq2WPvvsM8nMzEzv/lQqlfTGG29o9B5cVROAf/75p+Tm5qbX/0OdOnWkHTt2aNVvaQnAwsJCaerUqTrH061bNykjI0OreIioetE2Acg1AInIaGk6/beY0m7A27dvx8OHDw0W15N++eUXvPLKKzqv4XLv3j307dsXFy5c0CuO0NBQBAcH67y+W0pKCvr164dz585pVS85ORldu3bFunXrdOq3WFFRERYvXowRI0ZovT7PokWLMHLkSIOtB7Zlyxb069evWq5XN3v2bHzwwQc6rx2WkJCA3r17a/16Wb9+Pfr374+UlBSd+j148CD8/f3x4MEDvaZ9VRenT58Wlru6upZZd8+ePejSpYtsGq6uEhMT0bVrV4PsQFxQUIDBgwfjyJEjOtXPzs5Gjx49sHbtWr1jAf6dqjlt2jR89dVXereVlJSEbt264dKlSzrVX7p0KX788UcAwKFDh9C3b1+dXy/Hjx/HhAkTtKpTUFCA0aNHY8aMGSWmQupi+/bt6NatW4nlHSrbd999h/fee6+yw6gwkiRh0qRJmD17tkHeqyRJwqpVqzBu3DgDRFfxvvjiCwwaNEjvdVRv376NAQMGGOSeoVarMXLkSHz77bc6t3HgwAEEBQVVy88jRFQ+uAYgERml3NxchIWFycodHR3Rv39/YR1fX180bdpU9gUtNzcXW7duxejRow0aY3R0NCZMmCBbZL9Ro0bw8fFBvXr1kJ+fj2vXriEmJkYxOZeamoqpU6ciIiJCpzgOHjyIcePGyeJo2LAh2rRp8ziO69ev4/Dhw4pxPHjwAFOnTtV45+T79++jV69eZSYNnZyc4ObmhszMTNy9e/fx2lYiGzduRK1atbB69WqNYggPD8eCBQtKPcfMzAx169aFra0t1Go1MjMzkZycXGqSLCIiAitWrMA777yjURxVwerVq4XrYLZu3RotWrSAm5sbsrOzkZSUhGPHjikmWhMSErB48WJ89tlnGvW7bds2TJw4sdTNJszNzR+v/XTjxg1hsvbs2bMICgpC7969Neq3ukpISBCujQWgzPUwb9y4geDg4DITOO7u7rC1tUWNGjWQmZmJmzdvlvq6S05OxtSpU7F9+/ayL6AUixcv1vk+BgDTpk0rcydkGxsbuLq6wt7e/vGGFWUl0ubMmYPevXujVatWOsWVnp6O8ePHy5ILHh4e8PPzg5OTEzIzM3HixAkkJiYqtjNz5kw4OTlh3Lhxsh+NHB0d0bVrV9SvXx+5ubk4f/48jh07pvi62rRpE2bOnImOHTuWGb8kSRg7diw2bNhQ6nnW1tZwd3eHSqVCcnJyqT9snT9/Hv369cOhQ4cqfa2y+Ph4vP3225UaQ0VbuXIl/ve//5V6joWFxeP3vvz8/MfvfaUJCQlB//79FX9QrYrWrFmj0Xu1m5sbnJyckJqaWmqiUK1WY+bMmbC2tsbEiRN1jmv+/Pn47bffSpSpVCq0a9cOTZs2fXzfSExMxKlTpxRf65GRkVi9ejXeeustnWMhIuPHKcBEVK399ttvwvvX5MmTS603f/58Yb2XXnpJ51hEU4A///xzqW7duiXKevXqJcXExAjXR8rNzZVWrlwp2dvbK96bn1xnSkQ0vWnZsmVS/fr1S5T16NFDOnz4sGIcq1evlhwcHBTj2L9/f5n/J0VFRVKvXr0U22jZsqW0Zs0aKTk5uUS9wsJCaf/+/dL48eMlU1NTxfqbNm0qM4ZHjx5JDRo0ENY3MzOTJk+eLEVHRwuncuXk5EgRERHSpEmTFNfycnBwkB49elRmHFVhCvD69etLrOelUqmkiRMnShcuXBC2kZKSIs2bN09x6piFhYVsDSORK1euKD6nVSqVNGLECCkiIkI2lSsxMVGaO3eucJ2m5s2by8qMaQrwsGHDhP1YWVlJOTk5pdZ99dVXFV8zvXv3lsLCwoRrWBUUFEhxcXHShx9+KDk5OSm2ceTIkTLjV5oCHBMTI3w+mZqaSi1btpSGDRsmTZkyRVq8eLGw3YMHDyrGVbt2bemTTz6RLly4IJwWePfuXWnDhg2lrhk4YsSIMq9NksRTgJ+ebt2hQwfhFFVJkqTjx49L7dq1U4zj6Ye7u7sUEhIivNdcvXpVGjx4sGLdUaNGaXRNH3/8sWIbjo6O0oIFC2Rr6UmSJCUkJEgLFiyQHB0dFetPmjRJsd+TJ09KsbGxjx/Tp0+X1ffy8ipxTvFDNMVZNAX42LFjiuud1q5dW+rdu7c0adIkadasWcI1IXWZAnz79m1pzpw5ej/effddxbXq3nvvPcX+79+/r7jch5WVlTRr1izp+PHjwvU9Hz58KO3cubPUNQNbtGih2Lfo7/rmm2/K2vD09NT476rPFOCYmJhS1+Ps3r27tGHDBik7O7tEvaysLOnXX3+VunfvrljX0tJSOnHiRJkxiKYAb9iwocTanubm5tLs2bOl69evC9u4ceOG9PrrryuuB+rs7FxirVwiMh5cA5CISBJ/0AcgRUdHl1rv9OnTwnpmZmZabbjxJFECsFatWo//rVKppG+++Uajti5cuCC5uroKY3zrrbdKrStKAD4dx4oVKzRaoP3ixYuKa+W88cYbZdZfsWKFsK6pqam0bNkyjT6onj59WvLy8hK2U6dOHSkrK6vU+r/++quwrqurqxQbG1tm/0/G8XQyt/ixffv2MutXhQTgk88DGxsb4VpXIrt27VL88rR+/foy6yttfOPu7i7t27evzPr//PNPqevFFT+MJQH4v//9T/Eay/qR4saNG8KkuampqbR27VqNY0hNTZX8/f2FMbzzzjtl1hclAJs0aSI1a9asRJm3t7f03XffabyovtK6iAEBAVJ6errG1/ftt98KExt2dnZSXl5emfVFCcAnH1OmTCkzMZGdnS21b9++zOf1888/L9vQ6mlqtVpxjdW6deuWeT1xcXGKif7g4GCNEv0pKSlScHCwsA2VSqXx+rGffPKJrH6HDh00qitJ4s8FgYGBsnvonDlzpLNnz2rUpi4JQEN5//33hX136NCh1B8DlBK6TZs2lS5duqRx/xEREYo/4MTHx2vcztKlS2X1/fz8NK6vawIwPz9f8TOEra2ttG7dOo36X7t2rWJC1dfXt8z3clEC8Mn3ZDc3N403Olu7dq1iElCTH2eJqPphApCInnn3798X7k7YqFEjjZJbLVq0EN77NE3SPU2UANSn3R07dgjb6dSpU6n1ylrgfPny5VrF8ddffyl++SjN/fv3hV8aTE1Ntd5xOTU1VfLz8xPG8fnnn5dad8iQIcIvo6JFxssSHR0tjEFptNKTqkIC8Mn3d22vf9GiRcK2pk+fXmq93bt3C+s5Ojpq/OVbkv5NKJW1Y3F1TwAWFRVJy5YtK3Wkys6dO0tt45tvvhHWW7hwodbxpKamCn+I6NmzZ5l1RQnApx/z58/XaPRssZycHOHGFI0aNSrzhwCRmTNnCuPS5HlZWgJw+PDhGscQFxdX6u6+TZs21Xhx/+zsbMUfbMpK4CntzP7mm29qvJuvJP37HJ42bZqwrcDAQI3aKI8E4JOPLl26SJcvX9a4PUmqvARgaGio8Pnh7u4uGzn/NFFyuUaNGtL58+e1jkPph7SffvpJ4zYqKwG4Zs0aYT1LS0utk2V79+5V3BX7559/LrWuKAFY/LC3t5cSEhK0imXSpEnCtpYuXapVO0RUPXATECJ65m3atEm4XtWIESOgUqnKrK+0dk1oaKjesT2tX79+mD59ulZ1+vbtC19fX1n57du3dY4jMDAQM2aU+eOQrI6fn5/WcXz11VfIyMiQlS9evBiDBw/WKoZatWohLCwMtWrVkh1btWpVqev0idYKCwwMxAsvvKBVDADQrVs3tGnTRlauz9+kMsydO1fr6//Pf/4jXMOrrGtfuXKlsDwkJASenp4a929nZ4fw8HBYWVlpXKe6uHfvHtatWwdfX1+8++67iusudu7cGX369Cm1LdHGGg4ODpg9e7bWcdWqVQuvvvqqrPzWrVtat/W0efPmYcmSJbCwsNC4TlxcnHBdw/nz5+u0vtwbb7whLNfn9ezm5obvv/9e4/N9fHzQuXNnxeM///wz7OzsNGqrZs2aipszpKamKtY7cOCAcE3XgIAALF++XKP302ImJib4+uuv0a1bN9mxPXv24OLFixq3VR68vb2xc+dONG7cuFLj0MTx48cxfvx4SJJUotzKygpbt26Fu7u7Yt3c3FzhJkKjR49Gi+Ge+mUAACAASURBVBYttI4lODgYzs7OsvKq/t6nVqsV16n9+uuv0aNHD63aK35NiIjW1tXUZ599Bi8vL63qvPfee8LX5p07d3SOg4iMBxOARGR0tN3992lKCcCYmBhcuXJF57ieZmJiovNOcX379pWV6bqDr0qlwtdff10hcRQWFgq/BPv4+GDOnDk6xVCvXj0sXbpUVn7lyhUcOHBAWCc7O1uYrHj55Zd1igGAMGml69+kMtSuXRv//e9/ta5nbW0tTBqWdu3JycnYtWuXrLxv377o16+f1jE0atSoyi5wPnPmTAQHB2v8GDhwILp06YKmTZvCzc0N48ePR1xcnGL7NjY2WLNmTZlxiBIsffr00TlxKtoQQ9/ne/v27bFkyRKt6yklj7T9QaGYh4cHLC0tZeWZmZk6tQf8+zzQNGFXrGvXrsLywMBAdOrUSau2/P39heWlXZNoMyULCwv8+OOPMDU11ap/ADA1NcXatWtldSVJQkhIiNbtGYqJiQk2btyo9d+nMiQnJ2PQoEGyhLdKpcKPP/4o/FHuSVeuXBHuCKvre5+ZmRmaN28uK6/q730HDhzAP//8Iyvv0KGDzht3vP766/Dx8ZGVx8fH4+TJk1q316ZNG51iadCggTBpWNX/JkRUMbgLMBEZlStXruDw4cOy8vbt26Nly5YateHt7Q1PT0/ZboySJCE0NBTz5883SKwBAQFl7tqppFGjRgaJAQC6d+8u/ABfHnHs379fuHve+++/DxMT3X+TGj16ND788ENZUm/Hjh3CL755eXkYNmyYrFzpC7cmatSooXPdqmDcuHHCpIcmtH0e/PTTT8Ivoe+//75O/QPArFmz8MUXXwjbrUx//fVXubWtUqmwbt06tG7dusxzO3bsKPs76ZPwLo/n+5w5c7QaVVbMyclJ9nq2s7MTjkzShEqlgqWlJR49eqRTfRHRiMmy1KtXz2Bt1a9fX1j+9CiyYllZWQgPD5eVjx07Fg0bNtS6/2JNmzbFsGHDZLubbt++HYsXL9a5XX0EBQVpNeq4suTk5CAoKEj449XcuXPx2muvldmGiYmJ8L1PNKtAU9XxvW/r1q3Ccn0+i5iamuK9994T/oi8detWrf+PX3/9dZ3uhwDQuHFjJCQk6FSXiIwbE4BEZFRCQ0OFX2g0Hf1XLDg4GB9++KGwfUMlAEUfwjVla2trkBgqOo6dO3fKyuzt7TFw4ECdYwAAS0tLDB06VDaSMSoqSni+k5MTNm3apFefTxNNQaxOKvJ58Pfff8vKmjRpgueff17nGFxcXNC9e3fs3btX5zaqE1tbW6xfv17jJJ6uo3yV5OXlGbQ9BwcHnUfs9evXT6eRo0okSTLo9TVp0gQNGjTQup6NjY2w/MUXX9S6LW1fo5GRkcJ72qhRo7Tu+2mvvfaaLAEYFxeH9PR0ODg46N2+tsaOHVvhfWpLkiSMHTsWJ06ckB0LCgrCRx99pFE7LVu25HsfxEsiuLi4IDAwUK92+/fvDzs7Ozx8+LDM/kqjUqkwdOhQneMw5GdEIjIunAJMREZFNP3XzMxM6xETStOAExISEB8fr1NsT+vYsaNB2tFXRcYRHR0tKwsMDNRqvS8lojV7EhMTS10H0FDy8/OFI0+rC2tra41GkSnRZpSCWq3GsWPHZOWDBg3SebRDsQEDBuhVv7ro3r07jhw5otcIPn2J1obTx/PPP6/TtNLyEBMTI1xHVld169Y1WFsqlarUNd4MRfTjibOzs9ZTj0X8/f1hZlZyDIIkSTh79qzebWtLpVKVutZiVbFw4UJs3rxZVt66dWuEhIToNYJeH2lpaaUuUVAVPXr0CKdOnZKVDxw4EObm5nq1bWVlJVyPNTY2VnG0rUiTJk3g4uKiVyxERCJMABKR0Th16pRs2i4A9O7dG66urlq11apVK8WEyNMjF3RhYWFRJaYcmZqa6pX40UZ+fr7w7yPaPEMXogXMs7KycPXqVYO0ryQ5ORmjRo3C9evXy7Wf8uTl5SX7Ql5ezp07JxsdAeg3Ba2YoZ5LVZGDgwOGDBmCiIgIREREVNr9Izs7G5988gk2btxo0Haryg8iJ0+exOjRow3apiFHtVlbW+udpNCEKKnj7e1tkCStnZ0d3NzcZOWVkQBs0qSJzlPFK8rGjRuxaNEiWbmzszPCw8MrbbRXUlIShgwZgpycnErpX1dxcXHC6f3t2rUzSPuidtLS0pCUlKRxG8b8XkZElYtTgInIaOi7+cfTgoODcebMGVl5aGgolixZotdoJQcHh0r7xf5J9vb2FTbq5tatW8JRNbVr10ZaWpre7SslsM6ePQsPDw+92weAoqIiXL9+HWfPnkVcXByOHj2KXbt2Vbl157Tl5ORUYX0pfck3xBeeikpma2PixIk6/f9aWFjAxcUFbm5uaNSoEXx9fSssSfuku3fvIjExEfHx8Th16hS2bt0q3MVbX7Vr1zZ4m2XJy8vDhQsXkJCQgLi4OERHR+PYsWNajdTRhL4jW8urrdKINryqX7++Qe7VwL87SScnJ5coq4w1y+rUqVPhfWojNjYW48aNkz0nzc3N8fvvv1fYrsUFBQW4evUq4uPjER8fj0OHDiEiIsLgr5WKcPPmTWF527ZtDdK+0nvZtWvXNF5vuSLfk4no2cIEIBEZhaKiIoSGhgqPrV69GmvXrtW6zdTUVGH51atXcfjwYXTp0kXrNos5OjrqXNeQKjKOBw8eCMsnTJiACRMmlFu/T3/J1ER2djZOnTqFCxcu4OLFi0hKSsLFixdx6dIlg24MUFVU5PNAKYGgtOGBNhwdHWFtbY3s7Gy92zKUWbNmabwBUWUpLCzEmTNncP78eVy8ePHxIykpqVySfSLlufZbcnIy4uPjZdd2/fr1apnAqAii12lISEi57tary71aX5Wx5qCmbt26haCgIOEaeytXrlTc2Vkf6enpOHny5OP3vOLHlStXUFBQYPD+KkN6erqw3BDvQQAU1/vUJnleVT4jEpHxYQKQiIxCZGSkcGc8ADh48KDB+wsNDdUrAVgRU7g0UZFxKCUAy1tmZqZG5yUkJCAkJASRkZE4efJktR/Vp42KfB6IvgSpVCqDTWOzs7OrUgnAqurOnTsICQnBvn37cPjwYWRlZVVqPPb29gZrq6ioCDt37sSWLVtw4MABXL582WBtPwvUarVikqQ8aXqvNiQ7O7sK71MTubm5ijv+Tp8+HZMnTzZYXzExMQgNDUVUVBQSEhIqZN3cyqSUiDPUPUipHW1eU1XlMyIRGR8mAInIKChN/y0vmzZtwooVKyplSl51ZaipY9oq60vln3/+iY8//hhHjx7VuQ8HBwfUrFlTMQlN/0f0PLCxsTHYlHg7Ozvcvn3bIG0Zo4SEBCxYsADbtm3TeUSPhYUFGjZsqNWaVmUxxBfenJwcrFixAqtWrdLrtdi8eXOjGvGkrYcPH6KoqKjC+62MBKAhNqAytOIdf2NjY2XHAgICsHz5cr37UKvVCAkJwWeffabX2otubm4oLCxUnDFRFYlGNZuYmCjuuq0tpQRgZX0GIiJ6Er+5ElG1l5eXh7CwsArtMyUlBXv37hXu9kZilbXmodKXyry8PEyYMAEbNmzQuk1nZ2e0bdsWvr6+8Pf3R8+ePTFlyhSsW7dO33CNnmjKpSGnVRv76BV9LF++HO+++67Wo1utra3h4+ODtm3bolOnTujfvz/Cw8MxduzY8glUB+fOncPgwYNx4cIFreqpVCp4eHjA19cX7dq1Q58+feDj4wN7e/tnNgFYWffqyh6FWlUsWrQImzZtkpU3a9YMGzdu1PuHxwcPHmD48OHYt2+f1nXd3d0fv/f17NkTXbt2Re/evREREaFXTBXJ0tJSVqZWq1FQUGCQhLBS8rwqrPtMRMQEIBFVe9u2bauwdaqeFBoaygSgFmrVqiUs//7778t1IXPRuj6SJCE4OBjbtm0rta6VlRX8/Pzg6ekJLy8veHp6wtvbW+tdpen/iJ4H+fn5yMvLQ40aNfRuvzLuBdXBF198gXfeeafUc0xMTNCmTRu0bt26xHO+UaNGVfrL67Vr19CjRw/cuXOn1PNq166Ndu3awcvL6/G1tWrVCtbW1hUUafVga2sLMzMzWaJ4ypQpGDJkSLn1a2VlVW5tVxebN2/GwoULZeX29vYIDw9XfB/VVF5eHl566SUcP3681PPs7Oxk731eXl56918VKK37mJGRARcXF73bV5rqy3X9iKgqYAKQiKo9pem/b7zxBsaNG2eQ9kVTbrZu3YqcnBzUrFlT7z6eBUoffps3b14ui5mX5ocfflBM/llaWuLVV1/FsGHD0L17d34pNTClL5Dp6el67wQrSRITgAJnz57FvHnzFI8HBARg9OjReOmllwzyBbiiTZ48WTH5V6dOHUyePBkDBgyAr69vhe2iW52pVCo4ODjg/v37JcqdnJwQEBBQSVEZvxMnTmDs2LGyUdKmpqYIDQ1Fq1at9O5j8eLFisk/GxsbjB07FoMHD0a3bt2Mdh06pc8iaWlpBrn/KU31ZQKQiKoCJgCJqFp78OABdu3aJTz2xhtvGOQDs729vTABmJmZie3btyM4OFjvPp4FSomfu3fvVmgcarUaS5YsER7z8/PDhg0b0LRp0wqN6Vmi9DxITEzUOwF47do1o9ylWV+ffvqpcDqrq6srQkJC0Lt370qIyjCOHTuGPXv2CI9Nnz4dy5YtYxJfB05OTrIEYEXfq58lxTv+5uTkyI59+umnBplt8PDhQ3z99dfCY4GBgVi/fr3e9+DqQOk96OzZs2jevLne7ScmJmrVLxFRRaq68zmIiDSwefNm5Ofny8rbtm1rkOQfADRt2hTt27cXHgsNDTVIH8+CevXqCafenDx5skLjiI2NxfXr12XlLVu2xP79+5n8K2eenp7C8ri4OL3bNkQbxqagoAB//vmnrLxGjRrYt29ftU7+AcCWLVuE5W+++Sa++eYbJv905O3tLSur6Hv1syI3NxeDBg1CcnKy7NjYsWMxa9Ysg/Sze/du4TqLL7zwArZt2/ZMJP8AwMfHR1h+6tQpg7R/4sQJYbnSex8RUUViApCIqjWl6b+vvvqqQfsZPny4sHzXrl3c2U1DJiYm6Nixo6z80KFDFRqH0vSnjz/+GLa2tjq3Wxm7ZlZHrVq1gpOTk6w8KipK77Yr+rlUHSQlJQmnRU+aNAmtW7fWud2qstmK6PVsY2ODjz/+WK92n/XXc+fOnWVl8fHxlbJTrzGTJAnjx48XPo87d+6MNWvWGKwvpfe+L7/8Uq/pvtXtteLu7o769evLyv/++2+DtC9qp0mTJnBzczNI+0RE+mACkIiqrWvXruHgwYOychMTE7zyyisG7Ss4OFi4dtSjR48UR6CQXKdOnWRlMTExuHbtmt5tjxs3DiqVqsSjW7dusvNEfZmYmOg9xUo0qpDkVCqVMLnw119/KS6erglJkrBx40Z9QjNKV69eFZb369dPr3aryvNd9Hr29/eHjY2Nzm0+ePAA2dnZ+oRV7Ynu1YWFhfj999/1bnvDhg2ye7WFhQUePnyod9vVzeLFi/Hbb7/JyuvXr4+wsDDhjrW6Er1WijfG0UdVuRdo4/nnn5eVHTp0SPF+qamzZ88KRwCKXk9ERJWBCUAiqrZCQ0Nli2UDQNeuXYW/7uqjQYMGwqRFcRykmZ49e8rKioqK9B7lkJKSgk2bNsnKRQvWi77YOzg46LUDbUpKCmJiYnSu/6wRTTt99OgRfv75Z53b3LdvX7X8IlrelBJZ+k73Cw8P16u+oYiuz1iurTK1a9dOuGnB6tWr9W571apVsrIOHTrAzs5O77ark99//x0ffvihrNza2hrh4eEGHzEmeq3o20d8fDyuXLmiVxuVoUePHrIySZLw3Xff6dWu0uuje/fuerVLRGQoTAASUbVVUdN/iylNA46MjMStW7fKpU9j07lzZzRp0kRW/vXXXyMpKUnndj/88EPh4ukvvfSSrEw0zffhw4d6TWNavHgxN5/QwqhRo4QjtBYtWqTTlHq1Wo25c+caIjSjo5RU0WfpgrCwMIOtl6Uv0fXpM5I0JycHn3zyiT4hGQULCwvhBlexsbFYv369zu3+8ccfOHz4sKxcdK82ZidPnsSYMWNkP2KqVCqsX78ebdu2NXifovc+fV4rAPD+++/rVb+yDB06FBYWFrLyFStW4PLlyzq1GR8fj++//15WbmVlhSFDhujUJhGRoTEBSETVUlxcHBISEmTl5ubmGDZsWLn0OWzYMJiamsrK1Wq1cAoPyalUKrz99tuy8pycHIwZM0aYxCvLzp07hSMI/fz8hNN8RCMeCgsLdV4/bsuWLcIRLaTM3t4eI0eOlJWnpqZi6tSpWq8v9/nnn3ODAgVKI3x0XXPx4sWLmDJlij4hGZSrq6us7ODBgzol9NVqNaZMmaLXjxHG5K233oKJifyrwn/+8x9cvHhR6/aSk5MxdepUWbmlpSUmTpyoU4zV0e3btxV3/P3ggw8wdOjQculXdC+4du2aziP4li9fLtxgqDpwcXER/licl5eHMWPGIDc3V6v2MjIyMGbMGBQWFsqOjR07Fvb29jrHSkRkSEwAElG1pDT6LzAwULjBgCHUrl0b/v7+wmOcBqy5iRMnokGDBrLymJgY9O3bV7hhgZKIiAi88sorwoSR0s6JoqQg8O8oQm0TT2vXrsWrr76qWE+0QzX9a8aMGcKF5zdu3IgZM2ZonMBZv349R/+VwtPTUzjyZ+XKlbh3755WbR07dgw9evRASkqK8HhBQYFOMepDtLHQ3bt3tU7KZ2dnY8yYMQgJCVE8pzKurzJ5enoK19NNS0uDv78/zpw5o3FbycnJCAwMxN27d2XHRo4cqfO07eq2KUnxjr83b96UHRs6dCgWLFhQbn0rvfdp26darcbHH39c6u7E+r73VcTfdd68ecJRgAcPHkRwcLDG64CmpaVh4MCBOH36tOxYzZo1+f5ERFWKWWUHQESkLbVarZhwK6/pv8WGDx+OiIgIWXlsbCwuXryI5s2bl2v/xsDKygorV65EUFCQbPpTVFQUWrVqhWXLlmH48OGKOxOmpqZi2bJl+PLLL4W/uAcEBAinrwH/fglydXWVJT/+/vtvjB49Gt9++22ZuwGfPn0aH3zwAbZt21bqefHx8ZAkSbiBzLOuRYsW+M9//oNPP/1Uduybb75BbGws1qxZAx8fH2H9e/fuYe7cuVi3bt3jMnNzc1hZWck2ExB9yXtWWFhYIDAwULZ5w/379xEYGIgtW7bAw8Oj1DZu376NL774Al999ZXw9Vbs7t27uH37NurUqWOQ2DXRv39/fPHFF7Lyd955BzY2Nhg/fnyp9YuKihAWFob58+fj0qVLpZ4bFxdXbiPMq6rPP/8cf/31Fx48eFCi/M6dO/Dz88M777yDd955Bw4ODsL6+fn5+OWXXzBnzhzcv39fdtzFxQVLlizROb7r16/j4cOH1Wb9wG+++QbHjh2TlZuYmKB27dqYN2+ewfoKDAwssfbcSy+9BHNzc1kiOyQkBK6urvj444/LvFdGR0fjv//9r3ADtifFxcXpHjgq5u/aokULzJo1Szjlf/v27fDx8cGqVavQu3dv4UjYoqIihIeH480331RcBuaDDz4Q/uBJRFRZmAAkomonKipK+Ou5tbU1goKCyrXvIUOGYPr06cKRIKGhoeX6670xGTBgAGbMmIHly5fLjt2+fRujRo3C22+/jX79+qF58+aoV68e1Go1bt26hePHj2PPnj3Iy8sTtl2rVi2sW7dOMelmamqK2bNnY/bs2bJjv/76K/bv348xY8bgxRdfhIeHB6ysrJCeno7bt2/jyJEj2Lt3r/DLj4uLi2xkVGJiImbOnImFCxdyCpDAwoULsX//fsTGxsqOxcTEoE2bNvD19UWvXr1Qr1492NjY4Nq1azhx4gT++usv2evw66+/xurVq2Ujk/TZ4MUYvPvuu9iyZYss4X769Gl4e3tj+PDh6Nu3L7y8vGBra4usrCzcv38fp06dwt9//41du3bJ1rgUPd8lScLIkSPxww8/lJlUNBR/f3906tRJtglPQUEBJkyYgDVr1mDEiBHw8/NDnTp1YGpqijt37uD69euIiorCjh07ZFMgTU1NYW9vL0t6rVixAm3btkVQUBDMzJ6Nj9B16tTBTz/9hKCgINlI50ePHmHJkiX47LPP0KNHD3To0AG1a9eGtbU1UlNTcerUKezZs0c46g/4d0mI77//XuONKETJqezsbIwcORLz5s1D/fr1kZ+fj5SUFDRp0gTOzs7aX3A5UxpVplarsXLlSoP2ZWdnVyIB6OjoiNdff13YzxdffIE//vgDY8aMQdeuXdGgQQNYWlriwYMHuHHjBg4fPoy//vpLuPan6F6we/dufPrpp3jrrbdgZWVVapyiv2tOTg5GjhyJuXPnokGDBo//rh4eHnBxcdH0v6BMCxcuRGRkpHATr8uXL6NPnz5o0KABBgwYAA8PDzg5OSElJQX//PMPwsPDcfv2bcW2e/XqJfycQURUFf0JQFJ6mJubS0RElWXChAnCe9Nrr71WIf336dNH2H+LFi2E5y9cuFB2rre3t14xbNy4Udams7NzqXU++ugjWZ2WLVvqFcfvv/8ua9PR0VGjuoWFhdKrr76q+F6jy8PR0VE6fvx4mX3n5uZKXl5eBulTpVJJ77//vrR9+/YyYxs3bpwslq1btwrPLywsLPUaRPVsbW3LvPagoCBZvTFjxpRZrzRz5syRtRkYGKhR3eTkZKlx48Z6/x3efPNNSZIkydPTU3ZsyZIlel2fJgICAoRxnTt3rtz71sTEiRMN9jrr16+flJycLJmYmCieY2trKzVr1kwWR0ZGhvD8vXv36nxtR48elSwtLQ1ybU5OTtLevXtL/f8yNzeX7OzspPDwcFksY8aMkZ0fFBSk03WtW7dOp9e4yLVr14TXosn9UpIk6fvvv5dUKpXBnkMqlUpavXq1VtewadMmjds/cOCArP6AAQNk54nuydo4dOiQsP/c3Fzh+R988IHB/g/Leojue/fu3ZPc3d0N0r65ubm0atUqac2aNYrnmJiYSI6OjtKCBQsU/w83b96scZ9RUVGy+pGRkcJzi4qKNPob3rt3T/i+oc+jQ4cOUkZGhkb9+/r6yuq/9957GtVV8tprr8nanDhxol5tElHVFBUVpcl9aQb+P64BSETVSl5eHrZs2SI8Vt7Tf4sp7QZ84cIFnDhxokJiMAampqYICQnB7NmzDTJF1sPDA/v27UP79u3LPLdGjRrYtWsX6tWrp1efdnZ2CAsLw6JFi+Dv71/qSIe0tDTZCCwC3N3dER0djdatW+vcxmuvvYYvv/wSAIQjQ5/1EYAAsGrVKgQEBOjVhomJCd5//338+eefcHd3R9euXRXPzczMrLA1MDt06ICffvpJuEmTNtq2bYvjx48jICAAvXv3VjyvoKBANs3c2E2aNAmbN28W7t6tLWtra6xdu1a4IUhpevbsCWtra737f5a5uLhg586deo9Ir1OnDiIiIjBt2jT06tVL8T1crVaXueN4z549DfK80pWLiwuio6Px4osvGqS9QYMGYf/+/dVmWjoRPVuYACSiamXHjh1IT0+XlTs5OSEwMLBCYhg0aBAsLS2Fx7gZiHZMTU2xbNky7Nu3D61atdKpDXNzc7z55puIj4+Hr6+vxvXq16+P48ePl/pFX4mJiQleeeUVJCYmYtCgQQAAGxsbzJgxo4yaJFKvXj0cOXIE06ZN0yqJY25ujo8++gi//PLL4ymZop01NZ1iaMwsLCywY8cOzJo1S6eEu5+fHw4fPoxFixY9Xg/rv//9b5VZ33L48OHYt2+fTkl9V1dXrF69GseOHUPjxo0BAIMHD4a3t7ehw6zWhgwZgjNnzqB///46txEQEID4+HiMHTtW67q1atUSrhlK2mnTpg2OHz+u0Y9lT7OyssK8efNw/vz5xz8AeHh44LXXXtM5HkdHRyxbtkzn+obg5OSEffv2Yfny5XB0dNSpjdq1a2Pt2rUICwur1IQmEVFplD61/QlggFIlc3Nz7mxIRJUiNzdXOMLHzMyszI0bDOnhw4fCXUpFceTl5SE3N7dEmampqV6/Dufn58vWElKpVIoLsVelOJSo1WqEhYVh/fr12L9/v+Iaf8VatGiB4OBgTJkyBe7u7lr3V0ySJOzevRvLly/H33//XepOn05OThg2bBimTZsmHLFWWFiIN998E99//71wZ+CxY8eW2LQC+Hc0UVZWluzcsr6EiOpp8n+flZUlu0YLCwu9RtaIXpfm5uY6fQlKSEjAl19+ic2bNwv/X4B/R/QNGjQI7733Hry8vB6Xq9VqWFlZyT6jREVF4YUXXtA6Fm2I/l+Bf0eJ6jsyzdDOnDmDFStWYPPmzaXutlmjRg0EBgZi8uTJ6NOnjzDZ9+OPP2LGjBnCtc0aNmyIq1evliiTJEn4I46NjY3ipj/ayMrKwrp167B69WqcP3++1HM9PT0xatQoTJs2TXgfvHr1KoYNGyZcoxIAwsPDMXDgwBJl2dnZsuefrq8FQ99fRTus6/r8PHbsGH744Qf88ccfSE1NLfVcNzc39O3bF9OnT9fqRxolxZuKKG28AAAHDhyQjVAtj3tfYWGh8DXk4OAgfL0ofYYpD1ZWVqWOfi4sLERYWBi++uorHD16tNSd193d3fHqq6/i7bffRv369WXHi3fRVpqhsWDBAnz44Yelxvvrr79izpw5SE5OVjxHdC9X+hvomsjLyMjA2rVr8euvv+LUqVPC9/Jipqam6NixI0aOHInRo0ejZs2aWvcn+jxZo0aNMtdOLI3oPmRpaalTfERUtUVHR8Pf37+s02YCWAEwAUhERFVQXl4eTpw4gQsXLiAlJQVpaWmws7ODk5MT6tatiw4dOsDV1dXg/WZnZ+PYsWNISkrC/fv3kZeXB1dXP9pteQAAIABJREFUV7i7u8PDwwM+Pj7C3QCfduXKFezfvx83b96ESqVC7dq10bZtW7Rt29YgSY5nQX5+Po4cOYKEhASkpKSgsLAQtWrVQqtWrdC5c2dhwubmzZvCL6eXL19+PLKL/k9RURFOnz6N+Ph4pKamIi0tDS4uLnB1dUXDhg3h6+ur0ZfQ9PR07N69G0lJSXj06BGcnZ3h7e0NPz+/Sp0Gd/v2bRw+fBi3bt1CamoqTE1NUbduXbi6uqJNmzbC58rTJEnC4cOHcfz4caSkpMDGxgaNGjWCn58fmjZtWgFXUbWp1WqcPXsWiYmJuH79OjIyMmBubg4nJye4uLigbdu2aN68ucH7LSwsxOHDh3H69Gncv38fJiYmsLW1Rf369dG0aVN4eXkpjtQnuYyMDBw+fBhXr15FamoqCgsL4ebmBnd3dzRr1gyenp4atXP27FlER0fj9u3bMDc3h7u7O/z8/ODl5aVRormoqAiHDh3C6dOnHyeW7ezsKu3vmpqaihMnTuDSpUtIS0tDZmYmbG1t4eTkhKZNm8LPz48bfBFRpWICkIiIiJ5J+/fvl61zZ2FhgczMTOFOk0RERERE1ZW2CUCzco+IiIiI6AlpaWmyheFNTU3RsGFDvdqNiIiQlXXo0IHJPyIiIiJ65jEBSERERBUqLCwMEydOLFFmamqKO3fuwNnZWac2JUnCtm3bZOWG2tmRiIiIiKg64y7AREREVKHatGkjKysqKkJ4eLjObe7cuRNnzpyRlXfv3l3nNomIiIiIjAUTgERERFShfHx84ObmJitfsGCBcKfSsqSnp2P27Nmy8vr162uyLgoRERERkdFjApCIiIgqlIWFBcaPHy8rT05OxsCBA5Genq5xW6mpqRg0aBDOnTsnO/bWW29ptPMkEREREZGxYwKQiIiIKtyMGTPg4uIiK4+Ojoa3tzd++OEHPHz4ULF+SkoK1qxZg1atWiEqKkp2vHHjxnjjjTcMGjMRERERUXXFTUCIiIiowrm6umLNmjUYOnQoJEkqcSw5ORmTJ0/GW2+9heeeew5NmzaFg4MDCgsLcffuXdy8eRMnT55EUVGRsG1LS0uEhobCysqqIi6FiIiIiKjKYwKQiIiIKsXLL7+MH3/8EZMnTxYm8/Ly8nDkyBEcOXJE4zYtLS2xadMmPP/884YMlYiIiIioWuMUYCIiIqo048ePx86dO+Hh4aF3W82bN8fBgwcxcOBAA0RGRERERGQ8mAAkIiKiStW7d28kJCTg888/R6tWrbSu7+3tjVWrViEhIQHt27cvhwiJiIiIiKo3TgEmIiKiSmdlZYVZs2Zh1qxZOHnyJGJiYhAbG4urV68iPT398YYg9vb2cHZ2RuPGjfHcc8/hxRdf1ClpSERERET0LGECkIiIiKoUX19f+Pr6VnYYRERERERGg1OAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiDEBSEREREREREREZMSYACQiIiIiIiIiIjJiTAASEREREREREREZMSYAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiDEBSEREREREREREZMSYACQiIiIiIiIiIjJiTAASEREREREREREZMSYAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERsys9EPmwiOSZIZ9+w6VT0RERERERERERESk6MyZRABWZZxl0RxwCgAAlcIZfwL2AwBngwZHREREREREREREFYtTgImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRErZRdgBfbWgJNdOYRCREREREREREREOrt8W1isfQLQswEQ2F7fcIiIiIiIiIiIiMiQFv0CqCVZMacAExERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiJlVdgBERETPkrq2tqhtY1PZYQAArqSn40FubmWHQURERERE5YwJQCIiogo0zc8P87t1q+wwAAAjwsKw4cyZyg6DiIiIiIjKGacAExERERERERERGTEmAImIiIiIiIiIiIwYpwATERERkUFZmJrC2txcVp5TUIBHRUWVEBERERHRs40JQCIiIiIyqIEtWmDzsGGy8inbt+O7EycqISIiIiKiZxsTgERERFVAWl4eXt+2rUL7PJqcXKH9ERERERFR5WACkIiIqArILSjA5sTEyg6DiIiIiIiMEDcBISIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGXYCJiIio2jM3MUEjBwc0sLdHLSsrAEBuYSEe5OYiKTUVKTk5FR6TS82aaO7kBOeaNWFhaorsggI8yM3F3awsXElPr/B4jJmJSoX6dnZo5OAAp5o1YapSIb+oCGl5ebiSloabDx9CquwgiYiIiCoRE4BERET0WO8mTWBvaSkrv5udjehr1/Rq28rMDP2bNxceO37rFq5qmRRzrlkTI1q3xsAWLdCpfn1YmSl/rLmVmYn9V65g09mz2JWUhCKpfNJBXerXx+g2bdC7SRM0cnBQPO9edjYO3biB8PPn8VtCAh4VFWndVxs3NzR3cpKV7/nnH2Q8eqR1e0/ydHGBl4uLrDzy6lVZMtW5Zk10b9SoRFnHevWE7frWqYNhnp6y8iM3b+LGw4daxVjT3BxDPT0xpFUrvNCwIRxq1FA8Ny0vD1FXr+KP8+fxe2IicgoKtOqLiIiIqLpTKZT/CdgPAJzlRzq1AgLbl2tQRERExmpJjx6Y362brPxWZibqfvllJURU0kgfH4QMHiwrL1Cr0enHH3Hi9m2d2/4yMBAzO3aUlV968ABtv/sOWfn5GrXjam2N9154AZN8fVGjlKSfkqvp6VgQGYmQuDiDjQrr3qgRlgYEoEPdulrXvZudjeUxMfgiJgaFarXG9ZT+P32+/RZn7t3TOo4nfeDvj4Uvvigr91+/XpYI7tqgAQ6MG6dXf6/8/js2nj2r0blWZmb4T6dO+E+nTo9He2ojLS8Pnx48iK+OHkVeYaHW9YmIiIiqtEW/AGr5p1yuAUhERESP/RIfj82JibJycxMT/DR4MCxNTXVq94WGDfH288/LygvUaowMC9M4+TfM0xNnp03Dmx066JT8A4BGDg74adAg7BwxAi41a+rURrEaZmb4tl8/7B89WqfkHwC4WVtjaUAAoseNQ+NSRg3SvyML46ZOxUc9euiU/AMAxxo1sDQgAMcmTUIrZ8GP3URERERGiAlAIiIiKmHK9u24lZkpK/dyccGi7t21bs/GwgLrgoJgopJPPFgUFYWjyckatbO4e3dsHDoUznom7Yq91LQpDo4fj4b29jrVr2VlhX2jR2NK+/ZQCa5NW53q1cOhCROYBFQwonVrRI4di2a1ahmkvdaurjg0YYLidGUiIiIiY8IEIBEREZXwIDcX48PDIQnWyZvVuTM616+vVXuf9eoFD0dHWfmB69fxyYEDGrXxcc+eeO+FF8pMtBVJEm5nZeHGw4fI12BdveZOTtg1cmSp68eJWJubY/trr6GLBv8Xmfn5uJyWhpScHKjLWHuwjo0Ndo8aBScdR7cZq9dat8bPGo5AvZedjavp6cjVYHqvY40a2DlihHAtRSIiIiJjwk1AiIiISGb3P/9g1fHjmN6hQ4lyU5UK6wcNwnNr1mi0kULvJk3wert2svL0vDyMCgvTaDOOMW3aYF7XrorHb2dl4bvYWGy7eBGnbt8usa5fs1q1ENSyJca3bas43bOVszN+GDAAwzZvLjOWYmv690enUkaO7UxKws9xcfjr0qUSG3LYW1rCv1EjTG7XDn2bNhUmNJvVqoWPe/bE69u3axxPZUq4dw+9QkJKlHVr0AAf+PvLzl1x5Ah2JCXJys/cvavY/vN16yqOIAWArPx8/HjyJMIvXMCh69dR8MQ6irVtbDCgeXOMbtMGXRs0ENZ3rFEDW4KD0e777zVKGhMRERFVR0wAEhERkdCcffsQ4OGBlk8lzprVqoWlAQF4a9euUuvbW1rix4EDhUmuaTt24FpGRpkxNHF0xOp+/YTH1JKEJQcO4NODB5GtkIxMevAAnx8+jBVHjmBq+/b4tFcv4W7BQz09EdSiBcIvXCgzple8vTHSx0d47E5WFiZt24btFy8Kj2c8eoQ/L1zAnxcuILBJE4S8/LJwHcIJvr74NjYWp+/cKTOeypael4d9ly+XKFMaUXn+/n3ZuaWxNjfHb0OHwkJh5F9IfDxm79mDu9nZwuN3srLww8mT+OHkSbzcqhVW9e2L2jY2svO8XV3xbpcu+Cg6WuPYiIiIiKoTTgEmIiIioZyCAoz6448SI6qKTffzQ/dGjUqt/1WfPqhvZycr/yU+HqEJCRrF8HWfPqhpbi4rzyssxNBNm/DB338rJv+eVKhW45tjx9Dr55/xIDdXeM6Snj0VR5kVszY3xxe9ewuP3c3ORpe1axWTf0/b/c8/6PXzzyVGCBYzVakwQ7DD77PmvRdeQCOFNRHn7tuH0X/8oZj8e1rYuXPo/L//4WJqqvD47M6dOfWaiIiIjBZHABIREVUBtW1s8GDOnArrb1RYmHAq5tNib93C4qgo2eYfKpUKa4OC0GbNGjwUJLAGtmiBMW3ayMqvpKfjjZ07NYqxc/366NusmfDYtB078Mf58xq186RDN24gePNm7Bk1Spbs83JxQb9mzbCtlATe5Hbt4G5rKysvUKvRf8MGXE5L0yqeuLt3MXvPHnw/YIDs2KCWLWFpaopHz+i0VFdra7wl2Dka+Hcq8aeHDmnd5pX0dLz0yy84+frrslGKdpaWeL19e3ys4bqURERERNUJRwASERFVASYqFRxr1Kiwh9KUSpFPDh5EzM2bsvJGDg7C0XBOVlb4rn9/WXmhWo1RYWHChOH/Y+8+w6Oq1r+P/9JJSEJCB5EWepWudOnSQUERURBBFFAR5Kjo8aioCHKOHitwBEUUQSSASC+iVOkgvfceEhJISJvnBX98CHtNMi0Ehu/nuvIi9957rXsmkyn3rGIyrH59Y3zqX39p0pYtDrVhsvTQIY1ds8Z4rG/Nmnav881kVN7nf/6pDSdPupTP15s3G0el5QkKUovSpV1q0xs8X6eOcfTnltOn9crixS63eyg2VoPsFKH71qgh9/dzBgAAuP1QAAQAAJlKTU/Xk9HRSkhOthzrW6OGHipTJkPs83btjOusvf/HH1p17JhDfRYICVH7cuUs8ZT0dL25bJmDmdv34cqVxtvTOipKuQ1FJ0lqWrKkiufJY4lfunpV76xY4XIu6Tabvt261XjsvsKFXW73Tubr42McQSpJ/1y+XKmGaenOmPrXX9p57pwlXjoy8q69zwEAgHejAAgAALK0PyZGQxctssR9fHz0v44dFfl/0ym7V66sRytXtpy35vhxvevEBgsdypdXgK/1bcrs3bt1wMlptiYXEhP13bZtlnguf381tbO2YZcKFYzx6N27dTEpya187G2MUbFAAbfavVPVLFLEuPbf3gsXMp2i7ah0m03/XbfOeKzNTQVtAAAAb8AagAAAwCHjN25Uh3LlLCPzioaF6dO2bTVs0SLjjr3xycl6YuZMp0ZttY6KMsZdWffPngX79+u52rUt8VpFixrXR2xpJ6dpDm5okpmtp08b17Q7HBvrdtt3olv19zepWaSIx/oAAAC4XVAABADgNnAlJUVTDCPSssshFwtLz8yZo+3PP68CISEZ4j2rVlXNIkWMu6gOmjfP6c0x6t5zjzG+6MABp9rJzMqjR43xKgULWmIRuXKpXN68lniazabfDh92O5eraWl6dckSt9vxFvb+/os9+Pc/EhenY5cuWXaqNv39AQAA7nQUAAEAuA3EJiXp2blzczqNLJ25fFn95szRrMcesxyrmD+/JTZtxw5NtrO+nT0RuXKphGGtvZjERJ2/csWptjITk5ioxNRUBftnfDtkKgBVLVhQPj7W7SH2XrigxNRUj+WEa6rbWYdvj2GzFHecjI+3FADL5sunXP7+SuLvCgAAvAgFQAAA4JTZe/Zo4ubNerpGjUzPOxoXpwEuFDVL5MljLLbFXb2qbpUqOd1eZhJTUiwFwLJ58yrQz0/JaWl/x0zr0UnStjNnPJoPJH9fXxW7qSgnXRttWf/ee2Wz2TzWl2k3bD8fH1XIn19bTp/2WD8AAAA5jQIgAABw2ksLFqhpyZIqHRlpPJ5ms+nJ6GjFurA5xj2G4o8klYqI0PRu3Zxuz1n+vr6KyJVLZy9fzjKn0wkJ2Z7P3aZIaKj8DAVgPx8fTXvkkVuSQ/6bprgDAADc6dgFGAAAOC0+OVlPzZqlNDujsT7/80+tOHLEpbbDg4LcSc0jwgIDM/xuL6dLV6/einTuKmG34d8fAADgTkcBEAAAuCQtPd3udMwWpUsrl79rEw2CDNMyb7WbC343TxO+Lp4CoMe5+rjxpNuhCAkAAOBJFAABAIDTcgcE6NsuXeTva34rUalAAb3XrJlLbd8Omy+E3jQC7Mb1AG9kWqsQ7klMScnpFBgBCAAAvE7Of8UKAADuOJ+1bauyefNmes5L99+v2Xv26HcnpwLHJCYa48sPH9b7f/zhVFuu2nnuXIbf7eWUh5FiHmfvvj4aF6e+c+bckhz2eXi3YQAAgJxGARAAADilW6VK6n3ffVme5+vjo286d1b1L79UfHKyw+1ftLNxSEpampYcPOhwO55kL6c8uXLd4kxujZwcAWfvvg7y98+xvz8AAMCdjinAAADAYcXCw/VV+/aWeEJysvbHxFjipSIi9FGrVk71YW8EWKHQUKfa8SR7OdnbBflOlzc4OMf6Tk5LU4KhYJwvOFi+TLkGAABwCQVAAADgEF8fH33bubOxODR88WL1io427grcr2ZNPVSmjMP9HL90ybjmXvl8+XJsg5AjsbHGeM0iRTzWR/6QEJWOjLT85MSmGMXCw295nzc6ZLi//X19VblAgRzIBgAA4M7HFGAAAOCQoQ88oGalSlniiw8e1FcbNsgm6T9r1mhY/foZjvv4+Oh/HTuq6pdf2h1Jd6PktDTtOn9e1QsVyhDP5e+vOvfco5VHj7p1O1zx19mzSk1Pt2x6Uih3bhXPk0dH4+Lc7mNyly7GQmnpTz4xFsSyi6+Pj+rcc88t689ky+nTqlqwoCXeqEQJbT97NgcyAgAAuLNRAAQAAFmqUbiwRhp29Y27elV9Z8/W9XF/by5frvblyqlC/vwZzisaFqbP2rbV4z//7FB/vx85YikASlL7cuU8VgB8qEwZ9alRwxKfuHmzFuzfnyGWmJqqDSdP6v5ixSznd69cWR+tXu1WLr4+PnrA0PaVlBQdcbK46O7OxJULFFBkDq9t+PuRI+pVrZol3r5cOX2xfr1H+qhUoID+1bSpJb704EGN27jRI30AAADcLpgCDAAAMhUSEKDvH35YgYbpt0MWLNCxS5f+/j0pNVV9Zs82TgXuUaWKulWq5FCf8/ftM8b71qjhsSmxbzRurG6VKll+ziQkGM+/uSh43ZPVq7udy4MlSyrCUHTbe+GC0g33ZWZM7TjDkQ1estvC/ftlM9zu1lFRKpPF7tOOGly3rvHvf9Uw/RwAAOBORwEQAABkakzLlqp404g+SZq7d68mbdliia89flz/WbPG2NYX7dqpsAObeSw5eFBnL1+2xPOHhGhgnToOZJ25VlFRqn/vvZb42cuXtfXMGeM1P/71lzFetWBBPeJgYdOevjVrGuPLDx92uq2ybhTIwgIDb4sC4LFLl/S7YaSnr4+P3mzc2O32S0ZE2L2diw8ccLt9AACA2w0FQAAAYFe7smX1XO3alnhMYqL6//KL3ev+uXy5dp8/b4nnDwnR+A4dsuw3JT1dEzdvNh57t1kzlc+XL8s27AkLDNR/H3rIeOyH7dvtjrjbc+GCVhw5Yjz279atFRYY6FI+NQoX1qOVKxuP/bRjh93r4q9eNcY7lC/vUh6S9GHLljm6A/CNxtuZhvtk9erqUK6cy+36+vjo87ZtjSNJlx8+rBPx8S63DQAAcLuiAAgAAIwK5c6tiZ06GdeUGzRvnk7ZmSorXVsz72k7U4E7lCunPg6MMvvP2rW6nJJiiQf7++uXxx9XiTx5smzjZgG+vvqua1djATElPV3/Wbs20+vf/+MPY/ze8HBFP/aY09OTwwID9W2XLvI13MeHYmO19vhxu9fau/87lCvn0u7EXSpU0IBatZy+zhl+vo6/9Zz211/ae+GC8di3XboY12N0xHvNmqlt2bLGY6NXrXKpTQAAgNsdm4AAAHAbCA0M1D8aNLjl/W45fVoLDVMefSR93amTCubObTk2Y+dOTbUzHfZGa/5vKvDNuwJL0sdt2mjZoUOZbnBx9vJljfz9d33QvLnlWNm8efV7nz7qFR2t3+2MyrtZwdy5NblLF7WOijIe/2bLlix381104IDm7dtnLCA1L1VKv/Tood6zZjk0iqxASIh+6t7duNutJP3rt9+U2ep/G0+eNMZ9fXz0U7duajBxok5nUqS9UY8qVfRtly5ubyCSlQIhIQ6fm2azacjChfr18cctxyJz5dLiXr307Ny5mrp9e6b303UhAQEa26qVBhhGtErSuhMntNDOOo8AAAB3OgqAAADcBsKDgjSqRYtb3u+4jRuNBcDn69RRO0OR6+zly3r+118dbv+fdnYFDg8K0sROndRi8uRMizdjV69W5woVVO+eeyzHiufJoxW9e2v6jh0av3GjVhw5otT0dMt5RUJD9XSNGhpav77d3W0PxcZq2KJFDt2mgfPmadOzzxrbalG6tHYMHKjRq1bp+23bjAXO8KAgPVW9ul5r1EhF7KyHuPHUKU3Zti3TPDacPKmjcXEqbhgJWToyUpuefVYDf/1Vs/fssTutuXRkpD5s0cKyhuGyQ4dU5557XJ7WbE/jEiWcOn/evn36ZssW43p9oYGB+r5rVw2oXVsfr12rhfv3G0eMhgcF6fGqVTW8QQOViogw9nM5JUVPRUc7VEgEAAC4E1EABAAAGVQqUEBjWrUyHhswd67OXbnicFvXpwL/8fTT8rtpdFmzUqU0uF49/XfdOrvXp6Snq9v06Vr7zDMqGhZmPKd75crqXrmyLiYlaee5czqTkKC4q1eVNzhY5fPlU/l8+TId2ZaYmqonZs7UJTtr6t3scGysnpg5U7Mfe0z+himteYKC9F6zZhr54IPadf68DsfG6szly8oTFKR78+RRjcKFjddddzEpSU9GR2e5+69N0gcrV+rLdu2Mx4uEhmrmo49qf0yMFh04oF3nz+vClSvKFxKiomFhal6qlOoULWq5bw7HxuqxGTO0d/DgrO8MOy4nJxvjzUqV0ryePbVw/36dvXxZgX5+KhQaqiUHD2rTqVPGa57/9VdVKVhQtYsWNR5vVLy4GhUvrsTUVG07c0ZnEhJ0/soVReTKpVKRkapasGCm97fNZtOgefO0x850YwAAAG9AARAAAPwtyM9P33ftqmDDWnbfb9+u6N27nW4zs6nAHzRvrgX799td6026tiNs88mTtfTJJ+0WAaVr00IbGHb2zczllBR1nDpVq48dc+q6efv26cnoaH3bpYsC7BSXfHx8VKlAAVUqUMDhdpPT0vTwtGnaee6cQ+dP2LhRvapVM+5ofF2ZvHlVxsGdgU8nJKjVd985VeQ1yezv+VCZMnqoTJkMscdmzLBbAExMTVXrKVO0uFevTNc2DPb3N44UzUy6zabnf/1V3xh2swYAAPAmbAICAAD+NrJZM91XuLAlfjI+XoPnzXO5XXu7AocEBOjbzp0zHaElSbvPn1edCROcLtRlZl9MjJp/+62WHTrk0vVgDy/1AAAgAElEQVRT//pLbaZM0dnLlz2Sz7FLl9Ts22+1/PBhh69Js9nUYepUbTtzxu3+9164oMaTJmlfTIzbbR24eFHrTpxwu53rYhIT1XjSJIfWnnTU+StX9OiMGRpnZ7dhAAAAb0IBEAAASLo2PfPlBx4wHuv3yy+6mJTkctuZ7Qp8f7FiGu7ABign4+PVaNIkvTB/vltFtyspKRq9apWqf/ml20WqZYcOqfIXX2jSli3G2+aI1PR0Td66VTW++kqrXChwxiQmqtGkSZqwaZNsLuRgs9n0zZYtqve//3mk+HfdgLlzFefgtGpHXE5J0eM//6wu06a5lWeazaYp27ap8hdfaMbOnR7LDwAA4HZmb0GcOVKeDlJ+65EHKkqtzbunAQCAzAX7+yuXYXptTrmalqYr/7dxQu6AAAX6+VnOsUmKdaP4d6M8QUHyNazHl2azObwGn3Rt5GCvatXUs1o1PVCsWJYjCNNtNm0/e1bfbd2qiZs3u1XMtKds3rwaULu2Hq1SRfdkMlX5uoMXL2rOnj36eO3aTHdDdkatIkU0qG5dda9cWSEBAZmeezklRb/s2aN/r1mj9YYdhSNy5bK8UYxPTjZutGJP5QIF9EW7dllu/vHYjBmatmOHw+36+fioa8WK6lW9ulqULm2csn6zAxcvavqOHfpqw4Ysd3sGAAC4Y70zRUq3filMARAAANzRwgIDVa9YMZXLl0/FwsMVFhiodJtNMYmJiklM1L6YGK05dsyjo9GyUiF/ft1XuLDK5s2rPLlyKXdAgC4kJur8lSs6k5CgVceOZWsRKsDXV/cVLqzaRYuqYO7cyhscLD9fX8VfvaqjcXHadf681h4/rqTU1GzL4UYV8udXo+LFVToyUpHBwbqcnKz45GQdi4vT/pgYbTp1SvF2Ng7JSpCfn2oXLaqKBQqoRJ48CgsKkr+v799//yOxsVpz/LhOJyR4+FYBAADchigAAgAAAAAAAF7MTgGQNQABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBi/k5fcSZW2rgvG1IBAAAAAAAA4DKbOex8AfDgqWs/AAAAAAAAAG57TAEGAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLZbIJyFVJscYjvr6+euWVV7InIwAAAAAAAAB2HTt2TD/88EMWZwUtlUI2SJKPnTPmSOpg7/KAgAAlJye7mCIAAAAAAAAAV/3+++9q0qRJVqcNkfSxxBRgAAAAAAAAwKtRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwIv553QCgLdKSkrS1q1bdfToUV28eFGxsbG6fPmy8uTJo4iICEVERKhEiRKqVq2aAgICcjpdAAAAAADgpSgAAh60a9cuTZw4Ub///rs2b96slJSULK/JlSuXatasqYYNG6pPnz6qUKGCWzmkpKSobdu2lvjIkSNVr149t9qG8x577DFduHAhQ2zQoEHq1KlTDmWUM5555hkdOXIkQ6x3797q2bNnDmUE3F0mTpyoqVOnWuK+vr6aNGmSihYtmm19t2rVSjabLUOsY8eOGjx4cLb16Um//fab3nvvvQwxf39/zZ8/P4cyurt8/vnnmjVrlt3jNWrU0OjRo29JLrNnz9Znn31m93jBggX1/fff35JcbmdPPPGEzpw5kyE2dOhQtWnTJocycszWrVs1bNgwSzw6OlqhoaE5kBEAeBYFQMADFixYoFGjRmnFihVOX5uUlKTVq1dr9erVGjNmjJo0aaIhQ4aoY8eOLuWSnp6uJUuWWOIvvfSSS+3BPX/88YdOnjyZIXa3Ff8kae3atdqxY0eGWOPGjXMoG+Duc+DAAeNrg3TtS4mZM2dmW99Lly5Venp6hlj58uWzrT9PO336tOW+CwwMzKFs7j579+61+9iVrr3OjhgxQnny5Mn2XMaPH59pLsWLF8/2HO4Eq1at0uHDhzPEevTokTPJOCEmJsb493XkC30AuBOwBiDghtjYWPXp00cPPfSQS8W/m9lsNv3222/q1KmT2rZta/n2FAAAT4uOjs7WAiCQna5evarZs2dnez8XL17MtPgHAMDtjgIg4KLdu3frvvvu0zfffJMt7c+fP181a9bUX3/9lS3tAwBw3eDBgxUXF5fTaQAumTZtWrb3MXv2bCUnJ2d7PwAAZBemAAMuOHLkiJo1a6ZTp05lel5UVJTq1KmjkiVLKiIiQkFBQYqLi1NcXJx27dqljRs36ty5c3avP3nypB588EGtXbtWUVFRnr4ZgMPKlSuntLS0DLFvv/1WDRs2zKGMAHjSyZMnNXz4cI0bNy6nUwGctnjxYsXExChv3rzZ1sdPP/2UbW0DAHArUAAEnJSamqpu3brZLf6FhoZq4MCB6tOnj0NrHG3atEkTJ07UN998o8uXL1uOnz9/Xl26dNH69esVFBTkdv6AKw4dOqTU1NQMsStXruRQNgCyw4QJE9SzZ0/W58QdJyUlRTNnztQzzzyTLe0z/RcA4A0oAAJO+uKLL7R+/XrjsRYtWmjixIm69957HW6vZs2aqlmzpoYOHar+/fsb32Bu375dY8aM0RtvvJFlez4+PipdurQlHhIS4nBOgKcVK1ZMiYmJGWKRkZE5lA0AE5vNpv79+2vLli3KlStXTqdz2wgNDbW8rgYEBORQNrBn+vTp2VYAnDVrFtN/AQB3PAqAgBNSUlI0atQo47EuXbroxx9/dHlnwFKlSmn+/Pnq0aOHZsyYYTk+duxYDR48OMtd7gIDA3XgwAGXcgCyy4IFC3I6BQAO2LNnj0aOHKmRI0fmdCq3jfbt26t9+/Y5nQZu4ufnl2FpiuXLl+vs2bMqWLCgx/syTf+9uX8AAG53bAICOOHXX381Tv299957NWnSJJeLf9f5+/vrhx9+UNWqVS3HYmNjNX36dLfaBwAgK6NHj9b27dtzOg0gUw8++GCG31NTU/Xzzz97vB/T9N/AwEDVr1/f430BAJCdKAACTpg/f74xPnz48CxH5jkqICBAn3zyifFYdHS0R/oAAECSHnnkEUssJSVF/fr1Y3QTbmvdu3e3xLLji9JZs2YpJSUlQ6xFixbZuuEIAADZgQIg4IRt27YZ4926dfNoPw8++KDKli1ria9atUo2m82jfQEA7l4fffSRChUqZImvW7dOn3/+eQ5kBDimS5culrUYf//9d7ubtLnKNP3XVHwEAOB2RwEQcILpTWV4eLjxw5O7TOsNXbp0ScePH/d4XwCAu1PevHntjjofMWKEjhw5coszAhyTL18+tWjRIkMsPT3dWLBzVUxMjHH6b6dOnTzWBwAAtwqbgAAOstlsOnPmjCUeFhaWLf2ZRgBK0vHjx53aZTg7XLhwQYsWLdLmzZt15MgRXbp0ScHBwcqbN68qVqyo5s2b67777nOorZMnT2rx4sXav3+/Tp8+rbNnz8rf31+RkZEqU6aMGjVqpPvvv19+fn7ZfKvuHNu2bdOGDRu0b98+HTlyRCkpKYqLi1NERIRCQ0MVGRmpSpUqqVq1aqpRo4b8/b33qX7v3r36448/tGvXLh07dkwJCQny9/dX7ty5VaJECVWsWFGNGzdWyZIlb1lO+/bt05IlS7R9+3adP39e8fHxioiIUGRkpKpUqaKGDRuqatWq8vHxuWU5AZl59NFH9d133+nXX3/NEE9ISNDzzz9vid8ukpKStG7dOq1bt0779u1TXFycLl68qIiICOXJk0dRUVGqVauW6tevr9DQ0JxON4OjR49q3bp12rx5s86dO6eLFy8qKSlJefLkUUREhMqWLas6deqoZs2aCg4OzpYcDh8+rBUrVmjHjh06evSo4uPjFRAQoJCQEJUoUUKVKlVSkyZNVLx48Wzp3xO6d+9uWZ5l2rRpeuGFFzzS/uzZsy3Tf1u1aqWIiAiPtG9is9m0Y8cOrVy5Urt379bJkyeVkJCgwMBAhYaGqmTJkqpSpYoaN26sokWLZlsecXFxWr58uTZs2KCDBw8qPj5evr6+Cg8PV/ny5VWnTh01adLklu0YfuXKFa1cuVIbNmzQ3r17denSJV25ckXh4eHKnz+/ypYtq3r16qlu3bpe/b4HANzBsyPghJvfBErS+fPnlZyc7PYGIDcrX768atWqZYn7+mY9cLdBgwa6evVqhtjHH3+shg0b2r1m4cKFGjFiRIZY7969NWjQoL9/P378uN588019//33xvviRnXq1NHYsWPVqFEj4/G//vpLb7zxhubOnZvlOlOlSpXSK6+8ogEDBjhcNGnVqpViYmIyxN5//321atXKoetN+vfvr02bNlli/fv3d7lNR504cUJjx47VtGnTdPLkSYevy58/v7p27aoXXnhBlStXduiaiRMn6osvvsgQM/2NBg0apPDw8AyxBx54QJ9++qnl3L59+2rr1q0ZYgMGDNAzzzzjUE43unLlisaPH68JEyZo586dDl1Ts2ZN9evXT3369FFQUJBT/S1btkzDhw/PEOvZs6eGDBmSITZv3jy9/fbb+vPPP7Nss3LlynrxxRfVt29fh/6ngez2xRdfqEqVKoqPj88QnzdvnqZOnaoePXrkUGZWu3fv1tixYzV9+nRdunQpy/ODg4PVsWNHDRkyRPXq1XO6vzVr1mjw4MEZYgEBAVqzZo1T7SQkJOi7777T+PHjtWXLFoeuCQ8P1xNPPKFBgwapYsWKTvVnkpKSosmTJ+urr77Shg0bHLqmdu3aGjhwoJ544onbrrDSuXNnDRgwIMN7njVr1ujo0aMeKVya1hT09LIv18XFxemzzz7TxIkTdfDgwSzP9/HxUf369TVgwAD16NHDY1+UbtmyRaNGjVJ0dLSSk5MzPTc8PFy9e/fWa6+9psKFC3ukf1M+//73vzVjxgwlJiZmeX7evHn15JNP6uWXX87xL8wB4E4xR5LN3k9AQIANuBvly5fP+D+xcOHCnE4tg+DgYEuOc+fOzfSaH374wXLNq6+++vfxH3/80RYeHm73ecH04+vra/voo48y9JOenm4bNWqUzd/f36m2JNnatm1ri4+Pd+g+KFSokOX6qVOnOn9n3qBJkyaWNt96661MrylatKjlmk8//dThPtPS0mz//Oc/bUFBQU7fXzf++Pv72wYOHGhLTEzMss+RI0e63E/r1q2NbTZo0MBy7jvvvOPw/XDdzJkzbUWKFHE5vxIlStjmz5/vVJ8zZsywtPPyyy//fTwhIcH2xBNPuJRPo0aNbMeOHXP6fgCc9frrrxsfg5cuXfr7nE8++cR4TsGCBW3nz593uW9fX19LmwMHDnS6nfj4eNvAgQNtfn5+Lj8HdOvWzXb69Gmn+p0/f76lncDAQKfamDt3ru3ee+91Oe/AwEDbu+++a0tJSXGq3xstXbrUFhUV5XIOlSpVsq1fv97l/l31wgsvGPNJT0+32Ww2W4cOHSzHbn7v4YoLFy7YAgICMrQbFBRki42NtdlsNlunTp0s/RYvXtzpftLT021ff/21LTIy0q2/zerVq926vQkJCbZnn33W+P+a1U9YWJht0qRJf7dVsmRJyzlff/21U/lcuHDB1qtXL5uPj49L90lwcLBt5MiRttTUVIf7XLZsmbGtmJgYp3IHgFtlxYoVjjwnvqT/w7ADwAllypQxxt944w3LiDtv8sknn6hHjx4OjbS4UXp6uoYNG6bx48f/HXvxxRf16quvKjU11ek85s2bp6eeeuqu2QglISFB7dq10zvvvOP24ys1NVWff/652rVrp4SEBA9leOukpaVpyJAh6tq1q1sLvB85ckRt27bVm2++6ZHHUWxsrFq2bKkpU6a4dP0ff/yh5s2b6+zZs27nArhr0KBBuv/++y3xs2fPaujQoTmQ0f938OBB1atXT59//rlbuxP/9NNPqlGjhkMjdT1l5MiRat++vY4dO+ZyG8nJyXrzzTfVp08fpaenO3WtzWbTO++8oxYtWujAgQMu57Bz5041aNBA33//vcttZAfThhzTpk1zu13T7r+tWrVSnjx53G77uqSkJPXq1Ut9+/bVxYsXXW5n586daty4sXEEviNOnDih+vXra9y4cU4/viQpPj5effr00RtvvOFS/zfbsmWL7rvvPn333Xcuv1YnJibqjTfeUIcOHXTlyhWP5AUAdzoKgIATGjRoYIyvX79e3bp1U1xc3C3OKPt99913GjJkiPENWHh4uEJCQrJs44UXXtCuXbv06quv2n1zGhISYplOajJz5kzNmDEj68TvcDabTT179tSCBQs82u6yZcs0bNgwj7aZ3Ww2mwYMGKCPP/7YY+2NHDnS7fshJSVFDz/8sN1pgLlz53boMb1371716dPHrVwAT/D19dX48eMtO6tK0uTJk7V48eIcyOpa4b5JkyYOT/nPyqlTp9SyZUuHp8C6Y+zYsXrzzTc91t6UKVP09ttvO3XNSy+9pLfeessjX3okJyfrySef9OhGG+7q2LGjZR266+vWuSO7d/9NTU1V9+7dPVZQTU1N1QsvvKCPPvrIqevOnTunZs2aadu2bW7n8N5779ndVMhRGzZsUJMmTdwqmN9o/vz56ty5s0tfPAOAt7m9FvIAbnM9e/bUv//9b+OxX375RVWrVtW//vUv9ezZ0+l1xm5HW7du1SeffJLhQ0Pr1q313HPPqUWLFsqdO7eka98cR0dHa9SoUTpx4oSlnatXr6pZs2Y6ffp0hniFChU0ZMgQderU6e+dlOPi4rRgwQJ98MEHljXjrvvwww+zbQ2e28UPP/ygOXPmGI8FBASoVatWatWqlSpXrqyIiAjlypVLSUlJOnr0qLZu3ao5c+Zo8+bNxuvHjx+vAQMG2N2opX79+vrHP/6RITZmzBjLqIDu3burVKlSGWLlypVz9CY6bOzYsfrf//5n93hUVJQef/xx1a5dW0WKFFF6erpOnTqltWvX6scff7S7i+m///1vVaxY0aV1CCXp1Vdf1bJly/7+3c/PTz179lSPHj3UoEGDvzcIunz5slauXKkJEyZo5syZxg/h8+bN0+LFi9WyZUuXcgE8pWrVqho+fLjee++9DPHrhfjt27c79MWPpyQmJqpjx446fvy48bifn59atGihrl27qlSpUipQoIBiY2N15MgRzZ07V3PnzlVSUpLlukuXLqljx47asmWLChYsmC2579mzx7K27nW+vr5q3ry52rZtq2rVqikyMlK+vr6Ki4vTtm3bNHv2bC1dutT4fDF69Gj16dPHoc2N/vOf/+i///2v8ZiPj48aNmyojh07qkqVKipSpIguX76skydPasmSJYqOjjaOTk5PT1fv3r1VuXJlVapUKcscslt4eLgeeughRUdH/x2z2WyaPn26Xn31VZfajImJ0dKlSzPEcuXKpY4dO7qV642GDx+uX375xe7xypUr6/HHH1fVqlV1zz33KCkpSSdPntTKlSs1bdo0y3uqG9utWLGi2rVrl2UOaWlp6tatm/bu3Wv3nKJFi+qxxx5T9erVde+99+ry5cs6duyYFixYoPnz51tGSb7yyivGLxEccfz4cbVr187ujJOiRYuqc+fOatasmYoUKaLcuXPrxIkT2rFjh37++WetW7fOeN3ixYv1+uuva/To0S7lBQDejjUAATtatGiR5Tz7iIgIW+/evW0LFixwa70eV3lqDcAbf4KDg23Tpk3LtI1z587Zateu7dDaLMOHD7ddvXrVblvJycm2nj17Gq/18fGxnTp1KtNc7uQ1ANPT023lypUz3vb777/ftmfPHofyXbBggd318l555RVHb7bNZrMZ12x0Zu1LV9cA3LZtm2UNphv/zyZNmvT3OlAm6enpti+//NIWFhZmbCMkJMR26NChTHMwrQFYt27dDOskVapUybZx48Ysb8+cOXNsISEhxlyeeuqpLK8HXOXIGoDXJSYm2sqXL288f9iwYU737c4agC+99JLd15EGDRpk+Xx45swZ28MPP2y3jc6dO2eZg6trAD7yyCPGPqtUqWLbtGlTltf/9ttvtgIFChjbeOmll7K8fv369XafP2vVqpXlmnFXrlyxvfXWW3bXoG3QoEGmz7+ektUagDabzTZ16lTL8fvuu8/lPr/++mtLe506dcpwjjtrAC5ZssTu2naFCxe2RUdHZ3p9SkqK7f3337f7tylQoIBD69aNHj3a7v9GeHi4bfz48ZmuoXfixAlb+/bt7bZx409WawCmp6fbGjVqZLw2d+7ctjFjxtiSkpIybWPp0qW2SpUqGdvw8/OzbdiwIdPrWQMQwJ3G2TUA7aEACNhx8OBBu8UE00/evHltjzzyiG3cuHG2AwcO3JIcPV0ADAgIsC1fvtyhvg8dOmS3wHH9x9HNH5KSkmyVK1c2tjFz5sxMr72TC4Dr1q0z3ub77rvPlpCQ4FTOe/bssYWGhlraqlGjhlPt5FQB8MEHHzTeF0WLFrXt37/f4f537Nhhy58/v7Gtbt26ZXqtqQB440/VqlVtZ8+edTgXe/9rRYsWdbgNwFnOFABttmvFJ1OBwt/fP8sP0TdztQC4c+dOuxtGPfXUU7a0tDSHc3j33Xft/g8vXrw402tdKQBeunTJ+FpcqlQp28WLFx3Oe+3atcb7LyoqKtPr0tPTbXXq1DHe3kceecShDaGuW758ud1NwGbNmuVwO65ypACYkJBgfO+xe/dul/ps06aNpa0pU6ZkOMfVAmBqaqrdIlX58uVtZ86ccTjPVatW2XLnzm1s68UXX8z02jNnzth9P1u8eHHbwYMHHc7jzTffzPR1Usq6ADhx4kTjdYUKFbL9+eefDucSHx9v98v6Vq1aZXotBUAAdxo2AQGyWalSpTRnzpy/p79mJSYmRjNmzNCzzz6rqKgoRUVFacCAAZoxY4ZiYmKyOVvPePfdd9W0aVOHzi1ZsqR69uxp93ibNm0cXiQ6KChIw4cPNx47c+aMQ23ciW6cVnqjTz/91OHH3XXlypVT3759LXHTVO3bzapVq7R8+XJLPHfu3FqwYIGioqIcbqtSpUr69ddfFRgYaDn2888/a8+ePS7lGBISoujoaBUoUMDha3r06KEHHnjAEj99+jRrFOG20aRJE+P0+NTUVPXr1++WPFZHjRpl7Kd169b63//+J19fx9/GvvHGGxowYIDx2AcffOByjvasWrVKiYmJlvg777yjiIgIh9upV6+eOnToYIkfOHAg09fB2bNna/369ZZ448aNNXXqVMuaeZlp2rSpZsyYYby/x4wZ43A72Sl37hsjHYgAACAASURBVNzGKa/Tp093uq3snv47c+ZM43qWBQsW1KJFi5yakl6/fn1NmzZNPj4+lmPjx4/XuXPn7F47ceJExcfHW+L58uXTokWLLEt8ZOadd97R008/7fD5N0tJSTGubRkYGKjZs2erTp06DrcVGhqqX375RdWrV7ccW7RokbZs2eJyngBwp6MACLigadOmWrFihSpWrOj0tQcPHtS4cePUrVs3FSxYUHXr1tXrr7+uZcuW3ZY7CRcrVkwvvZTlqOEM2rRpY4z7+Pho9OjRxjeq9rRt29Z4/p1SPHXF9u3bLbFy5cqpYcOGLrVnuu78+fMutXUrffXVV8b4a6+9pqpVqzrdXt26dTV48GBLPD09PcNO1c548803nSpEXvfYY48Z83BnF0jA00aPHq0iRYpY4ps3b7a7Hq6nXLx40biTa0hIiMaNGyd/f+eXsbZ3e5YtW+bylwD22PuSpXnz5k631aJFC2M8sx3Rx44da4mFhobqxx9/dOm+a9mypfH5c9WqVdq9e7fT7WUHT+0GHB0dbVnXrk2bNn+v6+oue69to0aNUvHixZ1ur127dsbXlMTERE2ePNl4TWave2PGjFH58uWdzuPjjz9W4cKFnb5OuvZFnGm93rffflv16tVzur1cuXLphx9+MK5FOHHiRJdyBABvQAEQcFGtWrW0ceNGux8oHJGWlqb169frgw8+UPPmzZU3b1517txZP/zwgxISEjycsWueeeYZpzc0qVChgjHeqFEjpws3+fPnN34bnpaW5lQ7dxLTwt6uvAG+LjIy0hKzeWA3yOyUlJSkWbNmWeL33HOPhg4d6nK7b775pvLkyWOJT5s2zen7JDg4WM8++6xLeZhGJkiybLQC5KSIiAi7G0j861//0oEDB7Kt7+joaOOXYi+++KJKlCjhUpthYWF66623jMdcGSmWmQsXLhjjrmyg0rJlS40aNcryY3pul66NDly1apUlPmjQIJffr0jXvnwxjRw0PVfnhHbt2ik0NDRDbMeOHfrrr7+caic7d/89ffq0fvvtN0u8evXqeuqpp1xud9SoUcbCrr0C6NKlS3Xo0CFLvF69eurdu7dLOYSFhelf//qXS9d+++23llihQoX0wgsvuNSedG3k/6OPPmqJ3y6PVwDICRQAATcEBwfrlVde0aFDhxQdHa1evXopX758Lrd35coVzZ49Wz179lTJkiX13nvvGadn3EqtW7d2+hp705vsjQzMir0POd5q1qxZiomJyfAzbtw4l9u7E4ulmzZtMhbBH3/8caemrt0sT5486tq1qyV+4sQJHTx40Km2OnXq5PJjM2/evC5dB9xqjzzyiDp16mSJJyYm6tlnn822LxP++OMPS8zHx8etaYbStSn4pueQ33//3a12b2ZvtJjpdmWlfPny+sc//mH5sVcInTNnjuXv4uPjo4EDBzrd940KFSqkRx55xBJftGiRW+16SnBwsHG6tDPF3QsXLliW4QgODlb79u3dzk+6NmLS9EVP7969nZrSfrPixYsbR5faey01FSEl6fnnn3dqlsbNevbs6fRSJQkJCcalT/r27ev2juPPP/+8JXbs2DHt2rXLrXYB4E5FARDwgKCgIHXu3FmTJ0/W2bNntXHjRn344Ydq1aqVgoODXWrzwoULeuONN1StWjWtXLnSwxk7rly5ck5f4+fn57G2MmvPW4WFhSkyMjLDj6uPI0nav3+/B7O7NdatW2eMP/744263bZoqJcm4XlZmGjVq5HIO7nzQA261zz77TOHh4Zb40qVL9c0332RLn2vXrrXE6tSpozJlyrjVbnh4uHGtuA0bNni0mFmyZEljfOjQodm+hu2SJUsssVq1aqlYsWJut92yZUtLbOvWrW636ymmEV/OTAOeNWuWZfrvQw895LHpv6bHta+vr93XJWeY2khLS9OmTZss8TVr1lhioaGhevjhh93KITQ01Om1ElesWKHk5GRL3PTFg7Pq1q1rHPXPOoAA7lZ8AgE8zNfXVzVr1tTw4cO1cOFCXbx4UUuXLtXrr7+uunXrOl3MOnz4sJo2barvvvsumzK2z8/Pz6Oj75zZKAGeceLEidtmkXZnmAqAYWFhqlatmtttP/DAA8YC3J9//ulUO3Xr1nU7F+BOUKxYMbsbZQwbNszjBa3Y2FjjmnwNGjTwSPumdmJjY7V3716PtC9dW3vVtP7Y3r17Vb16dX355ZeWQpOnmAo+7nxhcaPatWtbYjExMTp58qRH2ndX69atLcXqvXv3avPmzQ5dn53TfyXza1tUVJTLa+fdyN7/x82vbdeXn7nZAw884PToPZMmTZo4db7p8RocHGx8rDnLz89PNWvWtMR37NjhdtsAcCeiAAhks6CgIDVr1kzvvfee1q1bp/Pnz2vmzJl6/vnnHR4Rl5aWpj59+mjGjBnZnG1Gfn5+bk0FMbWH7Hfx4kUtX75czz33nCpUqKDDhw/ndEpOMy0qX716dY+MnAsLC1Pp0qUtcWc/EBQtWtTtXIA7xYABA4wFhpiYGL344ose7WvPnj3G0Xg1atTwSPv21uD0ZFEgLCzM7lpqZ86c0fPPP6+SJUtqwIABmjdvnnHHYFdcvHjRuI5s2bJlPdK+vR1qb5eCSq5cuYwjxxyZBmya/hsSEmIcMeoq02ubpx7XUVFRljUQJevf5vTp08Zpwc7stJsZZ2+PaTpu6dKlPTZS3vSYdXZdSADwFs5vAwbALREREerSpYu6dOkiSdq3b59mz56tSZMmaefOnXavS0tLU79+/VS3bl2XdomDd0lLS9ORI0e0d+/eDD+7d+/WsWPHcjo9t5l2w3VlV0J7KlSoYJka7ezO0nfb2pS4u/n6+mr8+PGqWbOmZXOOadOm6YknnvDYOmn2dsN2dRmJm9l7LvH07vLvvPOOFi5cqKNHjxqPnzx5UuPGjdO4ceMUGBio2rVrq2HDhmrUqJEaNGjg0nOMvR3ev/rqK82cOdPp9m5mb6Oiffv2GacH54RHH33UMmti2rRpev/99zP9UtM0/bdt27bGoporbDabYmNjLXFPvbb5+vqqXLlylhF1Nz+u7f1/ValSxSN5VK5c2anzTRvmnDp1ymOPJ1OB8U5cGgUAPIECIJDDypYtq2HDhmnYsGFasmSJRowYYXcqYmxsrEaMGJEj04GRs86cOaMlS5Zo5cqVWrVqlfbs2WNcM8dbmD6g2NtcxhWmD9amD2b2+Pj4uLUuI3AnqlSpkl599VW9/fbblmPPP/+8mjRp4pG10uz9L3rqOcBeYc2Z5wBHFC5cWPPmzVOHDh2MO67eKDk5WatXr9bq1as1evRo+fr6qlq1amrTpo3atWunBg0aODQi314Rc9u2bS7dBkddunQpW9t3RsuWLRUZGZnhdeTQoUNav359pks3mKb/duvWzWN5JSQkGKd9m9aoc5Ujr232CoCe+lIrd+7cCgwMdPg9iukxGxMTY1zL0lNup8crANxKTAEGbiMtWrTQmjVrNHLkSLtTH6ZNm6bjx4/f4syQUxYsWKAuXbqoWLFieuKJJ/TVV19p+/btXl38S01NNU5PMm1C4CrTBy5Pf/gHvNFrr72mihUrWuLHjh3T66+/7pE+7BUoPFUoCQkJMa7PZ69fd1SuXFmbN29Wv379jH3ak56eri1btmjUqFFq1KiRypcvr//85z+W0Zc3y47b4Ij4+Pgc6dckMDBQnTt3tsQz2wzkVkz/tfca48kCoKmtmx8T2V1gt5eHPZ4eeeuI2+nxCgC3EgVA4Dbj6+urESNG6OOPPzYeT0lJ0dy5c29xVrjVjh8/rubNm+uhhx7SrFmzlJqa6tT14eHhatasmT799FNNnjw5m7LMHunp6cb1vzy5c25gYKAl5qk1uABvFhQUpAkTJhj/H7/44gvj7qLOSktLM8bv1OeAPHnyaPz48dq1a5deeOEFu+voZWbfvn16+eWXVaFCBUuh6kZJSUnupOoy05c2Ocm0G/BPP/1kd6fn6Ohoy+i8du3aeWRTjOty6nF982PCdI6n83Cm2J0Tj1kKgADuVkwBBhxw/Phx48LNntoxzWTw4MH65ZdftHjxYsuxFStWaMCAAdnSL3Le/v371aRJE4d2VQwMDFS5cuVUqVIlVapUSZUrV1b16tVVpkyZv6eLLV26NLtT9qjAwECFhIToypUrGeKenLITFxdniXlyFAbgzRo0aKBnn31WX375ZYZ4enq6+vXrp02bNtktMjjC3lTEuLg4l4pnN0tNTbU8v0ieHQFlEhUVpU8++UQfffSRli1bpoULF2rhwoWZrv97s8OHD6t169aaMGGCcZMRe89jXbt2Vf78+V1NPUue2LHVk5o1a6b8+fNnWBPx2LFjWr16tXEzm+ze/Vey//gyvR65ypHXtpzKw56IiAjL+50KFSqocePGHsvHJDU1Vf7+fBQGcHfhWQ9wwLJly/TUU09Z4ps3b9Z9992Xbf0OHDjQWAA8cuRItvUJ+27Ft9QpKSnq3r273eKfn5+fmjRporZt26p169YqX768U9+03ykiIyMtH9A9+eHENAUqb968Hmsf8HYffPCB5syZoxMnTmSI79ixQ6NGjdI///lPl9u2V6Dw1JcAcXFxxpFgt2pjn4CAALVu3VqtW7eWdG3Dg99//11//PGHVqxYoR07dtgdqSZdK1z0799fZcqUUcOGDTMcs/c8NnjwYDVt2tRjt+F2FxAQoC5dumjChAkZ4tOmTbMUAE3Tf3Pnzq22bdt6NKfw8HD5+vpaNlLx5Jdbjry22fv/8tT08ZSUFF2+fNnh803/d1WrVtW4ceM8kg8A4P9jCjDgAHvfqJt2LvOkevXqGeP2dvlD9roV69RMmTJFmzdvNh7r3Lmz9uzZo6VLl2ro0KGqUqWKVxb/JPMHlIMHD3qsfVMRnV19AcflyZNHn332mfHY+++/b9x501H2ChSeeg44fPiwMZ5TXwIUKVJEjz76qD777DNt375d586d0/fff6+HH35YISEhxmtSUlI0dOhQS9ze89jd+L7BNA14xowZlgJcdHS0ZZmN9u3b273vXeXr62t8P3mrX9vsPUb27NnjkRwOHDjg1PmmfM6dO+eRXAAAGVEABBxw7733GuPZvauevcKjp9+UIms2m01nz57N9n6+/fZbY3zYsGGKjo5WVFRUtudwOyhdurQltmXLFo+0nZycrO3bt1vixYsX90j7wN2ic+fOevjhhy3xq1evqn///pZCi6PsPc/Z+3LEWRs3bjTGb5fngHz58unxxx/XjBkztHfvXj3yyCPG8/78809t3bo1Q6xw4cLKlSuX5VxPFXfuJE2bNrVMGb8+2vJG2b37741Mj21PPa5PnTplnD1w8+O6YMGCKlCggOW89evXeyQPe/9f9pQsWdISuxsfrwBwK1AABBxQsWJF+fn5WeIrVqzI1n7tfWPviTWQ4Jx9+/Z5dAqqSXJyslavXm2JV6lSRR988EG29n27uf/++y2x8+fPOz2ywGTLli3GnTRNfQLI3Keffmocsbdy5UqXp/AVLlxYJUqUsMT//PNPl9q72bp16yyxgIAA1apVyyPte9I999yjn376SU8//bTx+M3vQwIDA423Y9WqVdmS3+3Mz8/PWKC+cTfg8+fPW6b/hoaGenz673WmmR27du3yyDRg0+NaMr+21alTxxJbvXq1ZSMUVzi7EdADDzxgiZ06dUqHDh1yOxcAQEYUAAEHBAcHq0qVKpb4vHnzdPz48Wzr196HHVMuyF6mwpynHTp0yPjmu1evXm4tVJ3dU9Wzg73p7zd+cHPV1KlTjXHThxAAmStSpIg+/PBD47HXXnvNskago0zPAStWrNDp06ddau+6q1evKjo62hKvXr26x0bXHzx4UB9++KHlZ+/evS63+fbbb/+9sdONTO9BTM9lK1eu9MhOvT/++KO6d++e4eell15yu93sYpoG/PPPP/895XfWrFnG6b/BwcHZko/pcZ2amqqZM2e63bYzr22mAuCFCxf066+/upVDSkqKpk+f7tQ19evXN8bnz5/vVi7StXUNb368du/e3TgLAADuBhQAAQe1a9fOEktJSdGoUaOyrc8ffvjBGH/wwQezrU9vZloc21HfffedBzMxs5dfuXLl3GrX2W/jbwd16tQxrm84ZcoUl6cVStc+/Jv+r8LCwlS9enWX2wXuZv369TPu2BkXF6eBAwe61KZpp9bU1FS7r4uOmjVrlnGzA1N/rrpw4YJeffVVy49pqqmjihUrZlwrzbSb8c0bg0hSfHy8pkyZ4nL/0rWlMN566y399NNPGX6ye3S8Oxo1aqQiRYpkiJ07d07Lly+XJGOxytO7/97IXrFr8uTJbrV74cIFzZkzxxIvXbq05fZL9t9Hurvxxi+//OL0+n0lS5ZUsWLFLPGvvvrKrVyka8uq3Px4jY6ONo4wBoC7AQVAwEE9evQwfvv+xRdfaO7cuR7v788//9SsWbMs8fDw8LtqJz9PcnVNmb/++uvvDwvZyTTNXJJbBa8LFy64/cEiJ4SHh/+9Q+aNdu3aZXedREeMHTvWuJZjly5d3BplCdzNfHx8NH78eOPac7Nnz3bpOaxr167y9bW+TR01apTLX+YkJyfb3Z3Yk0Wfe+65xxh3ZxpuWlqacQRf4cKFLbHWrVsbp2WPGTPGWDB01A8//GAcxdiyZUuX28xuvr6+xjUUp02bpvPnz1te28PCwtSmTZtsyycqKko1a9a0xJcvX66FCxe63O5bb72lpKQkS9ze47px48bG9QgXLFigefPmuZRDSkqKRowY4dK1ppGa27dv188//+xSe5J0+fJljRkzxhKvV6+ewsPDXW4XAO5kFAABB1WpUkXNmze3xG02m5544gm33rjd7NSpU+rWrZvxQ9Nzzz2nsLAwj/XlrUwffubMmaO0tDSn2klPT9dzzz0nm83mqdTssre2o6tTVWw2m5577rlbsntxdujXr58x/tprr+nMmTNOt7d37169//77xmP9+/d3uj0A/1/58uVd/vBvUqxYMT300EOW+Llz5zR8+HCX2nzvvfeMBayqVat6dAmAQoUKGUfrLV261OUp0YsWLVJycrIlbtpAIVeuXOrdu7clfvDgQb322msu9X/27Fnj/R4ZGamOHTu61OatYiouRUdHa/r06Zbpvx06dMi26b/X2Xtte/HFFxUfH+90e2vXrjWOlvPz81Pfvn2N1/j4+NhdV3LgwIEubXr2/vvva/fu3U5fJ127T0wF/4EDB7q8g/Xrr79u3BTlqaeecqk9APAGFAABJ4wePdo4SisuLk7t2rXT+++/r8TERLf6+O2331SrVi0dPXrUcix37twaMmSIW+3fLUxTXg4ePKjx48c71c5rr72mlStXeiqtTBUpUsT4rfS3335r/GY/M2lpaRo4cKBbU86yYvow6knt27c3rnd55swZtW7d2qlRQMePH1erVq10+fJly7GmTZt6dPofcLcaPny4R9eoffXVV43xCRMm2C3m2/P111/r3XffNR57/fXXjSP8XeXn56dWrVpZ4snJyRo4cKDTXyjFxcUZX/sDAgKMI6UlaejQocZC1n//+1+nly65dOmSunbtaiymPPvsswoNDXWqvVutfv36uvfeezPEYmJijKNBs3P673VPPfWU8T3Knj171KlTJ6de73fu3KkOHToYv9x89NFHVaZMGbvXPv3008Z1Lw8fPqyHHnrIqand33zzjd5++22Hz79Z+fLljTsvnzlzRq1atXK6CDhu3Dj997//tcQLFiyoXr16uZwnANzpKAACTqhRo4ZeeeUV47G0tDSNGDFCpUuX1kcffeTU7mUpKSlatGiR2rRpo2bNmunUqVPG88aMGaNChQq5lPvdpkmTJsb4kCFDHFrkOjExUYMGDdLo0aP/jmX3FNGAgADjVKpDhw6pf//+lpEK9uzZs0dNmjTRl19+afccm83m8kiU60wfBj3J19dXH3/8sfHY1q1bdf/99zu0Ocuvv/6qevXq6ciRI5Zj/v7+dvsA4JzAwEBNmDDBOJLHFQ0bNjSO3pKkESNGqG/fvlkWKa5cuaIhQ4aof//+xsJbo0aN7Pbhji5duhjjs2fPVo8ePRwurmzZskUNGzY0LmHRunVrFShQwHhdsWLF7BZQX3vtNfXu3duhUV5btmxR48aNjdOXCxQooJdffjnLNnKaj4+Psbh08wZZ9pae8LTg4GC7G+csX75cDRs2dGjk/5QpU9SoUSNjcSw0NDTLQm/hwoXtvqfdtGmTatSokeXyJ0lJSXr55ZfVt29ft2dKjB49Wrlz57bEN2/erAceeECLFi3Kso0rV65o2LBheu6554zH/x97dx7nZVkvfPz7G2YYFkf2VVbZBRVEQBTXXHItRTPNBdJzKi3L03Y69lRPR+vYKTM7dfJE2uOWpZGaKyioiLsSiOACyCKyDzvDOvfzR8dz1Pn9Zgf08v1+vfjnurdrZhhm/Hjf9/W9730v76sKAD7u7ouIrNCfkpKSDD6udu7cmZ188skFvz/e+6dXr17ZRRddlH33u9/Nfv7zn2e33HJL9qc//Sm78cYbsx//+MfZlVdemR111FFZ8+bNazzXuHHjaj3HfOe7//77qz3mjjvuqHJM06ZN6/U5Wr58ed6P4amnnqrX+QYPHlzlXD/84Q+rPWb27NlZUVFR3nkUFRVll1xySTZz5swqx61atSr7zW9+k+2///5V/t275pprqpzr+9//frXz6Nq1a5VjfvnLXxbc/8EHHyz4d2D48OHZxIkTs4qKiirHrV27Nrvnnnuys88+u+DH/cE/X/7yl7Ndu3ZVO/93NW3atMrxw4YNy1atWlWr44844og6fw3fdfnllxf8GJo0aZKdeuqp2e23357NmTMn27RpU7Z+/fps9uzZ2W9/+9vs6KOPrvZzcPXVV9d4/bvvvrvKcblcrlZzL2T27Nl557N8+fIGnRcK+Zd/+Ze8f+c2bNjQ6Nf6yle+UuO/P5dffnmtzrVy5cpsv/32K3ieDh06ZFdccUU2derU7O233862bduWLV26NJs+fXr27W9/u9pjW7Vqlb355ps1zuGhhx6q88/HnTt3ZkOGDKn22l/72tey++67L1uwYEG2fv36LMuyrLy8PJsxY0Y2YcKE7JRTTin473lpaWk2d+7cauewffv2bPTo0dXO4ZJLLsn++te/ZvPmzcu2bNmSbdmyJXvrrbeyO++8MzvzzDOzJk2aFDz+L3/5S62+hg11xRVX5L1+ZWVlrc/x7LPP1vh38oILLqjTvD71qU9VOUePHj1qdWxlZWV25plnFpxL06ZNs7Fjx2Z//vOfs9dffz3bsmVLVl5ens2aNSu74YYbshEjRlT7sdx00021mse2bduyYcOGFTxPLpfLxowZk/3mN7/JnnnmmWzp0qXZ/Pnzs6lTp2bf+ta38v6OExHZueeeW2Xsd7/7XY3zufnmm6v9uI4++ujsl7/8ZTZz5sxs5cqV2a5du7JVq1ZlTzzxRHbVVVdlXbp0KXjsiSeeWOPfmSlTpuQ9try8vFafT4A97Yknnqjx51tEfC1qIABCNSoqKrLTTjutNt9sjfLn4osvznbs2FHr+QmAfzdu3LgaP7ft27fPDj300Ozwww/Punfvnvc/dnK5XHbjjTdmU6dOrbKtsQNglmXZ8ccfX+2cS0pKsiFDhmRHHnlkdsghh2TdunUr+B9pLVq0yG655ZastLQ07/YhQ4Zkl156aTZ+/Phq59S5c+e8x7ds2TI7+OCDs2OOOSY7+OCDs7Fjx+Y9viEBcOvWrdknPvGJRv++Ou+882oVQAVAUrAnA+CGDRuy7t27V/v9V9sAmGVZ9txzz2VlZWWN+v3ftGnT7KGHHqrV9esTALMsyyZPnlxtQGvIn1/84he1mvvSpUuzPn36NPr1v/vd79bq+o2hMQJgZWVl1qtXr2o/pnvvvbdO82pIAMyyLFu3bl218a2+f6688so6fRwLFiwo+DO+Pn+++tWvZvfee2+V8doEwCzLsm984xuN/jkZNGhQrX6+CoDAR01dA6BHgKEemjVrFvfee2/84Ac/iJKSkt12ndLS0rj++uvj5ptvtkJpPfzsZz+r8X1Uq1evjhdffDGefvrpWLJkSZX36ORyubj22mv36CIRt912W+y///4Ft+/YsSNmz54d06ZNi5dffjnefvvtvO//6d27d0yfPj0uvPDCGDlyZN5zzZ49OyZMmBC33nprtXMaM2ZM3vHNmzfHzJkz4/HHH4+ZM2fmXaWyoUpLS+Pee++NU089tdHOeckll8Qtt9zSaI8qAv+rrKwsfv3rXzfa+UaOHBkPPfRQtG/fvlHOt++++8a99967W1d7jYg4/vjj48Ybb2zU9wvmcrm47rrr4oorrqjV/l27do0pU6bEQQcd1GjX/973vlfwfYofVrlcrtr3+7Vq1WqPPP77wWtOmjQpDj/88EY753e+85342c9+VqdjevfuHY8++mh069atwde/4IIL4rrrrmvQOX7yk5/EVVdd1WjfN0OGDIkpU6Z4hQ5ACIBQb0VFRfH9738/ZsyYEaeeemqj/oJfVFQU55xzTrz66qvx1a9+tVHP/XHStm3bmDRpUhx22GH1Or6srCxuv/32gu/I2V06deoUjz76aBx66KH1Or64uDguu+yyePHFF2Po0KEREXHppZc2aE7f/va3d2vsrknLli3j3nvvjR/96EcNen9P69atY8KECTFhwgRRHXaj0047rVHfrXfEEUfEiy++GMcff3yDznP44YfH888/v9vj37suueSSmDhxYnTu3LnB5+rXr19MmjSpzouB9ejRI6ZPnx6XXXZZg36f6N69ezz44IMNWuxhb6ouAJ5xxhlRWlq6B2fzd+3bt48pU6bEN7/5zbyLzNVW586dY+LEifGjH/2oXl/jwYMHN+j7oqioKK666qpG+R9ruVwurr766rjnnnuiNzWg3gAAIABJREFUa9eu9T5PUVFRXHnllfH88883yvcfQAoK/YS4LyJOL3RQSUnJbl/9ET5qXn311bjzzjtj4sSJMWfOnHqdo3///nHWWWfFpZdeGn369Kn3XG666aYqC0Z88pOfjB49ehQ8Zv78+fHYY4+9b6yoqKhe4aiioiLvHWVnnHFGvX4Ju+uuu2Lt2rXvGzv00EPjkEMOqdXxO3fujBtuuCGuv/76WLJkSY37FxcXx7nnnhs/+tGP3vc5e+edd+L+++9/377Dhw+P4cOHFzzXbbfdFlu2bHnf2BFHHBGDBw+ucR7bt2+P66+/Pn7xi1/UasGN4uLiOOOMM+Kaa66JgQMHvm9bZWVljBs3ruCdfsXFxbFjx45qz3/33XfHpZdeWu3L60866aR4+OGHq4zfd999sXz58veN1eVr+F6LFi2Kf/u3f4s77rgjNmzYUKtjOnToEJdcckl8/etfr/NdRG+99VZMnjy5ynhD7gpdu3Zt3hWaL7zwwrwrd0JDvfDCCzFjxowq4+PHj99tcX/lypVxzz335N02ePDgeq++ff/998dPfvKTeOqpp2q98MCoUaPi61//eowdO7bOgWLJkiXx0EMPvW+srj8f16xZEzfccEPcfPPNtfo59F6jRo2Kz3/+83HxxRc3OFLNnDkzrrnmmrjvvvti27ZttTqmb9++cfnll8cll1wSZWVlDbp+fTz99NMxe/bsKuP1+Tc43+9HEX9fDGbQoEF1OtcjjzxSZXGpffbZJ84///w6zysiYu7cufHjH/847r777qioqKjVMd26dYsvfvGLccUVVzTa1+bee++NH//4x/Hcc8/Vav8jjzwyrr322hg9evT/jC1atCgeeeSR9+139NFHx4ABA+o0l02bNsV//Md/xH/+53/G4sWLa3VMs2bN4vzzz48rrrgiDj744DpdL9/veRHRKN97ALvDk08+WXDxy/e4MiKujxAAYbd44403YsaMGTF79uyYM2dOrFq1KjZt2vQ/4aR169bRvHnz6NmzZ3Tv3j2GDh0ahx12WPTq1WvvTjxxO3fujEcffTSmT58eL730UqxatSrKy8ujadOm0bZt2+jfv3+MHj06TjvttAb9X+fGtn379pgyZcr/PPK7Zs2aWLNmTbRu3Tq6dOkSXbt2jdGjR8cpp5xS4yMuf/nLX+LOO++MOXPmxJYtW6J9+/YxYMCAOOyww+Kyyy6rcS4rV66MW2+9NZ544olYuHBhbN68OfbZZ59o06ZN9O3bN4499tj43Oc+11gferUqKirisccei2nTpsXcuXNj6dKlsW7duoiIaNeuXXTv3j0GDx4cRx99dBx11FF79Q5GoPEtXLgwJk+eHM8991zMmzcvVq9eHRUVFVFaWhrt2rWLvn37xogRI+KEE06Ifv367e3pRkTErl274tlnn40XX3zxf17hsH79+li3bl0UFxdH69ato02bNtG/f/849NBDY/To0dG3b99Gn0d5eXlMnjw5pk+fHq+//nosX748Nm3aFC1atIh27dpFly5dYtSoUTFmzJg45JBDvC5hD9qwYUM8+uij8dRTT8Vrr70Wy5Ytiw0bNkRRUVG0bds2evbsGQceeGAcd9xxMXr06N32tZk7d248/PDD8cILL8SCBQtizZo1UVlZGW3atIlevXrFIYccEqeffnoceOCBu+X671VZWRnPPvtsTJkyJWbNmhWLFy+ONWvWRC6Xi3bt2kW7du1i8ODBMWbMmBgzZky0adNmt88J4MNAAAQAAACAhNU1APrfeQAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhBVH9D2n6vCqrhG7Ch5UWdkk7rrrod04LQAAAAAgn7lz50bEPh8Y3RYRO/Lun4vok+3uSQEAAAAAu9PqiFj/3oErI+L6CI8AAwAAAEDSBEAAAAAASJgACAAAAAAJEwABAAAAIGHFBbcM7rkHpwEAAAAA1Gj52og1G+p0SP4AWJSLOOeoxpgSAAAAANBYHnkx4pm6BUCPAAMAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhBXv7QkAQGqaNmkSR/XsudvOX5llsX7r1li7dWus3rIlNmzbttuuxYffgHbtonurVlXGX3znnVi3detemBEAAB82AiAANLK2zZvH5Asv3GPXW7R+fTy/dGk8+/bbcefs2fHOxo177NrsfV8aMSK+OmpUlfGjbr45pi1evBdmBADAh40ACAAfcT1btYqerVrFOQccENcef3z89Y034rpnnomnxB8AACC8AxAAklJcVBRnDhwYT44bFzd96lPRsqRkb08JAADYy9wBCAAJyuVyMX7o0Di4U6c46bbbYvWWLXt7SnyIdWzZMvZp2rTK+KJ162JXlu2FGQEA0JgEQABI2CFdusRfzzsvjvn972Pbrl17ezp8SF130knxuQMPrDLe+ac/jRWbN++FGQEA0JgEQADYg374xBMNXpihdbNm0XmffWJg+/ZxXO/eMah9+2r3P6xbt/je0UfHVVOmNOi6AADAR5MACAB70CsrV8ajCxY06jmHdu4c1xx3XJzSr1/Bfb5++OHx6xdeiKVWCAYAgI8di4AAwEfc35Yvj1PvuCN+8PjjBfcpbdIk/mH48D03KQAA4ENDAASARPzfJ56IP8yeXXB7dXcIAgAA6RIAASAh//TII7G9wGIfw7t0iQ4tWuzhGQEAAHubAAgACVm+aVM8uWhR3m1FuVwMrGHBEAAAID0CIAAk5rG33iq4rUPLlntwJgAAwIeBVYABIDHvVLPSb8dGDoA9WrWKAe3aRfdWraJFSUlERGzbuTOWbtwY88rLY155eVRmWaNes5DO++wTB3ToEO2aN482zZtH8+LiWL9tW6zfujWWbtwYs1asiK07d+6RuZBfWdOmcVCnTtGxZcto07x5lDVtGlt27Ih1W7fGys2bY9aKFbF269a9PU0AgOQIgACQmFWbN+/W84/u1i0uHjo0Tu7bN3q0alXtvuUVFTF14cK4fdasuP+NN2JHZWWjzaMol4vj998/Ljr44DiyR48a57KjsjJmrVgRf54zJ37/t7/Fsk2b6nzNMwYMiEF5HqP+5fPPx5YdO+p8vvc6sU+fGNa5c5Xx3778cpRXVDTo3O91bK9eMXK//d43NrhDh7z7fnnkyNi0fXuV8Z8+/XTsqmXYPbBjx/j8sGFxQp8+MbB9+2iSy1W7/7zy8nho3ryY8PLLMWvFilpdAwCA6gmAAJCY0uLCP97XN+DuqiO6d49/O/74GNOjR62Padu8eYwdNCjGDhoUb61bF1c99li1KxXX1mcGD45rjz8+erVuXetjSoqKYniXLjG8S5f44bHHxm9efDG+89hjeQNXIZ8dMiTOGzKkyvhNM2Y0OAB+asCAuGzEiCrjf3nttUYNgKf06xffOPzwWu373aOOyjt+/bPPxq4Ci828a1jnznHDySfX6e9LRETftm3jKyNHxldGjozJCxbEF/7613hr3bo6nQMAgPfzDkAASEy75s0Lbluwdm2dz9e0SZO4/pOfjCfHj69zzHmv3q1bxx1jx8bdn/lM7FtaWq9ztCotjb+ed1788eyz6xT/Pqi4qCi+PHJkvPKlL1kYpZHlIuLq446L5//hHxr09yUi4oT9949XLrssxg4a1DiTAwD4mBIAASAxh3Tpknd8R2VlvLJyZZ3O1aq0NCZdeGF8ddSoKKrh0c3aGjtoUEy5+OJqQ2U+bZs3j8kXXRSn9e/fKPOIiOjVunVMvvDC6N2AmMj/Ksrl4jennRZXHXlkFBc1zq+ZLUtK4g9nnx2n9uvXKOcDAPg4EgABICFFuVyc2KdP3m2T58+v02OqLUpK4oHPfS6O7tmz2v12VlbGkg0b4rmlS2PG8uWxbNOmyGp4P9zwLl3iL5/9bDRt0qTW87n9rLNiRNeuNc7ltdWr47mlS+PpJUvilZUrY1sNj6p223ffuPnTn671PCjsm4cfHv84fHiN+y1avz5eWrYspi1eHDOWL491NTyaXlJUFLeedVa0b9GisaYKAPCx4h2AAJCQsw84IPq2bZt324SXX67TuW487bQ4onv3gtunLlwYN774Yjwyf36VgLNfWVl8euDA+MqoUTGgXbu8xx/Zo0f867HHxrcffbTGuVxw0EHxyb59826rzLL4w+zZcfOMGfHU4sVVgl9xUVEc3r17XDZiRJw7eHDecxzds2eMHTQo/jx3bo1z+aj7t6eeiv988cX3jV130knxqQEDquw7asKEWL1lS5Xx7Xmiat+2beP7xxxT8LrTlyyJXz3/fDw0b17e4HdAhw5x0cEHx1dHjYpmed5j2aZZs/jBMcfElx98sOA1AADITwAEgETs36ZN3HDyyXm3PfP223HPa6/V+lznH3hgXHDQQXm3rdqyJcbdc088+OabBY9funFj/OqFF+K/Xnoprhw9Oq457ri8j4T+0+jRcfsrr9S42uu3jzgi7/jKzZvjrD/+MaYvWVLw2J2VlfHkokXx5KJFMXHu3LjtrLOiJM9cLjnkkI9FAFxTURFrPrCoSKGFUBatWxcrarmq9BWjRkXzPOFuZ2VlXPHQQ1Wi4wfNWbUq/vnRR+OWmTNj8oUXRteysir7XHjQQfFPjzySN0ACAFCYR4ABIAEn9ukTj48bF51atqyyrbyiIi6cODGqfyj3f5U1bRrXnXRS3m3zysvjsAkTqo1/77WjsjJ+Mn16nPnHP0bFzp1VthcXFcUPjz222nMc2LFjDOnYscr4riyrMf590J9efTV+NG1a3m3H9e4dZU2b1vpc/K8muVx8psDdld+bOrXG+Pdec1atis9NnJj3MfJ9S0vjmF696jtNAICPLQEQAD6CmuRyMaBdu/j8sGHxxLhx8fDnPhfd9923yn5rt26N0//wh5hfh9V/Lx85Mm9I3Lh9e5zxhz/UayXh+994Iy5/4IG8287o3z/6FXhsOSLi8AKPIT88b16d4t+7rn/22bx3kJU2aRIHdOhQ5/MR0adt24Lx+efPPlvn8z2+cGG88M47ebcN69y5zucDAPi48wgwAOxB1x5/fPzzmDH1Pr60SZMoKy2NTi1b5n1P2nu9tnp1nHPXXTG7Div/FhcVxRWjRuXd9o1Jk2Lu6tV1mu973fy3v8XpAwbEmQMHvm88l8vF54cNi+889lje4/bLEzYjIp6uR/yLiFi3dWvMXLEi74IiXfI8dkrN9ivweXtp2bLYmufOz9p4fOHCGLnfflXG8z0aDABA9QRAANiD9m/TZrdfY/uuXfGL556L70+dmvex2+qc2KdPdNlnnyrj88rL46YZMxo8tx88/nh8esCAyOVy7xv/9MCBBQNgm2bN8o435D1w/2fKlOjZunWV8bmrVtX7nB9nbZo3zzu+owFfo9tfeSXvnatvrllT73MCAHxcCYAAkJC31q2LE265pU6P/L7Xpz9wd967fv3CC7GzsrIhU4uIiFkrVsSTixfH0T17vm98YPv20bNVq1i0fn2VY9Zv25b3XEf37Bk/ffrpes3jkfnz63Uc+a3Ps6pvRMSobt2iWXFxve4CnLViRY2LwwAAUDveAQgACendunXcf/75MXbQoHodf1KfPnnH67KCcE0mFYhvw7p0yTu+OE8UjIg4tV+/OLfAwhPsWYW+Ru2aN4/rTjopcnm3AgCwpwiAAJCYge3bx92f+Uzc/KlPRYuSklof16lly+jRqlWV8QVr18Zb69Y12vwKvbsv30q/ERFT33or73gul4vbx46Na48/PloXeEyYPePN8vJ4e8OGvNu+dOihcd9550WfPfD4OwAA+XkEGAD2oFkrVsTKzZsbdI6y0tJo3axZ9G7dOpo2aVJwv3FDh0bXsrI4/Q9/qNX78g7q1Cnv+BuN/M61ZRs35h0vFADfLC+PxxcujGN69aqyrUkuF9864oj40ogR8ec5c+L+N96ISfPnx8bt2xtzytTChJdfjh8cc0zebaf17x8n9+sXD8+bF/e9/no88MYbsbTA3wMAABqfAAgAe9C/Pvlk3D1nTqOcq1lxcYzu1i0uGzEizho0KIpyVR+0PLFPn/j3E06Irz78cI3ny7coRkREuxYt4ttHHNHg+b5rn6ZN844f0KFDwWO+OXlyTBs/vuDKx2VNm8a4oUNj3NChsX3Xrnj27bdj+pIlMX3x4nh6yZJYW+AddTSe6555Ji46+OCCC900yeXi1H794tR+/SLLspi9alU8uWhRPL1kSTy1eHHBx4gBAGg4ARAAPqK27twZUxcujKkLF8Zp/fvHHWPHRlmeuHb5yJEx4eWX45WVK6s9X9eysrzjI7p2jRFduzbKnKvTrsBKshERL77zTlwwcWL84eyzo6So+jeYNG3SJI7q2TOO+u+FRiqzLOauXh1PLV4cjy5YEI8tWCAI7gYbt2+Pk2+/PZ4YNy4651lJ+r1yuVwc2LFjHNixY1w+YkRERLy9YUM8tXhxTHnrrZg0f37eBWEAAKgf7wAEgATc/8Yb8Q/33Zd3W5NcLi7778hSnUJ35u0pZaWl1W7/89y5ccTvfhdvlpfX6bxFuVwM7tAhvjB8eNx1zjmx6lvfikcvuijOP/DAgncUUj9vrFkTw268sV6rLHfbd9/47JAh8V+nnx4Lv/a1eOVLX4p/Gj06OrRosRtmCgDw8SIAAkAi/vjqq/HEokV5t51Vi1WBS6t5n+Ce0LKkJO9jzO/1wjvvxJBf/zq+cP/99V6YpEkuF5/o3TtuP+usePMrX4nxQ4fWeF1qb/mmTfHJ226LT952W0wvsOBLbQzp2DF+duKJsfBrX4urjzsu792tAADUjgAIAAn57Usv5R3v2LJl9C7wjr93bdmxY3dMqdaKcrloWYtVi7fv2hX/9dJL0feGG+LY//f/4nczZsSKei6s0m3ffeOmT30q/nreedHGSsKN6pH582PMTTfFAb/6VVwzbVq8Xs/FZFqUlMRVRx4ZL33hCwUXigEAoHqeewGAhExbvLjgth6tWlV711x5RUXe8WunT4//KhAWG1tdImRllsXjCxfG4wsXRi7+vorxCX36xDG9esUR3btH6zoEvVP69YvJF10UR918814LoanehTh39er47pQp8d0pU6JHq1Zxwv77x7G9e8dRPXtG9333rfV5+rVtG9PGj4/DJkyod0wEAPi4EgABICGL16+P9du2Ras879NrVUMQK7QwRlEuFwvWrm2U+e0uWUTMXLEiZq5YET99+ukoyuViSMeOcVTPnjGmR484plev6NSyZbXnGN6lS/z8pJPiC/ffv2cm/QH71vAOxBQsXr8+fjdjRvxuxoyIiOjZqlUc2bNnHNmjRxzdq1cMaNeu2uNbN2sWE889Nw7+zW9iZ2XlnpgyAEASBEAASMyaLVvyB8AaAlOhOwBrCmcfRpVZFrNWrIhZK1bEfzz/fBTlcjG6W7c4c9Cg+PywYQUf9/38sGHxk+nTY/5eCJ5tq1kFOVWL1q+PRbNmxW2zZkVExIB27eLTAwfG54cNi/4FYuABHTrEBQcdFL//29/25FQBAD7SvAMQABKzcfv2vOPNa3i/3rwCq+sO69KlwXPa2yqzLKYvWRLfmDQp9v/FL2Li3Ll59ysuKoqxBxywh2f3dz1atdor1/0weX3Nmrh2+vQ44Fe/iu9OmRJZluXd7zODB+/hmQEAfLQJgACQmMoC0WTHrl3VHjd31arYlmefwR06JHV32rqtW+Pcu++OZ95+O+/2MT167OEZ/f3R1oHt2+/x635Y7cqyuGbatPj3p5/Ou31vfI0AAD7KPAIMAB8TO2p4Z9qOysqYvnhxHNe79/vGi3K5OGPAgEZ75PKHxx4bp/TrV2V8/D33xCsrV75v7KQ+feKsQYOq7Pvs22/HzQ2Yz87Kyvj5M8/E6HPOqbKt8z771Pl8DV3AY0yPHh/ZRUB6tW4d3xkzpsp4eUVFfOexxxp07p8980x88/DDI/eBz01Z06axT9OmsanA3a4AALyfAAgAHxM13QEYEfHQvHlVAmBExJdHjmyUANiqtDSuPOyw2Kdp0/eNb9y+Pe/Krl0SITodAAAgAElEQVTLyuIfhw+vMn5Qp04NCoARUXAl2WbFdf/1qE3z5rFi8+Z6z+WSYcPqfeyHQb6v0a4si3998skGraq8cvPmKN+6NdrluQO1WXGxAAgAUEseAQaAj4nahK0/vPJK7MrzCPHwLl3i0wMHNngO/zxmTJX4FxHx+MKFsT1PoFy6cWPe8wzv2jVa17CqcU0KPdb8ToFrVmdQAx7f3b9Nmzitf/96H7+3vbNxY9539TXJ5eLYXr0adO7ioqK8qyNv27Ur1mzZ0qBzAwB8nAiAAJCYQnf6tahhEZCIvwe3+15/Pe+235x2WrRv0aLe8xrWuXNcOXp03m2F7i58bfXqvOMlRUUxfujQes8lIuLUPI8hR0QsXr++4DHrtm7NO35mnseUayMXEf91+ulRXPTR/ZVs+65dsWDdurzb8t0ZWBcn9ukTJXk+N4vXr4/8b7oEACCfj+5vmwBAXoUeuezdpk2tjr/6ySfz3tHVqWXLePiCC+oVAXu2ahV/+exno7RJkyrb3lizJu557bW8xy1evz5eXbUq77Z/OfLIeq+ce2DHjnHZiBF5tz3wxhsFj1tW4O7A84YMicEdOtR5Ht896qj4RJ5Hrj8sahsmH3rzzbzjp/fvXzC01mSfpk3j3084Ie+2BwtcDwCA/ARAAEjM2gJ3qR3SpUutjn952bL43YwZebcN79Ilpo0fH4d3717r+RzZo0dMv+SS6Fkg1v3fJ54ouHJxRBS8I7F9ixbx8AUXRP927Wo9l4iIY3r1iskXXZT3jsjyiop4aN68gsc+W2Dl4OKiorjns5+NLrVcQKRJLhdXH3dc/PDYY2s36b2kY8uWtdrvrwWiaS6XizvGjq3zI849WrWKxy66KA4oEFVvnzWrTucDAPi4EwABIDELCzyOObpbt1q/N++bkyfHgrVr824b2L59PDV+fNx59tlxWv/+ed8tWFJUFMf26hV/OueceGLcuNivrCzvuf706qtxxyuvVDuXG557ruBiD4Pat48ZX/hC/OqUU2LkfvsVvGOtZUlJfHrgwLjvvPNi6sUXR6cCYet7U6fmfRfhux5fuDDWVFTk3da3bduY8cUvxucOPLDgPIpyufhE797xwj/+Y1x15JHv29bQRU12h3yrNeczef78eH7p0rzb9i0tjfs++9m477zz4pN9+0ZZnndARvw9oh7evXv86pRT4vUvfzlG7rdf3v3+PHduvPDOO7X7AAAAiAirAANAct4ssLpti5KS+NYRR8S/PPZYjedYt3VrnPXHP8YT48dHqzyLMORyuTh38OA4d/Dg2LpzZyxcty5Wbt4cW3fujA4tW8bA9u2jeQ2Ljry+Zk188f77a5zL8k2b4trp0+NfC9wt16KkJC4bMSIuGzEituzYEfPXro21FRVRsXNnNC8uji5lZdGnTZsoyuWqvc7UhQvj1y+8UO0+Oyor40fTpsXPTjwx7/ZOLVvGbWedFT898cSYunBhvLFmTWzcti3aNG8ePVq1iuP33z/vXYLTFi+Orz38cIPfa1hfG7dtyzv+w2OPjYM6dYo5q1bF+m3bonlxcfRu0yYuf+CB2FFZ+T/7ZRHx9UmT4slx4yKX5/Ocy+Xi9P794/T+/WNXlsW88vJYs2VLbNy+PUqKiqJDy5bRv127vI+Iv9eqLVvisgceaNDHCgDwcSQAAkBinitwJ1ZExLeOOCJmLFsWd82ZU+N5Zq5YEZ+87bZ44PzzC66YG/H31YUHtm8fA+uwEu7slSvj+FtuKfi48gf9eNq0OLhTpzj7gAOq3a9FSUkc2LFjrefxrulLlsSZd95Zq4Ulfvncc/GZwYNjVIE71CIiOu+zT5w3ZEitrv3ysmVx+h13VHvn4e42t8BiK0W5XHxm8OAq41958MEqY08tXhxfffjhuOHkk6u9VpNcLga0axdRx0e3l2/aFCfeemus3Ly5TscBAOARYABIzqwVKwo+ptokl4s7zz47TurTp1bnevbtt2Pkb38bLy9b1mjzu2vOnDjm97+PFXUIObuyLD43cWLcOXt2o80jIiLLsrht1qw46dZbY32Bu+A+aEdlZZxy++0xc8WKBl9/8oIF8Ylbbqn1tXeXu159NTYXWDymLn75/PPx9UmT3nd3YGN44Z134sibb45XVq5s1PMCAHxcCIAA0MgqsyzWbt2a98+euMtrZ2Vl3DpzZsE5rN+2rdo7+j5o/tq1MWrChPj6pEmxasuWes/r9TVr4qw//jE+c9ddBQNldbbv2hXn/fnPMfZPf4olGzbUex7vemnZsjjullviwr/8pc7xq7yiIg7/3e/il88/n3fF5JpU7NwZ33nssTjl9ttj3X/fBZkV+Huzq4aYVrFjR97jdtYhwi3btCkuf+CBahdjqa3rnnkmht94Y8EFU+rinY0b4wv33x+HTZgQ88rLG3w+AICPq1xEn6q/6RXlIr53wV6YDgDwYdaypCQ+M3hwnHfggTGmR48a3/O3YvPmeGLhwpjw8svx6IIFtXrEtjaa5HLxyb59Y/ywYXFkjx61Wq12V5bF66tXx+QFC+L3f/tb/G358kaZy4B27eKyESPi3CFDCi4u8q4Fa9fGnbNnx69eeCHe2bixUa7fmD7Ru3f8+4knxrDOnavdr9nVV8e2WsTs4V26xPhhw+Lkvn1j/zZtajWHJRs2xLRFi+K2WbNi0vz5sasRoiQAQFIeeTHimbl5NqyOiPXvHbgyIq6PEAABgHoqbdIkDurUKfq2bRtdysqiRUlJbNu5M8orKmJNRUXMXrlyj921tV9ZWRzcuXN0aNEi9i0tjbLS0qjMsli3dWus27o1lm7YEDOWLy+4mnBj6dOmTQzt3Dk6tmwZbZs3j11ZFpu3b49F69fH7JUrC66s/GEzoF27GN61a+xXVhalxcVRsWNHrKmoiIXr1sW88vJ4ux53YLZu1iyGdu4cXcvKYt/S0mhVWhrFRUWxftu2WLd1a6zesiVeXrbMO/4AAGoiAAIAAABAwuoRAL0DEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkrzjuaRcSjM/bsTAAAAACA6i1eVedDCgTALOKp2Q2dDgAAAACwl3kEGAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkrjsj+uerw+osjdg0qdFCTJk3immuu2Z3zAgAAAADyeOutt+LGG2/8wOjWgvvnCozfFxGnFzqopKQktm/fXvfZAQAAAAAN8uSTT8bRRx9d025XRsT1ER4BBgAAAICkCYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAA/j975x1WxfH9//elFxGsKDZssaAiKoqg2LCgWFBQjBpbNJbYkk+sMcauMZZoNIndxK5YUKMgWBCNiIJdQeyIiiKCSof5/eFPvl529t69e+8FxPN6nvs8cnbnzNl1d3bmzMw5BEEUY8gBSBAEQRAEQRAEQRAEQRDFGHIAEgRBEARBEARBEARBEEQxhhyABEEQBEEQBEEQBEEQBFGMIQcgQRAEQRAEQRAEQRAEQRRjyAFIEARBEARBEARBEARBEMUYcgASBEEQBEEQBEEQBEEQRDGGHIAEQRAEQRAEQRAEQRAEUYwhByBBEARBEARBEARBEARBFGPIAUgQBEEQBEEQBEEQBEEQxRhyABIEQRAEQRAEQRAEQRBEMYYcgARBEARBEARBEARBEARRjCEHIEEQBEEQBEEQBEEQBEEUY8gBSBAEQRAEQRAEQRAEQRDFGHIAEgRBEARBEARBEARBEEQxhhyABEEQBEEQBEEQBEEQBFGMIQcgQRAEQRAEQRAEQRAEQRRjyAFIEARBEARBEARBEARBEMUYcgASBEEQBEEQBEEQBEEQRDGGHIAEQRAEQRAEQRAEQRAEUYwhByBBEARBEARBEARBEARBFGPIAUgQBEEQBEEQBEEQBEEQxRijwjagINmwYQMCAwMF8smTJ6NZs2Z6q3fo0KF49+6dkszMzAx///232rLTpk3D3bt3lWTe3t7o37+/Tm0kCILQBVFRUVi4cKGSzNjYGNu2bSsUe/bs2YM9e/YoyapVq4YlS5YUij3EexYtWoTIyEglWfv27TFq1KhCsoggCEIec+bMwfXr15VknTt3xvDhwwvJIkJfrFy5EmFhYQCA8uXLY9WqVVAoFIVsFUEUDhkZGRg5ciTS0tIAAN27d8egQYMK2SpCHZ+VAzAqKkowEASAAQMG6NUBeODAAbx+/VpJVqJECUllg4ODcfHiRSVZ7dq1dWYbQRCELnn69KmgnTUzMyska4AbN24I7GnUqBE5AAuZsLAwHDlyRElWsmTJQrKGIAhCPqGhoQgJCVGSlS9fvpCsIfTF2bNn8d133yEnJwcAsHbtWnL+EZ81pqamqFatGubOnQsAOHToEJycnNCgQYNCtoxQBW0BJgiCIAiCIAiCIAgOb9++xZAhQ/Kcf40bN8awYcMK2SqCKHymTp2KKlWqAADS09MxePBgZGZmFrJVhCrIAUgQBEEQBEEQBEEQHCZOnIjY2Ni8v5cvXw5DQ8NCtIggigYWFhZ5KwABIDIyEgsWLChEiwh1fFZbgImCpUOHDkhOTlaSLVq0CB4eHoVkEUEQhGZ4e3vj8ePHSrLp06ejd+/ehWSR5nTt2hUJCQlKstmzZ6Nbt26FZBFBEARRlDhw4ADmzZunJKtcuTIOHDhQSBYVHcLDw7Fx48a8v9u3b4+2bdsWnkEEUcQYOHAgFixYgJiYGADA4sWLMXjwYFSvXr2QLSN4kAOQ0BtXrlxBYmKikiwpKamQrCEIgtCcGzdu4M6dO0qyFy9eFJI18rh27Rri4uKUZPnbZoIgCOLz5cWLF7h06ZKSLH/88s8RxhgmTJgAxlie7McffyxEiwii6GFoaIgpU6bkJT5KT0/HDz/8gL179xayZQQP2gJMEARBEARBEARBEB/xzz//IDw8PO9vFxcXtGvXrhAtIoiiyaBBg2Bvb5/3t7+/P44fP154BhGikAOwiBMREQHGmNJv/vz5hW0WQRDEJ8HPP/8saEOvXLlS2GZ99hw+fFjw/7J+/frCNosgCIIgAABZWVmYOXOmkmzatGmFZA1BFG2MjY0xadIkJRmtli2akAOQIAiCIAiCIAiCIP4/W7duxaNHj/L+rlKlCsXOJQgVDB48GBYWFnl/X7hwAcHBwYVoEcGDHIAEQRAEQRAEQRAEASAnJweLFy9Wko0YMYIy/xKECqytrdG3b18lGWUELnqQA5AgCIIgCIIgCIIgAOzbtw/R0dF5fxsZGWHYsGGFaBFBfBp88803Sn+fPHkS//33XyFZQ/AgByBBEARBEARBEARBAFizZo3S3x06dEClSpUKyRqC+HRwcXFBnTp1lGT53yeicDEqbAOIguf+/fsIDw9HbGwskpKSkJKSAkNDQ9jY2MDW1haOjo5o1qwZSpYsWdimquTVq1cICwvD7du38ejRI6Snp8PQ0BBmZmawt7dH/fr14erqCisrK73ZwBhDVFQULly4gOjoaLx9+xYGBgYoXbo06tevj/bt2xdKhyEpKQmHDh1CZGQkUlNTUapUKXh7e8PFxUUjPQ8fPkRkZCRiY2Px9OlTvHv3Djk5OTA1NYWVlRXKlSuHBg0aoGHDhrCzs9PT1Qi5fPkyzp8/j9u3byM1NRUAYG5ujjp16sDNzQ2Ojo6S9OTk5ODixYuIiorC8+fP8fLlS6Snp8PGxgaVKlWCq6srmjRpAiMjair1xe3btxEWFoaYmBgkJycjJycHZmZmqFatGho0aIDWrVujRIkShW2mXnj48CHCw8MRExOD169fIzk5Oa8tLleuHBwdHeHs7Axra+vCNlUSubm5OHnyJEJDQ/H06VOYm5ujbt26GD16dKHYk5mZibCwMERFReHhw4dIS0uDkZERSpcujerVq8PV1RX16tWDQqHQed1PnjzBqVOncOvWLbx48QK5ubmwsLDAF198ARcXFzRt2lTndRIEwefFixc4deoUbty4gWfPniEnJwfGxsaoWrUqGjZsCHd3d732FeXy8uVLnD17Nq+fm5GRkdfPrV69OhwcHNCyZcsi/41MTU3FpUuXEBkZiYSEBCQlJSErKwslSpSAjY0NatSogebNm+OLL77QS3usKbGxsTh9+rSSzMfHR+f1JCcnIywsDDdu3FAax1hYWKBatWpwcHCAq6srLC0tdV63GNevX8f58+fz+mS5ubmwsbFBhQoV0Lx5czg7O8PMzEwvdcfHx+PMmTOIiYlBfHw8srKy8vpENWrUQKNGjeDs7FxgffLIyEgEBQXhwYMHMDQ0RPny5TFjxgyN6//Q/ty8eRPx8fHIzc2FmZkZatasiebNm8PFxQUGBsVrTZaPj49S0lJ/f3+sWrUKNjY2hWgV8QEa1RZx5s6di2vXrinJvL290b9/f430PHr0CBs2bMCmTZvw+PFjtecbGBigY8eOGDVqFHr06KG2YTp27Bg2btyoJHvz5o3gvOXLl2PPnj1Kstq1a0vObJyTk4Ndu3Zh3bp1CA0NRW5ursrzDQ0N0bFjR4wcORK9evXSWcciJSUFv//+O/7880+V91OhUKB9+/b46aef4O7unif/+++/cfjwYaVzra2tsW7dOlFd/v7+2LVrl5Js1KhRaN++fd7fWVlZWLhwIZYsWYK3b98qnWtjYyPJAZiQkIDffvsN/v7+Stsf1OHo6Ih+/fph5MiRKFOmjORyAPDu3TsMHTpUSWZvb49ffvkl7+/c3Fxs3LgRixcvRmxsrEp9Dg4OmD17Nvr06cM9npaWhpUrV2LVqlV48uSJSl12dnYYN24cJk6cqLdOz+dGTk4ONm3ahGXLluHWrVsqzzUxMYGXlxcmTpyI1q1ba1zXv//+i82bNyvJqlWrhiVLlgjODQsLw8qVK5VkT58+FZy3bt06hISEKMkqVqyI3377Ta09T548wYYNG7Bx40Y8fPhQ7fkKhQIdOnTAN998A29vb7Xxh06cOIE///xTSZaYmCg4b/Xq1YI2KP87B7wfgI4ZM0ZJVq9ePcyePVtJdurUKYwePRq3b99Wkos5AFeuXImwsDAlWfv27TFq1CiRK3vfvg0YMEBJxrvvz549w+LFi7Fp0yYkJyeL6gOAGjVqYMyYMRg9erRS4Go5MMbg7++P5cuX49y5cyrPrVmzJv73v//h66+/zhtM3Lp1C7NmzRKcO3fuXMFsOkF8zjx9+hQTJkxQkjVq1EiQcfL06dNYuHAhgoODkZOTI6rP2NgY3bt3x6RJk9CqVSu92CyV7OxsbN++HevXr0dYWBgYYyrPNzIyQufOnTFy5Eh0795dcj939OjRSt+Ge/fuCc55/vy5IJ4XAEyePBnNmjVTex1HjhzB2rVrERQUhOzsbLU2VaxYEcOHD8c333yDypUrS7gK/bBx40al+25kZISePXvqRDdjDAcOHMCff/6JkJAQlc8l8P7Z9PT0xJgxY9C5c2eN61u0aBEiIyOVZEuXLkWVKlXy/s7KysKmTZuwdOlSxMTEqNRXokQJfPXVV/juu+9Qs2ZNje3JT1paGjZt2oT169cjKipK7fklS5ZE3759MX78eDRs2FDj+oYNG6Y0PjI3N8eWLVuUzomOjsaoUaNw6tQpQfnJkydLdgAGBQVh6dKlCA4OVjletbOzw4QJEzBu3DiYm5sDeO80HDt2rODciRMnwtXVNe/vV69ecftNvXr1wpdffinJTjHS0tIwdOhQge1ubm6C9jc/+R2AaWlp2L59u6A/SRQtAgAwsZ+xsTH7FBk7diz3eg4cOKDXem1sbAR1lihRQlJZDw8PQdnp06dLrjsjI4PNmjWLmZiYiP5/qvu5u7uz2NhYlfWsWrVKtn4XFxdJ1xIaGsrq1q0rux4nJyd24cIFyfdOjD179jBbW1uN6lYoFGzEiBEsLS2NMcbY0qVLBefY2tqqrHfOnDmCMuvXr887npSUxNq1aydqw4IFC1Tqz87OZrNmzWIWFhay7zEAVrp0abZ69WqN7mlSUpJAT+PGjfOOP3r0iLm4uGhsy/Dhw1l2drZSXZcuXWI1a9aU9fzcv39fo+v6HDly5Ijg3pmZmeUdv3PnDmvatKmsZ6tXr17s6dOnGtmzfPlygZ5GjRpxz922bZvs5/6LL75QaUdmZiabN28eMzMzk12Hq6sri46OVlnP+vXrZev/+J37wMOHDwXnubu7K52zbNkyZmBgwNVZt25drp0DBgzgvq+qSE9PV3vfd+3axUqVKqXxtdepU4dFRESorF8VMTExrGXLlhrX27RpUxYTE8MYY+zevXvcc86ePSvbLoIojkRHRwvek44dO+Ydf/36NbeNkfLz8fFhL1680MieDh06CPSMHTtW4+sKCQlhtWvXlt2GN2vWjEVGRkqqq3LlyrLrUTduunTpEmvcuLFs/ZaWlmzVqlUsNzdX43uoLTk5OczOzk7Jnvbt2+tEd0REBHNycpJ9X9q1a8fu3bunUZ3dunUT6Ll27Vre8ejoaNasWTONbbGwsGBr1qzR6n7s2rWLVapUSda9MDAwYF9//TVLSUnRqM7SpUsr6bGyslI6fuTIEVaiRAnRelNTU9XWER8fz7p27arxNdWuXTuvH5Kens7tV+3cuVNQX4MGDQTnNW3aVKP7wmPnzp1cO3fs2CGpfP6xVrNmzbS2ieBz+vRpKc/YRKiBHIA6pLAcgElJSaxFixayPzQf/0qVKsWuXr0qWpc+HYC5ubls/vz5ogNMTX5GRkZs1apVku4fz44ffvhBq/pbtWrFkpOT2f79+wXHtHEAvnv3Tu3gU5UD8PXr16xz5846eVY+/L799luWk5Mj6d6qcgDevHlT0BnT5PexU+HUqVNaOTjr16/PkpOTJV3T54oqB+DFixdZmTJltHquKlasyC5duiTZnqLgAExJSWGtWrXSyXtVsmRJlddf0A7AZcuWqdRZkA7AJUuWMIVCIfv6raysZE0SHTt2jFlZWcmut0yZMiw8PJxlZWUxY2NjwXFyABKEMqocgI8fP2YODg5atbOVK1dWcpKoQ1sHYG5uLps1a5ZW7deHn7GxMVu7dq3aOvXlANy8eTMzMjLS+joAsJEjRxa4E/Ds2bMCOxYvXqy13hUrVujkvlhbW7Pg4GDJ9apyAEZERLCyZctqZc/8+fM1vhcZGRls2LBhOnlGateurZFTVJUDMDAwkPsN/vinzgEYERGh8SKRj38WFhbsyJEjjDHGqlSpIjjOcwDyxocANHYW56dHjx7c50+KE5Qxvt/l4cOHWtlE8NHUAVi8NpwTeaSlpaFjx44IDw/Xib6kpCR07twZCQkJOtGnCVOnTsWMGTPUbveVQnZ2NsaNG4dFixZpXHbSpEncbYOaEBYWBm9vb53HBRw5cqTsDEs5OTno06cPAgMDdWrT77//rnXQ17i4OHTq1Anx8fGydWzYsAHbtm1DeHg4unfvnhczUA43b97EzJkzZZf/nLl//z48PT2521E14enTp+jQoQOuXr2qI8v0S0ZGBjp37izY7iqXlJQUdOnSRat3QlcEBgbif//7X2GbAQBYv349fvjhB7Xb5VTx5s0b9OzZEykpKZLLBAUFoUePHtyQF1JJTExE165dERsbq7QtiyAIzXj16hU6d+6MGzduaKUnLi4Obdu2FYQ00BcTJ07E7NmztWq/PpCVlYWRI0dixYoVOrBMM3bs2IFhw4ZJ2u4rhbVr12LBggU60SWVgIAAgaxdu3Za6Zw5cyYmTpyok/uSnJwMLy8vQYxCTYmNjUWXLl3w8uVLrfTMmDFDo/FDZmYmevXqJQgbJZc7d+7A3d1dbTgfddy7dw++vr7IysqSrSMqKgodOnTA8+fPZetITU2Fj48Pzp49ixo1akgqw9umDwB79+6VbUdiYiKOHTsmkPv4+ORtU1ZH27ZtBbJDhw7JtonQHRQDsJgyd+5cXLx4kXvMwsICXl5ecHV1RfXq1WFhYYHMzEzExcXh3Llz2L9/P3cA9PTpU8yaNQt//PGH4JiDgwNGjhypJPv777+Rnp6uJPPw8BA0aNWrVxe9jvXr1wtiUn1M6dKl4evri6ZNm8LOzg6MMTx58gQXLlzAvn378Pr1a2656dOno3bt2qIx4vKzdu1alfG9GjZsiL59+6JGjRooX748nj9/jrt372L37t2CjuiJEyfw119/SapXCrt27cK2bdvUnifWYK9Zs0YQz+wDBgYGcHd3R7t27VC7dm2UK1cOwHsH86NHjxAZGYnDhw+LOoanT58OPz8/lC1bVuLV/B+ZmZnw9fVFXFxcnszW1hZjxoxBz549UatWLRgZGSE+Ph7BwcFYtmyZaGd90qRJyM7OVhqkm5qaYujQobEyKSIAACAASURBVOjfvz/q16+P0qVLIyEhAWFhYVi1ahVCQ0O5utatW4cff/wx714Q6snNzUX//v3x4sULwbEmTZqgW7dusLe3h7m5OZ49e4Zr165h//79ou/v69ev0aNHD1y+fFmnAYVr1aolaMd27doliCPXunVr1KtXT0lma2vL1bl48WJR57y5uTm6du0KNzc31KxZExYWFsjKykJcXBzOnz8Pf39/bgy7Fy9eYMaMGdi0aZPgWN26dQXXsG3bNrx7905J9uGd/hhNnE+vXr3CsGHD1E7MFETczAsXLnDjFH711Vfo2rUrKleuDBsbGyQmJuLixYvYtWsXtm/fzu3oP336FIsWLZI06IyNjUXfvn2RmZnJPV6uXDn069cPTZo0QcWKFfPazcDAQAQFBSnFfkpMTESfPn1ga2vLjcVFEIRqGGMYOnQobt68KThmb2+PPn36oGbNmihbtiyePXuG2NhY+Pv7izoOEhMT4eXlhaioKL0mCPn9998FsWc/pmzZsvD19c1rR3JzcxEXF4fw8HDR/joAfPfdd6hVqxa8vLy4xwcMGICkpKS8v2/fvi3o95QsWRJ+fn6Csvb29gLZs2fPMGbMGNFvgoODA7p164ZGjRqhfPnyUCgUePXqFW7evJmXtI7H/PnzMWjQIFStWpV7XNfkdwDa2NigSZMmsvX99ddfmDdvnujx+vXro0ePHqhfvz7Kly+P9PR0PH78GMHBwQgMDBSMowAgPT0dPj4+uHz5sqwFBWlpaejXr5/ShKyNjQ0GDBiAPn36oE6dOrC1tcW7d+8QHR2No0ePYs2aNaKOrUmTJuH69euSElmMHDkSR48e5R4zMDBAy5Yt0a1bN9SoUQNlypTBq1ev8ODBAxw6dAjnzp3jPl9xcXHo3bs3zp49KytBSE5ODgYPHqx28s/MzEw0xubLly/Ro0cPUR3W1tbw9fVF8+bNUalSJWRnZ+Px48c4efIkDh8+jIyMjLxz09LS4OvrCycnJ0n216lTB40aNRJMjPv7++OHH36QpCM/e/fu5fZtvvrqK8k62rZtC4VCoTSxERAQwI1tSBQNaAuwDinoLcBxcXGiS5iHDRvGXr58qbJ8YmIi69evH7e8kZERe/bsmSTbeVv9du/eLaksY+9jKpmbm3PtMDMzY4sXL2YZGRmi5dPS0tjs2bNF74WNjY2keGIxMTGi20bt7e1ZSEiIyvJHjx4VxLhQKBSCrR5ytgDPmTNHsJzd1NSU9enTh23atIldunSJvX79WlRneno6q1ChAvfaXF1d2c2bN9Xen4yMDLZixQpmamrK1SNlKwpvC3D+38CBA9Vei5+fn6Ql9k2aNFEbS23BggWi5bdt26b2mj5XeFuAeb+GDRuy8PBwUT1paWls1apVzNLSUlTH4MGD1dqjyRZgHrx4TH/++aeksgkJCaIx/wYOHMgSEhJUln/9+jUbNGgQt7yBgQF79OiRJDt4W722bNkiqazYFuC+ffsK5I0bN2aLFi1iwcHB7OnTpywrK0tUr662AFetWlUpNqyJiQlbsmSJyroZYywyMpJVq1aNe28rVaqkdttZTk6OaIgNU1NT9ssvv7DMzEzR8vfv32ft27cXlOVtAaQtwAShDG8LMK+/aGtry/z9/UXDkeTk5LA9e/aI9oOA99tQ1SF3C/CNGzdE+04WFhZs2bJlKtuR1NRU9uOPP4puLS1btqzaPv8H1q5dKyhfs2ZNSWUZY2zUqFGi7emHLY2qCAgIEI3fOn78eMl2aENsbKygbi8vL9n6Ll++LPr/W7duXbX3JSEhgY0YMUI0BFLPnj3V2sDbAtyxY0elv3v37q12PPT69WvWs2dP0ffkv//+U2vLxo0bRct37NhRZagpxhi7fv0691378Fu0aJFaG3hbgBcuXCjQZW9vz6ZPn84OHTrEHjx4wNLT01Xq7d27N9cmQ0NDNmXKFPbu3TvRsgkJCczHx0dSf4C3BZgxxubNm8ctL3fLbevWrQX6qlevrvGW/IYNGyrpMDExYW/fvpVlEyEOxQBUwefiAOQNeAGw77//XrLNOTk5zNPTk6tn48aNknRo6wD08vLi1l+qVCkWFRUlWc+5c+dEA7oOGzZMbfnu3btzyzZv3lxyPLgXL16w+vXrq3wx5TgA8zsm+/fvr9ap8DEBAQFcW1xdXSXHePjA4cOHuR+rPn36qC2rzgE4atQoSR+d9PR0bjDcj3/Ozs4qHYkfI+Z8GTNmjKTynyNSHIC+vr5qO1MfuHPnjqijRqFQqI0HWJgOwD/++EPr5yc3N5d5e3tz9UgNwK1rB2D+dqdmzZrs9OnTkq+JMd05AD/+GRsbs/3790u24ebNm6IO5itXrqgsu2HDBm45KysrlY7tj8nJyREdNH/8IwcgQSjDcwDm/zk6OkruD7148ULUoW9gYMAuX76ssrxcByCvjw+AlStXjl2/fl2S7Yy9H/yJTVRL/d5o4wDMzMwUOFaA9w5ITRwQZ86c4Tq77O3tJevQhi1btgjqnjVrlixdubm5zNXVlft/4unpyd68eSNZ144dO0STOZ45c0ZlWZ4DMP93V2q87oyMDObm5sbV8/PPP6ss+/LlS9EY0FOmTJHsWFIVj93a2pq9evVKZfn8z6mRkZHSvS1dujT7559/NHJ0BQUFifZJpDi/PzB37ly17ZqYAzAmJoZ7/rJlyyTX/4EHDx5wx3M//fSTxroGDx4s0HPy5EmN9RCqIQegCsQcgI6OjszDw0NvP97MnD4dgLxkDuXKlVO5Wo7H1atXufdryJAhkspr4wCMjIzk1m1qaiprMBQYGMgMDQ0F+oyMjNiDBw9Ey4ndA3t7e/b8+XONbLh//77KYLtyHIAf/xYuXKiRPYwxNn78eIEehUIhaeUfD57TuHnz5mrLqXIANm/eXOUMeH62bt0qqsvGxkajTL53797ldka9vb0l6/jcUOcAdHd3l+z8+0B0dDQrV64cV9/QoUNVli1MByBvttzGxkblTDAPsY6dn5+fpPK6dgB+/HN2dtZoIPMBfTgAlyxZorEd06dP5+o6dOiQaJnc3FxWq1YtQRkDAwN27NgxjerPzs5mXbp0UXld5AAkCGXUOQCrVKnCnjx5opHOly9fsnr16sn6zshxAJ47d45bl7m5uayM5IcOHeIO2k1NTVl8fLza8to4AMPCwrjXsmLFCo2vQ2zCqyCSB4wePVpQr7+/vyxdBw8e5F6Hi4uLxuMxxhj7+++/ufrUrVBU5QB0c3OT7Pz7wKVLl2S9I9OmTeOWk5MtmzHGxowZw9WnLikJz1H94VexYkWNxggfaNOmDVffhg0bNNY1dOhQlW2bmAOQMcbNMO3m5qaxDbwVkQqFgsXExGisi5coTlVSSkIe5ABUgZgDsDB++nQA8laaSR0o5oc3cOzUqZOksto4AIcPH869b1OnTpV1HYwxNmLECK7OGTNmiJYZN24ct4zcVaO///676DOhjQNw0KBBsuzhfbRat24tSxdjjP3yyy8CfdWrV1dbTpUDUNOVRa9evRLdLjF79myNr6lx48YCPW3atNFYz+eCKgegmZmZ7Kxk27dv5+q0sLBQuaKzMB2ATZo0EZSVsmVHqh1S31V9OQBtbW0lDSx56NoB2KRJE5adna2xHTdv3uTq27Rpk2iZkJAQbhl1AyAx7t69K7pNDCAHIEHkR50DMCAgQJbeCxcucPsPlpaWLCUlRbScHAcgrw0E1K+kUoXYroW5c+eqLauNA3Dnzp3cetWFWpFqByBti6m28Pp7sbGxsnTxtlBaWlpKDt3Bo3///gKdhoaGKp3dYg5AIyMjduvWLVl28MaZ3bt3Fz3/3bt3zNraWlCmYcOGspyhjL0PE8Nz2NesWVPl6j0xB6ChoSG7cOGCxnZER0dzHe8eHh6yruvVq1cqnZSqHIA8x52BgQGLi4vTyAbeTipXV1dZ18PrL6l6Vgh5UBZgghtov2TJkrJ0TZ06FVOmTFH6iQUU1hVZWVnw9/cXyMuXL48ZM2bI1jtv3jxYWFgI5Dt37uSen5aWhq1btwrk7u7u6NmzpywbRo4cqTLpiRyMjY1VBhhWxdOnTwUyV1dX2bbwkn1ok725cePGcHd316hMqVKlYGdnJ5AbGhoKEgVIoWHDhgKZrjLcfW5MnDhR9vPv5+eH1q1bC+SpqanYtWuXtqbpBV22xf/73/8EbbG3t7e2JmrFpEmTULFixUK14QMTJ06EoaGhxuXq1avH/S58nKAjP+vWrRPITE1NMX/+fI3rB4AaNWrg66+/llWWIAhlPDw80L17d1llnZ2dMWTIEIH83bt3on1FOaSlpeHgwYMCuZ2dHSZPnixb78KFC2FqaiqQ69J2HrxvHSDve9e6dWvBt27KlCk6TfjFIy0tDdeuXVOSWVpaSs7E+jF3795FWFiYQD527FitMr3PmTNH8J3LycnBgQMHNNbl5eWFunXryrKjadOmApmqvv7+/fu5Cc1mz54NExMTWTaYmZnhxx9/FMjv3r2Ly5cva6zP19cXzs7OGpdbv349N3v3r7/+qrEu4P0YRm4b4OvrK5Dl5uZi3759knVcvXoV169fF8g1Sf7xMbwxVEREhCxdhO6gLMDFkBIlSgg+xnJftsLI1HP58mVu9k8/Pz+UKFFCtt7y5cujR48ego7Q3bt38fjxY8FH+eTJk0oZ0j4wbNgw2TYYGxvDz88PCxculK0jPz4+PrKzox0/flzgzCpTpoxsW7Rx9vHw9PSUVa5UqVJK2YOB9x17OdmIS5cuLcsGQhmFQoFRo0ZpVX7ChAk4c+aM4NiZM2cEmW+LArz26uLFi2CMiWaSE6OoXZ+5ublW/5+6pGTJkvDx8ZFdvmzZsnj06JGkc7OysgRZIgGga9euWjlDv/rqK6xevVp2eYIg3jN69Gityo8fPx4bN24UyI8ePYoRI0ZopfsDFy9exNu3bwXygQMHwtzcXLbeSpUqwdPTU+AQunHjBl68eIFy5crJ1q0Ksb55RESExs7YunXrYtGiRbowSyPu378vmPipXLmyxt9qADhw4IDAKaRQKDB+/HitbKxVqxY8PT1x+PBhJXlgYKDGE9zajGU07Uvv379fIKtevTp69eol2wYA6Nu3L7777jtBduLAwEDJGXQ/MGnSJFk28BasNGvWDI6OjrL0Ae/bgenTp2s8pqpZsyaaNm2KS5cuKcn37t2LcePGSdKxbds2gczU1BR9+/bVyJYPlCtXDhYWFkhNTc2TPXv2DCkpKbInxAntoRWAxRDe7FJUVBTWrFlTCNZoTnh4OFc+YMAArXX379+fK+c5SM+fPy+QmZmZab3qhjdDow0eHh6yy1atWhU1atRQ+llbW8vW9/DhQ9lleTg4OMgqZ2QknNvQpS5Cc1q1aoVq1apppcPLy4vrkBVrMwobXlt869YtLFu2rBCs0S3Ozs5atRW6pEWLFloNmjVZOXj16lWljuwH/Pz8ZNcPvL+f2r4fBPG5U6pUKXTr1k0rHY6OjmjcuLFArstVK4XRz71w4YLWusUQW9U2depUvHr1Sm/16pLY2FiBTO5qvePHjwtkzs7OqFSpkix9H9O5c2eBTNMVbwYGBtwdFVLR5JuZm5uLkJAQgbxHjx6ynKsfY2RkhA4dOgjkmt4PGxsbNGvWTOP6ExIScO/ePYFc2/5ApUqV0LJlS1lleY66s2fP4tmzZ2rL5ubmYseOHQJ59+7dUapUKVn2AO8d6fm5e/eubH2E9tDIFu9n3uvXr683/T///DPS09P1pj8/bdu2RWhoqED+7bffIiIiAnPmzNFqCbq+4XWMLCwsuEvONaV169ZQKBSCmbkLFy6gd+/eSjKeA9DR0VHrGQtHR0fBbIg2yP1I6JrHjx9zt8Zpg5wVe2Loa+abkEb79u211mFqaor27dtj7969SvLY2FgkJiZqtXpVH7Rp0wZBQUEC+Q8//ICoqCjMmzcP9vb2BW+YDtAmVICuad68eYHVJTZw12YwBbxfHdKyZUudT6IQxOeEm5sbdwuspnTp0kXgRIiLi8PTp091EvaA147Y2Nhwt8tpiljYlIiICK2do2K0bNkSJiYmyMzMVJLfvHkTzZo1w/z58+Hn56e1w0ef8BwSPMeFFPKvwALej810QYsWLQSyx48fIzk5WfKkXJ06dfS+pfoDd+/e5e7q0tX9cHFxwfbt25VkvC2s6nQYGGi+Jkpf/QHgfR/r7NmzGpfz9fXF1KlTlca5OTk52L9/v9rV0WfOnMHjx48Fcrnbfz9QuXJlxMTEKMnu3r2r8SpNQneQAxBA7969Zcd0k8KiRYsK1AE4dOhQLFq0SPAhZoxh8+bN2LlzJ7p164YePXqga9euOnWy6IIbN24IZI6OjrLiO+WnVKlSqFq1qmCQdfXqVcG5Fy9e5NqhLQYGBnBwcNDJbLKBgQHq1KmjtR65ZGZm4saNG9i6dSs2btzI/chrg7GxcZHURWiOLhz4H/TkdwAyxvDgwYMi5wAcMmQI5s2bh7S0NCU5Ywzbtm3Dnj170LVrV/To0QPdunVD+fLlC8lSzalXr15hm5BHQU5o8dptW1tbnTgFGjRooLUOgvicadKkiV71XL58WSfvOq+f6+TkpBMHWYUKFWBrayvYFsnr5+oKCwsLfPXVV1i/fr3g2P379/Hll19i7ty58Pb2Ro8ePeDs7CzL4aJPeGEgKlSooLGe58+f4+XLlwJ57dq1ZdmVH55NjDHcuHFD8sScXMemHHjPOvB+O7MusLW1FchiYmKQmZkpOb6g3P4Mrz9gaGioE0e+3P5A9erV4ezsLFjxu3fvXrUOQN7233LlyqFLly6ybPkA75mVGnaF0A/kACyG2NvbY/r06fj555+5x9PT0+Hv7w9/f38YGBigYcOGaN26NVq1aoXWrVtzEygUJLztArocbNavX1/gAMxfZ0ZGBjf+n9yAufmpU6eOThyAJUuWLJBOVFJSEu7cuYOYmJi83+3bt3Hz5k1kZWXpvX7i00fuFuz8NGrUiCvnva+FjZ2dHWbNmoWpU6dyj2dmZuLAgQM4cOBA3sSAu7s73Nzc4O7urpPtQvqiqGz/BaDV1hRNyT+oBnT3XdCVHoL4XNHVd0Zsslcs2YWmFEQ/N39bpe+tuLNnz8aRI0e4yeWA9+Evbt26hQULFqBMmTJwc3PLG3s0bdq00Cdp37x5I5DxEkSpg+f8A97HitNFvz//4o4P3LlzR7IDsCC/mWL349dff9XJal3eirWsrCzcv39f8gIJuf0Z3rbaatWqaRWS5APa9Ad8fX0FDsDQ0FCVcUAzMjIEk+vA+5AC2r6blpaWAllKSopWOgntIAdgMeWnn35CQkKC2rh/ubm5uHLlCq5cuYLff/8dwPsgoh4eHujSpQs6deok6wOoDbxVZLpcqs6LIZbfeSDmTNCVHbr6+OpjEJ6cnIwzZ87gzJkz+O+//3D79m2ddXqJzxddPfNinZei6AAEgClTpiAhIUFt3L/c3Fxcu3YN165dy0sGUb16daW2WJskSLqmKDkAeZ1LfcF7znT1XSioLVkEUVzR93dGV7scikI/V9fY2dnhyJEj6Natm6gT8AOJiYkICAjIS6hkYWEBV1dXdO7cGd26dSuUFea8pCxyHDlijtZjx45prEsTNHk2C/KbKXY/tmzZotd6eVmHxZDbnymq/QFfX19MnjxZaRtwdnY2Dhw4IJrI6OjRo9zr0Xb7L8B3pPMc7kTBUbTWXxM6Q6FQYPXq1di+fbvGK/ru3r2Lv/76C97e3rCzs8OYMWO4wXH1QU5ODndWQJeZgni68n84xTpKuhr06up6dPkRP3XqFAYMGIAKFSqge/fu+OWXX3DmzBly/hFao1AodPbMi3WKdL39XJcsXboUe/fu1Xir6v3797Fu3Tr06dMHdnZ2GDlyJKKjo/VkpWYUJWdkQcL7Nujq2aaMeAShHbrqo1lbW3N3V+jiO5OamoqMjAyBvKD7ufrAyckJly9fho+Pj0bbmVNTUxEcHIwffvgB9evXh4uLC7Zs2SLIyqtPeA5AOQsgCivpiSYOlYKMxVhYk7Oa3A+5/Zmi2h+oVq0aN1Ykb4XfB/LHUQTeryTWRfge3nvEe9+IgoMcgMWc/v374+7du1i5cqXo1jlVJCcn448//oCDgwN++OEH0aXnuiI7O1uQoAPQbfw2MzMzgezdu3dKf4s1TLrKCMuzQQ66+IjHxcWhU6dOaNeuHbZv365xvEojIyM0a9YMCxcuxE8//aS1PUTxw8DAQGdb1cU65LrYSqJP+vTpgzt37mDNmjWyAh+/efMG69atQ8OGDTFhwoQCjStL/B+8QYWuvk+6+i4QxOeKrt5FAwMDbvwwXQxaxcKmFHQ/V1+UL18ee/bswaVLlzBw4EBZE9Xh4eEYMmQIGjduLJpoQdfk5uYKZHL62LpK8KcpRdWhUlDPXX4K4n7w6igq/QFeNuCTJ09yHdQpKSk4dOiQQK6L1X8AP2t0dna2TnQT8qAtwJ8BZmZmGDduHMaNG4crV64gICAAgYGBCA8Pl/wCZmZm4tdff8X58+fx77//wsrKSi+2mpqawtzcXBA0X5exAngDuPyzxmIzL7paslxUlj7funUL7dq148a14mFnZ4f69eujfv36cHBwQOPGjdGoUaO8D9WmTZv0aS7xiZKTk4N3797pZNWY2CqGgoxpIxdTU1OMHj0ao0ePxvXr13Hw4EEEBQXh3LlzktvirKwsrFy5EuHh4Th69Ogncd3FiZIlSyI+Pl5JpqvvU1H5LhDEp4om2/5UkZGRwZ1k0UXf18rKCgYGBgKHU0H3c/WNk5MT/vnnH7x9+xaHDh3CsWPHEBQUxI2bJsb169fRpk0bbNmyBf369dOjtfxVYPnHIlIQu89dunTR29gJAL744gu96dYG3v0wMTHRa/JNAAWSFI43Viwq/QEfHx98//33SotqsrKycPDgQQwdOlTpXH9/f0F7Z2BggAEDBmhlwwd4TvHPdRdJUYEcgJ8Zjo6OcHR0xMyZM5GSkoIzZ84gNDQUZ86cwcWLF9UmdAgLC8PAgQNx8OBBvdloY2OjVwcgz4GQfxDNi5+iSzuKQvDT1NRU9OrVS9T5p1Ao0LRpU3Tt2hUeHh5o0KABORsI2SQnJ+vkgy+2neRTezYbNGiABg0aYMaMGXjz5g3CwsLy2uOIiAi1q63Dw8Ph5+eHY8eOFeh2ns8d3rehOH0XCOJTRlcOQLGJJrG+oSYYGBjA2tpa8C0r6H5uQVGiRAn0798f/fv3B2MMN2/exOnTpxEaGorQ0FC18QIzMjIwePBgVKtWDS4uLnq1Mz9yHIBi93n27Nlo3ry5xvo+dXj3Izc3F7t27frk+y5FuT9QpUoVtGzZEufOnVOS7927V+AA5G3/bd++vc6yRfMcgPp0hhPqoS3AnzElS5ZEt27dsHjxYpw7dw5JSUkIDAzEmDFjULFiRdFyAQEB+Pfff/VmF+9jkT9rrzbwMkblb8RLlSrF/TDpKm15/hUkhcGaNWsQExPDPda9e3dcv34dERERmD17Nlq3bv3JOViIosW9e/f0qqcgZnv1hZWVFTw9PbFgwQKEhYUhKSkJx48fx7hx41R2wIKCgrBv374CtJTgdfiL03eBID5l9P2d0YUDEOD3cx88eKAT3YC0fm5hoFAo4ODggDFjxmDnzp2Ij49HTEwMVq5cibZt23K3CgLvnYATJ07Uq208B6Cc7bxifeXPNZ4277nLzs4usonbNIF3bXFxcdzt5Jqii/4AbxtwcHCw0gRBfHw8Tp48KThPV9t/AXIAFkXIAUjkYWlpiU6dOmH16tWIi4vD6tWrRQPuq8surA3VqlUTyKKionSiOzs7G1evXhXIK1WqpPS3kZERbG1tBedduXJFJ3boSo82bNiwgSv/8ccfERAQgPr16xewRURxJjIyUid6Lly4IJCZm5ujVq1aOtFfFLCwsICHhwdWrlyJR48eYe3ataKDN322xYSQ/N8KALhz545O4j7xvk0EQUhHV9+ZiIgIrlxXK2J4/dzLly/rRHd6ejpu3rwpkPParqJA7dq1MW7cOJw8eRK3bt1Cx44dueeFh4fj0qVLerODt/Dh5cuXGuupVKkS15F59+5dWXZ96oglPyuo5JL6hPdOvXnzRicTEbroD/j4+Ajib2dmZuZl3waAXbt2CZLtlChRAr1799a6/g/w3iNVC40I/UMOQIKLgYEBxowZg7CwMG7Q/dDQUL1l5+JlLnr69Cni4uK01n3t2jXukn5enS1bthTIIiMjuUlKNCExMVFnK0bkEh8fj9u3bwvkrVq1wpw5cwrBIqK4899//+lET1hYmEDWpEkTnQZQL0ooFAqMGDEC586d486Ynjt3jptRktAPvO9CTk6OTgbvunJeEMTnyvnz53Wi5+zZswKZkZGRTjJiAvw+54MHD3SySiwqKoobzodXZ1Gjdu3aCAoKwsCBA7nHeSuVdEXNmjUFMjnjDisrKzg4OAjkvGfqc8DZ2ZnrEM2/NfVThNcfAKATR7Uu+gOVKlWCm5ubQO7v75/3723btgmO9+7dW1byHjF47xHvfSMKDooBWMw4fPiwYNmwtbW17OC5Dg4OGDx4MP744w8l+Zs3b/Dq1SuUK1dOtq1iiHVS9uzZg0mTJmmle/fu3Vw5rxF3c3PD/v37lWTPnz/H2bNn0apVK9k2BAQEaO1E1JZbt25x5SNGjNAqJodY3ByCOHz4MN6+fatVHMCrV69yV88WxYHN0aNHBduwrKys0L9/f1n66tSpg6+//hrLly9Xkqenp+P58+eoWrWqbFsJ6Yi1/fv27YOrq6tsvQkJCTpzkhPE50psbCwuXryIZs2aydbx+vVrbkZMR0dH0Sz0msL7ZjHGsHfvXowePVor3bt27eLKxZwV2hIfH4/Dhw8L5B06dJA9yF+8eDG2bdsm6CvrMhxQfni7COQuPGjZsqVgBdepPCRoZAAAIABJREFUU6eQlZWl9WTlv//+i9DQUCVZxYoVMWHCBK306ouSJUuiQYMGgr5bUFCQTrZ1//nnn4Lt8y1atIC3t7fWutXRokULGBsbCxzu+/bt0yppTWZmJo4ePaqteQAAX19fnDlzRkkWFBSElJQUxMfHc52Vutz+C5ADsChCDsBixpYtW7B3714lmYmJCXr06AFzc3NZOsVmPN+8eaMXB2Dz5s1haGgoWGH4zz//aOUAzM7OxtatWwVyc3NzODk5CeRiA71t27Zp5QDkBVstaMRib2i77Vds2wxBvHv3Dnv37sWQIUNk6/jrr7+4cg8PD9k69cX27dsF7Y2JiQl8fHxkDwBUtcVEwVCzZk1UrFhRELh+165dWLx4sWgMK3Xs2bNHciZogiDE2bx5s1YOwH/++Ye7U4S3kkYuLi4uUCgUAgfXP//8o5UDMDMzEzt27BDIPzhh9EFiYiK++eYbgXzWrFn4+eefZem0s7ODnZ0dnjx5oiTX57eO55DgxVKUgpubm6C/kpCQoLVjiDGG7777DtHR0Ury4cOHy9ZZELi5uQkcgIGBgbh//z6qV68uW+/Tp08xfvx4gQNu/fr1snVqgqWlJZycnAShaQ4fPoyUlBRulmApHDt2TGcxEn18fDBx4kSluITp6ek4fPgwdydYlSpV0K5dO53UDbzv+7969UpJVqJECW6YLaLgoC3AxQxePILMzExcvHhRts53795x5fp6eUuXLs1tfKKiopSWLWvKH3/8wZ2F6NGjB0xMTATy5s2bo27dugL55s2bZQdrPn/+PEJCQmSVLQjyx4rQhCdPnghWTBLEx8yePVtWVj0AuH79OtatWyeQV6lSBZ06ddLWNJ0j1hZrs8qroNtigs+gQYMEsri4OO7zKYX09HT8+uuv2ppFEATeD/7lxhd79eoV5s6dyz3Ge+/lUqFCBa5D8b///sORI0dk612xYgUSEhIEcm9vb9mTE+qws7PjyrXd4sn73unzW2dtbS1wAiYlJeHZs2ca6+revTvMzMwE8sWLF2s10bN7926B8w8ompOgH+Pj4yOQ5ebmYtGiRVrpXbRoEXe7e0HeD167kJqaisWLF8vSxxjDggULtDUrj4oVK6J169YC+d69e7kLUgYOHKjVWDA/vB1nTk5On3wG6E8dcgAWM7744guufOfOnbJ1Hj9+XCArW7asTuMD5EdsNuv7779HcnKyxvqePHmCn376iXtsxIgRXLlCocCYMWME8vT0dHz33Xcab+PNzs6WVU4fiHWixLYGqyM3NxcjRoxAenq6NmYRxZwHDx7IijGZnp6OkSNHcjt6w4cP19vARhvE2uLNmzfL1slriy0tLT/pDMifIqNHj+Y+cz/99JOsGF7Lli3TaQZQgvicycjIwLfffqtxnGrGGCZNmsR9h52dnbVaVchDrJ87adIkvH37VmN9Dx48EHVeivVzdUHp0qVRtmxZgTw0NFSwgk8qERER3JAy+g514eLiIpDJSdpnY2PDzcAaFRWFX375RZZtr169wuTJk7l1devWTZbOgqJNmzbcPtG6detw4sQJWTovXbokCE8FvN+9xUuyoy8GDx7Mjc+8bNky3LlzR2N9W7duRXh4uC5My4P3LB48eJCbmEaXEx0A//3RVzgCQjrkACxmdO7cmSvfsGGDrFWAR44cwb///iuQd+nSRWNdACTPfPn4+KBGjRoC+cOHD9GjRw+NVhElJiaic+fO3M5E8+bN0aFDB9GygwcP5i7h3r9/v6hDUYwxY8YUmRhPNWvW5M6+bNq0SWNdH5x/uopXQRRvFi9ejI0bN0o+PysrC/369eO+OxYWFnod2IghpR3r1KkT9x3bunWrrGDgwcHB3BW2Xbp0kTWTSttN5WNvb4/u3bsL5C9evICXl5foSk0eAQEBGn9LCIJQTWBgIMaPH69RmWnTpuHvv//mHhs7dqwuzFLiyy+/5GZIvXPnDry9vTVK7vT8+XN06tSJ6zh0d3eXvX2ZN+mWH4VCwR17ZGRkyArbk5mZyY0Np1AoZI89pMJzTMhxAALAlClTRCeK/vnnH410paWloV+/ftwEgt988w3XAVWUMDAwwNSpUwVyxhj69u2rcdKMR48eoU+fPtzn8/vvv5dtpxysrKy4oW3S09PRtWtX7opcMc6fP49Ro0bp0Lr39OnTR/Asfrwl+APOzs6oV6+eTusmB2DRhByAxYyaNWty43xkZGTAy8tLEAhUDMYYNm/eDF9fX24j8eWXX8qyT+pSeiMjI9EtUaGhoWjXrp2k1Wrnz5+Hm5sbbty4IThmYGCAFStWqCxfsmRJzJw5k3ts3rx5GD16tNqZ2uTkZAwaNEjt9rCCXMVkZ2eHRo0aCeQhISFYunSpZD13795FmzZtVDp0EhISuM8Q8XnCGMPIkSMxbdo0ZGZmqjz39u3bcHd3R0BAAPf45MmTRbcf6RMp7VjlypW5MfuysrLQq1cvybPejDFs374dvXr14q5o0XdbTPCZP38+N5bjhQsX0LZtW25snY9hjGHNmjXw8/NTu1KpKK5wJYiizpo1a+Dr64vExESV57148QJ9+/YV3bLXuHFj0ay02mBiYiJaZ3BwMDp06CBpBdGZM2fg5ubGPdfQ0FCQOEoTXrx4Ian/1qNHD658z549Gu0OiYuLg6enJ3f7cIsWLfSeOIDnmJCb4b1+/frceI45OTkYMmQIZsyYgdTUVLV6YmNj4eHhgeDgYMGx0qVL6ySRRkEwePBgODs7C+SJiYno0KEDNm7cKOlZO336NNzc3LgJYZydnUWfRX0yY8YMWFtbC+SxsbFo3bq1pBV9u3fvRteuXdU+E0ZGmqdvsLW1hbu7u9rzdJ38AxC+PwqFghyARZgAAEzsZ2xszD5Fxo4dy72eAwcO6LVeGxsbQZ0lSpSQVNbDw0NQdvr06SrL7Nq1S/T/TqFQsO7du7Pt27ezBw8esJycnLxymZmZ7PLly2zFihWscePGojo6duzIcnNz1dpetmxZQdnGjRuzlJQUSdfOGGNffvmlqB1mZmZsyJAhLCgoiCUmJuaVSUhIYAcPHmS+vr7M0NBQtPz//vc/STZkZmYyFxcXUT1Vq1Zls2fPZjdu3GDp6emMMcbS09PZjRs32KxZs1ilSpWUzreysmIDBgwQ6KlRo4ZKO+bMmSMo4+DgIPle5mfp0qWi19SvXz92+fJlbrm0tDQWEhLCBg4cyIyNjUV1fPzbsGGDSluSkpK45UJCQmRdm5OTk0DXzJkzZen6/vvvBbrc3Nxk6focOHLkiOB+NWnShPv/W7NmTTZv3jx2+fJl9vr1a5aVlcUePnzIAgICmJ+fHzM1NRV9ppycnFhGRoZae5YvXy4o26hRI8nX88UXX3Dt/rjNEePgwYMq22JPT0+2detWdv/+fUFbfPXqVbZq1SrWrFkzUR2tW7dWKidGlSpVBGXr1avHXr9+rbbsw4cPuXVHRESoLasKXhs4fPhwlWXS09O5thw+fFgrW6pXry7QuX79erXl5s6dK/p/Y25uzoYPH85OnjyZd59zc3NZXFwc27BhA2vZsqWgzKhRo7i6xNpigvhciY6OltT3AMDKli3LJk6cyM6dO8cSEhJYbm4ui4+PZ6dOnWJjx45lpUqVEi1ramrKIiMj1drToUMHQdmxY8eqLZebm8u8vb3VtiMhISHs1atXeeWePXvG9u3bx7y9vZmBgYFo+R9//FHyPV23bh1Xx7p169SWzc7OZvXr1xe1o2LFimzOnDns7Nmz7O3bt0plnz17xo4cOcKGDx/OzM3NueUNDAzYmTNnJF+LXHJycpitra1S3ZUqVZKtLyUlhdWtW1f0vlSpUoXNmDGDXbhwQem+vHnzhgUHB7Ovv/6amZmZiZbfuXOnWhu6desmKDds2DDZ18QYY//73/8EOrt166a23I0bN1iJEiVEr8fJyYktW7aM3b59O288xdj7Z8Tf3595eXkxhUIh+q7cunVLrQ2lS5eW9YyrY/PmzaLXZWRkxPz8/NiRI0fYy5cvla5rx44drFOnTpL7A4cOHZJl3x9//KGynTQxMWEvXrzQ+j58TFpamuD5dXJy0mkdxHtOnz4t5XuodraAHIA6pKAdgLm5uax169ZSHgQGgNnY2LCSJUtKOrdMmTLs3r17kmyvVauWqI6OHTsyX19f1qVLF9avXz9RHW/evGHOzs6SbDM3N1f5ofz45+npyTIzMyVdB2PvB8F2dnaSdKvqTBoaGrLDhw+zBQsWCI7Vq1dPpQ26dgCmp6cze3t7lddiZ2fH2rdvz3x9fVnnzp2Zo6Oj6D22tLRkS5Ys4R774HieNWsWW7BggcAWcgAWH3gOwMWLF7MhQ4ZIbpPU/SpWrCi5HdLWAdi8eXOuDdbW1qxDhw7M19eXde3alXl6enLL89pwsZ+1tTWztraWdK6NjQ27ffu2pGto2LChaFvl4eHBfH19maenJ/P29haUJQegODk5Oaxnz56S/r8sLS2ZiYmJ6PFvvvmG3bx5k3tMyqCGID4nxByAYv18OT+FQqF28vIDch2AjDH2+vVr5ujoKMkmCwsLlRNjH/969uzJsrOzJd/TvXv3iupycnJiPXv2ZL1792YuLi4sKChIUP7o0aMqnZEf/0xNTVmpUqVUtokf/6RO2OuC4cOHC+qPjo6Wre/WrVusXLlykr8TqhxkH/8mTpwoqf6i5ABkjLH9+/czIyMjSddobW0taVxnaGjItm3bJql+fTkAGWNs9OjRkq5L3XjVy8uLvX79mnvs+PHjsmx7/vy5yvves2dPndyDjzlx4oSgnlmzZum8HkJzByBtAS6GKBQK7N+/X/I+/tevXyMlJUXteba2tjh16pTklO28YLrA++Xex48fx549e3Ds2DHuMu4PlChRAkePHoWrq6va+tLS0iRtM+jZsyf8/f2527fEqFq1KoKCgiRtN1SVuv3XX39Ft27duLFdeBnD9ImpqSn27t2LEiVKiJ4THx+PEydOYM+ePQgMDMSVK1e497hGjRo4d+4cvv/+e1SoUEFwnDGGQ4cOYfbs2Vi/fr1Or4P4NPjrr7/g6emptZ7KlSvj+PHjktshbRFrx5KTkxESEoI9e/bg33//5QZTBt5vgeJttxfTKSXJUdmyZRESEoI6depI0it2DUlJSQgODsaePXtw9OhR3L9/X5I+4j0GBgbYsWOHpOf63bt3olveO3bsiFWrVonG/CrobwNBfKqMGjUKixcv1jrDpIGBAVauXIlhw4bpyDJxrK2tERgYKCnJSGpqqqTYgL6+vti1a5dG4QOaN28uet+ioqJw8OBB7Nu3D+fPn+duU+zSpQt+++03SXVlZGQgKSlJbRgQABg/frzsxBly4G0hPXnypGx9devWRXBwMDfeY37evXsnKQHMxIkTsWzZMtk2FSa9evXCzp07YWFhofbc5ORkteM6IyMjbNmyRXY4FF2yatUqDB48WO15qsarjRs3xvbt20XjNJuamsqyrXz58mjbtq3ocX1s/z116pRAxoufTBQ85AAsppQpUwYnTpyAl5eXTvT16NEDFy5c4MYXFGPSpEk6iV1UpkwZhISEYOLEiVqlJjczM8PChQuxb98+mJuba1zewcEhL6agppiYmGDt2rV5sTp4SUx4yUb0TdOmTXH48GGu004KhoaGGDFiBCIiItCoUSMoFApuMFyCMDExwYEDB7RK2tGhQweEh4fDwcFBh5apZty4cVo5YGxsbBAcHAxvb2+d2OPp6YkLFy6gSZMmkstMmDBBowkPQjrm5uYICAjApEmTZDkd/Pz8EBAQAGNjY9HkVoXxbSCIT5XJkydj69atKic3VVG+fHkEBATg22+/1bFl4tja2uL06dMYM2aMVs5Lc3NzLF26FLt27dLYUVClShX4+fnJrhsAvv32W2zZsgU2NjZa6QHeT3Rt3LgRv/32m9YOXU3w8PCApaWlkuz48eNa6WzUqBEiIiK0jk9XtmxZ7NixA8uXLy/Qe6Jr+vTpg7Nnz0qeHBXDwcEBZ8+exYABA3RkmXYYGhpi06ZNWLhwoaw+V4cOHXDy5ElYWVmJ9gd4sQalwssGDLyPJamPTNL541ZWqVJFo74roT80jyT5CdOxY0duh6B27dp6rXfChAkCT7+JiYmksv369RMEkpcSyBMAKlSogEOHDmH37t1YuXKlxpknjYyM4OnpiTFjxsjKvNWkSRP8/fffGDFihKRAt6owMzPD8uXLMXjwYMydOxcBAQGSs1iam5ujf//++PHHH7VeNVSlShWcPn0a69atw7x58/DkyRO1ZVxdXbF69Wo0btw4T/bmzRuublW4ublhypQpSjJbW1uJlovTpk0bXLlyBTNmzMDWrVslraI0MDCAp6cnFi1aJHAKT58+HcHBwRplnTY1NRVcGwBUq1ZNso6PGTJkCDp16qQka9WqlSxd7dq1EwTdlWvX50DNmjUF/5ctWrQA8H+O8F69emHatGm4evWqJJ316tXDzJkz4efnp3Gnt1mzZgJ7NHF416pVC7t378agQYMkrc7jUa5cOezbtw/79u3Db7/9hjNnzoAxJrm8oaEhOnfujNGjR8ua1HFwcMD27dsxdOhQSasLPqZkyZLcd1PupMEHvLy8ULlyZSUZL0D4xxgaGnJt0TYw/KhRo/Dq1SslmSYDEyMjIyxbtgx9+vTB1KlTERYWpraMnZ0d5s+frzRhwvsuWFpaonTp0pJtIQjifXIkV1dXTJs2DXv27FGbaAd4n81zxIgRmDFjhsbvnJ+fn2AFn6aB7i0sLLB69WoMHToU8+bNw+HDhyXZ/aHswIEDMX36dK36J3/99RdevHjBTTghla+++goeHh5YuHAhtm3bpnJXDI+qVati6NChGDduHMqUKSPbDrlYWFjA19cXmzdvzpMdO3YMqampklatiWFra4uDBw/i2LFjmD9/vqTvxAfKly+PkSNHYvz48ShXrpxG9fr4+Aj66VJWm6qiXbt2ggUedevW1UhH48aNcfHiRWzevBlLliyRlPDm47rGjRuH4cOHa+zonjBhgmBM6ujoqJEOVSgUCkydOhXdunXD1KlTcfToUbX9vdKlS2PGjBlKC114/QEAgn6TJojtVujXr5/slYVixMfH4/z580qyQYMGfdKO6+KE2P9CAADRNZrGxsaSlm0TRYvbt2/j5MmTuHTpEm7cuIGXL18iJSUFmZmZMDc3h42NDcqVK4cmTZqgWbNmaN++PSpWrKh1vQ8fPsS6detw8uRJ3Lt3D+np6TA2NkaZMmVQo0YNtG/fXuO07QkJCThy5AhCQ0Nx69YtPH78GKmpqVAoFLCwsED16tXRoEEDtGnTBl27dtXLCors7GwcO3YMR44cwcWLF/Ho0SNkZmbCzMwM9vb2aNGiBXx8fLiOJy8vLxw5ckRJNm3aNCxYsEDndmpCQkICDh48iDNnzuDq1at4+fIl3r17h5IlS6JSpUqoVKkSWrVqhV69eqnsZKanp2PVqlXYv38/7ty5g+zsbJQqVQoNGjRAx44dMW7cuAK8KqIowhhDWFgYDh06hEuXLuHOnTt48+YNFAoFrK2tUatWLTg7O8PLy0tSCAB98/TpU6xbtw4hISG4c+cO0tLSYGRkhDJlysDe3h4tW7bErFmzJOm6c+cOQkJCEBkZiWvXriExMRHJycl57ceHttjJyQnOzs5o164dKlWqpPU1xMXFYd26dThx4gRiY2OV2uLq1avD3d0dU6dO1bqez50rV67A398f586dQ3R0NN6+fQsDA4O87OteXl7w9vYWrCxdv369YIVs3bp1JWW8J4jPiZiYGG4IhGvXrgmcHY8ePYK/vz9CQ0MRHR2NZ8+egTEGExMTVK1aFQ0bNkTHjh3RvXt32asG9cGzZ8/y+rm3b9/G48ePkZaWBoVCAUtLS1SvXh0NGzbM6+fqynbGGA4ePIhdu3YhKioKCQkJYIzBysoKFStWRO3atTF9+nTUr19fra709HQEBgbi4sWLiIyMxKNHj5CSkoKUlBQoFArY2NigVKlSed97FxcXuLq6arXbRxeEhYWhdevWSjJ/f3/07t1bZ3XExsbiyJEjOHv2LGJiYvD06VNkZmbC1NQUZcqUQYUKFeDq6go3Nze0a9dO5w6aokZ4eDiCgoJw4cIF3L17F8+fP0dubi4sLS1RpkwZVKtWDW5ubnB3d4eLi8sn40iKiYmBv78/Tp8+jejoaLx+/RoKhQK2trZo0KABPD094ePjIxinBgYGChbfWFpaajyJ+zE7duzgbpX+77//REPFyOX3339XGuspFArcuXNH75m8P1dCQ0PRpk0bdadNArACIAcgQRQKDRo0wI0bN5Rka9aswejRowvJIoIgCKIwmTFjhmASqGPHjggKCiokiwiiaKKJA5AgNIUxhnr16iE6OjpP9uWXX2Lbtm2FaBXxOfHnn38KxoTaTgh27NhRsLr3iy++UHrOdUXbtm1x+vTpvL/bt2+PkJAQnddDvEdTByDFACSIAiYpKQm3b98WyJ2cnArBGoIgCKIokH+7DEDfBYIgiIJGoVBg5MiRSrJDhw6JbsskCF2j6/7AgwcPcOLECYF80KBBsnWK8fjxY8EW9/zvE1G4fFYxAAlCE5KTk7kJCyZOnKjVlsQTJ04I4rqUKFFCEOuRIAiCKHrMnDlTMGPu5uaGCRMmyNaZmprKjdOrKmsfQRAEoR9GjBiB+fPn58WHffPmDXbs2EGODEKJFStW4Ny5c0qyunXrYs6cObJ1Msa4cTi16Q9s2rQJubm5SjKFQoGBAwfK1inG+vXrlca5tWrVgo+Pj87rIeRDDkCCEMHa2hrBwcGCAMblypXTygG4du1agaxVq1aUpZMgCOIT4MmTJ9izZ4+S7OzZsxg/frzsuESbN29GRkaGkszIyEh28iKCIAhCPlZWVhg3bhxmz56dJ/vrr7/IAUgokZSUJOgPmJmZYcqUKYJs0lI5fPgwN8mkXAdgbm6uUlKbD7i7u8Pe3l6WTjGys7OxYcMGJdnkyZMFSWOIwoW2ABOECniZsnbs2IHnz5/L0nf69GluPCc5mT0JgiCIgoeXrTg+Ph67d++Wpe/t27dYtGiRQN6mTRtYWVnJ0kkQBEFox7hx45SSq0RGRiIiIqIQLSKKGrz+QHp6Ov766/+1d3ehWdZ9AMd/K7dVzhecyGCzF8p5oLMXqKSMGIZrUifOzUBIow7KE3t6saiwkygoAg8KeoLIg8KoRWVMwlBzUtkkEoMbXEigI9Q2nIgVm7bn4KGBzz3ftnu+/J7P5+y67vv+X//BBPe9r+v///eoxhscHDwlOv+jvr4+6uvrRzVme3t77N+/v+j8ww8/PKrxzqSjo+OUeFlXVzcu12FsBEA4gxUrVhSdO3LkSDz66KNFd2ucza+//hrLli0rOl9VVTUut2ADUHptbW1FO/hGRKxevTr27dt3XmOdOHEili1bFgcOHCh67fHHHx/1HAEYm+rq6njyySdPOffmm29epNlwKWpqaoqampqi82vXro0ff/zxvMd74oknRvzcaDeJPHr0aKxdu7bofFVV1bg8lvu//z5eeuml9DtYX44EQDiDpUuXRl1dXdH5jo6OaGpqGnEzj5F8/PHHcdddd4145+DTTz8dU6ZMGfNcARh/1dXVI36jfejQobj77rvj888/P6dxCoVCNDY2xqZNm4peu+WWW2LJkiVjnisAo/f8889HbW3t8HF7e/u47JrK5am8vDxWrVpVdP748ePR2NgY69evL1p7byT79++PBx98sOjx2YiI2trasz56Pjg4GN3d3adcq6urK5qbm0f8fX3kkUdi8uTJZ53X+ejs7IwdO3YMH998883x2GOPlfQalMbpFqvZGBEPnu5D5eXlMTAwMD4zgkvM5s2b4/7774+hoaGi1yZMmBBNTU2xePHimDdvXkybNi0qKiqit7c3Dh8+HN999118+eWXUSgURhx77ty50dXVFVdfffV4/xgAlEh/f380NDRET0/PiK/PmzcvWlpa4s4774yampqYNGlSHDt2LA4ePBiFQiE6Ojpi+/btceLEiaLPVlRUxLfffjviEhRARHd3d8yePbvo/M8//xxz5869CDMisw8++OCU3VJXrFgx4ppq/H8aGBiI22+/Pfbs2TPi67NmzYrW1taYP39+1NXVxZQpU+L48eNx+PDh2Lt3b2zatCm2bNkSf/31V9Fny8rKYuPGjWddKqqvry+mT58eV111VVRXV0dfX9+I40VETJw4MQqFQlx77bXn/8OewaJFi+Lrr78ePt62bZuNzC6Qzs7OuPfee8/2tn9FxLoIARDOyauvvhovvvhiScesqamJzs7OmDVrVknHBWD87dy5M5qbm6O/v79kY15xxRXx3nvvxcqVK0s2JmQjAHIhDQ0NxYIFC4Z3ey0vL49CoRA33XTTRZ4Zl4q9e/fGwoULR9y8YyxeeeWVc/r7858AeC5ef/31ePbZZ8c6tVN8//33p2yQ2draOup1kTl/5xsAPQIM5+CFF16It99+u2TrGMyZMye++eYb8Q/gMjV//vzYunVryb5Fr6qqig8//FD8A7iElJWVxfvvvz+8q+vg4GCsWbPmIs+KS8ns2bNjx44dMWfOnJKMV1FREevWrSv5zSctLS3xzDPPlHTMoaGheOqpp4aPZ8yYEW+99VZJr0FpCYBwjlatWhV79uyJ5ubmKCs73c2zZ1ZVVRUvv/xydHV1jfjtNQCXj1tvvTUKhUKsWbMmrrnmmlGNUVZWFi0tLbF79+546KGHSjxDAMaqvr4+3njjjeHjzz77LLZt23YRZ8Sl5oYbboiffvopXnvttTGt7b5w4cL44YcfYvXq1SWcXcTKlStjw4YNo/4b9nQ2bNgQO3fuHD5+9913Y8aMGSW9BqXlEWAYhV9++SXWr18fW7dujd27d592nYWIiOnTp8eCBQvigQceiNbW1pIvugq7om80AAAJd0lEQVTAxXf06NH46KOP4osvvohdu3ZFb2/vad9bWVkZd9xxR9x3332xfPnyuPHGGy/gTOHy5hFgLoahoaFYsmRJbN++PSL+u1nTli1bSh5UuPz9+eef8emnn0Z7e3vs2rUrfvvtt9O+d8KECXHbbbdFY2NjLF++PBoaGs77en/88UcsXbo0Nm/eHCdPnhw+X1ZWFvfcc08899xzsXjx4lH9LGfyz/qHBw4ciIiItra2eOedd0p+Hc7MGoBwgQ0ODsa+ffviyJEj0d/fHwMDAzFx4sSYOnVqXH/99ee8JgMAefT09MTBgwejv78/+vv7Y+rUqVFZWRnXXXdd1NbWxpVXXnmxpwiXpWPHjsVXX31VdH7RokVjuvMGYDwcOnQoenp6hv8/MGnSpKisrIyZM2fGzJkzo7y8vCTX6evri+7u7ujt7Y3JkydHQ0NDTJs2rSRjc+kSAAEAAAAgMZuAAAAAAADDBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEJozmQydPnoy2trZSzwUAAAAAOIvff//9vN4/qgD4999/xyeffDKajwIAAAAAF5BHgAEAAAAgMQEQAAAAABITAAEAAAAgMQEQAAAAABITAAEAAAAgMQEQAAAAABITAAEAAAAgsf8A4864/vgW+ZsAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Problem to solve\n", + "\n", + "Find a real-world problem that can benefit from the application of combinatorial optimization. Consult the list of [OpenQAOA](https://openqaoa.entropicalabs.com/) problem classes to find references. \n", + "\n", + "Your solution's innovativeness will be rewarded with extra points.\n", + "\n", + "The process is the following\n", + "\n", + "![wf.png](attachment:wf.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 1: Define your problem and solve it using QAOA\n", + "Considering the examples based on OpenQAOA, we already have different classes and methods that facilitate the construction of quantum circuits, but to generate a QUBO we will rely on docplex.\n", + "\n", + "You can find more information on QAOA [examples](https://github.com/entropicalabs/openqaoa/tree/main/examples) and how to generate [QUBOs](https://openqaoa.entropicalabs.com/problems/what-is-a-qubo/) in the [OpenQAOA documentation](https://openqaoa.entropicalabs.com/). The code is available on [GitHub](https://github.com/entropicalabs/openqaoa/tree/main) and you can find more details of implementation in the [API reference](https://el-openqaoa.readthedocs.io/en/main/index.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook\n", + "\n", + "# Import external libraries to present an manipulate the data\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "# Import docplex model to generate the problem to optimize\n", + "from docplex.mp.model import Model\n", + "\n", + "# Import the libraries needed to employ the QAOA quantum algorithm using OpenQAOA\n", + "from openqaoa import QAOA\n", + "\n", + "# method to covnert a docplex model to a qubo problem\n", + "from openqaoa.problems.converters import FromDocplex2IsingModel #check this method and properties\n", + "from openqaoa.backends import create_device\n", + "\n", + "# method to find the correct states for the QAOA object \n", + "from openqaoa.utilities import ground_state_hamiltonian" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will do simple verion of [the Task Scheduling Problem (TSP)](https://parasollab.web.illinois.edu/research/scheduling/#:~:text=The%20task%20scheduling%20problem%20is,directed%20acyclic%20graph%20(DAG).) for the challenge. This a fundamental challenge in combinatorial optimization, where the goal is to allocate a set of tasks to specific time slots such that the overall schedule maximizes certain objectives—such as total task priority. It is a complex combinatorial optimization problem as the number of potential schedules increases exponentially with the addition of tasks, making traditional enumeration approaches computationally infeasible for large sets of tasks.\n", + "\n", + "In the context of our TSP, binary variables will be employed to represent the inclusion or exclusion of tasks in the schedule. The Quantum Approximate Optimization Algorithm (QAOA) will be utilized to efficiently navigate the search space. The objective function in our TSP is to maximize the aggregated priority of the selected tasks within the constraints of the maximum allowable total task duration." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "*Note*: For our problem, we are considering that tasks cannot be done in parallel, i.e., in a time slot the tasks are done one after the other.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Code your problem" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Inputs:\n", + "tasks = [0, 1, 2] # List of tasks, each task is identified by a unique number (0, 1, 2).\n", + "time_slot = [0] # List containing a single time slot (0) for simplicity in this example.\n", + "priorities = [3, 2, 1] # List of priorities for each task, where a higher number indicates a higher priority. Corresponds to `weights`.\n", + "durations = [2, 1, 3] # List of durations for each task, indicating how long each task takes to complete.\n", + "max_duration = 5 # The maximum total duration allowed for all tasks within the time slot. Corresponds to `max_weight`.\n", + "\n", + "def TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration):\n", + " # Create an optimization model named 'task_scheduling'/Initialize a model:\n", + " mdl = Model('task_scheduling')\n", + "\n", + " # Create a binary variable for each task in a dictionary/Indicate the binary variables.\n", + " x = {t: mdl.binary_var(name=f'x_{t}') for t in tasks} # If a variable is 1, the task is scheduled; if 0, it is not.\n", + "\n", + " # Define the objective function to maximize the sum of the priorities of the scheduled tasks.\n", + " mdl.maximize(mdl.sum(priorities[t] * x[t] for t in tasks)) # It calculates a weighted sum where each task's binary variable is weighted by its priority.\n", + " \n", + " # Constraint for the total duration of the scheduled tasks.\n", + " # Instead of using an inequality constraint, we can ensure that the sum of durations [...]\n", + " # [...] multiplied by the binary decision variable is exactly equal to the maximum duration.\n", + " # This removes the need for slack variables:\n", + " total_duration_expr = mdl.sum(durations[t] * x[t] for t in tasks)\n", + " mdl.add_constraint(total_duration_expr == max_duration, \"max_duration_constraint\")\n", + " \n", + " # Return model.\n", + " return mdl # Check with FromDocplex2IsingModel." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "maximize\n", + " 3 x_0 + 2 x_1 + x_2;\n", + " \n", + "subject to {\n", + " max_duration_constraint:\n", + " 2 x_0 + x_1 + 3 x_2 == 5;\n", + "\n", + "}\n", + "None\n" + ] + } + ], + "source": [ + "# Create the model:\n", + "problem = TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration)\n", + "\n", + "print(problem.prettyprint())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "minimize\n", + " - 143 x_0 - 72 x_1 - 211 x_2 [ 28 x_0^2 + 28 x_0*x_1 + 84 x_0*x_2 + 7 x_1^2\n", + " + 42 x_1*x_2 + 63 x_2^2 ] + 175;\n", + " \n", + "subject to {\n", + "\n", + "}\n" + ] + } + ], + "source": [ + "# Ising encoding of the QUBO problem for binpacking problem\n", + "qubo_converter = FromDocplex2IsingModel(problem)\n", + "\n", + "# Docplex encoding of the QUBO problem for binpacking problem\n", + "qubo_docplex, ising_model = qubo_converter.get_models()\n", + "\n", + "qubo_docplex.prettyprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this first part, we can notice the transition from a classical optimization model in DOcplex to a quantum Ising model is particularly. Although the constraint does not appear explicitly in the QUBO representation, this could be due to the nature of the problem. We will see during the process if the constraint is being accounted for." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.184803
11111.00.212477
20114.00.320020
311023.00.047347
400127.00.044277
510060.00.056918
6010110.00.129274
7000175.00.004884
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.184803\n", + "1 111 1.0 0.212477\n", + "2 011 4.0 0.320020\n", + "3 110 23.0 0.047347\n", + "4 001 27.0 0.044277\n", + "5 100 60.0 0.056918\n", + "6 010 110.0 0.129274\n", + "7 000 175.0 0.004884" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Initialize the QAOA object\n", + "qaoa = QAOA()\n", + "\n", + "# Set the parameters to use the QAOA algorithm\n", + "# where n_shots=1024 and seed_simulator=1\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# p=1, a custom type and range from 0 to pi\n", + "\n", + "qaoa.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa.optimize()\n", + "\n", + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-4.0, ['101'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# To find the correct answer using ground_state_hamiltonian\n", + "# and the parameter is a cost_hamiltonian\n", + "correct_solution = ground_state_hamiltonian(qaoa.cost_hamil)\n", + "correct_solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Validate your answer using docplex, you can see how to check the classical solution using the following tutorial [here](https://github.com/entropicalabs/openqaoa/blob/main/examples/community_tutorials/02_docplex_example.ipynb) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "objective: -4.000\n", + "status: OPTIMAL_SOLUTION(2)\n", + " x_0=1\n", + " x_1=0\n", + " x_2=1\n" + ] + } + ], + "source": [ + "## docplex solution\n", + "sol = qubo_docplex.solve()\n", + "qubo_docplex.print_solution(print_zeros=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "The results presented here align logically with the input parameters of the TSP and demonstrate for a simple example, how to apply quantum computing for combinatorial optimization. The output bitstring '101' suggests that tasks 0 and 2 are to be included in the schedule, while task 1 is excluded. *This decision is based on the priorities and durations of the tasks*: task 0 has a high priority (3) with a duration of 2, and task 2 has the lowest priority (1) but also the longest duration (3). When scheduled together, tasks 0 and 2 fulfill the maximum duration constraint exactly, which is 5 time units in total.\n", + "\n", + " \n", + "The negative energy value (-4.0) in the quantum result indicates an optimal solution with respect to the objective function, which is to maximize the total priority of the scheduled tasks. This corresponds to the classical solution found by the DOcplex model, and follows the constraint.\n", + "\n", + " \n", + "Nevertheless, the quantum algorithm does not necessarily eliminate all invalid solutions from the search space.\n", + "\n", + " \n", + "In terms of quantum computing skills, the project showcases the capability to model classical problems for quantum solutions, the conversion of these models into a format suitable for quantum computation, and the utilization of a quantum algorithm (QAOA) to find an optimal solution.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 2: Improve the QAOA circuit\n", + "\n", + "Perform the same process as above now with the variant of using different backends, p values, and different optimizers until you find the one that can provide the correct answers with the least number of iterations, quantum circuit depth." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.035156
11111.00.063477
20114.00.022461
311023.00.363281
400127.00.480469
510060.00.016602
6010110.00.012695
7000175.00.005859
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.035156\n", + "1 111 1.0 0.063477\n", + "2 011 4.0 0.022461\n", + "3 110 23.0 0.363281\n", + "4 001 27.0 0.480469\n", + "5 100 60.0 0.016602\n", + "6 010 110.0 0.012695\n", + "7 000 175.0 0.005859" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## Implementation\n", + "\n", + "# Initialize the QAOA object and use a device:\n", + "device = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "\n", + "qaoa = QAOA(device)\n", + "\n", + "# Set the parameters to work the QAOA algorithm\n", + "# play with the parameters values\n", + "\n", + "#Indicate the properties to the QAOA quantum algorithm,shots,seed:\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "#check the p value and the variational init params:\n", + "qaoa.set_circuit_properties(p=2, init_type=\"custom\", variational_params_dict={\"betas\":2*[0.01*np.pi],\"gammas\":2*[0.01*np.pi]})\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa.optimize()\n", + "\n", + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extra: Compare Qiskit Simulators with different simulation methods\n", + "\n", + "As part of the Hackathon test, let's use different simulator backends to solve the same problem and compare their simulation results." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.209425
11111.00.049032
20114.00.612317
311023.00.000609
400127.00.065913
510060.00.022718
6010110.00.037558
7000175.00.002430
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.209425\n", + "1 111 1.0 0.049032\n", + "2 011 4.0 0.612317\n", + "3 110 23.0 0.000609\n", + "4 001 27.0 0.065913\n", + "5 100 60.0 0.022718\n", + "6 010 110.0 0.037558\n", + "7 000 175.0 0.002430" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Others:\n", + "\n", + "device_sv = create_device(\"local\", 'qiskit.statevector_simulator')\n", + "\n", + "qaoa_sv = QAOA(device_sv)\n", + "\n", + "qaoa_sv.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Playing with the parameters values.\n", + "# Circuit properties/Check the p value and the variational init params:\n", + "qaoa_sv.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# Classical optimizer properties:\n", + "qaoa_sv.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_sv.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_sv.optimize()\n", + "\n", + "pd.DataFrame(qaoa_sv.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.542969
11111.00.004883
20114.00.026367
311023.00.042969
400127.00.345703
510060.00.013672
6010110.00.021484
7000175.00.001953
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.542969\n", + "1 111 1.0 0.004883\n", + "2 011 4.0 0.026367\n", + "3 110 23.0 0.042969\n", + "4 001 27.0 0.345703\n", + "5 100 60.0 0.013672\n", + "6 010 110.0 0.021484\n", + "7 000 175.0 0.001953" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device_shot = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "\n", + "qaoa_shot = QAOA(device_shot)\n", + "\n", + "qaoa_shot.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Circuit properties:\n", + "qaoa_shot.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# classical optimizer properties\n", + "qaoa_shot.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_shot.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_shot.optimize()\n", + "\n", + "pd.DataFrame(qaoa_shot.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + " \n", + "We are comparing the results from the QAOA algorithm with different backends and parameter configurations.\n", + "\n", + " \n", + "In all cases, the bitstring `101` is identified as the solution with the lowest energy, which is the optimal answer given the problem constraints. This consistency across different backends and parameter settings indicates that the QAOA algorithm works well for this particular problem.\n", + "\n", + " \n", + "But also, the probability associated with the optimal solution `101` has decreased in some case using the Qiskit backend. While the solutions and their energies are an important part of the result, other metrics like the number of iterations required to converge to the solution and the depth of the quantum circuit are also crucial.\n", + "\n", + " \n", + "Still, for the `qiskit.qasm_simulator` with the classical optimizer we got the best result so far. The mixer Hamiltonian we used determines how the algorithm explores the solution space. An 'X' mixer (applying Pauli-X gates) is an standard choice for QAOA and promotes exploration by flipping the qubits from 0 to 1 and vice versa. The high probability of '101' suggests that these settings allowed the QAOA to effectively navigate the solution space and concentrate the quantum state around the optimal solution.\n", + "\n", + " \n", + "Regarding the use of Qiskit as a backend, the results indicate that changing backends and variational parameters can significantly impact the distribution of probabilities for each solution. This illustrates the importance of backend selection and parameter tuning in quantum algorithm performance.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 3: Noise Model\n", + "\n", + "The optimal combination that you found with the best optimizer, the lowest number of $p$'s and the correct answer, can give the same answer with noise, use the circuit with a noise model and identify if it gives the same answer." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.110
11111.00.270
20114.00.265
311023.00.260
400127.00.045
510060.00.025
6010110.00.010
7000175.00.015
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.110\n", + "1 111 1.0 0.270\n", + "2 011 4.0 0.265\n", + "3 110 23.0 0.260\n", + "4 001 27.0 0.045\n", + "5 100 60.0 0.025\n", + "6 010 110.0 0.010\n", + "7 000 175.0 0.015" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# implementation using a noise model using qiskit \n", + "\n", + "## real hardware\n", + "from qiskit.providers.fake_provider import FakeVigo\n", + "from qiskit.providers.aer.noise import NoiseModel\n", + "from qiskit.providers.aer import QasmSimulator\n", + "device_backend = FakeVigo()\n", + "device2 = QasmSimulator.from_backend(device_backend)\n", + "noise_model = NoiseModel.from_backend(device2)\n", + "\n", + "# initialize the QAOA object\n", + "q = QAOA()\n", + "\n", + "device_noisy = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "# choose the noise model\n", + "\n", + "# set your device\n", + "q.set_device(device_noisy)\n", + "\n", + "# circuit properties\n", + "q.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# Backend properties with noise:\n", + "q.set_backend_properties(n_shots = 200, noise_model = noise_model)\n", + "\n", + "# set the parameters to work the QAOA algorithm\n", + "q.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "q.compile(ising_model)\n", + "\n", + "# run the QAOA algorithm\n", + "q.optimize()\n", + "\n", + "pd.DataFrame(q.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "results_sv = qaoa_sv.result\n", + "results_shot = qaoa_shot.result\n", + "results_noisy_shot = q.result" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_device_pixel_ratio', {\n", + " device_pixel_ratio: fig.ratio,\n", + " });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute('tabindex', '0');\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;' +\n", + " 'z-index: 2;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'pointer-events: none;' +\n", + " 'position: relative;' +\n", + " 'z-index: 0;'\n", + " );\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'left: 0;' +\n", + " 'pointer-events: none;' +\n", + " 'position: absolute;' +\n", + " 'top: 0;' +\n", + " 'z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " /* This rescales the canvas back to display pixels, so that it\n", + " * appears correct on HiDPI screens. */\n", + " canvas.style.width = width + 'px';\n", + " canvas.style.height = height + 'px';\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " /* User Agent sniffing is bad, but WebKit is busted:\n", + " * https://bugs.webkit.org/show_bug.cgi?id=144526\n", + " * https://bugs.webkit.org/show_bug.cgi?id=181818\n", + " * The worst that happens here is that they get an extra browser\n", + " * selection when dragging, if this check fails to catch them.\n", + " */\n", + " var UA = navigator.userAgent;\n", + " var isWebKit = /AppleWebKit/.test(UA) && !/Chrome/.test(UA);\n", + " if(isWebKit) {\n", + " return function (event) {\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We\n", + " * want to control all of the cursor setting manually through\n", + " * the 'cursor' event from matplotlib */\n", + " event.preventDefault()\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " } else {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " canvas_div.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " canvas_div.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " fig.canvas_div.style.cursor = msg['cursor'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "function getModifiers(event) {\n", + " var mods = [];\n", + " if (event.ctrlKey) {\n", + " mods.push('ctrl');\n", + " }\n", + " if (event.altKey) {\n", + " mods.push('alt');\n", + " }\n", + " if (event.shiftKey) {\n", + " mods.push('shift');\n", + " }\n", + " if (event.metaKey) {\n", + " mods.push('meta');\n", + " }\n", + " return mods;\n", + "}\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * https://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " // from https://stackoverflow.com/q/1114465\n", + " var boundingRect = this.canvas.getBoundingClientRect();\n", + " var x = (event.clientX - boundingRect.left) * this.ratio;\n", + " var y = (event.clientY - boundingRect.top) * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " modifiers: getModifiers(event),\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(12,8))\n", + "\n", + "results_sv.plot_cost(ax=ax,label='Statevector Simulator')\n", + "results_shot.plot_cost(ax=ax,color='red', label='Noise-free shot simulator.')\n", + "results_noisy_shot.plot_cost(ax=ax,color='green', label='Noisy shot simulator and noise model from ibmq')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The addition of a noise model represents a step closer to the conditions experienced on actual quantum hardware, as opposed to the idealized conditions of a simulator without noise. Noise in quantum computing can come from various sources, such as errors in quantum gate operations, qubit measurement errors, and decoherence. A noise model attempts to mimic these imperfections and can provide a more realistic assessment of how a quantum algorithm might perform on a real quantum computer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Last comments:\n", + "\n", + "
\n", + " \n", + "- In terms of originality, this project stands by applying quantum computing principles to the **Task Scheduling Problem (TSP)**. We used the *Quantum Approximate Optimization Algorithm (QAOA)* within the OpenQAOA framework, and the subsequent tuning to account for realistic noise models, which address complex problems through quantum algorithms. The team's exploration of various parameters and optimizers to enhance the QAOA circuit's performance demonstrates a commendable attempt at tackling quantum optimization in a novel context.\n", + "\n", + " \n", + "- Regarding usability and knowledge, the project exemplifies a decent degree of functionality in its design, ensuring that the principles used are grounded in quantum theory and can be take as reference by others interested in compare Qiskit simulators with different methods.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Acknowledgments\n", + "\n", + "🎉🎉🎉 \n", + "\n", + "Special thanks to Entropica Labs for helping us create this challenge and being able to use their SDK, OpenQAOA. If you want to know more about OpenQAOA or ask them questions directly, check out their [discord channel](discord.gg/ana76wkKBd).\n", + "\n", + "🎉🎉🎉 " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/challenges/openqaoa challenge/challenge-openqaoa.ipynb b/challenges/openqaoa challenge/challenge-openqaoa.ipynb index 5bfead4..ff68be1 100644 --- a/challenges/openqaoa challenge/challenge-openqaoa.ipynb +++ b/challenges/openqaoa challenge/challenge-openqaoa.ipynb @@ -1,7 +1,7 @@ { "cells": [ { - "cell_type": "markdown", + "cell_type": "raw", "metadata": {}, "source": [ "# Challenge: OpenQAOA\n", @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -78,6 +78,25 @@ "from openqaoa.utilities import ground_state_hamiltonian" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will do simple verion of [the Task Scheduling Problem (TSP)](https://parasollab.web.illinois.edu/research/scheduling/#:~:text=The%20task%20scheduling%20problem%20is,directed%20acyclic%20graph%20(DAG).) for the challenge. This a fundamental challenge in combinatorial optimization, where the goal is to allocate a set of tasks to specific time slots such that the overall schedule maximizes certain objectives—such as total task priority. It is a complex combinatorial optimization problem as the number of potential schedules increases exponentially with the addition of tasks, making traditional enumeration approaches computationally infeasible for large sets of tasks.\n", + "\n", + "In the context of our TSP, binary variables will be employed to represent the inclusion or exclusion of tasks in the schedule. The Quantum Approximate Optimization Algorithm (QAOA) will be utilized to efficiently navigate the search space. The objective function in our TSP is to maximize the aggregated priority of the selected tasks within the constraints of the maximum allowable total task duration." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "*Note*: For our problem, we are considering that tasks cannot be done in parallel, i.e., in a time slot the tasks are done one after the other.\n", + "
" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -87,74 +106,256 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "# inputs\n", + "# Inputs:\n", + "tasks = [0, 1, 2] # List of tasks, each task is identified by a unique number (0, 1, 2).\n", + "time_slot = [0] # List containing a single time slot (0) for simplicity in this example.\n", + "priorities = [3, 2, 1] # List of priorities for each task, where a higher number indicates a higher priority. Corresponds to `weights`.\n", + "durations = [2, 1, 3] # List of durations for each task, indicating how long each task takes to complete.\n", + "max_duration = 5 # The maximum total duration allowed for all tasks within the time slot. Corresponds to `max_weight`.\n", "\n", + "def TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration):\n", + " # Create an optimization model named 'task_scheduling'/Initialize a model:\n", + " mdl = Model('task_scheduling')\n", "\n", - "def Problem(values,weights, max_weight):\n", - " \n", - " # initialize a model\n", + " # Create a binary variable for each task in a dictionary/Indicate the binary variables.\n", + " x = {t: mdl.binary_var(name=f'x_{t}') for t in tasks} # If a variable is 1, the task is scheduled; if 0, it is not.\n", "\n", - " # indicate the binary variables \n", - "\n", - " # define the objective function\n", - "\n", - " # add the constraints\n", - " return #return model, check FromDocplex2IsingModel" + " # Define the objective function to maximize the sum of the priorities of the scheduled tasks.\n", + " mdl.maximize(mdl.sum(priorities[t] * x[t] for t in tasks)) # It calculates a weighted sum where each task's binary variable is weighted by its priority.\n", + " \n", + " # Constraint for the total duration of the scheduled tasks.\n", + " # Instead of using an inequality constraint, we can ensure that the sum of durations [...]\n", + " # [...] multiplied by the binary decision variable is exactly equal to the maximum duration.\n", + " # This removes the need for slack variables:\n", + " total_duration_expr = mdl.sum(durations[t] * x[t] for t in tasks)\n", + " mdl.add_constraint(total_duration_expr == max_duration, \"max_duration_constraint\")\n", + " \n", + " # Return model.\n", + " return mdl # Check with FromDocplex2IsingModel." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "maximize\n", + " 3 x_0 + 2 x_1 + x_2;\n", + " \n", + "subject to {\n", + " max_duration_constraint:\n", + " 2 x_0 + x_1 + 3 x_2 == 5;\n", + "\n", + "}\n", + "None\n" + ] + } + ], "source": [ - "problem = Problem(values, weights, max_weight)\n", + "# Create the model:\n", + "problem = TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration)\n", "\n", + "print(problem.prettyprint())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "minimize\n", + " - 143 x_0 - 72 x_1 - 211 x_2 [ 28 x_0^2 + 28 x_0*x_1 + 84 x_0*x_2 + 7 x_1^2\n", + " + 42 x_1*x_2 + 63 x_2^2 ] + 175;\n", + " \n", + "subject to {\n", + "\n", + "}\n" + ] + } + ], + "source": [ "# Ising encoding of the QUBO problem for binpacking problem\n", - "\n", + "qubo_converter = FromDocplex2IsingModel(problem)\n", "\n", "# Docplex encoding of the QUBO problem for binpacking problem\n", + "qubo_docplex, ising_model = qubo_converter.get_models()\n", "\n", - "\n", - "mdl_qubo_docplex.prettyprint()" + "qubo_docplex.prettyprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this first part, we can notice the transition from a classical optimization model in DOcplex to a quantum Ising model is particularly. Although the constraint does not appear explicitly in the QUBO representation, this could be due to the nature of the problem. We will see during the process if the constraint is being accounted for." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.184803
11111.00.212477
20114.00.320020
311023.00.047347
400127.00.044277
510060.00.056918
6010110.00.129274
7000175.00.004884
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.184803\n", + "1 111 1.0 0.212477\n", + "2 011 4.0 0.320020\n", + "3 110 23.0 0.047347\n", + "4 001 27.0 0.044277\n", + "5 100 60.0 0.056918\n", + "6 010 110.0 0.129274\n", + "7 000 175.0 0.004884" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Initialize the QAOA object\n", "qaoa = QAOA()\n", "\n", "# Set the parameters to use the QAOA algorithm\n", "# where n_shots=1024 and seed_simulator=1\n", - "\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", "\n", "# p=1, a custom type and range from 0 to pi\n", "\n", - "qaoa.compile(qubo)\n", + "qaoa.compile(ising_model)\n", "\n", "# Run the QAOA algorithm\n", "qaoa.optimize()\n", "\n", - "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(5))" + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(-4.0, ['101'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# To find the correct answer using ground_state_hamiltonian\n", "# and the parameter is a cost_hamiltonian\n", - "correct_solution = " + "correct_solution = ground_state_hamiltonian(qaoa.cost_hamil)\n", + "correct_solution" ] }, { @@ -166,13 +367,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "objective: -4.000\n", + "status: OPTIMAL_SOLUTION(2)\n", + " x_0=1\n", + " x_1=0\n", + " x_2=1\n" + ] + } + ], "source": [ "## docplex solution\n", - "sol = mdl_qubo_docplex.solve()\n", - "mdl_qubo_docplex.print_solution(print_zeros=True)" + "sol = qubo_docplex.solve()\n", + "qubo_docplex.print_solution(print_zeros=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "The results presented here align logically with the input parameters of the TSP and demonstrate for a simple example, how to apply quantum computing for combinatorial optimization. The output bitstring '101' suggests that tasks 0 and 2 are to be included in the schedule, while task 1 is excluded. *This decision is based on the priorities and durations of the tasks*: task 0 has a high priority (3) with a duration of 2, and task 2 has the lowest priority (1) but also the longest duration (3). When scheduled together, tasks 0 and 2 fulfill the maximum duration constraint exactly, which is 5 time units in total.\n", + "\n", + " \n", + "The negative energy value (-4.0) in the quantum result indicates an optimal solution with respect to the objective function, which is to maximize the total priority of the scheduled tasks. This corresponds to the classical solution found by the DOcplex model, and follows the constraint.\n", + "\n", + " \n", + "Nevertheless, the quantum algorithm does not necessarily eliminate all invalid solutions from the search space.\n", + "\n", + " \n", + "In terms of quantum computing skills, the project showcases the capability to model classical problems for quantum solutions, the conversion of these models into a format suitable for quantum computation, and the utilization of a quantum algorithm (QAOA) to find an optimal solution.\n", + "
" ] }, { @@ -186,26 +418,411 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.035156
11111.00.063477
20114.00.022461
311023.00.363281
400127.00.480469
510060.00.016602
6010110.00.012695
7000175.00.005859
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.035156\n", + "1 111 1.0 0.063477\n", + "2 011 4.0 0.022461\n", + "3 110 23.0 0.363281\n", + "4 001 27.0 0.480469\n", + "5 100 60.0 0.016602\n", + "6 010 110.0 0.012695\n", + "7 000 175.0 0.005859" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "## Implementation\n", "\n", - "# Initialize the QAOA object and use a device\n", + "# Initialize the QAOA object and use a device:\n", "device = create_device(\"local\", 'qiskit.qasm_simulator')\n", - "qaoa.set\n", "\n", - "qaoa = QAOA()\n", + "qaoa = QAOA(device)\n", "\n", "# Set the parameters to work the QAOA algorithm\n", "# play with the parameters values\n", "\n", + "#Indicate the properties to the QAOA quantum algorithm,shots,seed:\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "#check the p value and the variational init params:\n", + "qaoa.set_circuit_properties(p=2, init_type=\"custom\", variational_params_dict={\"betas\":2*[0.01*np.pi],\"gammas\":2*[0.01*np.pi]})\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa.compile(ising_model)\n", "\n", "# Run the QAOA algorithm\n", "qaoa.optimize()\n", "\n", - "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(5))" + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extra: Compare Qiskit Simulators with different simulation methods\n", + "\n", + "As part of the Hackathon test, let's use different simulator backends to solve the same problem and compare their simulation results." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.209425
11111.00.049032
20114.00.612317
311023.00.000609
400127.00.065913
510060.00.022718
6010110.00.037558
7000175.00.002430
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.209425\n", + "1 111 1.0 0.049032\n", + "2 011 4.0 0.612317\n", + "3 110 23.0 0.000609\n", + "4 001 27.0 0.065913\n", + "5 100 60.0 0.022718\n", + "6 010 110.0 0.037558\n", + "7 000 175.0 0.002430" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Others:\n", + "\n", + "device_sv = create_device(\"local\", 'qiskit.statevector_simulator')\n", + "\n", + "qaoa_sv = QAOA(device_sv)\n", + "\n", + "qaoa_sv.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Playing with the parameters values.\n", + "# Circuit properties/Check the p value and the variational init params:\n", + "qaoa_sv.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# Classical optimizer properties:\n", + "qaoa_sv.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_sv.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_sv.optimize()\n", + "\n", + "pd.DataFrame(qaoa_sv.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.542969
11111.00.004883
20114.00.026367
311023.00.042969
400127.00.345703
510060.00.013672
6010110.00.021484
7000175.00.001953
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.542969\n", + "1 111 1.0 0.004883\n", + "2 011 4.0 0.026367\n", + "3 110 23.0 0.042969\n", + "4 001 27.0 0.345703\n", + "5 100 60.0 0.013672\n", + "6 010 110.0 0.021484\n", + "7 000 175.0 0.001953" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device_shot = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "\n", + "qaoa_shot = QAOA(device_shot)\n", + "\n", + "qaoa_shot.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Circuit properties:\n", + "qaoa_shot.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# classical optimizer properties\n", + "qaoa_shot.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_shot.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_shot.optimize()\n", + "\n", + "pd.DataFrame(qaoa_shot.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + " \n", + "We are comparing the results from the QAOA algorithm with different backends and parameter configurations.\n", + "\n", + " \n", + "In all cases, the bitstring `101` is identified as the solution with the lowest energy, which is the optimal answer given the problem constraints. This consistency across different backends and parameter settings indicates that the QAOA algorithm works well for this particular problem.\n", + "\n", + " \n", + "But also, the probability associated with the optimal solution `101` has decreased in some case using the Qiskit backend. While the solutions and their energies are an important part of the result, other metrics like the number of iterations required to converge to the solution and the depth of the quantum circuit are also crucial.\n", + "\n", + " \n", + "Still, for the `qiskit.qasm_simulator` with the classical optimizer we got the best result so far. The mixer Hamiltonian we used determines how the algorithm explores the solution space. An 'X' mixer (applying Pauli-X gates) is an standard choice for QAOA and promotes exploration by flipping the qubits from 0 to 1 and vice versa. The high probability of '101' suggests that these settings allowed the QAOA to effectively navigate the solution space and concentrate the quantum state around the optimal solution.\n", + "\n", + " \n", + "Regarding the use of Qiskit as a backend, the results indicate that changing backends and variational parameters can significantly impact the distribution of probabilities for each solution. This illustrates the importance of backend selection and parameter tuning in quantum algorithm performance.\n", + "
" ] }, { @@ -219,36 +836,1192 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.110
11111.00.270
20114.00.265
311023.00.260
400127.00.045
510060.00.025
6010110.00.010
7000175.00.015
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.110\n", + "1 111 1.0 0.270\n", + "2 011 4.0 0.265\n", + "3 110 23.0 0.260\n", + "4 001 27.0 0.045\n", + "5 100 60.0 0.025\n", + "6 010 110.0 0.010\n", + "7 000 175.0 0.015" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# implementation using a noise model using qiskit \n", "\n", - "# initialize the QAOA object\n", - "q = QAOA()\n", - "\n", "## real hardware\n", "from qiskit.providers.fake_provider import FakeVigo\n", "from qiskit.providers.aer.noise import NoiseModel\n", "from qiskit.providers.aer import QasmSimulator\n", + "device_backend = FakeVigo()\n", + "device2 = QasmSimulator.from_backend(device_backend)\n", + "noise_model = NoiseModel.from_backend(device2)\n", "\n", + "# initialize the QAOA object\n", + "q = QAOA()\n", "\n", - "device = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "device_noisy = create_device(\"local\", 'qiskit.qasm_simulator')\n", "# choose the noise model\n", "\n", "# set your device\n", - "q.set_device(device)\n", + "q.set_device(device_noisy)\n", "\n", - "# set the parameters to work the QAOA algorithm\n", + "# circuit properties\n", + "q.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", "\n", + "# Backend properties with noise:\n", + "q.set_backend_properties(n_shots = 200, noise_model = noise_model)\n", + "\n", + "# set the parameters to work the QAOA algorithm\n", + "q.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", "\n", - "qaoa.compile(ising_encoding)\n", + "q.compile(ising_model)\n", "\n", "# run the QAOA algorithm\n", - "qaoa.optimize()\n", + "q.optimize()\n", + "\n", + "pd.DataFrame(q.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "results_sv = qaoa_sv.result\n", + "results_shot = qaoa_shot.result\n", + "results_noisy_shot = q.result" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_device_pixel_ratio', {\n", + " device_pixel_ratio: fig.ratio,\n", + " });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute('tabindex', '0');\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;' +\n", + " 'z-index: 2;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'pointer-events: none;' +\n", + " 'position: relative;' +\n", + " 'z-index: 0;'\n", + " );\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'left: 0;' +\n", + " 'pointer-events: none;' +\n", + " 'position: absolute;' +\n", + " 'top: 0;' +\n", + " 'z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " /* This rescales the canvas back to display pixels, so that it\n", + " * appears correct on HiDPI screens. */\n", + " canvas.style.width = width + 'px';\n", + " canvas.style.height = height + 'px';\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " /* User Agent sniffing is bad, but WebKit is busted:\n", + " * https://bugs.webkit.org/show_bug.cgi?id=144526\n", + " * https://bugs.webkit.org/show_bug.cgi?id=181818\n", + " * The worst that happens here is that they get an extra browser\n", + " * selection when dragging, if this check fails to catch them.\n", + " */\n", + " var UA = navigator.userAgent;\n", + " var isWebKit = /AppleWebKit/.test(UA) && !/Chrome/.test(UA);\n", + " if(isWebKit) {\n", + " return function (event) {\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We\n", + " * want to control all of the cursor setting manually through\n", + " * the 'cursor' event from matplotlib */\n", + " event.preventDefault()\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " } else {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " canvas_div.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " canvas_div.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " fig.canvas_div.style.cursor = msg['cursor'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "function getModifiers(event) {\n", + " var mods = [];\n", + " if (event.ctrlKey) {\n", + " mods.push('ctrl');\n", + " }\n", + " if (event.altKey) {\n", + " mods.push('alt');\n", + " }\n", + " if (event.shiftKey) {\n", + " mods.push('shift');\n", + " }\n", + " if (event.metaKey) {\n", + " mods.push('meta');\n", + " }\n", + " return mods;\n", + "}\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * https://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " // from https://stackoverflow.com/q/1114465\n", + " var boundingRect = this.canvas.getBoundingClientRect();\n", + " var x = (event.clientX - boundingRect.left) * this.ratio;\n", + " var y = (event.clientY - boundingRect.top) * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " modifiers: getModifiers(event),\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(12,8))\n", "\n", - "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(5))" + "results_sv.plot_cost(ax=ax,label='Statevector Simulator')\n", + "results_shot.plot_cost(ax=ax,color='red', label='Noise-free shot simulator.')\n", + "results_noisy_shot.plot_cost(ax=ax,color='green', label='Noisy shot simulator and noise model from ibmq')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The addition of a noise model represents a step closer to the conditions experienced on actual quantum hardware, as opposed to the idealized conditions of a simulator without noise. Noise in quantum computing can come from various sources, such as errors in quantum gate operations, qubit measurement errors, and decoherence. A noise model attempts to mimic these imperfections and can provide a more realistic assessment of how a quantum algorithm might perform on a real quantum computer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Last comments:\n", + "\n", + "
\n", + " \n", + "- In terms of originality, this project stands by applying quantum computing principles to the **Task Scheduling Problem (TSP)**. We used the *Quantum Approximate Optimization Algorithm (QAOA)* within the OpenQAOA framework, and the subsequent tuning to account for realistic noise models, which address complex problems through quantum algorithms. The team's exploration of various parameters and optimizers to enhance the QAOA circuit's performance demonstrates a commendable attempt at tackling quantum optimization in a novel context.\n", + "\n", + " \n", + "- Regarding usability and knowledge, the project exemplifies a decent degree of functionality in its design, ensuring that the principles used are grounded in quantum theory and can be take as reference by others interested in compare Qiskit simulators with different methods.\n", + "
" ] }, { @@ -263,13 +2036,20 @@ "\n", "🎉🎉🎉 " ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mitiq-qaoa", + "display_name": "Python 3 (ipykernel)", "language": "python", - "name": "mitiq-qaoa" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -281,7 +2061,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.10.7" } }, "nbformat": 4, diff --git a/challenges/xanadu challenge/.ipynb_checkpoints/Quantumaniacs Solution-checkpoint.ipynb b/challenges/xanadu challenge/.ipynb_checkpoints/Quantumaniacs Solution-checkpoint.ipynb new file mode 100644 index 0000000..a450605 --- /dev/null +++ b/challenges/xanadu challenge/.ipynb_checkpoints/Quantumaniacs Solution-checkpoint.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "7e70cf91", + "metadata": {}, + "outputs": [], + "source": [ + "### DO NOT CHANGE ANYTHING BELOW THIS LINE\n", + "\n", + "import pennylane as qml\n", + "from pennylane import numpy as np\n", + "\n", + "WIRES = 2\n", + "LAYERS = 5\n", + "NUM_PARAMETERS = LAYERS * WIRES * 3\n", + "\n", + "def variational_circuit(params,hamiltonian):\n", + " \"\"\"\n", + " This is a template variational quantum circuit containing a fixed layout of gates with variable\n", + " parameters. To be used as a QNode, it must either be wrapped with the @qml.qnode decorator or\n", + " converted using the qml.QNode function.\n", + "\n", + " The output of this circuit is the expectation value of a Hamiltonian, somehow encoded in\n", + " the hamiltonian argument\n", + "\n", + " Args:\n", + " - params (np.ndarray): An array of optimizable parameters of shape (30,)\n", + " - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian\n", + " whose expectation value is returned.\n", + " \n", + " Returns:\n", + " (float): The expectation value of the Hamiltonian\n", + " \"\"\"\n", + " parameters = params.reshape((LAYERS, WIRES, 3))\n", + " qml.templates.StronglyEntanglingLayers(parameters, wires=range(WIRES))\n", + " return qml.expval(qml.Hermitian(hamiltonian, wires = [0,1]))\n", + "\n", + "def optimize_circuit(hamiltonian):\n", + " \"\"\"Minimize the variational circuit and return its minimum value.\n", + " You should create a device and convert the variational_circuit function \n", + " into an executable QNode. \n", + " Next, you should minimize the variational circuit using gradient-based \n", + " optimization to update the input params. \n", + " Return the optimized value of the QNode as a single floating-point number.\n", + "\n", + " Args:\n", + " - params (np.ndarray): Input parameters to be optimized, of dimension 30\n", + " - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian\n", + " whose expectation value you should minimize.\n", + " Returns:\n", + " float: the value of the optimized QNode\n", + " \"\"\"\n", + " \n", + " hamiltonian = np.array(hamiltonian, requires_grad = False)\n", + "\n", + " hamiltonian = np.array(hamiltonian,float).reshape((2 ** WIRES), (2 ** WIRES))\n", + "\n", + " ### WRITE YOUR CODE BELOW THIS LINE\n", + " \n", + " ### Solution Template/Soluciones\n", + "\n", + " dev = qml.device('default.qubit', wires=WIRES) # Initialize the device/Inicialización.\n", + "\n", + " circuit = qml.QNode(variational_circuit, dev) # Instantiate the QNode from variational_circuit/Iniciar VQC.\n", + "\n", + " # Write your code to minimize the circuit\n", + "\n", + " # Initial guess for the parameters/Iniciamos los parametros de forma aleatoria.\n", + " params = np.random.rand(NUM_PARAMETERS)\n", + " \n", + " # Cost function that the optimization routine will minimize/Función de costo a ser optimizada.\n", + " def cost(params):\n", + " return circuit(params, hamiltonian)\n", + " \n", + " # Initialize the optimizer/Iniciar optimizador.\n", + " opt = qml.GradientDescentOptimizer(stepsize=0.38) # Descenso del gradiente.\n", + "\n", + " # Set the number of optimization steps/Nuestro optimizador tomará 185 pasos.\n", + " steps = 185\n", + "\n", + " # Optimization loop/Loop de optimización.\n", + " for i in range(steps):\n", + " params = opt.step(cost, params)\n", + "\n", + " return cost(params) # Return the value of the minimized QNode/Mínimo." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "92e81486", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimized Expectation Value: 0.617453410316887\n" + ] + } + ], + "source": [ + "# Test input:\n", + "hamiltonian_test_input = [0.863327072347624, 0.0167108057202516, 0.07991447085492759, 0.0854049026262154, 0.0167108057202516, 0.8237963773906136, -0.07695947154193797, 0.03131548733285282, 0.07991447085492759, -0.07695947154193795, 0.8355417021014687, -0.11345916130631205, 0.08540490262621539, 0.03131548733285283, -0.11345916130631205, 0.758156886827099]\n", + "\n", + "# Run optimization/Corremos optimización.\n", + "optimized_value = optimize_circuit(hamiltonian_test_input)\n", + "print('Optimized Expectation Value:', optimized_value)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "89907c19", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimized Expectation Value: 0.0024648812008859953\n" + ] + } + ], + "source": [ + "# Test input 2:\n", + "hamiltonian_test_input2 = [0.32158897156285354,-0.20689268438270836,0.12366748295758379,-0.11737425017261123,-0.20689268438270836,0.7747346055276305,-0.05159966365446514,0.08215539696259792,0.12366748295758379,-0.05159966365446514,0.5769050487087416,0.3853362904758938,-0.11737425017261123,0.08215539696259792,0.3853362904758938,0.3986256655167206]\n", + "\n", + "# Run optimization/Corremos optimización:\n", + "optimized_value2 = optimize_circuit(hamiltonian_test_input2)\n", + "print('Optimized Expectation Value:', optimized_value2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87462474", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/challenges/xanadu challenge/Quantumaniacs Solution.ipynb b/challenges/xanadu challenge/Quantumaniacs Solution.ipynb new file mode 100644 index 0000000..a450605 --- /dev/null +++ b/challenges/xanadu challenge/Quantumaniacs Solution.ipynb @@ -0,0 +1,166 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "7e70cf91", + "metadata": {}, + "outputs": [], + "source": [ + "### DO NOT CHANGE ANYTHING BELOW THIS LINE\n", + "\n", + "import pennylane as qml\n", + "from pennylane import numpy as np\n", + "\n", + "WIRES = 2\n", + "LAYERS = 5\n", + "NUM_PARAMETERS = LAYERS * WIRES * 3\n", + "\n", + "def variational_circuit(params,hamiltonian):\n", + " \"\"\"\n", + " This is a template variational quantum circuit containing a fixed layout of gates with variable\n", + " parameters. To be used as a QNode, it must either be wrapped with the @qml.qnode decorator or\n", + " converted using the qml.QNode function.\n", + "\n", + " The output of this circuit is the expectation value of a Hamiltonian, somehow encoded in\n", + " the hamiltonian argument\n", + "\n", + " Args:\n", + " - params (np.ndarray): An array of optimizable parameters of shape (30,)\n", + " - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian\n", + " whose expectation value is returned.\n", + " \n", + " Returns:\n", + " (float): The expectation value of the Hamiltonian\n", + " \"\"\"\n", + " parameters = params.reshape((LAYERS, WIRES, 3))\n", + " qml.templates.StronglyEntanglingLayers(parameters, wires=range(WIRES))\n", + " return qml.expval(qml.Hermitian(hamiltonian, wires = [0,1]))\n", + "\n", + "def optimize_circuit(hamiltonian):\n", + " \"\"\"Minimize the variational circuit and return its minimum value.\n", + " You should create a device and convert the variational_circuit function \n", + " into an executable QNode. \n", + " Next, you should minimize the variational circuit using gradient-based \n", + " optimization to update the input params. \n", + " Return the optimized value of the QNode as a single floating-point number.\n", + "\n", + " Args:\n", + " - params (np.ndarray): Input parameters to be optimized, of dimension 30\n", + " - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian\n", + " whose expectation value you should minimize.\n", + " Returns:\n", + " float: the value of the optimized QNode\n", + " \"\"\"\n", + " \n", + " hamiltonian = np.array(hamiltonian, requires_grad = False)\n", + "\n", + " hamiltonian = np.array(hamiltonian,float).reshape((2 ** WIRES), (2 ** WIRES))\n", + "\n", + " ### WRITE YOUR CODE BELOW THIS LINE\n", + " \n", + " ### Solution Template/Soluciones\n", + "\n", + " dev = qml.device('default.qubit', wires=WIRES) # Initialize the device/Inicialización.\n", + "\n", + " circuit = qml.QNode(variational_circuit, dev) # Instantiate the QNode from variational_circuit/Iniciar VQC.\n", + "\n", + " # Write your code to minimize the circuit\n", + "\n", + " # Initial guess for the parameters/Iniciamos los parametros de forma aleatoria.\n", + " params = np.random.rand(NUM_PARAMETERS)\n", + " \n", + " # Cost function that the optimization routine will minimize/Función de costo a ser optimizada.\n", + " def cost(params):\n", + " return circuit(params, hamiltonian)\n", + " \n", + " # Initialize the optimizer/Iniciar optimizador.\n", + " opt = qml.GradientDescentOptimizer(stepsize=0.38) # Descenso del gradiente.\n", + "\n", + " # Set the number of optimization steps/Nuestro optimizador tomará 185 pasos.\n", + " steps = 185\n", + "\n", + " # Optimization loop/Loop de optimización.\n", + " for i in range(steps):\n", + " params = opt.step(cost, params)\n", + "\n", + " return cost(params) # Return the value of the minimized QNode/Mínimo." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "92e81486", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimized Expectation Value: 0.617453410316887\n" + ] + } + ], + "source": [ + "# Test input:\n", + "hamiltonian_test_input = [0.863327072347624, 0.0167108057202516, 0.07991447085492759, 0.0854049026262154, 0.0167108057202516, 0.8237963773906136, -0.07695947154193797, 0.03131548733285282, 0.07991447085492759, -0.07695947154193795, 0.8355417021014687, -0.11345916130631205, 0.08540490262621539, 0.03131548733285283, -0.11345916130631205, 0.758156886827099]\n", + "\n", + "# Run optimization/Corremos optimización.\n", + "optimized_value = optimize_circuit(hamiltonian_test_input)\n", + "print('Optimized Expectation Value:', optimized_value)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "89907c19", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimized Expectation Value: 0.0024648812008859953\n" + ] + } + ], + "source": [ + "# Test input 2:\n", + "hamiltonian_test_input2 = [0.32158897156285354,-0.20689268438270836,0.12366748295758379,-0.11737425017261123,-0.20689268438270836,0.7747346055276305,-0.05159966365446514,0.08215539696259792,0.12366748295758379,-0.05159966365446514,0.5769050487087416,0.3853362904758938,-0.11737425017261123,0.08215539696259792,0.3853362904758938,0.3986256655167206]\n", + "\n", + "# Run optimization/Corremos optimización:\n", + "optimized_value2 = optimize_circuit(hamiltonian_test_input2)\n", + "print('Optimized Expectation Value:', optimized_value2)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "87462474", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/challenges/xanadu challenge/challenge_solution.py b/challenges/xanadu challenge/challenge_solution.py new file mode 100644 index 0000000..8d59966 --- /dev/null +++ b/challenges/xanadu challenge/challenge_solution.py @@ -0,0 +1,79 @@ +### DO NOT CHANGE ANYTHING BELOW THIS LINE + +import pennylane as qml +from pennylane import numpy as np + +WIRES = 2 +LAYERS = 5 +NUM_PARAMETERS = LAYERS * WIRES * 3 + +def variational_circuit(params,hamiltonian): + """ + This is a template variational quantum circuit containing a fixed layout of gates with variable + parameters. To be used as a QNode, it must either be wrapped with the @qml.qnode decorator or + converted using the qml.QNode function. + + The output of this circuit is the expectation value of a Hamiltonian, somehow encoded in + the hamiltonian argument + + Args: + - params (np.ndarray): An array of optimizable parameters of shape (30,) + - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian + whose expectation value is returned. + + Returns: + (float): The expectation value of the Hamiltonian + """ + parameters = params.reshape((LAYERS, WIRES, 3)) + qml.templates.StronglyEntanglingLayers(parameters, wires=range(WIRES)) + return qml.expval(qml.Hermitian(hamiltonian, wires = [0,1])) + +def optimize_circuit(hamiltonian): + """Minimize the variational circuit and return its minimum value. + You should create a device and convert the variational_circuit function + into an executable QNode. + Next, you should minimize the variational circuit using gradient-based + optimization to update the input params. + Return the optimized value of the QNode as a single floating-point number. + + Args: + - params (np.ndarray): Input parameters to be optimized, of dimension 30 + - hamiltonian (np.ndarray): An array of real parameters encoding the Hamiltonian + whose expectation value you should minimize. + Returns: + float: the value of the optimized QNode + """ + + hamiltonian = np.array(hamiltonian, requires_grad = False) + + hamiltonian = np.array(hamiltonian,float).reshape((2 ** WIRES), (2 ** WIRES)) + + ### WRITE YOUR CODE BELOW THIS LINE + + ### Solution Template/Soluciones + + dev = qml.device('default.qubit', wires=WIRES) # Initialize the device/Inicialización. + + circuit = qml.QNode(variational_circuit, dev) # Instantiate the QNode from variational_circuit/Iniciar VQC. + + # Write your code to minimize the circuit + + # Initial guess for the parameters/Iniciamos los parametros de forma aleatoria. + params = np.random.rand(NUM_PARAMETERS) + + # Cost function that the optimization routine will minimize/Función de costo a ser optimizada. + def cost(params): + return circuit(params, hamiltonian) + + # Initialize the optimizer/Iniciar optimizador. + opt = qml.GradientDescentOptimizer(stepsize=0.38) # Descenso del gradiente. + + # Set the number of optimization steps/Nuestro optimizador tomará 185 pasos. + steps = 185 + + # Optimization loop/Loop de optimización. + for i in range(steps): + params = opt.step(cost, params) + + return cost(params) # Return the value of the minimized QNode/Mínimo. + diff --git a/hackathon/Quantumaniacs_Hackathon.pdf b/hackathon/Quantumaniacs_Hackathon.pdf new file mode 100644 index 0000000..e570c28 Binary files /dev/null and b/hackathon/Quantumaniacs_Hackathon.pdf differ diff --git a/hackathon/hackathon_qiskitbackend_challenge-openqaoa.ipynb b/hackathon/hackathon_qiskitbackend_challenge-openqaoa.ipynb new file mode 100644 index 0000000..d0800e4 --- /dev/null +++ b/hackathon/hackathon_qiskitbackend_challenge-openqaoa.ipynb @@ -0,0 +1,2069 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Challenge: OpenQAOA\n", + "\n", + "Quantum computing is used extensively for modelling and solving combinatorial optimisation problems. The purpose of this is to find a problem with binary clauses where the amount of states is immense and difficult to solve with classical resources. This type of problem is known as NP-hard. in order to uncover the correct answers, quantum computing produces algorithms of NP-complexity. On the other hand, in quantum computing, we are interested in representing such a model in a quantum circuit and being able to find the optimal states that satisfy the cost function using a classical optimizer.\n", + "\n", + "Multiple companies work around computers and generate an SDK that can generate quantum circuits, in this challenge, we focus on a fundamental step of the Quantum Approximate Optimization Algorithm (QAOA) algorithm. Before starting the quantum part, one must model a problem in terms of 0 and 1 and convert it into a Quadratic unconstrained binary optimization (QUBO) form that can then be converted into an Ising model to find the optimal states. To validate the model one makes use of OpenQAOA, an SDK focused on circuitry of the QAOA algorithm. \n", + "\n", + "If you want to know more about this SDK you can check the following link https://openqaoa.entropicalabs.com/ \n", + "\n", + "**NOTES**: \n", + ">\n", + "> * To run on real QPU or simulators you can use [qbraid](https://account.qbraid.com/) \n", + ">\n", + "> * The [OpenQAOA workflow](https://openqaoa.entropicalabs.com/workflows/customise-the-QAOA-workflow/#the-circuit-properties)\n", + ">\n", + "> * To guide you, you can check out [examples of problems in OpenQAOA](https://github.com/entropicalabs/openqaoa/tree/main/examples/community_tutorials)" + ] + }, + { + "attachments": { + "wf.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQAAAAzTCAYAAAAZ1tSlAAAACXBIWXMAABdhAAAXYQHuO4cIAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzs3XdgFNe5NvBni6RV70K9SyBU6CB678U007GNHbfEduyUm9zkS3GcfpPcJCZ2bKc4Lrgbm2J6N2CabcA0FSSQQAih3stqvz+EuDKozDkzW7Q8v/9s6cweLTs7M+95z/vq0LkNAOZ28TMiIiIiIiIiIiJybM8A+DMA6O08ESIiIiIiIiIiIrIiBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETMwr99sqVQFKSlaZCREREREREREREQrZvBw4d6vZXmAFIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInBgDgERERERERERERE6MAUAiIiIiIiIiIiInxgAgERERERERERGRE2MAkIiIiIiIiIiIyIkxAEhEREREREREROTEGAAkIiIiIiIiIiJyYgwAEhEREREREREROTEGAImIiIiIiIiIiJwYA4BEREREREREREROjAFAIiIiIiIiIiIiJ8YAIBERERERERERkRNjAJCIiIiIiIiIiMiJMQBIRERERERERETkxBgAJCIiIiIiIiIicmIMABIRERERERERETkxBgCJiIiIiIiIiIicGAOARERERERERERETowBQCIiIiIiIiIiIifGACAREREREREREZETYwCQiIiIiIiIiIjIiTEASERERERERERE5MQYACQiIiIiIiIiInJiDAASERERERERERE5MQYAiYiIiIiIiIiInJjR3hMgIiIiIiIi5/DzCRMwJzlZeNyPd+3CttxcK8zIcfXx9ESEjw9cDQZ4ubre+v8VDQ2wWCyob2lBRUMDKhsaUNvcbMeZEpEzYACQiIiIiIiINBHr54chYWHC4wLc3a0wG8dhMhoxLSEBE2NjMSY6Gn2DguDdIejXk+bWVtQ0NaGyoQGNZjNqmppQ29SERrMZFQ0NaGhpQX0PQcJWiwWPb96s9k8hol6KAUAiIiIiIiIiK+gbGIhvZ2ZieVoa/Ewm6eO46PXwN5ngr+IYZgYAie5qDAASERERERERaSjKxwe/mTIFy9LSYNDp7D0dIiIGAImIiIiIiIi08tjQofjdlCnwcXOz91SIiG5hAJCcToinJxIDApAcGIg+np7wdnODu9F4q7BuZWMj6pubUdPUhIKqKuSUlSGnrAwVDQ12njkRyXIzGJAYEIDEgADE+/vDy9UVnq6u8HVzg16nQ6PZjLrmZlQ0NKCioeHWeX+5shKtFou9p092FurlhaSbn58QT0/4uLnB3cUFni4uANqKsde3tLRdNyorkX3z81PV2GjnmRMRkSNxNxrxyrx5WJmebu+pEBHdgQFA6tWMej2GhIVhQmwsxsfGYlRUFHwlV9qu1dTg08uXsTc/H3vz83G2pAQMCxA5pnBvb0y8ed6Pj4lBYkAA9BLbaxrNZnxRVHTrvD9YUICapiYrzNi+Zicl4dmJE6XG7rp4ET/YuVPjGdmPi16PYRERmBAbiwmxsciMjBQqwt7R1epqHOhw3Th/44bGs7Ufg06HHffdJ5W9YrFYMPPNN3Gjrs4KM7OPERER+Nvs2UJjiqqrcfr6dbx47BgKqqqsNLPu6XU6LElNxdzkZMT7+8PFYPjaz6/V1ODM9ev427FjuFxZaZc5uhoMeGjQIEyMi0OMry8Mer2icZuysvDzvXutOzkiAR4uLti8YgUmxMbaeypERJ1iAJB6pUGhobh/4EAsT0tDiKenJscM9fLC4v79sbh/fwBAbnk5Xjt5Eq+fPIm8igpNXoOI5PmZTFiSmor7BgzAqMhI6DSop+NmMCAzMhKZkZH44ZgxaGhpwccXLuC1kyexLScHZifJDnxkyBCpjowA0C8oCM/t39/rA6PDwsNx34ABWJ6ejkCNOk2Ge3tjaWoqlqamAgAulJbeum7YK+CjlSnx8Zio4iF2WVoa1h49qt2E7Oz09evoHxwMd6PArXNYGOYkJ+M7I0dixQcf4MNz56w3wU74mUz4eNkyjIuJ6fb3Zicl4duZmVj2/vv46Px5G82uTZyfH7atXo2kgADhsf97+LAVZkQkx6jX48OlSxn8IyKHxgAg9RoGnQ5L09Lw/VGjMDA01Oqvl+Dvj2cnTMDPx4/H7vx8/ObAAezKy7P66xLR1yUHBuIHo0djRXo6TCIP3xJMRuOtgE5RTQ3WHj2KtUeP9uqtnsEeHpiZlCQ93tPFBQtTUvDayZMazso2XPR6rEhPx/dHj0ZqcLDVX69vYCB+NWkSnps4Edtyc/GbAwdw4PJlq7+uNaweMEDd+IwMpwoA1jU3Y3deHmZLnEtuBgPeXrwY/dauxcXycivMrnNvL17cY/CvXcc55tto0dOo12PrqlVSwT+zxYKtOTlWmBWRnN9OmYLpCQn2ngYRUbeU5dgT2ZFBp8OagQNx7okn8ObChTYJ/nWk0+kwOS4OO++7D4ceeogXdyIbSQkKwrpFi3D2W9/Cg4MGWT34d7swLy/8atIkXHr6aTw7YYJ0eQF7W5aWBheFW+q6cp/KYJCtGfV6PDZ0KLKefBKvzp9vk+BfR3qdDjMTE7F/zRrsfeABVZl09uDt6ooF/fqpOsbwiAj0CwrSaEaOYVNWlvRYF70eT2dmajib7o2OihK+X3EzGPDdkSOtNKM7LUxJQXJgoNTYQwUFKK2v13hGRHImx8XhOzY8v4mIZDEDkBza4LAwvDRnDoaGh9t7KgCAkZGR2LpqFdafP4+ntmxBYS/f4kXkiDxcXPCTcePw3VGjVAeutOBnMuGn48fjG4MH45lt2/DumTP2npIQLYJ3E2NjEenj0yu+8zIjI/H3OXMwoE8fe08FADA+Jga7778fb331Fb6zbRuu1dTYe0o9WtS/PzxuNkBRY3VGBn68e7cGM3IMm7Ky8MKsWdLlB6bGx2s8o64tSEmRGje/Xz88tWWLTWogT1OxoKomGEukJTeDAS/OmaO6LInFYsFXJSW4VFGB0vp6NLa0wMPFBW5GI/xMJrgZDPB0dYWPmxtMN5sbtjc6IyJSigFAckhuBgN+M2UKnhoxAgYHvLAt6NcPU+Lj8aNdu5xqixORvU2Ki8M/5s1DnJ+fvadyh3Bvb7yzeDEeGDgQ39iwAVerq+09pR6lBAVpsoCi1+mwKiMDv/30Uw1mZR0eLi74w7RpeHTIEId8IFqeloaZiYn43vbt+OcXX9h7Ot1anZGhyXFWZWTgJ3v2OE2n7cKqKpwsLpbeidAvKAjh3t42+e6Y17ev1LhIHx8MDgvDiaIijWd0JzWZsQwAkqNYM2iQ1Db2doVVVfj1gQNYf/688AJR/tNPI8bXV/q1iejuY//UCqLbxPj64tMHH8QzmZkOGfxr5+3qiudnzsQ7ixfDS7KDJBG10QH48dix2L56tUMG/zqamZiIE488gvEKa2vZk9o6bl87lkZBIWtICgjA4YcewuNDhzpk8K+dn8mEf8ybh1fnzxdrJmFD0b6+mhWxj/b17RXniYiNKgNPttgOnhIUpCogMVcyeCgixtcX8f7+UmMvlpfjbEmJxjMiEmfQ6fDDMWOkx689ehTJzz+PF48f7xXZ4UTU+zEASA5lanw8Tjz6qMNs+VViSWoqjj78MBJV3GwT3c28XV2xYfly/HLSJIcO+ncU6uWFnffdh2+PGGHvqXSpPWtPK/2Dgx3yu3lucjKOPfIIMhxky68S9w8YgEMPPeSQmRsr09M1DaJqGYR2BGozzybFxWk0k66pDeDJZg+KUPM+MPuPHMXk+Hjp7/Hn9u/Hk1u2oL6lReNZERF1jQFAchjz+/XDxhUrEOjubu+pCEsJCsL+NWuQ4mQFz4mszc9kwvbVqzEnOdneUxFm1Ovx5xkz8OyECfaeSqcmxMYiysdH02M6Whbg8rQ0fLh0aa9s0DIwNBT71qxBgmQWlLVo3fBlsUb1BB3F8atXUVxbKz1+og0CgGoDeAP79NH8u+N2at4HBgDJUaxIT5catysvDz/bs0fj2RAR9YwBQHIIS1NT8e6998LNYLD3VKSFeXlh7wMP9KosFCJ7CvLwwK777kNmZKS9p6LKT8ePx++mTLH3NO5gjc69y9PTHaIxCwCsGTgQry9cCKODzEdGjK8v9q1Z4zDdcoeFh2s+F29XV8xX2VHYkbRaLNisIgAV5+dn1TIHwR4eqr9TdTqd1bcBy26Frm5qwr5Ll7SdDJEEHYAZiYnC41paW/Hwhg02abRDRHS73nvXTE5jZmIi3li40GEeKtUI8fTE9tWrEevgNcyI7M3DxQWfrFyJwWFh9p6KJv5r9Gj8aOxYe0/jFk8XFyyU7ALanWAPD6kHHq0tSknBP+bN6zVbxrsT4e2NHatXI9zb295TsUrQGHC8zFG11GagWTMLcHZysibnxVwrZmUnBwYiUjLDcHtuLprMZo1nRCQuvU8f9PH0FB63JScHeRUVVpgREVHPHLMCNd01BvTpg3fuvdcqGRxNZjPyKiqQVVqKmqYmVDc2AmjbcuhnMiEpMBAxvr6aF4zv4+mJjcuXY/S//oWqm69JRP9Hr9Ph9QULMMxK9eSKa2tx4cYNFNfWorqxES2trXB3cYGXqytifH2RHBholcY9v5w4EVmlpXj/7FnNjy1qQUoKvK3UnGj1gAGqGyGoMSIiAq8vXGiVZh9NZjNyy8uRffO6UdPUBADwd3eHn8mE5MBARPv4QKfxa0f6+ODjZcsw/tVXUdfcrOmxlXLR67EsLc0qx56akIAwLy8UOUmR+x0XL6LRbJbetTApLg7/slInaK3q902Mi4O3qyuqb54DWmL9P3IGsjVx//PllxrPhIhIOQYAyW5CPD2xacUKTR9Sz924gbe/+gq7Ll7E0StX0Nza2u3ve7q4YGxMDKYlJGB5WhpCvbw0mUdaSAjeWrQIc9atY4o/0W1+NWmSptlptc3N+ODsWWzJycGevDxF9blSg4MxOT4eC1NSMC46WpOAjk6nw2sLFuBieTk+LypSfTw1rJlxNTc5Gf4mE8obGqz2Gl2J9PHBx8uXa9pB91RxMd45cwa78/Jw/OpVtPRw3fB2dcX42FhMS0jAsrQ0BHt4aDKPoeHheHX+fCx57z1NjidqVlISgjT6W25n0OmwIj0dfzx82CrHt7Wapibszc/H9IQEqfHW6gRsMhoxTXJOt3MzGDAtIQEfnDunyfE6kv37Wy0WfJKdre1kiCTJlvw5VFCg8UyIiJRjAJDs5uW5c6W3gHRksViwKTsbv/30U+GLam1zM7bm5GBrTg5+sGMH5vXti5+MH48BGtTxm5WUhCeGD8fzR4+qPhaRs5gYG4v/Gj1ak2MVVlXhdwcP4rWTJ4Wzbc+UlOBMSQn+euQIkgMD8UxmJh4cNAiuKuuQuhuNeGPhQgx56SW7dfYL9/bG5Ph4xb9vsVhwo75ecSDLZDTi3tRUvHzihOwUpegA/Puee6S2XN3OYrHgw/Pn8btPP8Wxq1eFxlY3NWFTVhY2ZWXhe9u3Y1FKCv7fuHHoHxysel739u+PNQMH4t92yBAR7dZ7vbYWIQL/FvcNGOA0AUCgLRNNNgAY7u2NfkFBOH/jhqZzmhQXB08NG67M69tX8wCgDm0NimQcvXIF11U0YCHSkky5nyvV1U6TCU1EvVPvL7pGvdKagQNxjwbbVE4VF2PkP/+JeW+9pXpFrbm1FR+cO4dBf/87Vn34IW7U1ame32+nTEHfwEDVxyFyBr5ubvj3/Pmqt242ms348e7dSHr+eaw9elT1Vvus0lI8vnkz+q5diy05OaqOBbR1Bf/V5MmqjyNrZXq6UA2wL4uL8aHgQ761asV154nhwzFFILDZleNXr2LIyy9j8bvvCgf/btdkNuOtr75C+osv4qENG1ChQVbkn2fMQIyvr+rjiPA3mYQ7cf9UsINlRp8+miyuOQrVdQCtkAWo1fbfdrOSkjSvs5kWEiIUOO6I23/JkcgkMVxi7T8isjMGAMnmwry88OcZM1Qf54+HD2PYK6/gyJUrGszq/1gAvHn6NNJeeAG78vJUHcvDxQX/uuce9P4y9UTq/X7qVNWBjQulpRjy0kv49YEDaNA4wy6/ogKz3nwTj27apLrI/LdHjMCoqCiNZiZGNJNre24utghuqxsVGYkEf3+hMWrE+fnhtyo7LVssFjy3fz9G/vOf+OLaNY1m1qbVYsG/vvgCaS+8gIMqF6N83Nzw8ty5Gs1MmaVpaUL17CoaGvDPL75AYVWV0OvYI3BsLfkVFfjq+nXp8Wrq4HVGBwgHcXsS5OGh+feYmgYo9qw9SnQ7mRJGlawNTkR2xgAg2dwvJk6Ej5ub9HizxYJvbNiA723fbtVOcMW1tZj5xht4VeVWrFFRUVjcv79GsyLqndJCQvDQ4MGqjrHv0iWM/Mc/cKakRKNZde7lEycw4403VN2o63U6/GHaNJsH/weFhiI9JERozLacHOzKy0OjwPepTqcTDjSq8evJk+GhYmtjk9mMlR9+iJ/u2dNjjT81rlRXY8prr+HdM2dUHWdaQgJm2rDbsmjNyF15eWhpbRXOmF2enm6Vpl/2oiYjbUJsrKaNbIaEhyPCCp2k52qcVSgb+LxcWYlTxcWazoVIDXeJa1KlHWrnEhF1xBqAZFOpwcFYM2iQ9HiLxYKHN2ywWX2k5tZWPLRhA9yMRixX0R3x15Mn4+MLF6wasFTDw8UF/YODkRIUBG83N3i7usKg16O2qQnXa2txpqQE52/ccNj5d8ag0yHK1xfh3t7wcHGBr5sb9Dodyhsa0NjSgkuVlSisqkKrxTnbtBh0OiQEBCDUywterq7wdHFBbXMzapuakF9RgQIb/+2/nzpV1Vayw4WFmP3mm6i1UYfUPfn5uOett7B11SqYJBtOjIyMxMKUFKsU0e+KaFCupqkJBwsK0GQ248ClS0JbbFdlZODZvXut3uhoWHg4lqamSo83Wyy4b/16vKMyKKdUQ0sLVn74IdyMRlWlLn43dSq25+bCbOXzNDEgACMjI4XGbM/NBQBsyc7GwwKB/TAvL0yNj9dkq70j2JSVhR+OGSM1NsjDA+khITipUVBL6+2/HY/7Xzt2aHIsg06HcTExUmNtuf3XoNMh0scHET4+8HBxgberK4x6PaoaG9FoNqOkthZ5FRV269htbSajEZk3s7yDPT1hsVhQWl+PsyUl+LyoSPPs+95KJoBvzQWo3ibUywvRvr7wcXODh4sL3AwG1DY3o8lsxvXaWlyurNSkrAYRfR0DgGRTv5o8WVUQ4Nl9+2xeHL3VYsH969cjyscHY6KjpY6RGBCAhwYNwovHjwuNS/D37zF7sKGlBedu3MDOixeFAjoD+vTBwpQUzOvbF+l9+vT471Lb3Iwdubl498wZvH/2bI8dlm0t3Nsbk+PiMCE2FpmRkUgMCOixoUOT2YyzJSU4VFCAfZcuYXNWltUDTEa9Ht8dObLb3zFbLCiorMTm7GzUNDUpOq4OwMioKMxNTsbUhASkhYR0u6WvoaUFnxUWYufFi1h3+jTyrFiXZnxMjKpspvyKCsxZt85mwb92+y5dwgMffYS3Fy+WPsavJk/G+vPnbRJsNer1WJGeLjRmd17ercD+pqwsoQBggr8/RkVFqd7y2pPfTJmiqkvzD3bssFnwr11LayuWvf8+Pn3wQQwJC5M6RnpICFakp+P1U6c0nt3Xrc7IEHp/LRYLtt4M4O28eBENLS1CQfLVAwY4TQDws8JC3Kirk+6ePDEuTrMA4FyNt/+26xsYiOTAQGSVlqo+1sDQUPibTFJjrRkA7BcUhElxcRgZGYnhERGI9fNT1BDqWk0Nvrx2DYcLC3Hg0iUcuHzZZgGecTExPQbui2trcbG8HAcvX1a0kDAyMhLfHTUKs5OSujynKxoa8PqpU/jFvn2a1Mq2lghvb0yMi0Ool5fQc4cFwIvHjqG6qQmuBkO3TXVkAoCuBoPQOVDZ2OgUC9URN5uTjYqKwoiICPQNCoK7gutGeUMDzly/joMFBThUUICdFy9qHnj3N5nwyJAhin+/pK4ORwoLrbobxdvVFfP79UNiQADcOnmfWi0WXK2uxu68PJy14jyCPTwwNSEBEd7eij7vtc3NWMvmlw6PAUCymcSAAFU3qHvy8/HL/fs1nJFyza2tWP7BB/ji0Uelb/S/nZmJvx8/LpQtkxIcrLju1WeFhT1uW9QBWJCSgu+MHInRgnV9PF1cML9fP8zv1w//M20afrV/P14+ccLq2SndcTUYsCglBQ8MHIgp8fHCN2OuBgMGhoZiYGgovjlsGOpbWrDxwgW8cOwY9l26ZJU5u+j1iv9Nr9fWYvobb+DLbuqVebi44KFBg/Ct4cOFGs6YjEZMiI3FhNhY/GLiRGzLzcXP9uxR3RShM09nZkqPbT/3yurrNZyRcu+cOYPxsbF4fOhQqfF9AwMxMzERmwVr7MmYlpAg3CG3Y3bie2fP4k/TpwudR/cNGGDVAGBGnz6YrKJm2ObsbPzJTp1nG1pasPS993Di0UfhK1n24unMTKsGAHVoy+QUcezqVVyurATQ1hF5c3Y2FqWkKB5/T9++8HFzU928xxGYLRZsyckR3kLdblJcHP782Weq5xHt64uBoaGqj9OVeX374g+HDqk+juz239rmZuzJz1f9+h2Fe3vjwUGDsCQ1VbhsQrtQLy/MSEzEjJsLXDfq6vDBuXN49csv8VlhoZbTvcP0hAT8aOxYRb+7Ky8P019/vcv7NX+TCX+bPVvRThc/kwlPDh+OwWFhGPOvfwnN2RbcjUb8cfp0PDJkiFTCwb+++ALVNxde5yYn4/0lSzSd35LUVCwRyGhPev555JSVaToHW/Fxc8PqjAwsTUvD6KgoqYCpv8mEMdHRtxIw6pqbsTErC2+cOoVPsrM1CY5WNjbimZEjhe6fLBYL3jh9Gg9v2CBUPkWJkZGR2LB8uaLnTYvFgrXHjuHprVs1DxSvGTgQa2fNEiq/8uG5cwwA9gLOU4iFHN63hg2TrnfT0NKCb2zYYNdgU2FVFb67fbv0+L6BgZiWkKDhjL4uMzKy20DLoNBQfPrgg/hgyRLh4N/tIry98cLs2Tj+yCPoHxys6lgyXA0GPDpkCLKefBLrFi3CtIQETWopuRuNWJKair0PPIDjjzyiScdRNUI8PfHXmTM7/ZlBp8PjQ4ci56mn8NeZM1V1m9brdJiZmIgj3/gG/jFvnnSwojNxfn6qakj95bPPrP4g1ZPvbd9+K+Ah48kRIzScTddEgxBNZjM2XLhw67+vVlcLB77vTU2V3iKtxJPDh0uPrWlqwiMbN1p9i3J3csvL8aNdu6THDw4LU/193Z0x0dGIF2zm8v7Zs1/777e/+kpovIeLi1PVxVWTmTYuJkaTLrui239FF3q02l4s2wCkPdNUC6nBwXh9wQLkffvbeG7iROngX2eCPDzw6JAhOPzQQzj00EOY36+fZsdWY3JcHB4YOLDTn6UGB+Pk448Ll7kpt9OiXHeMej0+WLoUjw8dKnVeXamuVnWfT23CvLzwx2nTUPDMM1g7axbGRkdrVu/Uw8UFS1NTsXH5cpx/4gk8PnQoXFTWlW21WL52L6SETqfD6owM1c3JbudmMOC9JUsUJ5vodDo8OXw41nRxfstKDAjAK/PmCdde/uj8eU3nQdbBACDZhJerq6raf388fBgXy8s1nJGc10+exCEV2S5PqHiYVWJhJ1kYOgD/PWYMjj78sObd/AaGhuLoww8LrWaqNS4mBicfewx/nzNHdUfZ7gwJC8OO1auxfulShAhmVWlpTFQUgm+7EUjw98f+NWvwwuzZCPPy0uy1dDodHho0CJ8/+qhmgd1vDhsm/YBbXFuL5+yU9dtRXXMzvqfioWBafDySVQRolfB1c8M9gg+bOy5evKO+zlunTwsdw99kstrWwwB3d6yUzKwCgF8fOICr1dUazkjOS8ePd5vF2xNrXjdEa0ZaLJY7AoCbsrKEs/lkM+Yc0bacHOm2ZmLcAAAgAElEQVSSGL5ubhgSHq56DiLn4I26Orx84oTQ8UdFRSHQ3V10Wl/jotdjrGQZFS22/wa4u+P5mTPx5WOPYVVGhqItvmqMjIzE+qVLsef++5HRp49VX0uJWUlJd/y/4RER2L9mDaJ8fISP5wjfrbd7OjNTVbmRRzduZM05FdwMBvxg9GhcePJJfGfkSFUNH5VICgjAC7Nn49Tjj2O6ygQL2cDVmkGDNFnEaTcrKUmqmZPIFmYlVmVkCP9dLa2tNtntQuoxAEg2MTspSTqrqLqpCX/UYOuJFiwAfrZ3r/T46YmJCFB5E92dtJCQrx3fy9UVG5Yvx68nT7Za50VPFxe8tWgRHlIR4FXC1WDA2lmzsPf++9EvKMiqr9XR/H79cPKxx6S3Lqml0+kwusND04J+/fDFY49pHsztKN7fHwdV1C5rpwOwTEXznD8dPuww2wTfP3tWugOlTqdT1URIicX9+yuqp9PR7YEcoG1LsGgww1rdgBf06yf8N7Urra/HX48c0XhGcswWC57dt096/Ly+fbutQyXLdDPjWcSJoqI76oU2tLTgY8HsiXExMVZdwLGlysZGHFBRMkLttcXHzQ0TYmMV//7e/HzsE9xOa9DpMFtloH9YRAS8XF2Fx1ksFmxWGQCcHBeHr775TTwxfLjNu1BPiI3FiUcewQ9Gj7Z5V/iOBt12PU8MCMDmFSuk70mLamq0mJZmonx88LPx46XHv3byJIMXKvQLCsKRhx/Gb6dMgbfEea72tbeuWoVX5s6VvmfYdfHira3fInzd3O44t9SYI/k9OzQ8/I5kATVkSq/sv3TJbuV6SAwDgGQTnWWmKfXKiRMod6AVuZ0XL+JEUZHUWBe9XvrLXQm9TnerTkaIpyf23H+/VV+v4+u+Mncu7rXStq5IHx/sX7MG3xo2TFUzAFmhXl7YsnKlcIMFrbRvAfzJuHH4YMkSm9xc+ZlM2LpqFRIEtwd2NDwiApESmQVA20P1S4JNc6zJAuD3Bw9Kj1+g4jtQifsEg3DNra2dbnkpq6/HXsHgwIzERE1vPNupuW787ehRmzeN6c6GCxdw/sYNqbEeLi63aoxpaV7fvsILc111tP6gk2Byd/Q6nXDtQUe2UUWAaqJA8K4z0xMShLLZtubkILusDOcEP49qM31lA50niopUBZt+On48tq9erWm2vCjjzdq/n6xcafWsqK5E+fjcCn56u7pi84oV0jWtAcfLAPzLzJlSAWagLZj5zLZtGs/o7rE0NRXHH3kEA+yc6fqNwYNx9OGHEefnJzy20Wy+1dxKlMgCTHf0Ol2nmbpKx2pVZsrL1RXDIyKEx3H7b+/BACBZncloxEzJLzQA+Mfnn2s4G228Irh9piM1D7VKjIuJQYinJ/Y+8ACGarC1SCmdTodX58/HII0Lkcf7++PTBx/ECImLkZZcDQa8vmCBcKBFC2NjYvCXGTPwi4kTbRoADfLwwLv33tttN+HuqPmsv3vmTLcNbezh/bNnpRcjBvTpoyqY2p1YPz/hrXV78/O7XKkVDea46PVYrnFw3MfNDZMla3BaLBb884svNJ2PWq0WC15RcS2zRgBZ5rvswy4CgNtzcxV3LG9nrcxRe1CzRXV0dLSq7agi9fksFgs+uZnltL6Lf8uuTE9MlL4WAPKBTtn31qDT4e9z5uDZCRM0qz+m1ozEROy67z5VgTdZRr3+1lbfv86cqboshSMFAOckJ2OBinqLj2/a1On1UHZr/93kW8OGYd2iRVbJUpeRFhKCTx98EKkSZWxkA1haBQCHhIUhVMVChZpn7Y7GSlyTLBaL8E4Ash8GAMnqxkZHS2csfXHtmvAqtS28e+aMdNenqfHxqgvWdmdGYiJ2rF6NFBtuk23n4eKCNxct0qwpQLy/P/Y98IDDbBXT63T4x7x5qmuNiBoREYGnbNRI4naDw8LwgzFjpMbKrmQCwJtW7Hwqq9FsxntnzkiP1+rm7HarMzKEA8PdBfk+On9euOGS1jXdJsfFSQcbPi0oUNW0xVreOn1aupHVzMRETbcPhnh6Cn+Pnb5+HVmlpZ3+rL6l5VZgSam+gYF2X9jRSk5ZmXSGp6eLi/T7YNTrhb5nj129eiubTjRr0dvVVfpB12Q0SpetkAkA6gD8Y948PKpxXSwtDA0Px57774efyWTz147z98fc5OQuG4KIKHKQAKCHi0uXzdKUeOurr7oMXMie03eLb48YgbWzZjlMgL1duLc39j7wgHBzvE+ys6WCvmOiozWpA6h2x5ZWDRFlFl8/v3bNIe+7qHMMAJLVjVRRq0x0hdpWyhsahLfJtfNwcbFqQejU4GC7FpxOCQpSVYelna+bGzatWCG9hdRaXPR6vLlokVSR3t7qh2PGCP+9Pm5u0o1EbtTV4cDly1Jjra2rDCglRkZGajiTNjqIZ1KZLZZuV7qLa2txUPD9HxoermlHcGe8bhTV1Eh3tA5wd9e0kczytDThWmg9ZYbKnBvMAmwjuz12dFSUUA23jkG/o1eu4HptrdDryXYDHhkZKbUweLW6Gp9LlFz5+YQJmgS5rCUtJAQfLFli9UYkt+sXFIT/nTFDk2M5Sgbg/xs3TmrLJ9B2rXtqy5Yuf55VWsptjV1YmJKCP02fbu9pdCnIwwOfrFwp1MSvQvLZztfNDYM1qAOots5qsIeHJju/ZOr/fczzpFdhAJCsLlPFQ+/Oixc1nIm2dqmYm5r3pDd4OjMT0Sqy9nQA3lq8WJMsxnM3bmBzdjZeO3kSL584gQ/PncPBggJV9cEC3d3x6vz5di3obUvuRiOezswUGjM8IkJ6JXJPfj5aJTOlrO3Ty5fRJJn9a43zPjMyEkkBAUJjDl6+jOIeHvylgjkaZgHyunEnLT8/Wm7/bbc5OxsNLS1Cx1yWlmbzIIi1qAkATpQMAIoG5DrW/WztsB1Yqbl9+0pd92T/vs3Z2RC9Eszv1w8/1WAR0tomxcXh91On2vQ1fzJunCalKMwWi3Dw2BpSgoLw3ZEjpcd/a/Nm3Kir6/Z3Fr/7Lh7btAnHrl512PsSW+sXFITXFyxwuMy/28X7++PtxYuF5ikb8B2vchtwuLc3BmtQQklNF2ygLXAqk0TCQHnvos0+PaIu6ACpQqIAUNvcjGNXr2o7IQ3JZgACbQ9yfzt2TLvJCKpqbMSX164hp6wMJXV1aLVYEOrlhWhfX6naD7czGY346fjx+MaGDVLjHx82TNVF7GJ5Of7n0CFsuHChy1Vqd6MRs5KS8M1hw6SyL6bEx2Nx//54T7BemrXUt7TgxNWrOHfjBsrq69FqsSDwZtbQqKgo1f+mDw8Zgp/s2aP4AV/N1r49eXnSY62t/XtptESGWry/P0I8PTV9cJLJoFIS3Ft//jz+d/p0oa3FqzIy8OPdu1U/JBn1eukO1Dfq6vDV9euqXt+a9ubnSwcnMiMj8Z+TJ1XPITU4WDhbIau0FKd7eF9rmpqwPTdXKCgV6O6OWUlJTvHwcLCgAOUNDfCX2NqZGRkJd6MR9YIBVJH3Or+i4o5O5huzsoQy5aJ8fDAwNBRfXLumeAwgn+EoGlTt4+mJl+fOlXqtjupbWnDg0iWcKCrCtZoaXK+tRW1TE0K9vBDq5YWkwEBMiY9X3VjkqeHDsfHCBeyy0TVPTX2xjopraqTLGWhFB+CF2bOl723eO3u2y6ZGHZktFrx04gReOnHiVsfXIWFhGBIejoUpKVKlKk4WF6NF4VbTRsHvBGtz0evx+oIF8FBZ889sseBIYSGOXLmCwqoqXK+tRWVDAwI9PBDm5YUYPz9MjI1Vnfk+MTYWT2dm4k+HDyv6/Y/Pn8famTOFy6pMiI3FHw4dkpkiAGB2UpImNb5nJCbi2X37pMdPiosTDuzmlpf3eH9AjoUBQLKqEE9PBApsT+noq+vXFV8g7eGr69dhtlik6j6kaLhVTsQn2dl4/uhR7M7L6zKLKcDdHcvS0vDjsWMRrmKb66qMDPz3zp0o6WF19XYxvr7Sq+Itra34wc6deP7IkR7reNS3tOCDc+fwwblzuLd/f7w4Z47wZ/W3U6bg4wsXpDPCtLA9NxcvHDuG7bm5XT48erm64tEhQ/CjsWOFtot15OvmhjnJyXhfYcBTzWf85G0PqY7my2vXpAKAQNvKuVYBQDeDAUtTU4XGWCwWRQHAy5WVOHb1qtACTqSPDybGxqp+mI329ZV+uDhZXCycMWRLaj7bWl03rJH91+6Dc+eEs9LuGzDAKQKALa2t2JqTg+VpacJj3QwGjI6OFspeTQkKQqJA9m9nXb935Oai0WwWCmLM7dtXKADo6eIitRBc39IinM375xkzVHUkL62vx28//RT//PzzHhs+GW527PzFxIkYKJm5o9Pp8M977kG/tWuFs2ftqaCqyt5TwKqMDOmalDfq6vDEJ58Ij6tsbMTe/PxbCQCF3/mOVDmYqa+9Jnxv7CieGTlS1TbThpYW/O3YMfzls88UfY4yIyPx0/HjVSUF/GrSJHx47hzyKyp6/N0r1dXC9z5AW717g04nHRhXu/233bCICAR5ePSY2doVmcUaZ7h+3224BZisKlayLgeAO1aqHU19SwuyuyiI3hM174uMC6WlGP/qq5i9bh225uR0G7Aqq6/HC8eOIePFF1XVYXMzGPDgoEHC456bNEmqm1hNUxNmvfkm/nT4sHAR3/fOnsWk//xH+IYs3t8f9/bvLzRGK9llZZj2+uuY/sYb+PjChW4zR2qamvDHw4cx/JVXkKfgBqgr8wW67Ml+xi0Wi0NncAHAaRXfTVqe+7OTk4UDuseuXlX88CazDViLLtmy9ZwAx79ulNXXo1Dy4VmLz45Bp8NKia3aSjJlAGDjhQvC37+zk5KkFyYcjS3rAKrZ/tuuuqkJ+wR3M4i+7pjoaKnGZ3vy8lAnUKpjeESE8IJIR9tzc5Gydi3+cOiQom7vZosFG7OyMPTll/Hc/v2wSD74x/j64snhw6XGWkuj2YzyhoYu/yZ711n1N5nwh2nTpMc/uWWLQ2xh7m0C3d3x35JN4QDgbEkJhrz8Mr63fbvi+5DPCgsx6803cd/69cIZ0u1MRiN+NWmS4t+X6Wbro6IOoMloxBSJxhudMeh0mKaiUaFM/T8GAHsfBgDJqtQ8sOSWlWk4E+vILS+XGhfo7i7dGVnUe2fPYshLL2H/pUtC40rr6zH/7be77PqoxCrBB82MPn2wMj1d+HUsFgvuW78eO1TU1zpVXIx5b70lvHonWhtPLYvFgl8fOID0F14Q/ntzy8sx4403pG+ipsTHK67/JBvEKamrQ1Vjo9RYW5E97wF1wa3bydTcUxrIEf3ddgtTUqQC+B3xutG5CG9v1R3kJ8XFCWesXKqsxAmF5TjKGxqEt/C7SmSyOqqtOTnSOxcmCmYziQTiKhoaurwHEO0GPDg0VOgzZKvtv7+ZPFl6C92H585hzrp1UllZZosFP92zB9/eulXqtQHgR2PHwtfNTXq8Wq0WC947exbz334bgb//PUy//CUCfvc7uP7yl4j4058w9OWXMWfdOjzw0UeY+J//4PcHD9ptrgDwmylThJo7dLT+/Hm8/dVXGs/o7vDfY8dKd68+WVyMcf/+N86WlEiNf/3UKcxdtw6NkjtulqelKc7UlQ1oyWakToyNVX3f1NEMyWzJGF9foaxyALheW4vDBQVSr0f2wwAgWVWMige5opoaDWdiHUUquqCpaZKh1NqjR7H0vfekG16U1ddj4TvvSKe0p4WECDUoeCYzU6qo8B8PH8Z6DVagPissxB8Fa3ho3f20O41mM1avX48f794tfROUVVqKXx84IDW2j6cnEhT8e7oaDNK1hhyls2B31MxRq/M+yMMDs5KShMeJZPXllJUJZ9R5ubpiYUqK6LS+hteNzhn1elVlGQD5mpEiVwCZwLEWmaOOoKy+HockH4aGhofDR2EQKMTTU6gpzNacnC4zM0UDbTqdDnMFgo8yDUAsFovQvDL69JEONJ4pKcHq9euFM1dv9/zRo3jl88+lxvqZTHbrWpxVWoqhL7+MJe+9h48vXEBZff2tn7W0tuJqdTVOFBVhc3Y2/nPyJPbm59u1zMKIiAg8PHiw1Niy+np8c/NmjWd0d/BydcU3JN/3ioYGzH/7bZR2+GzJ2JWXh+9s2yY1VqfTKV6wP1tSIpX8INsIZI5G23/bTU9IkHqWmiyRhbgxK8vu9UBJHAOAZFVKb2Y7oya4ZivXVDxsqnlvlHjl88/x1JYtqm/UzpSU4I1Tp6TH36Nw22jgzdqDokrq6vDc/v3C47ry208/Fc6QUxvwUKK5tRVTX3sNb54+rfpYLx0/Lh1AVLKC6uXqKt0drjcEcBzhvF+amipc/PxkcTFyBDPkZII5MkGmjnjd6Jqa90Y2OCu6Ffzj8+eFHwgyIyNVF3t3FLLbgI16PcZGRyv63dlJSULfsZ1t/22XX1EhXHZhrsIHVj+TSWpb3Knr14XqzD2hYgvt01u3Cm017s4Pd+5EhYLtw5351vDhNu+q+nlREUb84x/CTV3sxaDT4cU5c6Tfp29v3arq+/dutjojQzpL9dcHDiiqv6fE348fl/68Lk1NVVwjVCYLcGx0NIwSWfpK6/8pzS4P8fSUaqTG7b93DwYAyarUdImqaWrScCbWUa1ijp5W3AL8eVERvrl5s2artM/t2ydd32Z8TIyi31uRng6TUbwv0f8cPKjpltHyhgbFjS7azZbIxBJV19ysqiZjRyV1ddJdrJU8pKvZylDbC857Nd9NajvntZPJmPpAomO1TB1AmW2mHfG60TU11w2Z7dlFNTXCGW3FtbU4KPFdJbOl3RHZog6gyPbf5tZWbMnJ6fZ3RLcBT4qLg5eCz+K4mBipRmkbBWpwuRkMUouHQFvdP9FGI90pu9lEREZSQABGSTaXklFUU4MZb7whHbC0hyeGD8cgyYYrG7OyVC1m3+3ul8xQvVxZieePHtVsHq0WC364c6fUWJPRqPi7Qiaw5ePmJvz5TA8JQYzCnSEicxLdBqyDeLmGmqYmTb8/yXYYACSrUvMgJ5uhZEtqurZpFQjoTH5FhaYdlHPLy3G8qEhq7OjoaEWrtYskmmmYLRar3NBtFnwYGhQWJtRF0REcvXJFapySwI6az3Zv6ITYZDZLb3nQIvDfNzBQqqumTDDvq+vXcUFwK4xso4l2vG50Tc17IxNgW3/uHFolPusymaOrMjIU1xh1ZOdu3JCu86hku6zJaMRUgSLv+y9d6jHIIxq0NBmNigrN26L+35T4eOmaytaoZbf26FHpjMIFAo221Hro4497VSfacG9v/GLiRKmxFQ0NeGzTJo1ndPeI9PHBcMnOv389ckTz+7rtubk4Kdnwa4HCLPgjV65IZYuK1gFUuv23rrkZL584ofi4MwUTE1JDQoRL92zLze0V9+x0JwYAyapkMrraddep1lGomaOa98YeRINi7fxNph6zxoI8PDBG4danjnbn5Vlly+jhwkKh33czGDBIsvuXvcg2dwlSsH3CzcnPe0B+nloEimW22J6/cQNnJItvywQO1WRz8brRNdn3JtLHRyoYI/NvD7QFDkWzxmP9/DBOYca4o5PNAhzQpw8Ce+iIPDkuTiiTs7vtv+2OFBYKB4OUbAMWbWwCtGWQHlPYdAYQ607fUWl9PfYJNkdTora5Gdtzc6XGKi2ZotamrKwes0Idzf9Ony5dAuGZbdt6RX1hR3VP377SDXa0qM/dGdlr09joaEVd51stFkXfnbcTDQAq3f577OpVHC4sVLz4PDwiosdrSUcy9wfc/tt7MQBIVqVmZUC0vpU9qJljb1s12ariZjElKKjbn4+KipLaJiTabVKpy5WVwo1T+vay+lWy237cFTx4Njr5eQ/Iz1O2A3M7vU4n3F0bkL9Zlh2bFhIiVfsL4HWjO7Lvzcr0dOG6WTfq6qQDJAVVVTgqEMRpp7Z+pKOQDQDqdboeC8mLNOAAlG2nNVss+CQ7W+i4s5OTu71uB3t4ID0kROiYAPBJdrZQ1qnM4iHQ9r5ouVOiI9mgR4K/v+pGP0r8v927rf4aWlqWloYlkp3Ct+Tk4NUvv9R4RncX2XPsZHExLkpmQ/dkveQ9jVGvV9xASSbANUagDmCQh4fiuezNz0dNUxOOKdy9Y9DphDLFRev/Nbe2SieGkP0xAEhWpaawcm/YUumuIlNFq6LTtnKmpES6DmBKD11yRwp0M+xIdhurEqWC2RBqOpfag2ytNCXnpWzXaaB3ZMa6GgxSAWtAfY26cTExiuvFdCSzJbPdiatXcamyUnicbBags1831HzGZd8bmZqRG1QGSGQCx/f276/quuoo9l+6JF2btrtMDB2UN+AAgNPXryNPYfF90aBlcA8PrxNiY6WyhkTm4W8ySS++7bbSAiIA7FJRF2uERHkHEXvy86W3T9qSDkCYlxe+M3Ik/n3PPVLHKK6txSMbN2o7sbvQCMl7dGueY6evX8f12lqpsUrPsd15ecLf4yJ1AGcmJiq+l9xxM6tYZKFmpsI6gEa9XriD8b78fJT3ovqh9HW9/y6LHJqaBzklBabtTc0ce0Ozg45qmppwtaZGqrh/vL9/tz9X0lm2M2sGDZJeFe6Jt+BWk0gfH6vMozdSc95bszmOVtSc92oDgDKBnLyKCnwuWcMTACxoC+Y8k5kpNG55ejq+v2OHcBDJ2a8bsvXKALnrxpCwMPTvYRGmM2qCxkDbZ+Z3U6YIjfFxc8M9/frh7a++UvXa9tZkNmN7bi4WS9S27W7b7NDwcKEMMZEtbNtzc9FkNgtlqM7r2xcHu2gSo6Se4e0azeZbD7pKDA4Lk96aeFayJIISV6qrUdXYKLVldUh4uNW2TQLAFsFMT1tbt2gR1i1apPo4lY2NmPnGGygU6CZNdwpwd0ec5AK3Nc8xoK3eaoinp/C4oQrrGTaazdiakyP8nDEhNlZRGQOl238rGxtx5GbCw6asLMW1MKcnJkKv0/WYUT00PFy4w/PHEtujyXEwAEhWpaY7q2gxUntQM0ctO9faSlZpqVQAsE8PF+i4HgKEXVmZni41zhrUPNQ7m5qmJrRaLMJbDoG2FX9Hp+a8V9tBeJHCAtYdqdn+2/EYogHAPp6emJ6QgM2CD5y8bnRN5r2RCRpXNjaqymICgJyyMpwsLsaAPn2Exq3OyOj1AUCgreuoTAAwJSgIoV5enRagF93+KxIArGpsxL5LlzA1Pl7xmLl9++IHXXTklKkptS8/X6hLdk+Li12xWCzCzY1EnbtxQyqbT/ZvUkpuH0fvUtnYiLnr1uGLa9fsPZVeT83n8Zy1A4AlJRgvUTdW5G/66Px5qQDg/xw61O3vuOj1mK5wi+7OixdvLaR+ee0arlRXK3oW6+PpiUGhoTjRwwKw6PZfi8WCj1n/r1fjFmCyqksKt550xhZ1UNQKUzHHyxJb6uztiuRKancPvDpAakujo7FmV+fepslsluqeBqg7p2xFTZBS9n0B2ordy2SUfHD2rPRrtjtUUCDVcEemphuvG50zWyzChexd9HosS0sTfq1NWVmadFSWCT5PS0joFYHcnmzJzpbqFq7T6brMApwnEAAsqqlRXC+qneg24JSgICQFBNzx/8O9vaW25oq+vmzpjcLqatXZ2D25cOOG1DhnuB+yp1PFxRj28ss4cPmyvafiFNR8Hq0dZJc9frSvr+KO859kZws37lJSB3BMdDT8TCZFx+tYx9UCsaaMSroBTxZY9AGAE0VFKGBmba/GACBZVb6KBzlrr4JqQXaOpfX1QqvcjkK2tlt3FzkPF5deUfetJy69oPaYLcme+yEeHg6fTZnQyQOvUrLdlwG5mnpXqqtvbR1Ro9VikSqIPa9vX+GtJbxudK6wqgrNgtupZyQmSm2R0iJoLHsco16P5RJBS0dTUleHI4Id5dt1lj0X4+srlE258cIF4WwvJQ1DbtdZVqJM9h8gHgCULb1RVl8vNc4Wr8FyIvJaWlvxjQ0bkF1WZu+pOA3Zz6PFYkG5lc8z2XPMw8UF/go75FY2NmJPfr7Q8X3c3HpsgqZ0+6/ZYrljF4XI9+SMHuoAuhuNwnXY2f2392MAkKxKzYNcuuC2IVszGY2drnwroeZ9sSfZuoXdBficJXOuuhdu6bYm2c+4TqdDqkTnSFtKUzG/bMkAYJiXl1BHt3brz50T6qjZHZlgjrvRiHsFt88483XDz2RClOQDlcz7IpOBWdvcjG0Cddi6c6akRCpLQ2bbsiOS7QbcWf084e6/Eq+dV1GBM4Lb9jrLSuyujmFXzpSUKG5Y0s5T8v7B2tl/al6jN9QxdVRGvR7bV68WLjtAXZP9PNa3tEhlQItQcx6LLDTLbHed0MN34ByFAcBDBQW4cVtTwl15eahvaVE0PjMyEv7dJGGMjo4WTsJgALD3YwCQrOp6ba10l6C0kBDpTpu2kBocrLjV++1kt4bYm2wGoFs3Fxd3JwkAVrAb1tecV/EZz3Dwm3c1DxeymQkr0tOlvg+1qP/Xbt+lSyiVWHEXDeZcrqxUfHN7O0f/7KiZn+h1w89kEuoY225LdramXeplAscDQ0OR7uALAUrIBgAT/P3v2Honsv23trlZuoajaBbg6KgoBNyWTSPTAETmvZJdQLRFAFB2l4ezLIrai5/JhI0rViDIw8PeU3EKsvfoNjnHVCy8i5xnH1+4AItgMLO72oRJAQGKSyR09n1c19ysuMOyQafDtG4Wj0Xr/+WUlQkvEpHj6f377sihWQAcKSzsMQW5M96urhgcFqaok5I9jJMoPNtOiy159tAsWROqu0Bpo+SDvqNRE/ByRmo+4+NjYvDyiRMazkY7JqMRwyUKuwNt23Flt6zIZHIBwBPDh+PxYcOkxnZGtKMvAIyJikKcn5/i7J7m1lacuHoVY6KjhV+rj6cnUoKCcM5Bz0eZguXtRM+pJampUuUVkgMD8e699wqP64psXcb7BgzA93fs0Er/zm4AACAASURBVGwe9nD6+nVcqqyUqqM1MS4Or375JYC2LWUin50dubnSQfRNWVn44Zgxin/fqNdjZmIi3jx9GgAQ5+cn1TVUJgAoWz5EywB3V9TsmNDh7mjWYS1RPj54df58zF23ju+jSg59jql4DZG/62p1NY5evSrU1Ke9DmBn90xKt/8CXTdy2njhAmYrqO8HtG0DfufMmU5/Jlr/j9l/zoEBQLK6I1euSAUAgbY6Mo4aAJStcQMAn0nWBbI36a0A3VykZR9SHElVY6NTdK3U0tErV6Q7AU+Ki3PYB6BRUVHSN8R7BevItBvQp4901uFCia7BWtPpdFiVkYHn9u9XPObIlStSAUCg7fPjqAFAmcyodqLXDZmakUBblqIjZFKuSE/HD3futPo2MmvblJWFb0kE4SfGxt4KAE6Jj4erQJ1Zke6/t/ussBA36uqEMqhmdAgAynzGS+vrcbigQHicaHH+diLvpazudj50p8lsdshrX28zOykJT40Ygb8cOWLvqfRqDn2OqXgN0b/ro/PnhQKA7XUAj3aycKd0+++F0tIuS2hszs6GxWKBTsE99ozExE7vqf1Nph5rFd6OAUDnwAAgWZ2aYNc9/frhdwcPajgbbXi7ukoHABtaWvDltWsaz8g2vCU6kALdB/kaJAOANU1Ndg+kNrS0IKesDK+fOiXVIdWZVTQ04EJpKVKCgoTHhnp5YURkpN3/fTtzj2Adro72KNyycTvZ7D9HsnrAAPxy/37FD7Zqrxt/O3ZMery1BHl4SAc1KxoahLKME/z9MToqSuq1HEW4tzemxMdrVo/QXqQDgB3uMWYKLKK2dlI0XoTZYsGWnByhAPL0xETodTq0WixS9f9kOybLZhnZos6e7GvYInPqbvHzCRPwxqlTUqUrqI0znmOA+N/18fnz+M3kyUJjJsTG3hEA9HFzw1iF9wHdLeQUVlXhy+JiDAoN7fE4oV5eGBQWhs+Liu6Yn0hpmeLaWhx2wPtyEscAIFnd/kuXUNfcLFXXJDMiAgn+/sgtL7fCzOQtTEmRrtOyOy9PekXN3mS7s1Z1U6ejyWxGVWMjfASDi7XNzZj6+utS8yHb2JqTIxUABICV6ekOFwA06vVYpqI7qdKaLR0ZdDqsSE+Xfk1HkRQQgMzISMU3j7suXkRzaytcJOqsToqLQ5iXl8MF5Zempkr9PQCwPTdXqJnLqowMRZkBjm71gAG9PgC4Nz8fNU1Nwg+rUT4+SAoIQE5ZGWYp3OoFAIcLC3G9tlZ0ml+z8cIFoQBgsIcHhtws2WKr+n+AcwYn1GxrdAY/3r0b23JyALRt04zx88NTI0YIZV+18zOZ8ONx4/Cdbdu0nuZdQ/Yc83R1tfpODtmkBED8PDt34wYulJYqrt0HtAXYfn9bEsv0hATF2ZE91WPdlJWlKAAItGUB3h4AFE1k2XDhgmZN5ci+2ASErK5ORUdBnU6HBwcN0nhG6j08ZIj02PW9OH3ar5tOUt25UlXV7c8vV1YKH7OPp6d0QJJsY72KBhTL09Mdrhj6vL59EeLpKTU2q7RUuMMlAExNSECYl5fUazoakWYg5Q0N0lumDTodHhg4UGqstegAfGPwYOnxItcNHZwjaxQAFvTr1+u/5xtaWrBTsiHHqKgoJAYECNVRFG3i0ZltubnCC5UT4+IQ5eODCMGaj82trdL3iLJBflt8pkQXNdsVVVdrPJPeJa+8HCeKinCiqAgHCwqw7vRpjPv3v6XLAX1z2DCpmpTURvbzaNDprH4PJ3seN7e23tFZVwnR7a8jIyPvKIOjtJv7jbo6HOqhLILIwsn0ThqB9NSp+HYy3ZDJMTEASDahJhDw+LBhNlmtVWp0VJT01iqzxaKqNo+9JQusfHV0pYcbiEsSAUAASAwIkBpHtnGooADFkpkoge7uDhf8/6/Ro6XHvn7qlNQ42TpujmhJaqpQzR41140nR4xQVR9Ia9MSEjBQ4Ur97RrNZnwisKVzVFQUEvz9pV7L0Xi4uGBR//72noZqshluwyMikBkZKTRGi3uMqsZG7L90SWjMmOho4XpSAPDp5cuoaGgQHgcAlyQWVQAg2tdXqqu6CNmgk8yCqLNrMpvx2KZNwp1YgbY6cb+cNMkKs7o7qPk8xln5OhQvefyCykqpTDbRAKCfyYT+wcG3/tuo1yvO5t6soCzC8atXcU3hIsjIqKivLUoEeXggtcPcelLd1IRdkmVsyPEwAEg2sTErSzqN3N9kwpPDh2s8I3k/mzBBeuyevDzVW3PsxcPFBQmSAbfcsjJVP+9KakiI1DiyDbPFgve66DymxPdHjYK7ZCF1rc1MTJTaggS01eR67eRJ4XE+bm6Y36+f1Gs6ogB3d8XFrwHgw3PnpMslhHl54REVmdpa0gH46fjx0uO3ZGd3W0bhds6S/dfOGYLgm7OzpR44h0VEYIRAADC7rEyzBjiiQcvRUVEYEh5u9dfpSHbx0GQ0Wj04kSLwcN2R7N/k7D4vKsJGyc/KsrQ0qeA0AfmSQXYA0iVglOoneXzZoObRK1eEs45HdUgYGR0VhUB3d0XjlCzktFosihcHXfT6r9VnHRcTI1QmZGtOjnTNdnI8DACSTVQ0NEhnwADAj8aOFdoCYy0LU1IwVbBlekdrjx7VcDa2lRocLL1ifrK4uNufH5fc2jGtk5R2cixrjx6VWrUH2rI0fjBmjMYzEudmMODPM2ZIj9+dlyd1w7lIRa1RRyUSnCqurcV7Z89Kv9bPJ0wQ6mRqLasHDPjaQ4AokYYmJqMRS1JTpV/LEU2IjUW0r6+9p6HKtZoanLit/pISA/r0wfiYGMW/r+UOA9HAXIC7u1S9UjVblk+qaKhmzeCEt6srIiXvWXtrkzhbeG7/fqn7Cb1Oh99PnWqFGTm/K9XVUttlAfkguLWPL3uOtUrs4hrZYQFnnsLtv41mM7YrLIsgEhTv+Mw0TuC6ArD7r7NhAJBs5q9HjkgHArxcXfH3OXNgz5LmwR4e+OvMmdLj8ysqVK1029swyewnoOeLrWxtlxk3Ow+S47pQWqqqiP8PRo9Gup0zPX8+YYL09ncAePH4calxIjXzeouZiYlCQbm/fPaZ9GsFuLur+s7WQoS3N/4wbZr0+LMlJdglUD9uTnIy/CVrtToqvU6HlU7QCEfm+u9qMCBN4PtPywBgbnk5zpaUCI0R3Xp+obQU2ZI7AACgoKpKug6gmnuangwJD5duwnN711D6P8evXsUnNxuEiJocF4cZAt206f/I3qMPk8gIVirQ3V16C7Cac0w0ENZx8U9p/b/deXmoaWpS9Ls7L15Eo8KdEh0DgCILS82trUJlSMjxMQBINnO2pATbJQthA8Dc5GQ8NWKEhjNSTq/T4dX584WLW3f0/NGjPdZzcGSLUlKkxmWVlva47TmrtBQlEiuMwR4eX1tdI8f0vyqCOCajEW8vXgxPO2XCzUhMVFX772RxsVQtuxhfX+EV2t7A1WAQ6qR87OpVHOyhEHZ3lqel4SE71ZI06vV4c9EiBKvIQvzLkSNCXRSdMWgMOMe2ZmsvAJbW1/dYNF6UteesxfFlu8Vbs7yC7LHL6uuRVVqq8Wycyy/27ZMe+7spU7hoLEH2HJsSH2+1Gu5zkpOldyXJ/j1AWyknkZIcSQEB8HVzQ7y/P5IUllESWcipaWrCHoW1+RIDApDg7w93o1FoYWlvfr50nVZyTI5RXInuGj/atQtT4+OlL8B/mDYNhVVV+EBFcXhROgB/mzVLceHWzhRUVeFFgW1cjqaPpyfGC3aLardDQdC31WLBpqwsrJHo3Pm9UaNw8J13ZKZGNrI9Nxd78vO/Vn9ERP/gYKxftgxz161TvNKphaHh4Xhn8WJVDww/37tXKIDTblVGhtTrHrlyBf/64guJVxTXPzgY35ZYlFmdkSFUDuG/d+7E/jVrhF+n3QuzZ+NqdTW2SGaOyNDrdPjnvHlCq+y3yy4rw78F/i2DPTykM1ye2bZNuk6vqOcmThTupp0SFIRh4eHSmSiO4IuiIlyprla1kNidT7Kz0dLaqukxN2ZlqVoA6YkWAcDNWVlYIBFwSw8JQYK/P3LLy1XPoSMd5AOAW3JypGpF3k2OXrmCrTk5Ut91GX36YHVGBv4jUZP3brYpKwvPStQ/NxmNmJGYiPdVlPLoygLJpISzJSXIU1HXsNFsxpacHCxVWGpDp9NhcFgY+iosOWC5+TwkYlNWluLzYVpCAr64dg1GvfIcMG7/dT4MAJJNfV5UhHWnT2OVZFFvo16PdYsW4b716/GOiuYCShl0Ovx5xgw8NnSoquP8dM8e1Pfi4qnL09OlV9qU1rFYf+6cVADwnr59kR4SgtPXrwuPJdv5/vbtOPrww9LBtKnx8Vi/bBmWvvceqhVujVAjMzISG5cv/1rXNFEniorwseSNk2zG00vHj+PfX34pNVaUl6srHh0yBCbBRi3DIyLQLygI5xU2Kzhw+TI+On9e+qHa1WDAB0uXYtn779ukC7uLXo+/z5mjOhvvR7t2oVkgoLMsLQ0uAjf17T4vKsKfVWTpihocFoZHJRq0rB4woFcHAC1oC1ZZqzmNNT7bhwsKUFpfr7hwvYiKhgYcvHxZ9XE2XLgAs8UidY+yZtAg/L/du1XPoaNJcXGIkaxZKXu9uNv8Yt8+6cWO5yZNwrtnzvTqe3Jb+6KoCJcqK6U+12sGDtQ8ABju7Y3pkjXAtQhmfXT+vOIAINC2mKy0m/vn166hsKpKaD6bsrKwdtYsRb87LSFB6D7cYrHwe8kJcQsw2dyPd+9WlWngajDgrUWL8OyECUIrGKIC3N3x0bJleEJlB+Ivr13D6714tdHDxQXfHzVKamxZfT22Kcy62XHxotQ2YN3N4s7c1OHYThQV4Q0VjYCAtvpxnz74oOJtFLJWZWRgz/33q2ogYbZY8K3Nm6Wy/0ZERKCvRM3BltZW6S6JMmqamhQH+G8n2tn1hzt3qsr+dDcasX7pUvxwzBirbgEL8fTEJytX4kGV244PFRTgA8GHJtmA44c2zKhX83qyAU5HYq3zs9FsVnytFWG2WLDFSrWftubkCAW4u1JSV4fdCrfA3e7pzEyEenmpnkM7HYBfTZ4sNbaqsdGmWcq92eHCQulrT5SPj93KCfVWFgDvfPWV1NhZSUkYGx2t6Xx+Nn688MJju3c1SB75/+zdd1gU59oG8HvpiCLFFrAAKiqCJUaNJnaxxI7tWKKJJmpMYownxZh4Uk5OmkksyWevscQWC4INLAhixa5IL4Io0vvC7s73xwqCLLA7u0tZ79917eUyO/POOyvMzj7zvs9zNCIChRpcj/RwdMRAZ2e11hVzIycuM1PtQRADnZ01qix/9enIdTIsdftKiuqk+MxMfObnp1UbEokE/+nXDxdmz0aXZs101LNnxnfogLvz52Okq6tW7RTK5Xj78OFqz/2nzail533Tv7/oCsx77t5V+0t7gUyGdSKLJQxr0wYf9+olalt1ODZogC9efx3bx43DMk9PjROdk9KiEydEJ2wv1qlpU9yYNw+LevXSeTDAsUEDHJg8GdvHjRN9cVls5cWLuCQy0bTY0X/n4uJEV+sTS2w6Bk2nOIelpuLrM2dE7auYkUSCHwcNQuDbb6OjjqsTSgBM8/DA3fnzMViLSvEAkC+TYba3t0bBY7fGjfGKyITr1R0APBMTg7T8fI23a1yvHoZrkYqjNjgdE6OXkUdnYmL0NjJaX3kAddnu/2mQUqA0K1NTfN2vn876Md7NDT1FFhfZeuOG2on/SbtcgItff10vo1oN2dqrV0V/l/nZ01NnN97aN2ok+gbbubg43Hz8WOs+ZEmlGt10GNWuHWzULM4ldiS3utXUrc3NMcHNTe12Of3XMDEASDVi9ZUrauWGq8orDg4ImTMHeydORLeXXtKqLWOJBKNcXXHpnXewf9IkndwV/i4gQHS5eW0MdnHBJyJH7ZU2ytUV/xYZWBMEQeOA3uorV0SP8lnm6anzqVUODRpgzYgRiP7oI/wwaBCmd+qET3r3RsjcuejUtKlO9/UiSM3Pxzve3qKrgRerZ2qK34YMQfiHH+Kdl1/WukCIk40NVgwbhsgFC0TlknpeZFoalooMVmlaJKO06g7kAMqLTjGjeFo2bKhxfrxfg4O1KghSrHeLFrj13nvY4eWFzlr+HZsYGWFc+/YImTsXO7y8tBo1WuwLf3+1p0cX03REZbHQlBSEargvbRVpMVK1rhc5ySsq0qiqs7r0ObVdVyP1SpMLgk5Hu/mEh4vO6zW3WzdM0mA6X0Xa2Nlh3ciRorZVCAL+rw7nia4J5x88wCmRIz9tLCzwZd++Ou6RYYvJyICvyPN2r+bN8f3AgVr3wdrcHPsmThQ9+2vVpUta96HYYQ3OuebGxmqtF5+ZiZsivzNqckPFUoMb3AwAGiYGAKlGCABmHT5cZXVYdRhJJJjo5oarc+bg9nvv4T/9+qFPy5ZqnXAbmJlhRNu2+H3oUMR//DG8p0xBD5F3b58XGB+Pn8+f10lbYizz9MR3AwaInho7vE0b7Jk4UfRdu5PR0RrfaUvKyRF9J99IIsG6kSOxavhwraeGOzRogGWenohcsADzXnkFZs/9LjU0N8fByZNhq+YdPXrmaESEzr7oONnYYMOoUUj65BNsHTsWUz081BqtKoFyJOFHPXvi9MyZiFqwAB/17Kn1qD9AOXpr2oEDotMcvNG2raiRCQpBqJELtfSCAtHT7zQN5sgFATMPHkS6DqrRGUkkmObhgRvz5uH63Ln4sk8fvNaihVqjSm0sLDDK1RWrhg9HwqJFODB5MrrqaCT6yago/KHhOdBIIsE0kQHAmggaA9B4enOxka6udf68q+sRdYIg6HXqf6ZUisC4OJ22GfzggahRoBWRC4LoEWESiQQ7vLxE56YGgI6NG+P0zJmwEzmqbMetW6z+K4I2owDnd+8OZxsbHfbG8H1z9qzoIjVfvP46/jdwoOjvFI3r1cOJ6dM1ql5b2o1Hj3BQh9dIh+/f13nBniPh4aLSxgDKAnBi0ihVJjw1FfeePNFpm1Q7sAgI1ZiErCyM3b0bp2fO1MkXbwBwb9IE7k2a4Nv+/SEXBMRlZCAuMxMpeXnILSyEsZER6pmaoomVFVxsbfVWjS8mIwPj9+zReUU+TS3t2xevtWiB948eVXtEiaWJCZb06YMv+vQRXfgDAH4IDBS13ffnzmFmly6ip2d82KMHhrVpg+/PncPOW7fUnrJgJJFgsIsL5nbrhtHt2lUZRHSxtcV2Ly+M/vtvVu3T0McnTqBdo0bw1HKqZLEGZmaY2bkzZj4NKKXl5yMyLQ2PcnKQW1SEnMJC2FhYoL6ZGVo2bIjWtrY6O+eUJggCZh0+jMsip/4C4kdyXUpMrLE8LQdCQ0Ul5B7v5ob3jx7VKFgalZ6OCXv34vj06TqbAt6lWbOSVBIyhQJxmZmIzchAWn4+cgoLYWJkBKunnxut7ezwkg5zhpV2PyUFk/fv1/h8MsDJCS2srUXts6YCgH7R0cguLEQDMzONtjM3Nsakjh2xLiRETz3TP9+ICAiCAImOpsRdF5E0XlNHwsPVzmGlDn1MK95+8yYW9eoFDxEBAlMjI2wfNw5DWrfGF/7+ap9LzYyN8UGPHvjvgAGoJ3IkeoFMJnrE+IvuXFwczsbGor+Tk8bbmhsb4/uBAzHtwAHdd8xAXX/0SKtCjkv69EHvFi3w0fHjuKXmAAEJgIkdO2L50KGi0xEBwOf+/jq9Vk/KycHlxES1i3uoQ5uR3ApBwNGIiJLrYF3g6D/DxQAg1agLCQl4+/Bh7PLy0tnFcDFjiQQutrZwqeZ8bZlSKUbu2qXzOzFiDXR2xp3583EsIgK+ERE4HhmJ2OemypgaGaGbgwMmuLnhX+7uWgdG/wkNxTmRIwbSCwrwmZ8fNo0eLXr/be3ssG3sWPxv4ECcjonBmdhY3HvyBE9yc5GSlweJRAJbCwvYWVrCvUkTvNq8OYa2aaNxbr8Rbdviq759tboL/SKSKRSYtG8fgmfPRodGjXTevp2lpc5G8mriv+fOYbfIRNmAst8jROYdralADqC8SFw9YoTGNwwamJlhbPv22HX7tkbbnY6JwXs+PtioxTmiIiZGRmhta1vteT5T8vIwctcuZIgY3Sg2Z2RsRgauJyWJ2lZbBTIZjkZEaFRJsdiMzp3rdAAwISsLNx4/1tmo0eqobO0THo7lQ4fqtD1dKy68dPatt0SPMnqzUydM6tgRR8LCcCQ8HFcfPsSjnJyS0YoWJiZoamWF9o0aYUjr1pjq4aF1upjvz51DfGamVm28yL4LCBAVAASAKe7u+P3CBYTU0HmwLlrs748RWozE7u/khOtz5+JMbCwOhIYi+MEDJGVnIzk3FwKU30eaWFnB2dYWA5ycMK1TJ1FF0Urbf++e6KIxlTl0/77OAoBZUinOxsZq1YZPeLhOA4CaTHOmuoUBQKpxu+/cgZ2lJf4cPlznQcDqlvU0+FfbhkwbSyQY6epaUtSkUC5Hcm4u0gsK0LhePTS1stLZe59bVIRPTp7Uqo3N169jlKsrxmqZj625tTVmdO6s17xRX/frh8uJiTjO6n0aySgowNDt23Fq5ky9V/WtDquvXME3Z89q1cbkjh3VzhXzvIM1GABMzs1FUHy8xjn9AGUwR9MAIABsun4ddpaW+MXTU+Nta5u0/Hy8sXMnotLTNd7WytQU4zt0ELXfg/fvi55upAv/3LsnKgDYq3lztLGzQ2Ramh56VT18wsPrVAAwMi0N91NS0F4HN2yi09P1do0UGB+P3y5cwKda5EA2NzbGBDe3MonypXI5pDKZTgusAcDFhIQaTRVjCM7ExiIwPl5UpVmJRIKfPT0x+K+/9NAzw5SYnY33fX2xa/x40W0YSSQY5OyMQaVGFcsUCmQXFuo8xcOjnBy85+ur0zaLHQ4Lw0+DB+ukrRNRURpVFlbl5NM2nk9bJMajnBxcTEjQuh2qnZgDkGqF1VeuYLa3d7VXy9Wl9IICeG7fjqD4+JruSpXMjI3R3NoaHk2aoFn9+joNvH58/Hi5EYZivHvkiOik3tXJSCLBTi8vtSt80TMPsrLQb8sW3K1lAXNN/Xz+PN4/elTrYIrYQPXNx49FBY90SWxOt8EuLqKn9SwLDsaHx45pXVSmJj3Jy8PAbdtw5eFDUduP69AB9TWcRlusJkeNAsCxyEhRFXElEonoqfK1ha5GwD3Iyqq2QmO6yjOor6rCxZaePo1gHRQLKs3c2Fjnwb+UvDxMO3CgxlPFGAJtZmEMcnbGsDZtdNgbw/f3nTvYeO2aTts0MTLSefCvSKHA9AMHkKKnGVn3U1I0LthVEV3cyMmSSkXPvnqed1gY0xsZMAYAqdbYcuMGpuzfj1yRyfNr0oOsLAzctk2r3F+GYP+9e9igo4uClLw8vLFzp04ThevLsuBgUVP3SJlHpf/WrTqp7loT/nvuHBb7+2vdTls7O9FTSWo6kAM8HU0m4mLRWCLBVA8P0fv98/JlvHX4MApEBJJqWlR6Ovpt2aJxsaTSxAbCHuXk6DxIoqmcwkKcEDlyenqnTqILXNUGxVNLtXUkLKzaRnHqKnCn7wCgVC7HmN27a/ymSGUKZDKM3b0b0bW4j3WJf3S0VueznwcPFj1t/EU139cXfnqoaK5L8319RVeKVpcu8uTJFAocjYjQQW90d6OG+f8MGwOAVKvsu3cPr27ciLA6VA3NPzoaL69bV2134WurCwkJmHnokE7bvJ+SgpG7dumk6qe+fHX6NH4KCqrpbtRpKXl5GLB1K1ZcvFjTXdHYKw4OOilGITaPG1A7AoAJWVm4JPIGiLajuf66eROvbd5cJ0YMF/MJD8cr69cjVIvRA44NGmCQyEI6h/RQwVAMsb+7Lra2eF3ElL/aojhhu7aqY/pvMV1U7s2SShGg44rCqqTk5WHI9u21MgiYL5Nh4r59dfamV22lzSjATk2b6jVVjCEqUigwYe9erfPW6YMgCPjUz0/noxRV0UWg7LwOq6Lr4gZLdmEhTus5cEo1iwFAqnXuJCejx4YN2H7rVk13pVKFcjm+OXsWw3bs0Nvw8rri+qNHGLVrl0bVPNV1ISEBfbdsqbEKpxUpkMkw58gR/E9ktWMqq0ihwMcnTmDC3r1Izs2t6e6obXibNlg3apRWo5EkEB8EC09NxZ3kZC32rjtigzmdmjZF56ZNtdr3taQkdFu3DvtETkWuLgUyGRb7+2P0339rPWp4qoeH6ErttSFoDChHK4jNe6RN0Lw20PaLWpZUijPV+OVbplDgmJa5bv2io7XOc6Wu6PR0vLZpE67VogIP6QUFGLJ9u95HQb6ITkRFaZWz7LsBA2BpwtT4msiSSjFsxw7sr0Wfu0UKBWZ5e+PX4OBq2d/lxEQ81PL7iS5v5Ogix+qxiAhIq+k8TTWDAUCqlbKkUsw4eBCD//oL4bVwNGBAXBy6rF2LbwMCamXewpzCwmrb15nYWPTfuhWpepyqWxwU1vdQfnWFp6bi1Y0bdTbdmZ75JzQUHf7v/7Dh2rU6k9vt7S5d8O2AAaK379OqFZxsbERtW1sCOYDy/04sXYy+SC8owKR9+zBi165aORrQLzoaHmvW4Ofz53UybVPse5aWn19rRm1kFBSIHmkw0c0NFnX4C7tfdLRWX7J0kTReU9oGro5Uc1XJx7m5eH3zZqy9erVa96vKpcREdFu3rk7kia6rtBkF2MLaGgt69tRhb14MUrkck/btwycnT1b7+eh5cZmZ6LdlC7beuFFt+xSgfQBP1yO5tT1Pc/qv4WMAkGq1UzEx6LRmDT7z88PjWjAq6H5KCqYfOIABW7dqNXVL305GReGtQ4dEJVhXlyAI+DU4GMN27ECWVKq3/RR7mJ2NIdu34zM/vxrLE5lbVITvAgLQbf16rfJ2UeXS8vMx58gR9N68udbnmCm2tG9fzOnWTdS22gS/oLhnvgAAIABJREFUatOIt+j0dISIHG0z1cMDJjqYSg0ARyMi4L56Nb46fbpWjM6+k5yMifv2Ycj27TqrXNu1WTO4N2kiattD9++jqBYVHhD7O2xjYYHR7drpuDfVJ6ewUKtAbHVO/y12PDJS9O+OQhC0HkEoRr5Mhvd8fTF2927EZWbWyP6/DQhAnzqWpqAuOhYZKbqgEgAsfv112Fta6rBHLwYBwG8XLqD3pk24qsX7L5ZCELD5+nV0XbsWF2qgcq02AbPQlBSdV7TXJgBYKJfrLB8h1V4MAFKtJ5XLsSw4GC4rV2Lh8eN4kJVV7X249fgxpvzzDzquXo2dt29XW9JtbWy7eROvbdqk8w8WQDkCbuiOHfjUz69a7/gpBAHLgoPR7o8/8NfNm9U2+jK3qAirr1xBm1Wr8PXZs9U6wvJFdjEhAUO2b0evTZvgEx5eK3KWVeb/3ngDo1xdNdrG0sQEE9zcRO3v4P37tWp6GwB8e/asqO2a1a8PT5H57FTJKyrC/wID4bxyJT7180OSDgouaCokKQnj9+5F57VrdT5FSmzQuEAmq3VpC3bcuiU6V9uLWg1Yl0njNZFRUCB6BNvlxMQaTe9wOCwMHf78E1+fPVstRbvkgoDdd+7A7f/+D9+cPVurgu6GbMmpU6KvFWwsLPBl37467tGLIyQpCT03bsQ73t6Ir6Zge0BcHF7duBGzvb1rLF/4mdhYZIocCPGPHm7iBj94IHrQjDbHQnUHA4BUZ+QVFWHlpUtwXrECQ7Zvx183b+o1EPM4NxcrL11C9w0b0HntWuy+c6fWByCed/3RI7ivXo1FJ07oZIpuYnY2/n3yJDzWrKnRkVmJ2dmYeegQ2qxahd8vXNDbh/69J0+w8PhxNP/9d7x/9KhOqjaS5i4mJGDU33/DacUKfHHqlNb5TfTFxMgIuydMQE9HR7W3GdO+PRqam2u8r8uJiXhbx0V3dOFIeLjoojj6yOmWU1iIX4OD0XL5cryxcyd23b6tl1ylxR5mZ+O3CxfQZe1avLJ+PQ6Ehur8c8PEyAhTRFROlsrlGL93b62rPFool2P8nj2ikqAPa9MGTays9NCr6iE2AKjLpPGaEttnXVWn1Ea+TIbvAgLQcvlyLDpxQi8pZjIKCrD6yhW0++MPTPnnH8Ry1F+18o+Oxuf+/qJvEM/v3h3OIlNykPJG/abr19Fm1SpMO3BAdHGwyhTIZCVFI/tv3arVqE9dEDtqLi0/H6uvXNF5f+SCgD8vXxa17WFO/30h1N3kKfTCkgsC/KKj4Rcdjfd8fdG7RQv0a9UK/Zyc0N3BQXROoCypFOcfPMC5uDgExMbicmJirczvpympXI7lFy9iy40beL97d0zr1AkdGjVSe/vswkL4RUVhz927OBgaWqvuYsdmZODfJ09isb8/Bjo7w6tDB/Rt1Qrt7O0hEZEcPzE7GyEPH+JkVBSORUbq5YuyAIhqN1vHwe78oiJR/ajJIOiDrCz8FBSEn4KC0L5Ro5K/+76tWsGxQQNRbRbK5QhNScH5+HiciY1FUnY2fKZOhY2Fhaj26pma4sjUqXht0yZEqDH6tl+rVmr/P8gUCsRlZuLw/ftYHxJSq/4WS/vi1CmcjonBnG7d0NbeHg3MzNTarlPTprAwMUGBHlIXFBcwOBYZCStTU/Rp1Qp9W7VCv1at8IqDA8yMjUW1WzwiKiAuDufi4hDy8KHePzd6Ojoit7AQ0WqeE1Lz83EtKQk/BwXV2imINx8/hvvq1Vj46qvo3aIFXmrQQO3COp4uLth5+7Ze+6cvsRkZ8I+OhoutrUbb/V2Dx3skLAzvd+8uarvaIruwEMsvXsTyixfRpVkzTHRzwwBnZ3R76SVR54KItDQExsXh4P378IuKqpYE+ukFBaI+w6tj9CMAPMnNFdU/XdzY/zU4GOfi4jC3Wzd0adZM48/zOd264YtTp6pcLz4zE1IRn1e6/IyIz8yEXMNrger4blOkUGDX7dvYdfs2nGxsMNHNDUNat0bP5s3VviYoLSknB0Hx8TgSFobDYWHVknpIE3vv3lX75q9CEHA/JQVLz5zR2+yEn4KCUN/MDKPbtYO5Bue0w7XoPE36U9H1lTeAUeWWTpsGtG2r1w4RacNIIkHLhg3Rxs4OrW1t0ax+fViamsLWwgKWpqaQKxTIl8mQJZUip7AQiVlZiExLQ2RaWo1MEavKSFdXHJkyRePtDoSGYvzevRW+3sLaGr1atICrvT1aWFvD1tISpkZGKFIokCWVIj0/H6EpKbibnIxrSUm1NtBQEXtLS3RzcICzjQ2cbW1ha2EBW0tLmBkbo1Auh1QmQ3ZhIR7n5CA+MxMJWVm4+fhxnao+S2XZWFiU/N23bNgQ9vXqwdLEBJamprA2N0dmQQHkgoC0/Hw8ysnBg8xMxGRkIPTJk3K/3wOcnHB8+nTRQSEAiEpPR+9Nm/g7VQcYl/rcaGNnh6b168PSxAQ2Tz83ZAoF8ouKkF1YiGypFAmlPjdqQ25aItINCxMTdG7aFG3s7OBsawvHBg1gZWYGCxMTmBkbQyqTIaOgABlPg28xGRm4+egRzwNEajKWSNCxSRO42tvD2cYGLRs2RH0zM1iZmZVco2cWFCCnsBAxGRmITk/HneRkjqQlUtfJk4DqKtgfA1gBMABIVKvpKwBIRJX7l7s7dnl5iRpJWiwkKQn9t25lzkgiIiIiItIvNQKAzAFIRET0nN137uDbgACt2uj20kvYO3GizqrbEhERERERicVvJURERCp8FxCArTduaNXG8DZtsGXMGLXzmREREREREekDA4BEREQqCADmHDmidcXr6Z064ev+/XXSJyIiIiIiIjEYACQiIqpAkUKBCXv34tbjx1q183W/fqIqZxIREREREekCA4BERESVyJJK8cbOnUjIytKqnZXDh2Ns+/Y66hUREREREZH6GAAkIiKqQmJ2Nsbs3q1VRV9jiQS7xo9Hr+bNddgzIiIiIiKiqjEASEREpIZrSUmYvH8/ZAqF6DYsTUzgPWUKXO3tddgzIiIiIiKiyjEASEREpKajERGY7+urVRuN6tXDsWnT0NTKSke9IiIiIiIiqhwDgERERBrYcO0afjl/Xqs2XGxt4T1lCqxMTXXUKyIiIiIioooxAEhERKShz/39sfD4cSgEQXQbPRwdsXfiRJgY8aOYiIiIiIj0i986iIiIRFh56RIm7tunVXXgN9q2xZoRI3TYKyIiIiIiovJMaroDREREddWB0FAcCQvD8LZt0bdVK3R3cECz+vVha2mp9si+8W5uuJOcjJWXLum5t0RERERE9KJiAJCIiEgLRQoFvMPC4B0WVtNdISIiIiIiUolTgImIiIiIiIiIiAwYA4BEREREREREREQGjFOAiWqxyLQ0/Hz+vMbb3UlO1kNviIiIiIiIiKguYgCQqBa7n5KCxf7+Nd0NIiIiIiIiIqrDOAWYiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYAwAEhERERERERERGTAGAImIiIiIiIiIiAwYA4BEREREREREREQGjAFAIiIiIiIiIiIiA8YAIBERERERERERkQFjAJCIiIiIiIiIiMiAMQBIRERERERERERkwBgAJCIiIiIiIiIiMmAMABIRERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgPGACAREREREREREZEBYwCQiIiIiIiIiIjIgDEASEREREREREREZMAYACQiIiIiIiIiIjJgDAASEREREREREREZMAYAiYiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyICZVLC8vcql+/cDRowZEhERERERERER1QpFRRW90qn4SUUBQGuVS6VS7TpERERERERERERE1cG2+AmH8xERERERERERERkwBgCJiIiIiIiIiIgMGAOAREREREREREREBowBQCIiIiIiIiIiIgNWUQDwfrX2goiIiIiIiIiIiHTpVvGTigKAWdXUESIiIiIiIiIiItK99OInJmJbsLW1rXolIiIiIiIiIiIi0imZTIbs7Gy11xcVADQ1NUVaWpqYTYmIiIiIiIiIiEgL586dQ79+/dRen0VAiIiIiIiIiIiIDBgDgERERERERERERAaMAUAiIiIiIiIiIiIDxgAgERERERERERGRAWMAkIiIiIiIiIiIyIAxAEhERERERERERGTAGAAkIiIiIiIiIiIyYCY13QGqxeRyyB/EQ5GQAEVKCoScHAhFRZAYG0Fi3RASe3sYt2gJ4xYtAGPjmu4tERERERERERGpwAAglSUIkEdEoOhiMGT37kHIz69yE4mFBUw6doTpq71g3NYVkEiqoaNERERERERERKQOBgCphCz0Hgp9fCBPeAABwNVHGbjwMB2xmXmIycpDan4RAKCBmTFaWdfDa4626N+iERwBFIWEoCgkBEaOjjAfNRomHdxq9FiIiIiIiIiIiEiJAUCCkJuDgn37ILt+DQnZBdh0Ow77w5MQl1Xx6L9ApGHHvQQAQAf7+nivsxOmdnCEWWIi8teugUmXLrCY9C9IrKyq6zCIiIiIiIiIiEgFBgBfcPKEBBRs2oDc5CdYERKNFSExyJfJNWojNDUHC07fwS9XorC4RxvM6Ngcshs3kBsbh3pz5sLI0VFPvSciIiIiIiIioqowAPgCk0dHI3/dGtxOeIJ/+VxDfFZeuXVsbRvCw8MVzs4t0KxZYwBAamo6bt68j2vX7kIufxYsTMjOxwenbsM/7gn+HOwB64x05K1cDst578HYpXW1HRcR1W3e3t549OhRje1/zJgxaNq0aY3tX5XQ0FAEBgaWWWZhYYEZM2bUUI+IDNOdO3cQHBxcZpmdnR0mTJhQ7X1RKBTYuHFjueVDhw5Fq1atqr0/REREVLcxAPiCUjxMRP66NTgdnoDpR68ju1BW8pqxsTEmTXoD06aNxpAhfWBqqvrXJC0tA8ePn8Ovv27E9ev3SpYfinyEWylZODimO5wbAvnr1qLego9g5Nhc78dFRHXfsmXLEBQUVGP79/DwqHUBwICAALz33ntlljVu3JgBQCIdO336ND766KMyy9zd3WskACiTyTB37txyy729vRkAJKIK5ebmYuTIkVAoFCXLOnXqhD/++KMGe1Vebm4ubt++XWZZ48aN0bo1B44Q6QsDgC8gIS8P+evX4fj9eEz1uYYihVDyWp8+3bFy5VJ07Vp1EQ87OxtMnToaU6aMwpEjpzF//n+QmPgYABCdkYexh67Ab+KraAIgf+MG1PvkU0is6uvrsIiIiIiIiF5oMpkMgYGBkAtyQAJAAQiCUOV21S08PBy9evUqs2zWrFnYtGlTDfWIyPAZ1XQHqPoV7N2DqNhEvHviVpng32efzUFAwC61gn+lSSQSjB49CNevH8HQoX1Klsdk5mGCdwjyiuRQpKWhYN8+nR0DERERERERVcAMgAXED/lJSwP27gY++gAY3B9o1xpo3hRo5QB0cQfGjQK++wYIPAcUFYnvpwUASwDG4psoIZcDT54A9+4CN64DYfeB9HSg1GhIohcZRwC+YGRh95Fz9Sqm+15HhvTZiXrlyqVYsGCmVm03bmwHH5+NGDfuPfj4nAYA3EjOxI+XIvHf19tBdv0aZD17wqSDZgFGIiKqu44fP46zZ8+WWda2bVvMnj27ZjpERESkZxmFwNlkYGxdzIB0IRhYuRzwPQJIparXSUpSBtl8fYDvvwUcHICZbwPzPwQ0TaMigXbDkh7EA/v3Af4ngWshysBl6RGPRkbKPvV4FRg2HBjrBdjba7FDorqLAcAXTKG3N7bdeYDbKVkly+bPn1Ym+Pfo0SNs27atwjZsbW3RqVMn9OjRA0ZGZc/WJibG2LNnJQYOnI5Ll24CAFbfiME0N0e0t6sPqc8RmLTvAEgkOj4yIjJ0Hh4eMDMz0/t+6tdnqgJdCggIwM8//1xm2ZAhQxgAJCIigxSSBkwOBBLygKvDAXebmu6RmmJjgEULlYG/0gE0Bweg68tAKyfA2vrZKLvwMOUou7w84OFD4Mf/AX+uAj5dDCz6BND3Ndu1EOCH75X9LVWYshyFQhmwPHxQ+Vj0ETBlGrB4CeDkrN8+EtUyDAC+QOQREciNi8PvV6NKlnXt6obly78qs15iYiIWL15cZXsdO3bErl270KlTpzLL69WzxLZty9Cp0wgUFhahSCHgq6D72D/6FSgSEiCPioRxm7a6OSgiemF4e3vDycmpprtBREREpNKGSGDBVaDgaTzqnYtA0FDARIdjHyKyAZkC6NBQd21i+zZg4YdAdrby58aNgbdnA/+aCnR0r3jwRn4+cOYUsHUL4OOt3P4/XwIH9gO79gD6+M6XlgYs/hT4a+uzqb0mJkC3V4A+fQG3jkCzlwBzc2VwMjEBuHUTOHsGCL2n7PPmjcCuHcCnnwOfL9F/sJKolmAA8AVSdOkidtxLQFLus6HcP/zwCczMTFWub21tjX/++afMMoVCgcjISKxbtw63bt3CsGHDcP/+fVhbW5dZr107FyxaNBs//bQWAOAfl4KHOVI41DdH0YVgBgCJiDQwcuRItGnTpsyy6hgNSUREROrLkz8L/gHApVRgxX3gkw66aT9NCow6q5xifGIQ0Fnb0YUKBfD5J8CqFcpRf/XqKUfwffQxoM6MCEtL4I2Rysf9UGVbx44qRwa+1hPY8w/Qf4CWnSzl8iVg6mQgPk75s729ctrx27OA5i0q31YQlAHAtauBbVuUgcD/fgscPwb8vRdoyerqZPhYBORFoVBAduc2fKIelyx69dUuGDasb4WbmJqaYvDgwWUeQ4YMwfz58xEYGAgnJyckJSXB19dX5faLFs2CqakyxqwQBOwPfwgAkN27x0SsREQaaN68ebnzcd++FZ+/iYiIqPp94Ar0blR22dc3gfAs1etrokgB/Os8EJYFPC4ABvkDV1K1aFChAD54T5nvTxCATp2BSyHAl0vVC/49r30H4JAPsGEzYGWlLL4xdiTg76dFJ0vx8QaGDFQG/4yMgPkfAPcigKVfVx38A5SjGN06Aqv+D7h1Dxg1Rrn8ymWgb2/lKEEiA8cA4AtC/jARedk5CE5MK1k2efII0e1ZW1ujZ8+eAIAHDx6oXKdxYzt4er5e8vOBiCQAgJCXB3kF2xAREREREdVFxhJg46uAZamKtnly4N1LgEKoeDt1fBQC+CU9+zlVCnx7W4sGv/sa2Lhe+fyNEUDAeaBde636CIlEWQzE/6xyGnFeHjDJC7h5Q7t2fX2Af01UtmdvD3gfBVb8AdjaimuvlROw/yDw5xrl9N+HD4Fhg5WFTYgMGAOALwjFgwe4+DAdBfJnI++GDOkjuj1BEBAaGgpAmQuwIuPGDSl5fvtJFqRP969ITBC9byIiIiIiotqoQ0NgqUfZZeeSgTUR4tv8IwxYE152mUt9YPOrIhv0PgT89IPy+fA3gL0HlKP2dKXbK8CJU4CdHZCTA0waD2RkiGvrxnVg+r+AwkLAsTlwNggYMlT7PkokwJx5wMEjymNPSQHGjASSk7Vvm6iWYg5AmQyyyEjIw8MgT3gAISUFQk4OBKkUEgsLSOrVg8TeHsYtWsK4TVuYtGunTDJaxyhSUxGRnlvys42NNdzc2lSyRcViYmLwyy+/4NatWxg0aBCGDx9e4bpdujxLeFGkEBCXlQdX2/pQpGozXp2IiIiIiKh2+qQD8E+8siJwsSU3gBGOgJOGcbbjD4FFIWWXNTQFDvUDmliI6NyTJ8B7c5RTgN09gJ179FMEw90D2LUXGDUciIkGPvkY2LhFszayspQ5/3JzgUaNgON+2o9SfJ7nEODvfcD4MUBcLDB7JnDYVznNmMjA1L1Ilo4oUlJQFHAWRVcuQ8jPL1meVyRHcl4hAMBGWgSbggIgLQ3yiAjg9ClILCxg0u0VmPXrD6OmTWuq+xoTcnLwJL+w5OfmzZtVuU1aWhrs7OzKLMvJyUFRUREAYOLEidi2bRuMKjk5OjqWfY+S8wrhagsIOdmadJ+IiPRAJpMhLCwMqampyMjIgFQqha2tLWxsbNC2bVs0bKjLEoO116NHjxAZGYmsrCzk5uZCIpHAxsYG9evXh4uLC5o0aVLTXdSYQqFAVFQUYmJikJmZCSMjIzRu3Bht27bFSy+9VK19ycnJQUhICJKTk9GwYUO0adMGLi4uotrKzs5GZGQkHj58iLy8PABAo0aN0Lx5czg7O8Okmm/SCoKA2NhYxMTEIPXpzU1ra2s4OTmhdevW1d4fTUilUoSFhSExMRE5OTkAADs7O7Ro0QLOzs4wNVVdJE5f0tPTERoaisePH0Mmk8HS0hLNmzdH+/btYWGhWZQjJSUFSUlJSE5ORlpaGho0aAB7e3u4u7vD0tJST0dA9IypkXIqcM/jQOHTCVhZRcC8S8CxgYC6RYHvZQJTzgOyUtOHTYyAna8BHmILgHz1hTIIWK8esHO3uHx/6ho4CFi8RFlsY8dfyunBfTTIYbx0CRAZoRyAs2O37oN/xYYNB35aBvx7IXDiOLBlEzD7Xf3si6gG1d6rEj0R8vIg9fFG0cWLgFyOW0+y8U/4QwQ/TEdsZh4e50nLrG9tZoLejnYY0MIeg1o1gqstUHQ+CEUXgmHaoyfMR46CpEGDGjoaDSjkkJUqvFFcnKMyJiYm6NatW7nlycnJCA8Px/79+yGXy7F58+YKvyQ+X6VSLjz99JKzCAgR1Q3R0dHw9/cvt9zZ2Rmenp6i2w0ICEBYWFi55Z6ennB2di6zLCoqCqdOnSqzzMLCAjNmzNB4v48fP8bWrVvh6+uLkJCQkiDK8yQSCdq1a4cBAwbg3XffRdeuXatsWy6XY9OmTWWW3bhRPu9PQkIC1q9fX275hAkTyt140oesrCzs2rULx48fx5kzZ5CVVXl29iZNmqBHjx6YMGECxo4dWyOB0RMnTiAuLq7MsvHjx8Pe3r7MsuDgYKxZswY+Pj7IqGC6lbOzM0aNGoU5c+ZUmsajIg8ePMCxY8fKLOvQoQP69CmbWiQuLg5ffvkl9u3bh8LCZzchx48fj/3796u9v5iYGGzbtg1HjhzBzZs3IZfLVa5nZWWF3r17Y+LEiZg8eTKsra01OCrN3Lp1C3/++Se8vb3x+PFjlevUr18fAwYMwPTp0zFu3LhqD6ipkpqaiu3bt+PAgQO4dOlSmf+X0iwtLdG7d2+MHz8e06ZNE/VeHj9+HPHx8WWWPf83np+fj82bN2Pr1q0ICQmBIJRPkmZpaQlPT08sWrQI/fr1q3B/6enpWLt2LXbu3Im7d1Xn8TIzM0PPnj0xb948TJo0qVYHaKnu62ILfOYGfH/n2bITScBf0cBMNe6BpEiBMQHKir+l/dJVOZJQlNB7wPZtyueffQF0cBPZkAY+XwLs26usEvzVF8opvBI1QqC3bgIb1imfL1ykDCbq0wcLgJPHlQHApUuA8RMBG23LLBPVDd4AhIoepqamQl1UFBoqZH+1RMj48H3hj0FjBVfbzgLQWqPHwJY9hRMTpglZCz4QshZ8IGR/+YVQdOd2TR9alfL37BaW9hpechytWw+ocN2rV68KAAR7e/sK10lJSRFGjhwpABCGDx9e4XqxsQll3j//idOFrAUfCPl/79LqeIjIcL3++usqP3tiYmJqpD8FBQWCu7t7uf6Ym5sLt2+LO/9HR0cLVlZW5drs0qWLIJVKy62/e/fucus2btxYo32mp6cLc+bMEczMzCr8fK/s4enpWeX/QUFBgai2ix9i3091FRQUCF9//bVga2sruo8NGzYUli1bpvL/SZ/GjBlTri83btwoeT0uLk4YMWKERscikUiEKVOmCA8fPtSoL0ePHi3X1rx588qsc/DgQaFBgwYq9zt+/Hi19vPo0SPhrbfeEkxMTDT+f7K1tRV++OEHobCwUKNjW7lyZbm23N3ATNDsAAAgAElEQVTdS17PyMgQZs2aJUgkEo3607p1a+HQoUMa9UUqlapsy9vbW6N2BEEQcnJyhMWLF6s871T1sLGxEX755RehqKhIo30WXydW9Dfu7+8vODk5adSXd955R+Xf3l9//SXY29tr1Fa3bt2EqKgojd9LIk0UyAXB/YggYMezh90+QXiYV/l2Urkg9D1ZdjvsEIQ5F6veZ0ZGhmBsbCzAAgKsIMAUQp8+fZQvzn5LEEwhCE7NBSGvik7oko+3cr+mEISAs4IgCMK1a9eUf4+WT/tpDGHWrFnPthk3Wrl+61aCkJtbPf2MjhIEa0vlfr/9T/Xsk0gLAQEB6nzmLcRTL8zE9sKzZ5C/bg0uhMWh/54L+PDUbYSn52jczun4FAzdfxFeh6/gUW4BhOxs5G9Yj0JdlTfXE0n9+mhm9Ww0XkLCIxQVyUS3Z29vj82bN0MikeDYsWNITExUuV5kZNnRCg71zZVPjI1VrE1EVPuYm5vjr7/+Kjd6RyqVYtasWZDJNDuXCoKA2bNnIzc3t8xyCwsLbN++vdzIaV0IDg6Gm5sb1q9fX+GIn6r4+fmhU6dOKkdD1gUJCQno27cvvv32W6Snp4tuJzMzE59++imGDBlS5cjB6hIYGIiuXbvC19dXo+0EQcDff/+Nzp074/Tp0zrrz86dOzFhwgRkZ4tP93Hs2DF07NgRW7du1fhvDFCOBluyZAm6d++O6Oho0f0oLS4uDr169cLmzZtVjlSrTFRUFMaOHYt58+aJOh5tXL9+HV26dMFPP/1U7ryjjoyMDHz22Wfo168fHj16pJM+rVmzBkOHDkVsbKxG223cuBFeXl5lRoEuWrQIM2bMKJmCra6QkBC89tprePDggUbbEWnC3AjY2Es5bbdYmhT44ApQ0WlEADD/irJwSGkDmwJ/dNeiM2lpwP69yucLFgLVOR1++AjAo5Py+fq1Va8fHgYc9VE+/+o/yunK1cHZ5dnU37WrlVWHiQzICxEALDx5AtKDB7DmWjSG7b+EG8mZZV63tq6P6dPHYPnyL3H48DpcuXIQV68ewtGjm/DTT59i0KDesLAwL7ONf1wKXv87GAEJqYAgQHrEG1Jfn+o8LI252T+bqiyVFuL6de3KnDdu3Bg2T4dFJyUlqVzn9OkLJc8bWZrBob4yh4vi4UOt9k1EVJ26du2Kr776qtzyK1eu4Ndff9WorbVr1+LMmTPllv/vf/+Du7u76D5WJCgoCMOGDavwPK2J7OxsjBs3DlevXtVBz6pPUlISXnvtNVy+fFlnbQYEBGDUqFFQKGo2pUVQUBCGDh2KtLS0qleuwJMnT/DGG29oHEBUJTAwELNmzapwmq46tm3bhlGjRmkc0FHl5s2bePXVV3Hnzp2qV65EcnIyPD09ERoaqlU769atw4QJE6otCHjy5En06dMHkZGRWrcVHByMvn37an0u2bBhA95//33RvyO+vr5YunQpAODzzz/H8uXLRffl0aNHmDJliujtidTR0x74qF3ZZQcTgH3xqtf/7R6w6bk/2bYNgL19ADNtvr17H1IGtCwsgBlvadGQCEZGwDtzlM99jygrA1dm62ZlkRIHB2DKNP33r7QFC5U5B1NSlO8ZkQEx+MQXRRcvIt/nCJYE3sfqG7FlXmvXzgXffbcQo0cPKhfgKzZ8eD98/vlcZGZm488/t2P58s1ITVXm1EnOk2LswStYN8QDk9o5ovDkCUisrWGmSWLT6iItgHsjazQ0N0WmVFnEY/duH/To0Vl0k7du3UJ6ejqMjY3h5OSkcp0TJwJLnvdv0QhGT/M9SBroMdksEZEeLFmyBEeOHCkX/Prmm28wevRouLlVnUcnNjYWn3/+ebnlAwYMwMKFC1VsoZ3MzExMnjy5wpFYxsbG6NKlCzw8PErycqWmpuLWrVu4ceOGylFOOTk5eOeddxASEgJjFaO5bW1ty/ycn5+PgoKCMstMTU1RX0XScVXt6cKsWbPK5SIrzdHRES+//DIcHR3RsGFDSKXSkoIEN27cqHDU5Llz57B+/XrMmzdPL/2uSkJCAmbMmIH8UsXMitna2qJz585o2bIlpFIpHjx4gOvXr6tcF1COaJ08eTKCgoLQpUsXUf3JzMzEm2++KXqUKaDMG/fOO+9UGhxq164dPDw84OjoCKlUioSEBFy8eBEpKSkq13/y5AmGDh2Kq1eviiqAolAo8OabbyIiIqLcaxYWFnj55ZfRsmVLmJqaIj4+Hnfv3q2wLwBw+PBhLFy4EH/++afGfdHElStX4OXlVemov86dO8Pd3R1NmjRBbm4uEhISEBQUVOHo1oiICIwbNw4BAQEwN1d97VyZwMBALFiwoMy5xcHBARMnTsTLL78Me3t7pKen4/Lly9izZw+Sk5NVtrNs2TIkJyeXyzlqZWWFMWPGoF+/fnB0dER2djbu3r2Lffv2qcy5CgDnz5/H8ePHMWzYMI2Ph0hd33UCvBOAiKcfx4IALLgKDGwGNCr1p+SdACx+LnWurRng3R+w1/xPrqziwSqDPIHn8sdWC68JyiIbubnA2dOAYwvV6wkCsH+f8vnU6YCIc41WnJyV+QZPnlDmLvzX1OrdP1ENMIgcgLIH8ULWxx8J/37FUyidh87MrL2wbNkGobBQs1wmgiAImZnZwrRpi8q0Z2rURjg09l/KvIAffyTIamE+kQLvw0LWgg+EmR37lfT7pZd6qXwPqsoBmJ2dLRw9elRwcXERAAiTJ09Wud7FizfKvE9rPceV5E4s8Dmi0+MjIsNR23IAlnb37l3BwsKiXN969uwpyGSySrdVKBTC4MGDVebXiouLq3RbsTkAFy5cqPK9NDc3F7788kshKSmpwm2jo6OFKVOmVHgtsGPHjir3LwiCsHjx4nLbDhkyRK1tdcHPz6/CYxgwYIBw/vx5QaFQVLh9enq6sGrVKqFRo0Yq2+jQoUO1HIeqHICq8qe1bdtW2LNnj5Cfn1+ujYyMDGHDhg2Co6Njhe9Jhw4dVG5bWkU5AGfMmFFuuYWFhfDGG28IS5YsEXbs2CH4+voKd+7cUdluYmJihe8zAMHLy0u4evWqym0LCwsFHx8fwcPDo8LtBw8eXOn/tSCozgGoKt+fnZ2dsGrVKiEtLU1lX7y9vYUePXpUmpOnqlx+2uQATE1NFVq2bFnhdfwHH3wgxMbGqtw2Pz9f2LNnj9C6desK+7506dIq+6AqB2Dp86e5ubnw008/VZhPMycnR3j77bcrfQ9LP958803h8ePHKtuSyWTCsmXLlHnRVGw7ffr0Ko+HSFtnHwuC0XM5/aadf/b6zXRBaLCn7OumuwThpGZpWlXnAHztNUF4qZEyt93a1bo9ME306q7sw6eLKs4BeO/us3yBVy7XTD83rlfu366BIBQU1EwfiNSgaQ7AitT9AKBMJuT88D/h75GTBEmpIJSNTVfh9OkLWje/du0uwdjYtaRdK1NX4fL0t4SsBR8IOd9/JwgaJp3WN+kpfyFrwQeCj9cUoXRQ7tdfN5ZbtzgAqM6jb9++QkZGhsp9Dh36Vsl+rM3aCfFz55YEAAsDz+n7kImojqrNAUBBEIRff/1VZf9+/vnnSrdbt26dyu22b99e5T7FBAClUqlgZ2dXbjtLS0vh3Dn1z8GLFi1S2e+xY8eqtX1NBwDHjx+vsv/z5s2rMhhUWkxMTIUBlbCwMD0egZKqAKCqAEhOTk6VbaWlpQleXl4VtvPjjz9Wur2qAGDxTcHiR4MGDYQVK1YI6enpah/j1KlTK7zuVOfvRBCUv/cffvhhhce2c+fOSrdXFQB8/tG7d28hISGhyr4UFRUJ3333XYUFQ5ydnYWCSr5YahMAfOedd1Ru+9JLLwkhISFVbi8IyqI5FQXgzM3Nq7xxoSoAWPyoV6+e4OfnV2UfFAqFWr/7//3vf9U6ph9//FHl9s2bN1dreyJtzb9cNsAn2SkI3gmCkJQnCE6Hyr+2OlzzfagKAPZt2eJZUO3Gdd0fmLoWfaTsw6B+FQcAi4NvzewFQcPiQzoTE/3s/bp8qWb6QKQGTQOABjsFuDDwHBKjYjH35E0IT5dZWVnizJmd6NKlg9btz507BQqFAvPnfw0AyC2S499n78LHqycUyckoDDgLs8GeWu9HVyQNlPn/Xne0Q+cm1riZrJza8e23qzBlyig4ODQpWdfW1hYTJ06stD1HR0d4enpi2LBhMDIqn4xi//7jZab/vt/VGTbmzxLoS6yttToeInrxrF27ttz0Ul2bNGkSnJ2dK13n448/xuHDhxEYGFhm+ddff43Ro0ejffv25baJj4/Hp59+qnJ/06dP167TFQgICFCZF+4///kP+vTpo3Y7P/zwA/bv319uCq2fnx8UCoXKz4DaQiaT4fjx4+WWu7u7Y9WqVZA8TUuhDicnJ/zxxx8YM2ZMudciIiLg6uqqVV+15eXlhS1btqg1jdrW1hZ79uzBuHHj4ONTPn/xsmXLsHDhQlhYWKi9/9KFNtq3b49jx45VmB5Elbt37+Lvv/8ut9zIyAhbt27F1KnqTcEyMzPDypUrkZ+fj40bN5Z7/ZtvvsHkyZNFTzd3d3eHr69vSQ7kypiYmGDp0qUwNTXFF198Ue71mJgY7Nu3T+fngDt37mDz5s3lljdu3BjBwcFq/7+Ym5tj06ZNMDMzw7p168q8JpVK8csvv4iexrx69WoMHjy4yvUkEgmWL18OHx+fCqeFz5gxQ2WOVlU+/fRTrFu3rlzxkcTERBQWFuqlCBNRaT92AXwSgfinM/MFAZh/GWheD4h9Li3eB67Ae211s9/6iYnK7P+mpoBruyrX15uOT3Mdh6uekg8AuHVT+W/Xl5W5+GpCKyegSRMgOVnZn+49aqYfRDpmmAFAmQyF/n74/WoUsgqfJVlev/5/VQb/Ro0aVZLceO/evXBxcalw3ffem4bIyDj8/rvyIiswIQ3/hD/EBFcHFJ7yh2mfvpBUd86CChg1bab8VyLBb/06wnPfBQgAsrNzMXbsPJw+vQP16yurK7m4uGDv3r2i93X/fhRmzXqW48rG3BTvd3Uqs46kYdUXzkREpf38889630fXrl2rDAAWByQ6d+6MnFJJrAsKCjBr1iwEBgaWCS4IgoB33323XE4tBwcHrFmzRrcHUIqqfGUA8Oabb2rUjrm5Oby8vLBixYoyy3Nzc/HkyRM0bdpUdB/17f79+yrzny1YsKBcVWd1jBgxAlZWVuXa1FVlVLFatmyJ7du3axTUMjExwe7du9GxY0fExcWVeS0tLQ0HDhxQO+hWWqNGjeDj46NR8A8AVqxYoTLn5LvvvqtxPyQSCVavXo3AwMByed8iIiLg6+uL0aNHa9QmoAwu/vPPP2oF/0pbvHgxrl27hn379pV7bd26dToPAP7888/litNIJBLs2rVL4/8XiUSClStX4tKlS7hxo2xish07duCXX35BPQ2rcw4aNAgzZ85Ue31nZ2f06tULQUFB5V6zsbHBqlWr1G7L2NgYU6dOxQ8//FBmuSAISE1NFZUjkkgT1qbA2h7AiLMoqQKckKd8lDbUAfi9m+72+5Lw9JzQpGn1Vv99XstWyn/T0oAKctIi6mkFlHblb6hWG4lEuf/kZCA6qub6QaRjtfe2vRaKrl9DYlIKtt15ULJsypRRmDq18ou9oKAg+Pj4ICQkBCEhIdiyZUuV+/rvfz9Gq1aOz36+EKEcZ5mXB1lI7amSaNSsmfJEBqDHSzaY7vYs6eqVK7cwYcL7yM8vqGhztYWGRmH48NnIzlZ+OZIAWDXIHdZmylhz8aW9kU1DrfdFRFRTXFxcsGzZsnLLL1y4UC5QtnnzZpw8ebLMMolEgi1btpQU3tAHVZU6jY2N4eDgoHFbPXr0gIuLS7lHenq6LrqqNxUV/hg6dKio9ip6/6RSqaj2dEVMEAZQFkz47bffVL72fHEFdS1duhStW7fWaJuCggLs37+/3HJbW1t8//33ovphampa4bHt3LlTVJsfffSR6JGev/32G6ysrMotDwoKwr1790S1qUpGRobK93LMmDFqjbhTxdzcXGW188zMTFGVo1UVQqrKK6+8onL5vHnz0LChZteUPXqoHsnzfLEiIn0Z7gDMqOReo1tDYPdrgIn6g9SrVHLbQs8zKapUfN1TWKisSKxK8U01x+bV06eKODz9jq9l5XOi2sQgA4Cyq1ex+XY8CuTKOx3Gxsb45psFVW5XfLHbtWtXAMDWrVsrrUIHAPXqWeKXX55dyMRk5uFykvILUdGVK6L6rw8SMzMYNWpU8vOyfh3wSrNnF0wnTgTi1VcnICwsWtXmajl5MgivvTYJsbEJJcs+eNkZY9s0e9YPABJLS44AJKI6b+7cuSoDSUuXLkV4eDgAZZXWf//73+XWef/99zFkyBC99s9ExbQZuVyOhIQEFWtXbsqUKYiKiir3UDXduTZxdXXFunXryjzWr1+PFi0qqDyoBn1VKhbLyckJkyZNEr39+PHjVVawPnPmDJ48eaJRW/b29pg9e7bGfbh48SIyMjLKLX/zzTfRqNS1i6ZGjBiBtm3Lz587ceJEuRFyVTExMcGiRYtE96VFixZ4++23Vb7m5+cnut3neXt7qwxkLVmyRKt2Bw0ahJdffrnc8mPHjmnUjrW1Nfr376/x/hs3bqxy+dixYzVuq0mTJlWvRKRnv70MNFMxEK+ROXC4H2Cj49noJWPeRYx+16nS+y8qUr1O9tNSyTWdMqr45kJOTuXrEdUhBhcAFAoLIYsIx8m4ZxetXl5D4Opa+ZSuzMxM7N27FxKJBDt37kSzZs2QkJCg1kXZuHFD0Ljxs1Ece8MeAgDksTEQVEw9qinGTs/eg3qmxtg3qjva2tYvWXbr1n107z4O3367ChkZWaqaUCk+/iEmT16AoUPfQnp6Zsnyka2b4tve5XNMGDk4lltGRFTXSCQSbNy4sdx0wPz8fMyaNQtyuRxz5sxBZmZmmdfbt29fLdOZK/rCXB37ri3atGmDOXPmlHm8++67GuX+e15qaqoOe6i9adOmaXU8gDKH2vMEQcDVq5rNZBjy/+zdd3xT1fvA8U9W96CDVXYpZVOEsveeIkMQB8OF4AQBcSsigoo/EUVA5KsIyBBEkGEVVPaeskfLKKuU0dLdJvn9ETrSJG0zmpb2eb9eeZGce++55xYakuee8zzdu5ud5ZafPXv2mG13xNJYc8uH4+LisoL0BdW1a1cqVKiQ/455sLTs1dL12yIiIsKkrXr16jRr1szuvs0tm7Z27E2bNrVp+b2rmZQ6KpXK4szAvFiT21KIwhKVAPfMxL/6VIIQb8efL2ueehHPWDc6v6Wcm5lro4s6x3Dm+a28YSREcVbicgDqLl7kZkIyR29mB7D69u2c73E///wzSUlJdO7cmbp16zJ06FBmzpzJggUL6NmzZ57HajRqHnusD998swiADZExfNGxPuh0aC9eRG3mznpRUNWoQfq+vVmvA9w1/D6gOcM3HmTvNcOd93v3Evnww1l8+eUPPPFEP7p3b0unTi3x9TX+n+jGjVj+/HM7y5ev588/t5GenmG0fXRYdaa1r4PKzJcSlQ3Lz4QQok2bNrgXct6agIAAq/avXLkys2bNMgmg7Nixg549e7Jp0yajdo1Gw6JFi2xarmmtVq1amW2fPXs2Op2OKVOmWH29pV1ERITVs+IKW9++fe3uY9CgQbz55psm7fv27aNXr14F7sfSv7n87N6926QtMDDQIUGrnj17MnnyZJP2vXv3WjWD9eGHH7Z7LOHh4VSrVs0k56IjA4C7du0yacvvc2xBdejQwaTt7NmzVhXPcGTO0MDAwGI3I1eIgriSBAO2QmKG6bbFUfBcCLQ1fw/PZlkJO27fMgTY7LxxZLPYWMOfbm4oLN0wyvysV9QTaTLPX5Q5E4VwsBIXANReu8ruq3fQ3b9zoFAo6N69bb7HZVaKe/755wHDXdqZM2eydu1abt68aXEmRaauXdtkBQCvJKQQm5xGoLsLuqtXoBgFAHML8nJl46CWfLDjFLMPXcjK0RcXd485c5YwZ84SFAoFFSqUxcvLA41GzfXrsdy+bbpUB8DXVcNHbWrzdAPLy6uUFSUAKISw3uLFi61OYO8Mw4YNY/Xq1axevdqoPXfwDwzLg22ZsWKLsLAw6tSpw6lTp0y2zZkzh6VLlzJmzBgGDBhAeHi43bPISrLY2FgWLFjA1KlTi3ooRtRqNWFhYXb3U7NmTfz8/ExyOu6zMpWJuSWiBXHw4EGTtsx0LPZq2LAhKpXKJKXLgQMHzM58tMTWa8stPDzcJAAYGRlJUlKS3TcG4uPjTarbAg5bql+5smk+rvT0dE6fPk3Dhg0L1Icjb34440aKEI6WlGEI/uUu+pFJq4fnd8PB3uDuwPj2NZUayICbNw2BLS+vfI8pFBeiDH8GlkVvqVhm2bJwEoi54bRhmXXjfi7CfOIAQjxISlwAUH/3DpfisysKlSsXQIUKef/SHj16lIMHDxIQEMCAAQMAaNy4MWFhYRw5coTFixczbty4PPuoW9c44fXle8kEurugN5PTpqgoKwah8PJCnyuPgUap4JN2dekfUpFP957jr4vGsxv0ej3XrsXk2bdKoWBE/Sq826oWge553wVWVpIAoBCiZJk7dy7bt2/Pc3ZYy5Yteeutt5w2JqVSybRp0xg4cKDZ6qp3795l2rRpTJs2jaCgILp160a7du1o27YttWubpm8oDdLT07lw4QJnzpzh9OnTHDt2jCNHjnDs2DHS0tKKengmateu7ZBZsQqFgiZNmrB582aj9itXrljVj60zSs393jRq1MimvnLz9PSkZs2aJkt+rancrFQqHRJoBUMgcdWqVSbtd+7csTugdf36dbO/69HR0WYrEFsrwUIerBMnThQ4AChEaabTwzO7YV+uTBJ1fOBUjuxLp+Lhw6PwqWPugwCQVK0aXDwPWi0cPwYtWjquc2v8d9TwZ926lvepVh3YAmfPOmNElp27X424et6pxIR4kJS8AGBKCvFp2fOpAwPzr3Q0b948AEaOHGmUY2T48OGMHz+eBQsW5BsALFfO+EPv7WRDUgd9UvHJAYhCgapWKBmHTO+0g6E68KpHwjkUE8ei49H8c/kW5+/mPf7G5Xx5NLQiA2tVoLJ3Ab6EKJUyA1AIUeKUK1eOuXPnMmjQILPbPT09+emnn8wW5ihM/fv3Z/Lkybz//vt57nf16lUWLlzIwoULAcMyvTZt2tCpUyd69uxJSEiIM4brVBcvXmTr1q0cPnyYM2fOcObMGaKioki3lJS8GHLkcspKlUzz85orzJEXa6uxgqHyanJyskm7PcU/citfvrxJANCaa/P29nZY+gFzs+jAEAA093dgjdu3b5ttN1fB15FiM5f0CSHy9NF/sNx4AjCNysC27vDUTvg9R42u/zsJg6tBuD+OUaEiZKTClWjYsb3oAoA7thv+DM8jxUP9BoY/LXxndYo7d7JnK9arX3TjEMLBSlwAEJ3e7N1PS5KTk1m6dCkAzzzzjNG2p556ijfffJPjx4+zd+9emjdvXuB+lZkrqRTFq86KunZtiwHATA+V8+WhcoYP8ZfvJbP/ehxXE1JIztCSptUR6O5CNV93Ggb6EuRlYeq2BaoqVVFYmu4thBAPsIEDB/L4449n/Z+S08SJE81WI3WG9957j1q1ajFmzJgCBz1u3LjBr7/+yq+//goYZpo988wzjBw58oGuoHn69Gm+//57VqxYwaVLl4p6OHazJeBmSe5iNmB9ANDHhoqNls7hyGszNy5rrq2wf86AyfJrW1gKABa2e5kVO4UQFi27CFOOGbeVd4M1HcFHA982g20xcPf+ZPMMPTy7C/b2BFdHLAVWKKBDR/h5MWxcD69PcECnVoqKhFMnDc87dLK8X2Zw8tJFQxCuKGbgbdtiKP6h0UBT56RuEcIZild0ygEUbm6UccuuLhYbm/cHql9++YU7d+6gVqsZPnw44eHhWY/evXtnJRdesGBBnv3cvGn8ocvH9X5stYBJkZ1FVdu6PDBVvN0ZUKsCLz1UnQnNavJ2y1qMCqtGj+rlsoJ/BQ+3gqqIvgALIURhS09P56yF5SqLFy8mKclCwh8nGDp0KOfPn+ftt9/Gzy//mfG5nT59mkmTJhEcHMzkyZNJSUkphFEWnrNnz9KnTx/q1KnDjBkzbAr+BQYG8vzzz9tdCdaRHJkDzVyQLC4uzqqbqkobKjZaWlZqSzVhS7y9TUtq5q7OnZfC/jkD6BxQZdKaa3IkCQAKkbe9t+DZ3YYlwJncVPBrB6h+/62usgd8lmvJ79G7MP24Awfy8P1K3tu3QfRlB3ZcQMuXGYJq/v7QJo8c/eHNoEwZQ7GS39c6b3w5ZZ63SVOw4XOTEMVVyQsAenlT2dst63VMzC3u3LH8gSiz+Ee1atXMbq9xv3DGsmXLSMyjEtGxY8ZLS6r63P+wWMy+JCn9/VEG2bfEJDdr0saraoU69NxCCFFcfPzxx+zfv9/stnPnzjk1/585/v7+TJ06lWvXrrFy5UoGDx5sdTAwMTGRDz/8kPbt21udH66o/PHHHzRt2pQNGzYU+JgyZcrQunVrRo0axdy5c9m7dy/Xr1/nu+++sziDqyhYCp7ZwlyA2tXVtdCLw5gLzkHhX5s1S3odORZLnyVtCcznVlRFMRz58xGipLl8v+JvUo6KvwrguxbQOlemg+dCoEuue0zTTsBR+ycIG/TqYwi+abXw3VwHdVpA6emwYL7h+aDBkNeKMFdXw1gBFv9kCAQ607178JthBQT9Bzr33EIUshK3BFifkkyjwOylGnq9ns2bd/Hooz1N9j1z5gzbt29HpVLxzz//UKWKaeXalJQUgoKCuHPnDitXrmTEiBFmz/vnn9uzntcs40nZ+4UwdLdumd2/KKkbNSLtahF8cVOpUAUHO/+8QghRyPbs2cMnn3yS5z7ffPMNgwYNon379m9TAHEAACAASURBVE4alXmurq4MGjSIQYMGodVq2bdvH5s3b2br1q3s3LmzQF/m9+3bR+/evdmxYwdeRVVJsACOHDnCgAED8pyx6O/vT/fu3WnZsiX16tWjXr16dudicxZHzvgytwTV399RyacssxT4cuS1mVvua03ArbB/zuCYAKClPg4dOkTjxo3t7l8IYZ2EDHjkX7ia6x7EW/VhmJlVrZmBwbD1hmMBUrXw3B7Y2QPU9t6P8fCA4SNh5v/B3G/htdfBxuJNVlv8E1y8YFiKPPrF/PcfPhKWLjHkAdy2Fdp3KOwRZlv4A8TFGVbyPfGk884rhBOUvBmAWi3Vfd2p45/9hWTJkjVm950/fz56vZ5evXqZDf4BuLm5MXToUAD+97//md1Hq9WyceOWrNddqmXfzlEWw7LhGgdV1rOWqnp1FMVsSbQQQtgrKSmJ4cOHk5GRked+Op2OZ555Js/Z5M6mUqlo2bIl77zzDhEREdy5c4c9e/bw+eef06lTp6w0GOYcPXqUyZMnO3G01hszZozF4F+fPn34+++/iYmJYenSpbz22mt069btgQn+AVy7dq1Q+3JEUCo/Li4uZmeuxcTEOOwc5qoMWxPcTEhIcNgyV0t/Z474WVu6pryqkwshCocOGLELDuWK+Q+oAlPyiMcHe8HUXNv33YIvTzpoYGNfB3d3uHsXPvrAQZ3mIy4OPrxfjKzPw9CwAN9FO3eBBveri3/0gfNmASYkwIzPDM8HPgpSvFKUMCUuAIibYUnHkNrZv6wbN27hypUbRrulpaXx008/AfDss8/m2WXmrL+tW7dy6tQpk+1Ll67j4sXsGXXdinkAUFmpMkon3NXPTW1l/kEhhHgQTJw40aTCqK+vLx9//LHJvufPny/ypcB5UavVNG/enAkTJvD3339z/fp1pk+fbjEf25w5c4rt8r89e/awa9cuk3a1Ws2PP/7IunXr8g1yFndnz551WGDqwIEDJm3OKvhirprx4cOHHdJ3UlKSye8nQFkrPp/p9XqHjWffvn0mbRUqVHDITFpL1/SgLNcXoiR55zD8mivdbBN/+Kl1/l/AXwqFtrl+nT84CqfjHTCwoErw2jjD8+/mwtYtee/vCG+Mh2tXDTPqPs57tUQWhQLevR803LoFflleeOPLafpUuHoF1Gp4+13nnFMIJypxAUCFhyEAOLh2EMr7eWtSU9MYP974zWbt2rXExMRQvnx5+vTpk2efLVq0oGFDwx2IhQsXGm1LT89gypRvsl7X8vOia7Xsd2yFAyvHOZK6UZjzzynLT4QQJUxERARz5swxaf/iiy9455136NGjh8m22bNns2WLEz5wO0BgYCCTJk3i2LFjVK9e3WR7YmIiW7dudf7ACsBSzr8pU6ZYTOfxoNHpdBw6dMjufiIjI83OEmvatKndfRdEeLhphcXDhw9bVYDEksOHD6PVak3amzRpYlU/lvJ7WmvPnj0mbS1atHBI3+XLl6dq1aom7bt373ZI/0KIglkYCZ/mKt5R0R1+6wBeBUjApVLA/BbgnuP+VLIWnt8DWkdMhHvzHQipZcgFOPxJQ3CusPz0I/x4fxXd6xOgXv2CHztgELS7nzZl7CtwJdrhwzOycwf83wzD81GjoU7dwj2fEEWg5AUA/Qwz26r5uDOsXvYynuXL1xst0y1fvjzz5s1jyZIlaDQak35ymzt3LvPmzaNZs2ZG7W+88SlnzkRlvX6zeU1UORJmF9sAYEGmXjuQMqgSyvLFp3KiEELY6/bt2zzzzDMmQYru3bvzzDPPADBv3jyTIgc6nY5nn322UJcCp6WlcefOHZNHfsuULalevTozZ840u+3EiRP2DLXQHD161KTNy8uLV1991a5+i1sF5NWrV9vdx8qVK822t2zZ0u6+C8JcAOzu3bts377dzN7WWbdundn2Vq1aWdXPb7/9ZvdY9uzZY7YCtaMCgGD+uhwVpI+KimLTpk1Gj507dzqkbyFKiu0xMHov5Pxk4KGG1e2hihV1eur4wge5vq5ti4E5phOarefhAT8uMhTbuHoFHukLt287oONcIv6Al0Yblu82aw7vvG/d8QoFzJ4Lnp4QGwtDB4OZok4OcSUanngMMjKgWnWYbLqKQ4iSoMQFAJUVs4NMH7aug59bds65xx57lYMHDbdj2rVrx6hRo+jSpUuB+s2sBjhwYHYloKVLf2fmzB+yXjcM9GFgaEWj4xQ+xTMAqAoORuHExO2axg/lv5MQQjxAxowZw9WrxnfNfXx8mD9/flbl1GrVqjFt2jSTYwt7KfDGjRvx9/c3eVhTCTe37t27m60Ie7swvjQ4wPXr103awsLC7KqUmpCQQHR0Ic9AsNKyZctsDuyCYXmrpRzH1gbJbGUpALZkyRK7+tXpdCxatMik3dfXl3r16lnV17Zt27hw4YJd4/n+++/Ntrdt29aufnMy93d28uRJs8vhrfX888/TrVs3o8dnn31md79ClBQXEmHQNkjJMelYqYAFLaFFoOXjLHm9DoTnytr09hGIckTmjeYt4OtvDUG2w4ege2eIvuyAju9b9QsMHgCpqYZlx8tX5l3515I6deHLWYZx7tkNQx+F5GTHjRPg+jXo3cMQDHV1hUU/QzGdxCOEvUpeANA/IKvQRIC7hqlta2dtu3cvkd69n2Xv3iN2n2fevKUMHz4h67W3i5qFvRsbzf4zjMf5ufYKRKlE3aCB004ny3+FECXJzz//zIoVK0zaP/vsM5MleGPGjKFdu3Ym+xbmUmBLhSzMLT8sKLVajVJp+rHBt5h+SE5NTTVp8/HxsavPn3/+2a5gW2G4fv06CxYssPn4n3/+mdOnT5u0t27dmooVK5o5wvFatGhhNn/dkiVLTILs1liyZInZgG3Pnj3N/lvOi16vz7fSd17OnDljNhhZs2ZNhwYA+/btazZQb2kGb0EdPnyYv//+26S9a9eudvUrREniqYLKue4xvdcAhlazrT+NEr5vCS453q7upZvOMLTZyGfgk08NwbWjR6B1c/gzwr4+U1Ph7Unw5FBISYHy5WH9H1DZfMHNAo/z9fvfu//YCH17gqMKRZ08AZ3aG/5UKmHOd9DSOTe/hCgKJS4AiEKBsnLlrJdP1avMhGY1s17fuBFLu3ZDmTVroU25ZeLi7vHyyx8yevR7ZGQYbu8ogLndGhFSxjhJuqJMGRR2zDQobOow58zKU1aqhNJMgm8hhHgQRUdH89JLL5m0d+nShVGjRpm0K5VKvv/+e9zc3IzaC7MqsLk8YACrVq1Cp9PZ1OeRI0fM5lKrnOP/3OIkICDApM2e2XuxsbF88IGTKiZa6d1337VpJuadO3eYMGGC2W2jR4+2d1gFptFoGDp0qEl7QkICEydOtKnP+Ph4Jk2aZHbbyJEjbepzwYIFZoul5Een0/Hiiy+aDUo/99xzZgN2tqpZsybt27c3aV+xYoXNM4B1Oh1jx441+dysVqt5+OGHbepTiJKorBts7gqt7s/2G1rddBmvtcL84K0cczYUQIMyoHNUUdzxEw3LbF1c4Pp1eLgXDHsCIs9b149OB+vWQnhjQxVdnc6QZ/DvrVDfAZNOPvkUXnrF8HzbVmjeBDbavqoBnQ7mz4M2LeD8OVCpDDMinxpu/1iFKMZKXgAQUNWoYfT6vVahDKuXfdchLS2d116bQuPGD/PLLxsL9GUoPj6BuXN/JjS0K7NnL85qVysVzOrSkIdrmga4VEHmZ2AUF+o6dVDYORuiIDRNm+W/kxBCPAD0ej1PP/00d+/eNWr38vIyWvqbW2hoKB9++KFJe2RkJG+++abDx1muXDkamJnlffr0abOzkPKj1+vNVjVWKBQ2LRO1NQhpDXOzII8dO8a5c+es7isxMZGBAweaXVZcHMTGxjJw4ECr8hMmJiby8MMPm72mwMBABg8e7Mgh5mvs2LFmKzL//PPPfP3111b1lZaWxpAhQ7h27ZrJtkaNGpktzlMQOp2OQYMGWTUrUa/X88orr7B582aTbW5ubjYHI/NiKWj67LPPcurUKav7++CDD8zOVh44cCDVqtk4tUmIEqqMBv7oDK/VgQUtDAE7e71VDxqWAX8X+LU9fNHEUCjEYZ4bBRGbDbnv9HpYvhQa1IHBAw1LeW/dMn+cTgdnTsOXX0DTMBj4CJy+/x4z8FHYsQdqhTpmjAoF/N9XMHW6IVh39Qr07wsD+8G+vQXvR6s1BA7btTLkJ0xIAG9v+Hk5PP+CY8YqRDFWgDpEDx5VdeMAoAL4pmsDavl58NGuM2Tcv2Vy9Ogphgx5hQoVytK1a2u6dGlNaGgNypcPJC0tnZiYW5w8eY6//trBhg3/kpJifOfWy0XNol4P0aWa+aQOyqCgQrk+h1Eq0YQ3I+1v0w+lDqPRoHFSEnEhRMm2dOlSs7O6CkOnTp2oVauWSfvXX3/Npk2bTNqnT59OjVw3n3IbP348v/zyi8kMom+//ZZBgwbRsWNHu8acW+/evTl27JhJ+8svv0yVKlXo3LlzgfrRarW8/vrrrFmzxmRb8+bNCQ4Otnpszsgb2KVLFxYuXGjUptfrefnll/n9998LVAAM4NSpUwwbNizPKrD37t2za6yOsGXLFvr378/ChQspn8+s+wsXLjBs2DB27Nhhdvtbb71lMmO1sAUHBzNq1CizVbXHjh1Lamoqr7/+er5Ld2NjYxk5ciQREeaXsU2fPt2uGXcXL16ka9eurFixwmyQPaf4+Hhee+01fvzxR7Pbx40bR4UKji+Q1rt3bzp27Mi///5r1H79+nU6duzIL7/8YjYtQW4ZGRm8//77ZvOYKpVK3njjDUcNWYgSxUcDMx1YRN1VBYvbgLcaahRWCvc2beHAEZj2MXz7jSHP3prVhodaDdVrQPXq4O1jCKLF3oRzZ+HmTUPQMFPNEPhkOvQfaAjaOZJCARMnGQqKvPAcREXCut9h/Tpo/BA8MsBQNbheffDxMSzp1Wrh9i347z/4ZzOs/tUw4y9T8xbw/Q9S8VeUGiUzAFgj2PAGkePNSAGMbRpMi4p+jPrzCBfjs5OHXr9+k8WL17B4semXG0t6VC/H9PZ1qJlr2W9OSiflzrGHpkWLQg0AapqGo/C0/DMSQoiCevvtt512rp9++skkAHjy5Emzs/U6dOjAmDFj8u1TrVazYMECmjVrRnp6elZ7ZlXgo0eP4unA98vRo0fz1VdfmSw7TEhIoEePHjz77LO8/PLLFoMY9+7d47fffuPTTz/l+PHjZvextZDJyZMnuXbtWqHmmOvduzfu7u4k50oWHhERQd++fZkzZ06ewcuoqChmzpzJ/PnzTfrILSIigjfeeMOhSzltERERQaNGjZg0aRJPPfUU5cqVM9oeGRnJwoUL+fLLLy0GLZs0acIrr7zijOGa+Pjjj1m3bh2XLxsnotfpdEycOJHffvuNSZMm0bNnT5MAbmxsLMuWLWPKlCnEWMgN9cQTT9CrVy+rxxUQEMCtHDNgTp48SbNmzXjttdd49tlnTd4rMsfy+eefm636C1C7dm3eeecdq8dSEAqFgrlz5xIeHk5CgnG1gBs3btChQweefPJJRo8eTatWrUyCqunp6axdu5apU6dy6NAhs+eYMGECTZs6MMIhhMhTozJOOImPD0z7DF4dC9/NhUU/waWLhsq4584aHuaoVNC6jWEm4aDBhuXEhaljJzh4FL76EmZ9aahgfOig4QGGOICHB2g0kJZmvnJw1WrwznswfKRh/EKUEiUyAKjw9kZZoQI6M0s/WgX5cXB4B5adimbGvkii4qwrJd6kvC/vtKxFt2qmyapzUxX3GYCAskJFVJWroHVk1accNG3zv8MshBDFXXp6OsOGDTMJBHl6erJgwYICFxQICwvjzTffZMqUKUbtkZGRTJo0iW+++cZhY65RowZjxowxm/w/IyODefPmMW/ePMqWLUv9+vXx8/PDzc2NhIQELly4wKlTp4wClbk99thjPPLII/mOw1xQMzk5mTZt2jBixIisIODly5cZM2YMQQ76vzMgIICxY8eanb30559/UqtWLTp06ECrVq2oVKkSKpWK2NhYrly5wtatW80GPQMCAqhevbrJLM5//vmHwYMH8/TTTxMQEEClSpWoUsWOhOcFFBYWxvnz542CPDExMYwfP55JkyYRHBxM1apVSU1N5fLly1y8eDHP/Md+fn4sXbq0wLMjHc3f359ly5bRpUsXs8uZd+zYQb9+/fDz86Nu3bpUqlSJlJQUoqOjOXbsWJ7/Xhs0aMDcuXNtGtfUqVOZPHmy0ZLilJQUPv30Uz777DOqVatG1apV0Wg0XL58mcjIyDyLxXh7e7Ns2TKHBvxzq127Nv/73/8YOnSoyZJ7vV7P4sWLWbx4MeXLl6dWrVoEBQWh0+m4evUqR44cyTM3afPmzfnoo48KbexCiCJWMQg++Aje+9BQHGTHdjh+DK5Ew717hoCZfwDUqAEPNYH2HcHZE188PeHtdw3BymU/w4plsGunoQiJXg/m3sO8vKBTF3jyKXj4EUOAUIhSpkQGAAHUteuQZiYACKBRKhhWrwqP16nM9iu3+ffyLf6+FMvRm/Hocn0wdlerqB/oRc8a5RhUq2KeM/5yUri4oCzv+GUdhUHdvEWhBABVwcGonPAFSAghCtuUKVPMJv+fOnUqNWvWNHOEZe+88w6rVq3ixIkTRu2ZS4E7depk11hzmjZtGocOHcqz2vDNmzdNlgrmp1u3bvzvf/8r0L516tQx2x4VFWWSF/Gxxx5zWAAQDDMUN2zYwJEjR0y26XQ6/vnnH/75558C9dW4cWN+/fVXfvvtN7P/FlatWsWqVasAmDt3Li+8UPi5hBo3bszMmTPp06cPSblmOGRkZHDmzBnOnDlToL58fX1Zt24doaEOytdko9atW7Ny5UoGDx5sceblnTt32LlzZ4H7rFevHn/99Rfe3t42jals2bKsW7eOTp06ER8fb7RNr9dz4cIFLly4UKC+vLy8WL16NY0bN7ZpLNYYPHgwcXFxjB492mwBHzDMCLxx40aB+2zevDkRERG4uro6aphCiOJKqTQsrW3snMKRNvHyMsw8fG6UIeh39AicPWNYmpyaCu7uhuBk7TqGYiSFPTtRiGKuxAYAVaG14d+8P9SrlQo6VgmgY5UAPmwdSrpOz43EFG6lpKNUQKC7K+U8XFDZsKRHVTPkgZlOrAkPJ3XNakOOBAdyaWdahU4IIR40u3fvNjuLrG3btjYtlXR1dWXBggW0bdvW6Eu5Xq/PWgrs5eWYJD9ubm6sWbOGIUOG8Oeff9rdn1Kp5Pnnn2fmzJkFzhHXq1cvKlSoUCQFNLy9vdmwYQNdunSxqfgBGK756aefZtasWXh4ePDII48wceJEiwEVZ+vYsSNr165lyJAhNudWDAkJYdWqVTRqZGe5Sgfp06cP//77L0OHDiUqKsquvgYMGMAPP/yAr6+vXf00adKETZs28cgjj5gtLlIQNWrUYMWKFYSHh9s1Fms899xzVK1alREjRtj9OzhixAhmzZqFjxMKyAlRHP3www9ZRYD0en3WjOrMWbYFabP2mMzX1pwjLS3NsC0dyAB0cObMGUaOHJlvP9acx9bry3yelYoiFUO+Lh2sX7+edu3aZe2b+5jc48xru6OuL/P5Qw89xO+//44QD7KSGwCsVcswrTeP5SC5aZQKKnu7U9nb3THnf0AoPD1R16tPxn9HHdan0s8PdVjh390WQpQ8tWvXzjfnWmHLLDai0+n46quvCAsLM9quVCqtWvqbW8uWLXnvvffMfpBctGiRSU5Bf39/k3xbfn5+BTqXr68vf/zxBwsWLGDy5MlER0dbPV6FQkHHjh2ZOnWq1VV/PT09WbRoEf369SuSv9egoCD279/P+PHjWbBgQZ5LM3Pr3Lkzn3/+OU2aNMlqCw4OZuzYsXzxxReFMVybdOnShUOHDvHqq6+aLdZiiZubG6+88grvv/++VUFnX19fs/nfbP19MKd58+b8999/TJs2jVmzZlldaKVu3bpMmTKFQYMGWXVcuXLlLP6uNWvWjEOHDjF27FiWL1+e53LqnFxcXHj55Zf54IMPrAqeKRQKsz/nMmWsSwbWvXt3jh8/zuTJk/nuu++sqhYNEB4ezuTJk+ndu7dVx4WEhJiM39aqweXLlzfpy9bZwh4eHmZ/rjKrUeRn9uzZ2TPAiyLlqzXnVAD6+w/gxs0bLFy0MK8jrD+HI6hynFMFN27d4Matgs9Ktpqt16eFSpUqOXQoQhQFS78Ca4GHLR2k0WhIS0srnBE5UPJ388g4bloB0Rk8xk9AVdW2DzlFIePoEZIXfO+w/tweG4qmdRuH9SeEEMJ+Wq2WP/74g1WrVnHgwAFOnDhhMSAWEBBAeHg4rVu35sknn7R6qXNup06dYvLkyaxdu9ZkuSpAhQoV2L59u93nyculS5eYO3cumzZt4tChQ2avPSQkhG7duvHkk0/Spo35/8d0Oh1ffPEFM2bMMCk4UbVqVebMmWN1sCQ//fv3NwnujRgxwqTC7P79+1mwYAF//PGH2WWpGo2Gli1b0q9fP4YPH25SKKQ4iouLY+XKlaxdu5bt27dbnOlYq1YtOnbsyJAhQ+jcubNDA5K5/ffff8yfP58NGzZw/vx5k+0ajYbmzZvTr18/RowYkW9lZme5efMmy5YtY8OGDezYscNsYFWlUhEWFkbbtm0ZOnSo1UF/IUqqZs2asf/IfpBVpKVPGjRr3Iy9e/cW9UiEMLJ161Y6dOiQ327jgJlQwgOA6bt3kbL0Z6efV+Hujtcn0w15Ex4UOh0JH36APu6u3V0p/f3xfPf9B2YJtBBClFapqalcv36d+Ph44uPj0Wg0lClTBj8/P8qWzb/YlS0yMjI4e/Yst2/fRq1W4+PjQ+XKlW3Oz2ar5ORkrl69yq1bt9DpdFSqVIly5cpZNQtIp9Nx7tw5YmJi8PDwoHLlyoUWUCtoADCnu3fvcuHCBe7du4eLiwt+fn4EBwejVj/YC0Bu3rxJdHQ0CQkJaDQavLy8CA4OxsPDo0jGEx8fT2RkZNZ4ypQpQ3BwcJEVU7HG1atXuXbtGgkJCfj4+BAQEEDZsmVxd7d/NYwQJY0EAB2kYJOnnaOgY0mHpmFN2b9/f6EORwhrWRsAfLA/AeZD3bAhLFdCrupnhU1VM+TBCv4BKJW4tG5N6sYNdnfl0qOXBP+EEOIB4OrqavOSPFup1Wrq1q3r1HOa4+7uTs2aNe2acahUKgkNDS3ywhmWlClTxinFJpytbNmyhRagtoWPj88D+3MOCgpyaOEdIUoyhUKRlVOvyIJYzj5vcQrWFbGCpn0Qojgr0QFAhacXqhrBaM+fc+p51fXqO/V8jqJp3YbUPyPsKgaiDAxE07y5A0clhBBCCCGEEEWrS5cuWTfNMlMMKBQKQ2DQTJseUOVoK8gxOdtyH5dzm7m2zD7S0tL4+uuv0av0hvV+WqhSqQrDhg3L97wFGZelNmuPiY6OZurUqYYZlQogHdq2bsszzzxj93nsGZeln4kUQBIlQYkOAAKoGzVybgBQqURdTKroWUvh44M6rDEZBw/Y3IdLj54P3uxHIYQQQgghhMjDtGnTCrRfshbGHYCqnvB2EcwLiYuLY/bs2WjVWkORjTSoXr26IdhWjBw6dMgwJhWgBDIgNDSUp59+uqiHJkSJVeIjNepGYfnv5MjzhYaicHIeI0dy6djJ5mOVQUFowps5cDRCCCGEEEII8WA4HQ+tImDeWZjyHxyPc/w5ZCWqEMJWJT4AqPT3R+nEkt3qxg857VyFQVWtGqpatWw61m3QozL7TwghhBBCCFHqpGih419w5E726+d3Q4YD09Gn6WDAVth0zXF9CiFKj1IRrdE4axagSuX0GYeFwaVrN6uP0YSHowqxLXAohBBCCCGEEA8yNxW8kWvJ765YmHXaMf3r9fDqflgTDf22wLorjulXCFF6lIoAoLpJU7ifvLNQzxNaG4WnZ6Gfp7Cp69RFWblygfdXuLri2q9/IY5ICCGEEEIIIYq3V0KhVa4i5e8fhXP37O971mnD0mIw5Bl8dBv8Hm1/v0KI0qNUBACV5cqhqlqt0M+jadGi0M/hLK69+xZ4X5devVH4+hbiaIQQQgghhBCieFMrYX4Lw2zATIkZ8Pwe0NmRu2/jVZhwyLjNTQnBD27qeSFEESgVAUAATfPmhdq/wsenRCz/zaSuXx9VSEi++ynLV8ClfQcnjEgIIYQQQgghirf6vvBuA+O2f29kz96z1vE4eHy7cS5BtQKWtjWcSwghCqrUBADVTZqCWl1o/bu0aQsqVf47PkDynQWoUOD22NASd91CCCGEEEIIYas36sFDfsZtbx2Bi4nW9XMzFR7ZAnHpxu0zmkKvIPvGKIQofUpNAFDh4YG6QYP8d7SFSoWmVevC6bsIqWrWRNM03OJ2l86dUdWs6cQRCSGEEEIIIUTxplHCglaGPzPFpcGYvVDQlcCpWnh0K5zPlT/whVrwWm2HDVUIUYoU3pS4YkjTvAUZhw87vt/GD5XYHHiugwaRceoU+sQEo3ZlhQq49upTRKMSQgghSpfu3btTvnx5o7ZWrVoV0WiEEELk5yE/w0zAqcey2zZehcVRMKxG3sfq9TB6L2yNMW7vUgG+tjw/Qwgh8lSqAoDquvVQeHujv+eAMkw5aNq1d2h/xYnC0wvXQYNI+WlhdqNKhduw4aDRFN3AhBBCiFLkxRdfLOohCCGEsNK7DeC3aDh+N7tt3AHoVgEquFs+7vOT8GOkcVuoNyxvazyrUAghrFG63j6UyjyXtNpCFRyMqkY+t3AecJqm4bh06ZL12rVHL1SVqxThiIQQQgghhBCieHNTGaoCqxTZbbdS4ZX9lo9ZEw1v51q05u8CaztCgGuhDFMIUUqUrgAgoGnRwqH9ufbJp1BGCeH68CO4tO+Aqnp1XLp1K+rhCCGEEEIIIUSx1yoQXs2V+b71XAAAIABJREFUs2/VZVh5yXTfI3dh2E7Q5kgUqFHC8nZQ26dwxymEKPlKXQBQGVQJVbBjCleoQkNRhdRySF/FnkKB66BH8XhtHChL3T8bIYQQQgghhLDJlDAI8c5+rdcbZgHeSs1uu54M/f6Fe7kq/s4Kh64VnDJMIUQJVyojOS7t2jmkH9eevRzSzwNFgn9CCCGEEEIIUWCeaviuBShzLAW+nmzIBwiQrIWB2+BSovFxr9aG0aVkvokQovCVymiOOqwxCt8y9vVRuw6qmiEOGpEQQgghhBBCiJKqU3kYlevr4+IoWHcFnt8Nu24ab+tZEb5o6rzxCSFKvlIZAESlQtOqlV1duPTu7aDBCCGEEEIIIYQo6aY3hioe2a/1wJBtsOSC8X71fGFZO1ArEEIIhymdAUDApX0HFC4uNh2rfqgJquolu/KvEEIIIYQQQgjH8XWBOc1BkSOwl6w13qesm6Hir6/GqUMTQpQCpTYAqPD0RNOipfXHubjg2u+RQhiREEIIIYQQQoiSrE8leKq6+W2uSljZDmp6OXVIQohSotQGAAE0nbtYXdTCpUdPlP7+hTQiIYQQQgghhBAl2fi6xrMAM80Mh/blnD8eIUTpUKoDgEp/fzRNwwu+f7lyuHTqXIgjEkIIIYQQQghRUiVmwHN7QK833XY63vnjEUKUHqU6AAjg0rsPqFQF2td1wKAC7yuEEEIIIYQQQmTS6WHkLth/y/z2r0/DzljnjkkIUXqU+gCg0t8fTes2+e6nbhSGul49J4xICCGEEEIIIURJ8+FRWHnJ8natHp7bBckZzhuTEKL0KPUBQADX7j1QuLpa3K7w9MRt8BAnjkgIIYQQQgghREnx8wWYety4rYI7TA0zbjsZD1OOOW1YQohSRAKAgMLHB5c+D1vc7jZ4CAofHyeOSAghhBBCCCFESbA7Fp7bbVgCnMldBb+2h7caGCoD5zTjJBywsExYCCFsJQHA+1zat0dVvYZJu6ZpU9QPNSmCEQkhhBBCCCGEeJBdSoSBWyFZm92mAL5rAa0CDc+/bQa+Ltnb03WGQiFpOmePVghRkqmLegD50cXGoj17Bu2VK+hv30KfkAg6LSiVKLx9UJYti7JKVdS1atk3S0+hwO3Jp0j6vxnok5MNTb6+uD4qS3+FEEIIIYQQQljnXjo8sgWuJRu3v9MAnsox96SqJ3z2ELywJ7vt8B349Di819A5YxVClHzFMgCoT04mfc9u0nftQnf9WsEOUihQ1aiBpmVrNE2bgtr6S1OWK4fbyGdInjcH9Hrchj6BwsPD6n6EEEIIIYQQQpReWj0M32kI5OX0aFWY3Mh0/+dDYPlF+Pt6dtsnx2FAFWhQpnDHKoQoHYpXADAjg7R//iZt8yb0ycncSUlj7fkY9l67y4X4RKLikrmakIK3ixpvFxXVfTxoW8mfTlUDCa9QBiIj0UZGkrr+d1x790XTogUoFFYNQV2nDh5jXkIbFSlVf4UQQgghhBBCWO3tw/BbtHFbU3/4sRUozXxFzVwW3Hg9JNyvApyiNSwF3t4N1JK8Swhhp2ITANRevkzK4p/QXb/OP5di+fbwRf65HEua1jTxQVxqOnGp6UTfS2H7ldtM33uOMq4aRodVY0zjavgRR8rSJaTv24Pbk8NQ+vtbNRZVaCiq0FBHXZoQQgghhBBCiFLix0j4/IRxW5A7rO4Annl8A6/pBVPCYNyB7LY9sfDVaRhft3DGKoQoPYrFfYT0/ftI+upLzp2KZOi6Azzy2z4iLsSYDf5Zcjc1nel7z1H/xy18tu8cWr0e7blzJM34HO35c4U4eiGEEEIIIYQQArbFwOg9kKPgLx5qWN0eqhQgu9QrtaF1WeO294/A2XsOHaYQohQq8hmA6du3kbLyF345dYUXN/1Haq6gn0KhoEWLMBo1qkNwcBWqVg0iKSmF2NjbHDx4nM2bd3Lr1t2s/RPSMvh411m2Xr7N9z0aUQFI+nY27s+PQl1Hbps4my4mBu3lS+huXEefkIA+MQmFqysKNzcUfn6oKldBWbUqClfXoh6qEEIIIYQQQtgsMgEGbYXUHF9plQr4oRU0DyxYHyoFfN8Cmmw0LAEGSNLC87thc1fDdiGEsEWRBgAzDh0kZeUvfLHvPB/tPG10lyQw0I/x45/liSf6UbVqkMU+dDodO3ce5NNPv2P9+n/Q6w29bI2+RdulO/l9QHPqBniR/P18PF55FVW16oV7UQLdzZuk79xBxpHD6G7dyv8AlQp1aG3U4c3QPPQQqFSFP0ghhBBCCCGEcJC4NEPF35upxu0fNIQhVa3rq64vvNcA3jmS3bYlBuadhRclU5UQwkZFFgDUXb1C8pLFfL73HFN2nclqVyqVvPLKcD744BX8/Hzz7UepVNK2bTht24azf/9/DBs2gVOnzgMQk5TKwDX7+GtwKyp7Q/KC7/GcOAmFt3ehXVdppouJIXXDejIOHwK9nuh7yfx1MZaouCSi4pKIvpeCVq/HQ62iio8bTcv70rFKIHX8vcg4eYKMkydIXfsbrj16omnVGpTFYoW6EEIIIYQQQuTpy9Nw7K5x2+PV4d0GtvU3sR78ehkO3M5ue+sw9KkE1TxtHqYQohQrmgCgVkvyokVsPneNqbvPZjW7u7uxaNEMBg3qaVO34eEN2bdvNaNGvcPSpb8DcCUhhYFr9vH3kFZ4xcWR8ssK3J951iGXIe7T6UjbvInUPzaSnJLKohNXWHn6Knuu3TGa1WnkKiw/dRWAip6uDK9fhRczC7isWE7azh24DxuOskJFp12GEEIIIYQQQtjirfpw+DasuV/5t0UALGhpvuJvQWiUML8FtIyAtPtLiuPTYfpxmNPcMWMWQpQuRTLFKm37NqLPRPJsxGF095fsurm58uefP9oc/Mvk5eXB4sVfMHRo36y2U7cTmLbXUAgk48hhMk6esHS4sJI+KYnkuXNIXfc7q09GE75oGxP+Pc7uvIJ/uVxLTOXT+wVcJu88TXKGFl10NIkzPifj0MFCHb8QQgghhBBC2MtVCb+0g6HVoaqnoeKvu52ZjR7yhzfqZb8eEQwzmtjXpxCi9HL+DMD0dNIiIpix7xy3U9KzmmfP/pC2bcPNHpKQkMDq1atZt24d0dHR3LhxAz8/P+rUqUP//v0ZMGAAyhzLRZVKJQsXfs7VqzfYunUfAHMPX+CpupWpG+BF2vp1qOvWM3suUXD6e/dI+nY2dy9cZMTGQ2y+GGuyj0ajpkGDUIKDq1K1akVcXFyIi7vH6dOR7Np1iJSU7CQZCWkZfLE/kogLN1nYqzG1/LxIXvgjrvfu4dK+gzMvTQghhBBCCCGsolHCotYQnQQV3R3T57sN4a/r8EIIjAwGRSEXAcnMqW/pua3bc79OSUkxOXd6ejoJCQlm+9HpdFnPM7fpdDqj5+a2O+qYmjVr4iqFK8UDztLbx1rgYUsHaTQa0tLSbDph+q6dnJv/Aw/9tCWr4u/jjz/Mzz9/aXb/jRs38txzz3H16lUUCgUVK1ZEpVJx/fp10tMNAcRWrVrx22+/Ua5cOaNjz569QMOGvUlNNYy1V41yLH+4KQAer41DFRxs0zUI0KemkvTVTC6dOseja/dz4pZxXfoWLcJ49tkhDBrUA3//Mmb7SE5OYdu2/XzzzU+sW/eP0Zu8l4uaH3qG0aN6OVAocHv8CTQtWhbqNQkhhBBCCCFEbhEREXz66aeA/QGmvI7LbMt8ntmu1StQ6LUWj895jE6n49KlS0bf9F00LgQGBhZ4rJlyBvXyCvCZ2y+/7Xq9Puv7fCaFQpE1scfSOYvK0aNHadiwYVEPQwgjW7dupUOHfCdLjQNmQhHMAEzfu5dvD0dlBf/UahVTpowzu+/69evp378/Op2O8ePHM27cOCpVqgQY3qDWrVvHxIkT2bVrFwMGDGDr1q2oclSQrVWrOq+//gzTps0F4K+LN7mZnEZZdxfS9+6RAKAdUhb9xOXT5+j6y06uJmTP4qtSpSKffTaJxx7rgyKf21Pu7m50796W7t3bcvjwSV588X127ToEGGYDDt9wmDUDmtGyoh8pK5ajLF8eVfUahXpdQgghhBBCCJHTjRs3+OeffyDzq2Yhz8Izy5pzaoxfpunTuHrzauGe05a+c02o06NHi9bs7g45ny30QGrxCEIKYS+n5gDU37uHNiqSP6JuZrU98UQ/atY0rYt+584dRowYQUZGBvPmzWPGjBlZwT8wLPPt168ff/75JwEBAezcuZPVq1eb9PPyy8OzgoIZOj2/nrlmeH78GMgvsU3Sd+0k6fBhRmw8ZBT869ChOUeOrGPo0L75Bv9ya9y4Llu2LGX8+Gezjk3O0PLY7wc5fTsRMjJIWfQTehtnngohhBBCCCGELbLSTbndf7gWwcOlCB6aQn6onfhQ2fEQooRwagBQGxXJpbhEzt1NzGobMKC72X2//vprbt26Rc+ePXnuuecs9lmtWjVGjBgBwNKlS022BwWVo2PHFlmv15y7DoA+Ph7dzZsm+4u86RMTSV27hre3n2Lvtew69wMH9iAi4kf8/Hxt7lujUTNjxltMmzYhq+1OShpjNh1Bp9eji40l7c8Iu8YvhBBCCCGEENbICgDqi8FD5+SHtggeGU56pBfgkQEgMwBFyeDUJcDaK1fYEn0r67VGo6Zz51Zm912+fDkAL7zwQr79Tps2jXfffddo+W9Offt2YvPmnQAcvhmPTq9HqVCguxKNMlfeQJG3tE1/cfzyDb4/eimrLSysLosWzcDV1SWrbebMmaSmppocr1arKVu2LI0bN6ZRo0ZmzzFp0gtcuXKDr7/+CYD91+NYdOIKI+pXJn3Lv7i074DCx8fBVyaEEEIIIYQQprJWNyUV7ThKK0ury8y1F0qbq+UxCPEgcWoAUH/7NlFxyVmvQ0Nr4OPjZbJffHw8J0+eBKBdu3b59uvi4oKLi4vF7Q0ahGY9T0jLIDY5jXIeruhu37Fm+KWePjWV9F07+XTvOXT374B4eLizatVsPDyMy1x98MEHxMfH59lfgwYNmDlzJl26dDHZ9vnnbxIRsY0zZ6IA+HDnKQaHVsSDNNJ2bMe1V28HXZUQQgghhBBCWNasWTPmzJmDQqHICgRlzgrM3ZbXdnP7Z7ZZ6q+gbVlplJKTGTRoEDq1zrDeLx0a1W/EzJkzrRqrLddnzTEnT57k4YcfNiypVgKpMGTQED7//HOTn0vm8Tn7zf3c2u1ZszpzjctSPzn3F+JB5dwAYFIit5OzK/1UqFDW7H7R0dHo9Xrc3d0JCAiw+7wVKxrP8ssMAOoT71k4QpiTcfQIp6/eZM25G1ltL774pNkcjpnmzZtHcI5iKxkZGURFRbFixQr+/fdfevTowY8//shTTz1ldJyrqwuzZr1Pz55PA3ArOZ31kTcYXDuI9N27ce3ZC+QujBBCCCGEEKKQhYSEEBIS4thOr12FU6fg+jVITASNBgLLQkgI1AwBtW1f1ePi4gzBKyWG/HVa8PX1pVOnTg4dvr2yJosoyCrQ4eXlRdWqlr9bCiHs49wqwDo9Wn12SXNLUXStVpvndmupVBb6kWX8Vsk4fJj1kTFGs//eeGNUnse0aNGCsLAwk/YxY8Ywe/ZsXn75ZUaNGkWLFi2oVauW0T49erSjceO6HD5smA26/PRVBtcOQn/3DtroaFRVqjjoyoQQQgghhBCiEOn1cGA/LFkEGzfAhSjQ6czvW6YMdOgEg4dAv/7g5ubcsQohSiTnBgBdXPBxza5Jfveu+SWi5e7n5UtMTOTevXt4e3vbddq7d41n+nlq7l+2xnGXn5iYyK5du7JelylTxmyeAFdXVzw8PMz24evrazbo6eLigqenp8PGahO9Hm3keTZfjM1q6tKlFWXL+tvc5UsvvcT27dtZtmwZn332GfPnzzfZ58knH8kKAP59KZa7qemUcdWgPXNaAoBCCCGEEEKI4m/LvzD5fdix3RAIzEmhAJXKEAzMDAjevQtrVhseFSrC6xNg9IsSCBRC2MWpAUCFtzcVPbPftM6du4herzcJlJUvX55KlSpx5coVdu3aRffu5isFZzp58iT16tUDICYmhrJljZcWnzp1Puu5UqGgoqerYTwKx63jf+vjD/lm/3r06VqjdncXV5QqFQq9Hr0u+81epVTi7uKKXqdHl5ZhdIybxgWVQok2LR19jrtCSoUSV40GvVaHNtWwlFrl5oJCqcBVrUGpUJKRmoZep0OpUtGhQTjffv6lQ65PdyuWpPh77L6WnTexe/f88zPm5+WXX2bZsmWsXr2a7777zuTfwoAB3Zk4cToAGTo9h2Pi6VglAN2VaLvPLYQQQgghhBCF5tYtGPsKrFiWHfjz8YFefaBzFwhrDJWrGAJ7Wi3E3oSTJwyBwrVr4Pw5wxLhN8bD99/BvO+hTduivSYhxAPLuTkAU5KpH5hd9OPOnTiOHTtDw4a1Tfbt378/s2fPZv78+fkGADds2AAYcjPkDv4BbNq0M+t5w7LeuNxfEqy7etWm68gtNjaW9Qe344Ub4Q+1Qe3qarT96L+buBHqbnKcYf6jAjBXwESHIWlD7srGmQHBzJmUmfXgc1fczaBh/F0rriJvulu3uBCXTJo2OyDZpk1Tu/tt1qwZrq6u3Lp1i8jISGrWrGm0PTi4Cj4+XsTHJwBw9k6iIQAYe8tcd0IIIYQQQghR9A4egMED4fIlw+tKlWHiJBjxNFha3eXnB7VCDct+p38O//4Dn34Cf2+GM6ehWyeYOh3GjXfedQghSgznlrJJT6dlRT88NdlBraVLfze769ixY3FxcWHlypWsWrXKYpcJCQnMnj0bwKSQBBjyCf711/as112rBmZvdECBEYDxH75NZJkMgnwqMvLLr3lq+gyjh2d588VOHiT6hARuJhsHGStXrmB3vy4uLgQGGv5OYmJiTLYrFAqCgspnvY5NTrs/HingIoQQQgghhCiGNm+Crh0NwT+VyrCE99gpePFly8G/3BQK6NQZNv4FK1dDxYqQkQGTJsDrr1nOHyiEEBY4NQCocPfAXa2ib83sgM6SJWtJT88w2TckJIRPPvkEgMcff5zp06eTlJRktM+FCxfo27cvUVFRVKlShXHjxpn0s2TJWmJismeLda6aHYxTBQaa7G+tK1eusOX8f6gS02nd71Gz+6Smpth9Hls4tFS5TodWZ5yvQuOgHIrq+xWuMjJM/x2AoSJwpoz7/9HptfIfnhBCCCGEEKKY2bEdHu0PCQmGYh6/rTPM5rM1p7tCYZgRuPdg9vLfb2bBW284bsxCiFLBuQHA+296j9WulNV26dJVvvrqR7P7jx8/ns8++wylUslbb71F2bJladu2LX379iU8PJyQkBC2bNlCjRo12LhxIz4+PkbHa7Vapk79Nut1SBlPWlfyyx6Pr6/d1/Tqe29wsYyWcinutB36hMl2bXo6qelFEwB0JIVajYfGeDly5rJce+j1em7dMgRoAy0EZBMSErOeu6lVWeMRQgghhBBCiGLj0kUYMhASEyEwEP76B3r0dEzf5SvAhj+hZy/D6y+/gAWmRRSFEMIS5wYAfQwBt05VA2hcLjv49tFHX3Ppkvl8fBMnTuTo0aNMmjSJkJAQTpw4wfr164mKiqJ169b83//9H0ePHqV+/fomx7733pecOROV9frtlrVQ5SgyocgVMLTWqdOn2Xn1DOj1hNRtbJL7DyDuxg3SVHozRxc+c1WIbe7L04vyHsZVpy5evGJ3v6dOnSIhIQEPDw9CQkJMtqempnH58rWs10Fe93/GDrw2IYQQQgghhLCLVgvDnoCbNw2z/dZuMBT5cCR3d1i+Clq1Nrwe9yocP+bYcwghSiynBgBVFQ0541QKBf/XsT7K+0Gce/cS6dv3ee7ejTd7XGhoKNOnT+fIkSPcvn07a9bY1q1bGTduHF5eXibHrF27menT52W9bhDozcBaxjnrlL5l7Lqe1ye/w/UAJd43M+j7iunyY4C4a9dIUaTbdR5bOTJEpijjS1UfN6P8jbt2HbK734ULFwLQtWtXNBqNyfYdOw6Qlpb982sYaAgc6+Pj7D63EEIIIYQQQjjE7K9h107DRIWvv4XwZoVzHnd3WPoLlC8PKSnwwnOG4KMQQuTDqQFAZYWKWc/DK/gyon7lrNf//Xeafv1e4M4d+wM7v/4awdChr6G/X2rdQ6Pi+x5hWQFHAFQqFN7eNp/jwKGD7L97CVRKgnwqUCE01Ox+Ny9dJE314Oer0ycno1QoaB3kn9W2bNk6u/rctWsXM2fORKFQMGHCBLP7RERsy3pe3sOVhmXv/53JEmAhhBBCCCFEcRAbCx9PNjwf+Cg8OaxwzxcUBN/MMQQb9+6BpUsK93xCiBLByUuAfYyW3X7WoR7tKmcHlLZt20eTJo+wb99Rm/pPT8/gk0/mMHjwKyQnZ+fd+7pzA+oFGAf7lOXLGyoy2WjiJx9wM0CJ6nYybQcOtbjftchz4G46s80ZHLkEWJ9i+Hk+Vic7iHvo0AmOHTtjVT/JyckcP36c999/n65du5Kamsq4ceNo166dyb5JScn89NPqrNedqgZkzWpU+tk3e1MIIYQQQgghHOLrmXD3Lnh4wOdfOCdd0SMDoHsPw/NPPjZUCBZCiDw4NQAIoKpRI+u5q0rJ0r5NaRiYHRS8cCGaNm2GMGrUO0RFRReoT71ez8aNWwgL68M773yB7n6lWAXwYetQBtcOMh1HkGlbQR04eIAD8dGgUFA+1YM2Zop/ZIqNvgRuD34AUOHuAUCf4ApGxUDeemtGnsc1btwYhUKR9fDw8KBBgwZMmTIFvV7PJ598wowZ5vv49tslXL9+M+v143Wyi8coAsvZczlCCCGEEEIIYb/kZJh/P/XU8y9A5SrOO/eHUwzBxnNnYYN9q7OEECWf09dRqqrXIOPIkazXPi5qfh/YnBf+PErEhRjAMJNv/vzl/PjjKrp1a0u3bm3o1KkltWpVx8PDHb1eT0zMLU6cOMfGjVtYsWKDSUEKV5WSb7s2NBv8A1BWtD0AmJiQSIIiHRIV6OJ0zHt1NOlJSWb3jT5+HOrZWPLdTo6876T0Mcyg9NSoGFG/CnMOXwBg3bq/Wbfub/r27Wy0f8eOHUky8zNxc3OjXLlyNG3alP79+xNkIRAbFRXNJ5/MyXrdKsiPTlWzqwQr7SzgIoQQQgghhBB2W7fWsARYpYJXXnPuuZuGQ9t2sG0r/PA/6NffuecXQjxQnB8ArBFs0ubvpmFFv6Z8uf88H+8+S4bOkLsvPT2DDRv+ZcOGf606R6Oy3nzZqQHNKlheJqq0Ywagt7c3bqhJ8nTleh24nnjC8s5FFPwzcOAMQN8yKNzc0Kek8HaLEFaduUZMUioAI0e+wfbty6lTp2bW/mvWrLH5XCkpqTz66EtG+SDfblkr13h8cx8mhBDi/9m77/gqy/v/4+8zs4EEQsgikLBXgLBk76GiVUSligOsVtvibNX6a2u/X6vW7VdbrVonjqp1VFCZCrKXoCJ7JyHMQPY85/fHkZRw7pOck5zkJIfX8/HII8l13fd1XyeEaN5c1/UBAACN698fut6PHiO1T2n85193gysAXLxQys9v/OcDaDYafwtwSopMoaFu7SZJdw1I06aZo3R9zyTZLb5PrW14iJ4d20vLrh5WY/gnSZaExBr7axIZGakQU6N/6Xxm8ucaQJNJ5nauKsotQ2z632Fdq7pOnDilyZNn6eDB7Ho/Jj+/UJdffps2bdpa1TarV3uNSmpdfTqtOAMQAAAAQABVVkpfLXF9HKjVdxde7CqQWFoqLV8WmDkAaBYaP8Uym2VJ6+Sxu0PLMD03rrc2XzdS/zOsq8a0b6Mwq+diHa1CbLqme5I+unSgts8aoxt7JctSy9l3pqioegVIkZGRsjvrXkCksfj77FnzWaHpjO6J+kWf9lWfHziQpYyMS/Xll8vrPP7+/ZkaOfJqffHFf//DlRHXSn8d1d19LmdVlAYAAACARrdju5Sb6/p49JjAzCE2VurZy/Xx2tWBmQOAZqHRtwBLkqVrV1Vs/aHGa5KiwnRHRqruyEhVSaVDO04UKKugRKWVrgIf0aE2dWgRrg4tw3x/fqfOtV9Ug8jISNmcHtK10xXS1mLpaLnkkNTaKnULk+L8WAikyCEdL5ecklpZpJbGf4x+XQEo1/mN5atWVn3+2KgeOlpUpk9350iSjh/P1UUX3aRZs67Q/fffqtRU7w7ALSoq1mOPvazHH39ZRUXFVe1prSL01oX9FHLualCzWZa4uPq/IAAAAACoqx++d71v0ULq3CVw88gYIG3ZLH3/feDmAKDJC0gAaO3WTaU+XB9qMSu9bQult/VP4Qdr5/oFgBEREbI6DMK1Q2XSN3lSpfO/bYWV0sFSqV+E1Cu8Xs9VmUNaVyjtL3GFf2e0s0kXtJAiqwdlJrN/F3ieXcFZkiwmk16elK4ou1Vzf3RVbHY4HHrllff1+uv/1rRpk3XhhaM1YcIwxcdXr9qbm3tamzZt1XvvzdNHHy3UyZOnqvUPjo/WexdnqHWYe3BqbttWsgWmsjIAAAAASJL27XO979DRtQ03UM4scNm/L3BzANDkBeSnlDmuncxt28px9GggHi9LPf91xmw2y2axyrXE7yf5ldIKV/iXmBinX/1qpsLDQ/Xaa//Wli3bpG8LXav1kkLq9tAKSYtOSycr3PtyyqUvcqULW0kRP21Ndkpmf28Bjo2VKSJSzsKCqrbQn6otD0uM1l1f/ajiikrXdCsq9a9/zde//jVfktS2beuqEPDgwexqBT7OZjGZdGOvZD08srtCPZwDWZ8KzgAAAADgF8d++n02PsDHE515/rHA/H4NoHkIWCULa+8+AXmuqWVL1wqyego59194vi+SKpxq1y5W69d/rPvv/6Vuv/0GrVnzoYYM6eu6ZnNR3R+4pUA6WSGTyaQ//vE3OnXqW5WU/KhXXnlEYWGhUolDWlMZYhwdAAAgAElEQVRw1g1OmS1+PqfQZJKls/H5jdd0T9K6a0d4LOBy9OgJbdmyTVu2bPMY/g1LjNayq4fpqTE9PYZ/kmRJrHsBFwAAAADwi6Kffr+LiAzsPCJ/en5RPX7fBBD0AhcA9glMAGjt0rX2i7xgt5yzBTXTtan5rrtmVdvuGhoaooceusv1SW6Fa0uwryqd0q4SSdKtt/5cf/7z7WrZMkohIXbNnj1dTzxxv+u67DIp76fxnZLZ31VAJFm7dPPYl9LivwVc7h6QqvS2LWqdQ0JkiH7Vr4OWXjlUX0wboj6xUbXOwVyPCs4AAAAA4BdnftdxOmu+rqEF+vkAmoWAHVRgSekgU4sWcublNe5zu7lXlK0Lu/WsALDcKZW6fugOHtzX7dpqbfmO/27T9VZupesZkm699Rq37htvnKa7735YJSWl0tEyqUWY5HTKbPZ/pWJL19oD1KSoMP1paFf9aWhXnSgu15rDuTqYV6TjxWVyOJ2KjwxTastwdWwZpo4tw30LKs1mWVJT6/EKAAAAAMAPIiJc7wvyAzuP/J+eHxnglYgAmrTAnVRqMsnau7fKV66s/Vp/sdlk7dXLP2MVl6lNfpkkyelw6sSZ5uISt0vPrmwbeqpUFpXLZLdKJpMcToeKSt3vkdkkWX8K8I7/d9VgYqJ79duwsFC1aROtzMwcKb9CKiiVLGaZGmAFoLlNG5lbt5HjxHGvrm8dZtNFqfXfcn2GJTlZpjDfKz8DAAAAgF+1/el3s6yswM4jO9v1vq3774oAcEYASxW5zgFszADQ2r2HTKGhfhnro3/OVXHxf4O9ceNu1P79WZo//ytNmjSi2rXz5i396SOTvnz874qMNK4GXFxcrJIS9zDwxx17dfv6xyRJO3fu1+DB6dX6T53KU07OMUnSjP4j1atPB5WWl2nM8JF1fXk1svbqpbJlXzfI2LWpbwEXAAAAAPCLtDTX+wP7pbIyyW4PzDx2bHe9T00LzPMBNAuBDQC7dJUpLEzOs4K0Bn1e335+Gyv+nEpPN954hf70p2f14ovvaNKkEbroojGSpK1bd+n++5+QJHXsmKRRo0a4jVWbMWMq9fD/vqojR47r0Udf1Mcfv1Ct/4knXlFFRaUsFose+8sflZTUro6vyjvWPn0IAAEAAACc384UtiwslH7cKvnx902fbNxQfT4AYCBgRUAkSRaLrD16NM6zbDZZe/ZssOHvvHOWunTpqPLyCk2derNGjLhakyffqIyMS3X06AmZTNLf/vZgnca2WCy6556bJEmffLJIV101R+vXf6fvvtuuu+9+WA8/7AoEZ878WYOHf5JkSU2TKRDnS1gsnP8HAAAAoGlI6yTF/bTtdumSwMwhK/O/KwCHDgvMHAA0C4ENACVZ+/VvnOf08N/2XyNRURFauPB19e3bXU6nUytWbNCCBd+otLRMJpP00EN3acqUUXUe/847b9TUqWMlSe+//7kGDbpc6ekX66mnXpXT6VR6enc9/fQD/no5NTObZe3pp7MUfWDpmCpToJbVAwAAAMDZTCZpwiTXx598FJg5fPqJ5HC4CoAMGx6YOQBoFgIfAPboKVNEw68msw0c1ODPSElJ1IYNn+jDD5/Xbbddq4kTh+uaay7Vli3z9fvf31avsS0Wiz766AU99NBdiolpVdUeHh6mX/3qWi1f/q5atWpR35fgNWufxl9ebusXoCX1AAAAAGDk8itc79eukbb92PjPf+M11/sLL5YacMELgOYvoGcASpIsFtkyMlS2fFmDPcIcHd1oK9YsFoumTZusadMm+31sq9WiBx64Tffdd4u2b98rh8OhTp1SFBbW+D/orV27yRQSImdpaeM80GSStU967dcBAAAAQGOZNFlKTHJtxX3mKekfrzTes79aKn27yfXxjbMb77kAmqWArwCUJOugwQ06vm34CMncJF6qX1gsFvXs2Vm9e3cNSPgnSbLZZOnWvdEeZ+ncWaYWjbfCEQAAAABqZbNJv/qN6+O5b0rbtzXOcx0O6U//z/Vx337SmLGN81wAzVaTSMUsyckyJyQ0zOBWq2yDhzTM2Oe5xtwGbOvbOGdFAgAAAIBPbrlVio+XysulO37jCuca2uuvSmtWuz7+44NBteAFQMNoMj8lbAMa5ow+24ABMkVFNcjY5ztrz16uf/FqaGZzQM4cBAAAAIBaRUVJD//V9fHSJa6twA1p5w7pd3e7Pp40WbpoasM+D0BQaEIB4IAG+VcL27ARfh8TLqawMFl79W7w51i7diPEBQAAANB0/fxa6eKfgrj/d7/05RcN85wTJ6QrLpPy8qRWraS/veiqRgwAtWgyAaCpZUtZu3bz65iWzp1lad/er2OiusaormwbQYgLAAAAoAkzmaSXXpU6dJQqKqQZ06XFi/z7jBMnpKlTXOcMWizSK69J7VP8+wwAQavJBICSZBvk3zApZMpFfh0P7qzduzdocQ5zTIys3Xs02PgAAAAA4Bdt2kifzpNiY6XCQumyqdKrr0hOZ/3H3vajNHq4tGG9K2x89HHpkp/Vf1wA540mFQBa0/v6bauntWs3WdLS/DIWamA2y5YxoMGGt40cxYG2AAAAAJqH7j2kzxdK7dpJpaXSL38hXXO1dDi7buOVl0vP/580bLC0Y7vrd6NHHpNuv9O/8wYQ9JpWsmKxyDZ0qF+Gsk+a7JdxULsGq7Jss1HBGQAAAEDzkt5X+ma11Lef6/MP35d6dpXu/5106KB3YxQXS2++LmWkS3fdLhUUSJGR0lvvSHfd02BTBxC8rIGewLnsw0aobPFiqbKyzmNYu/dg9V8jMsfHy5yUJEdmpl/HtQ0YKFN4uF/HBAAAAIAGl9JBWr5K+t8HpWefdgV4Tz4uPf2kNOQCaew4V1CY3N4V7JWVSUeOuM73W/GNtGiBq9DHGSNHSS++LHXqHKhXBKCZa3IBoKllS1l79VbFls11HsM+ZYofZwRv2AYNVqk/A0CTSfZRo/03HgAAAAA0ptBQ6S+PStfdID30P9JHH7q29K5a6XrzRnpf6b7fS5dN42gkAPXSJH+C2MeOrfO91r79ZEnp4L/JwCu2jAGuSlR+Yu3bT+b4eL+NBwAAAAAB0bWba+vuzr3SX5+QRo9xrfozYrW6zhH8ze3SspXS2o3StOmEfwDqrcmtAJQkS4eOsqR1UuWe3T7dZ7LbFXIplZACwRQZKWufdFV8u8kPg5kUMnFS/ccBAAAAgKYiMUm6827XW1mZ6zzAw4ddFYNtNlf14JQOUosWgZ4pgCDUJANASbKPH69iHwNA+8RJMsfENNCMUBv7iBF+CQBtGRkyJyT4YUYAAAAA0ATZ7VJaJ9cbADSCJruO2Nq9h8yJSV5fb27bVvYxdd86jPqzpHWSOSGxfoOYzbJPpIIzAAAAANRZhaRySY5ATwRAU9FkA0CZTAq56CKvLw+57HLXeQkIKPvwEfW63zZgoMxxcX6aDQAAAACcX2w2m+xmu+yyy26xy2azBXpKnhVLKpJUGeiJAMGvSSdm1p69ZOnUSZW7a94KbO3dR9YePRtpVqiJdeBAmebPk7OwwPebbTbZJ7P6DwAAAADqomXLlsrPz5fT6axqMzfBAiIJCQl6+OGHq7Wlp6cHaDbA+aFJB4CSFHLhxSp67lnprB9gZzOFhSn0iumNPCt4YrLbZR85UqVffO7zvfZx42Vu3aYBZgUAAAAA5wdrM9gZFxcXp/vvvz/Q0wDOK03vnwLOYUlLk23AQI/9IVdcKVOrVo04I9TGNnKUTCEhPt1jjo6Wfdz4BpoRAAAAAADA+avJB4CS63w/U2SkW7u1dx/ZBgwIwIxQE1N4uGwXDPXpnpBpV8hktzfQjAAAAAAAAM5fzSIANEVEKPTKqyST6b9tUVEKvXpGAGeFmtgnTPR6FaC1azdZe/dp4BkBAAAAAACcn5pFAChJ1vS+sk/6b4GI0OlXGa4KRNNgioyUbeSo2i+0WBTCGY4AAAAAAAANpumfDnqWkMlTZDJb5Mg7LSsVgpo8+7jxKl+5Qs6iIo/XhEycJHPbto04KwAAAAAAgPNLs1kBKEkymWSfNEmh068M9EzgBVNYmEIuvsRjvyUpWfYJExtxRgAAAAAAAOef5hUAotmxDR0qS2qaQYdNoTNnShZL408KAAAAAADgPEIAiIZlMin06qvdCoKEXDxV5nbxAZoUAAAAAADA+YMAEA3OHNdOoTfMksyubzdLWprso0YHdlIAAAAAAADnCQJANAprjx4KvXqGTC1aKPTa6ySTKdBTAgAAAAAAOC80qyrAaN5sg4fINmAg5/4BAAAAAAA0IlYAonER/gEAAAAAADQqAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIGY1bg6PqSkbdDgs+uCDLxpoSgAAAAAAAAA82bZtm6TIWq4K6SvFjJR2LTcZX5CQI4XF+XtyAAAAAAAAABqLaZG0eyJbgAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQcxDFWAPUuKkyNAGmgoAAAAAAAAAnxWWSPuPeOz2LQAc3lPqnFjfKQEAAAAAAADwl3050v5FHrvZAgwAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQcwa6AkAAIDq/jhqlHq1bdsgY5dVVupUSYlOl5ToVEmJdp08qfVZWcrKz2+Q56F5aBcZqf+bMsWtfdWhQ3pmzZoAzAgAAAD+RAAIAEATMyolRWM7dmzUZ2bl5+uzHTv0j40btTknp1GfjcCLtNs1vUcPt3aH0xmA2QAAAMDf2AIMAACUGBWlXw4YoG9vuUUrZ83SBUlJgZ4SAAAAAD8hAAQAANUMTU7Wilmz9ODo0TIFejIAAAAA6o0twAAAwI3ZZNKfRo1Su8hI/XLevEBPB81AhM2mP4wa5da+OSdH7/3wQwBmBAAAgDMIAAEAaCYKy8t1pKCgzveH2WwKtVrVIiREFpN3a/tuycjQtmPH9OzatXV+Ls4P4Tab7h02zK39ne+/JwAEAAAIMAJAAACaiQW7d2va++/Xexy7xaKOrVppSFKSLunaVZd261ZjIPjI+PH6z44d2nfqVL2fDQAAAKDxEQACAHCeKaus1I4TJ7TjxAm9sWWLesTG6pVLLvFY+CPMatX9I0bo5s8+a+SZorGcKCrSfYsXu7VvP348ALMBAACAvxEAAgBwnvvx2DGNf/NNfTZjhsZ27Gh4zZU9e+pX8+er3OFo5NmhMeSWlOivK1cGehoAAABoIFQBBgAAKiov1w2ffKKCsjLD/pYhIbogObmRZwUAAADAHwgAAQCAJOlQXp5e37zZY//41NRGnA0AAAAAfyEABAAAVf6zY4fHvqQWLRpxJgAAAAD8hQAQAABU2Xj4sMe+thERjTgTAAAAAP5CERAAAFAlt7hY5Q6HbGb3fyOMDg3123O6tWmjUSkp6hMXp47R0WoVGiq7xaKi8nKdLinR7pMn9f3Ro1q2f7/25Ob67bnnk25t2mhGr14amJio2PBw5ZWWatfJk/rlvHmBnlq9xUVEaHSHDspISFDnmBjFhIUpwm5XeWWlTpeW6uDp09p+/Li+OXBAmw4fVqXTGegp16pHbKxGtG+vTjExSouJUZTdrlahoTKZTDpdUqLC8nKdKCrStuPH9f2RI1qblaWTxcUNNh+zyaRubdpoYEKCMhISFB8ZqeiwMLUKDVVxeblOl5Yqt7hYW44c0YbsbK3PylJheXmDzQcAANQPASAAAKjilJRXWqrWYWFufcUVFfUaO9xm080ZGfpF//7qERvr9X1bjhzRSxs36p+bNqm0stKrex6fMEFjDCoaL9yzR79fssTrZ58xICFBL158sWFfWWWlRr32Wp0qJC+aOVPRBl/rd77/Xk+tXl2tbXa/frp14MBqbXtzc3XlBx9Ua4sND9ezU6bo6p49ZTKZqvX1joszDABbhoRoyfXXu89vzx7d7+Hrte4Xv5D5rPGtBqGxJE3u1Ekbbr7Zrf3DH3/UoytWGN5jxCTp0m7ddNvAgRrXsWO1Z9fkcEGB3tyyRc+uWaPDBQVeP68xJERF6c4hQ3R1r14+b7Evdzi0dN8+vbVli9794Qc5/BRyJkRFaVa/frqxb1+lRkfXev21P73PLyvTu99/r7+tX6/vjhzxy1wAAID/EAACAIAqJrnCICP1WW00s08fPT5xouLqsI04PS5Of7vwQt07bJhumz9f83ftqvWefadO6Z74eLf2+MhIPbBkiXyNSiampSnDYLwzBiYmatWhQz6N2bV1a4+FVf741VdubfFRUW5zCLVW/1+53m3bat7Pf672LVv6NBer2Wz4+nafPOnxnv7x8bJ4EcLFhIUpxiDkXJeV5fX8MuLj9dLUqepfw5+BJ/GRkbp32DD9etAgPfzNN/rrihUBXxEYbrPpL2PH6taBAxVisdRpDJvZrElpaZqUlqa7hw7VbfPna01mZp3nZDWbdceQIXpw9GhF2Gw+3x9lt+vmjAzN7t9fT61erT999VW9/9EAAAD4D2cAAgCAKm0jIjyu5Np69KjP40XYbHp/+nS9edlldQr/zta+ZUt9NmOGHhk3TrXFTvN37jRsT4iK8mn14RmjO3SosX+swWrD2ni6p7C8XEv37fN5vO5t2uirG27wOfxr6u6+4AKtuemmOoV/Z4v4KXRbOHOmx5C7McRHRmrV7Nm6Y8iQOod/5+rXrp2WXn+9Lu3atU73R9ntWnLddXp8woQ6hX9ns5hM+u3QoVo4c2a9xwIAAP5DAAgAAKoMb9/eY5+vq4tahIRo6fXXa3qPHvWdVhWTyaT7hg/X8xdeWON1B06f1vceAktPq+48sVssGpqcXOM1Y2oJCI14CgAX7dmjEh9XTkWHhuqLa6813LrdnD07ebKemDjRYyhdF2M7dtSS669XlN3utzG9FWW368trr1V6XJzfxw6zWvXBlVf6PHak3a5F112nkSkpfp3P8Pbt9eGVV9Ya1gMAgMbBFmAAAFDlql69DNuPFRX5tCrNZjbrPzNmaFBiosdrHE6n1mdna9WhQ8rOz1dRebniIiLUKSZGkzt1Mtw2esZtAwdqx4kT+r+1az1eM2/nTvVu29atfUJamp6t4b5zDUxIqHUl09DkZIVarV4Hd2aTyfCMQsk1b1+9cPHFSmnklX+bDh92OwPQKHw6WVysfadOubUfPH26xvEfHD1acwYPrvGavbm5WrR3r7Ly8nS0sFCxERFKiIrShNRUdYqJ8XhfRny83p42TZe++67P28Hr49Hx49WnhoCu0unUmsxMbcnJ0cHTp5VbUiLJFfAmt2ypPnFxuiApyWMgajOb9c9LL9XAl17y+nU9NHasBtfw97S0slLLfyqmcqSgQIXl5Yqw2ZTYooUGJSZqWHKyx/MYJ3fqpJ/37q23v//ey9kAAICGQgAIAAAkuYKuad27G/Y9u2aNT0UuHp84UaM8rCgqq6zUixs26NEVKzwWZbCazbqka1c9On68OnsIcv46frwW7tmj7cePG/bP27lT9w8f7tY+KiVFNrPZ69dT2/ZfyXUW39DkZK9D0vS4OMPVeg6n06szDs92fXq6rurZ0639cEGBvti1S98dOaIdJ07oRFFRVaDkD4Nefrna57Hh4Tr629+6Xffl7t265qOPfBr74i5d9MeRIz32f7l7t/7f0qXaePiwx2v6x8frkXHjNDEtzbB/apcuuql/f728aZNPc6urTjExujkjw7CvwuHQ8+vW6a8rVyqnlkIlMWFhmjN4sO4dNsztDEjJFW4OSkzUWi/OWEyPi9OvBw0y7CsqL9fD33yjv61fr1M1fN+0b9lST0yc6HGl78Pjxvm1SAkAAKgbtgADAAClRkfrk6uvNlzJsyc3V0+vWeP1WMOSkzXHQ6hwKC9Pg15+Wbd/+WWNFVkrHA59tG2bev3973pp40bDa0KtVj09aZLHMdZmZup4UZFbe6TdriFJSbW8iv/yJgCUfDsHcJyHbcjrs7NrDYDO1jYiQs+dsx16y5Ejmjx3rpKfekqz//MfPbt2rb7cvVvrs7NrLOrRVLQICdE/Lr7YrYKx5FqNdv0nn2jK22/XGP5JrhWKk+bO1Q2ffOIx7H10/PhGOw/w5owMw5V75Q6Hpr3/vu5csMCrP/uTxcV68OuvNfr111VYXm54zeUegvxz3dC3r2Ehl1MlJRr52mv6yzff1Bj+Sa6VnFd+8IGeW7fOsL99y5Y1rgQGAACNgwAQAIDzWLjNpl8PGqRvb7lFCVFRbv35ZWX62XvvqchD0HAuk6Rnp0wxDG8Onj6tIa+8oi1Hjng9v7LKSt0yb56eWLXKsH9yp04ew7xKp1Nf7N5t2DfBw6qwc3k6/89oNZMvAaCna33d/hsbHl7tLLtn1qzRwJde0oI9ewJe6bau7h8+3PB7scLh0NR33tGbW7b4NN4bW7bo0nffVYVBCHhmNV1juMRDgY6/rlih/+zY4fN4a7OyDKtFS1Ln1q29GuNKg5WjknTPwoW1Bqzn+t2iRTrgYVv3lE6dfBoLAAD4H1uAAQBoJiLsdqVGR9f5/nCbTVF2u1qFhqpHbKwyEhJ0UefOauFhBdSxoiJd+Pbb+sGH6r8Xdu6sDINqrSUVFZr2/vvKzs+v09zvW7xYAxISDFfj3TZwoMcCJfN27tTMPn3c2senpnoMT842MCFB4eec/1dSUaEFe/a4VVwdmJCgKLtd+WVlNY5pM5s1wkOxlc/qEASd8eaWLbprwYJGPdPO32LCwvQrD6tH7128WIv27q3TuF/s3q0/L1um/x0zxq3vlgED9PA33zRoYNoqNFRdDLayl1RU6KnVq+s87ltbtujJiRPd2uMjI2u9N8puNwxaC8rKNPe773yeS0lFhf71ww/63bBhbn1pNZzHCAAAGgcBIAAAzcSktDTtmTOnUZ711f79uvGTTzyu6PHklwMGGLb/ff16bcjOrvN8Kp1O/eKzz7T9179227I4rXt3/XLePMNVigv37FG5wyHbOVsvByYkqGVIiE6Xltb4XKPAcXVmpubv3OkWAFrNZo1MSan1DL/BSUmKNKhAe/D0aZ9WR54tp6BAt8yb16zDP0m6pndvw+q83x05omd82IZu5OFvvtE1vXurW5s21doTo6I0LjVVC/fsqdf4NUmNjjZcFbv8wIF6nct4rKhIeaWlbiF+WC1FayQpsUULw/aDp0+rtLKyTvPx9P3rTSAJAAAaFgEgAACokpWfrz999ZVe27zZ50P724SHa7LBVr+i8nL9deXKes9t98mTen/rVs04p1JxuM2mcR076jOD7bOnSkq04uBBjTknyLOazRrTsaM+2b69xmcaBYBf79+vJR6KfYzt2LHWAHCcH6v/nvHU6tVeVyBuyq41WK0pSQ9+/XW9i0g4nE79deVKvXbppW59F3Xu3KABYHllpT748Ue39i98LPhipK5hnadKwtE1VN+uzQdbtxq+JqPt1wAAoHERAAIAAEmuVXaPrVypN7dsqVPYMiktzTBU+HL3bh0tLPTHFPX2d9+5BYCSK6gzCgAlaf7OnW4BoOTaBlxTAOjp/L+v9+/X3txc7c3NdduSPcaLcwA9nf/naf61cTqdevXbb+t0b1PSNiJCAxIS3NpzS0rqFY6e7YOtW/WPiy+W3WKp1u7Nn1t9fH/0qK784IMGGTvMoBKwN04WFxu2x0dGakJqap22W5c7HH6tNA0AAPyHIiAAAECSZDGZ9Ozkydr+61/7VNDiDE8hyqf1ONfuXMsPHDCs6NqrbVuP93gKjyZ4qMR7xqDERLfz/4orKrT2p/MGjVYBpsfFqXUNK6gibDbDoiUFZWX6ysOqwtpsO35cJzyEOc3JmA4dDKtQz9+502MVX18VlpcbnhfZtXVrt23izUF6XJzhdnJvHM7P1zGDKtmS9MZll6lvu3b1mRoAAGhimt//6QAAgAaVGh2thTNn6l6Dw/xr0s9DYLA+K8sf05Lkqkp84NQpt/becXEe79lx4oR2nTzp1t6ldWu1b9nS432G5/8dOlS15XKJwQops8lkeN8Zw9u3d1t9JkmL9u6t81bOVYcO1em+pqafQfEYSfU6O9KIUVEbu8WiruecDdjUJbdooTcuu6zO9zslj9ue4yMjtfamm/TUpEnq0KpVnZ8BAACaDrYAAwDQTHybk6MXN2yo9zitQkOVGBWlIUlJGpCQYLjqymIy6dHx41VUXq7n1q2rdUyTpO6xsW7tlU6n9ubm1nvOZztSWKhO51QVjY+MVOuwMI8r4ebv3Kk7hgxxa5+Qmqp/etg+6+n8vzOW7tsnp9PpVtxhbMeO+ve2bYZjetz+W49Vkr4WammqunsI4HaeOOHX53jajt6rbVufKl43tlCrVT1jY9UnLk7jU1N1effuCq3j9t8z/rpihWb06mX4M8BusejOIUN0x+DB+jYnR/N37dLnu3ZpY3a231ZkAgCAxkMACABAM1my4TgAACAASURBVLEvN1cvbdzo1zG7tG6th8aO1fQePQz7n5w0SUv27dOPx47VOE7r8HDDs8icTqdWzp7tl7me0fmc8O+MtJgYnfCw2nCehwBwvIcA0G6x6AKDrbpfnRUAHisq0pYjR9y2Sta0fXqcwbZjh9Opz+tRDOJUkJy5luxhNeaTkybpf8eO9dtz4iIiDNvTzjnPMRCsZrNSWrZUp5gYdW7dWp3Pet+hVSuPhTvq6vujR/XnZcv059GjPV5jMpnUPz5e/ePj9YeRI1VUXq51WVlacfCgVh06pFWHDtVaTRsAAAQeASAAAOexnSdO6MoPPtCfR4/WH0eNcuu3mc16ZNw4XfreezWO4ylUsZrNyvCwtdPfWoSEeOz75uBB5ZWWul0zLjVVZpPJrejJYIPz/84EH2dbsm+fWwDYrU0bJURFKTs/v1p7TFiY4TbpdVlZOlKPIinBEgC29fA95GlloL/V9P3TUOIiIjQuNVVDk5M1on17dWvTxnCLeEP6n2XLFGKx6P7hw91WsxoJt9k0ukOHqhWyDqdT3+bkaOGePfp81y6tPHhQ9avXDAAAGgJnAAIAAD349dda7KHq54WdO3sM+M6o71ZEf4iqoRhCWWWl4XlnseHhSjc4P9Bo+++qQ4dUds45fUbnAErGqwBHeyhyUdfqv2cUlpXV6/6moq7VbP0lqpECQLPJpJ9166b/zJihzLvu0tuXX65fDRyoPnFxjR7+nfHA0qWaNHdurSt9jZhNJmXEx+v+4cP1zY03atecObpv+PA6FycBAAANgwAQAADIKemh5csN+6xmc61Vgf29NbEuagtwPFUDHm+wLbe28//OWH7ggFsoKBkHgJ6+hp7mdb6xBPh7qKYA2V8y4uO16ZZb9PFVV2lqly51/nuTU1CgVzZt0oVvv62TfqoAvWjvXvV+4QVd9eGH+nr/frdVsd5Ki47WI+PGafecObouPd0vcwMAAPUX+H+uBwAATcKyAweUnZ+vhKgot75+8fF694cfPN7raRtqYXm5th8/7rc51qS4vLzG/i9275bD6XRbhTchLU2Pr1pV9XmIxaILkpPd7jcKAAvLy7U2K0sj2rev1j7GIEAcZxAAHjh9Wt8dOVLjvM8Xp0pK1NIgxN2ck6PKOoZRvqjPNmxvXN69u96ZNk0hPqzyK/rp78+248e19ehRfXfkiDbn5CjrrO3l/vzaOJxOvb91q97fulXJLVroih49NDEtTSNTUty2xNcmLiJCb/zsZxqanKzb5s+vc6AIAAD8gwAQAABUWZ+drUu7dnVrbx0WVuN9nlYhHTh1SgNeeskvc6uvo4WFWpeVpSHnFPcY3r69Qq1WlVRUSJIGJSa6bUctLC/X+uxsw3EX793rFgB2aNVKqdHRVRWQE6Ki1M3gLLv6VP8NNrnFxUoxKAQy9d13lZmXF4AZ+U//+Hi9O21ajVt8HU6nNmRn68vdu7U2K0vbjh3TgdOnAxacHcrL09Nr1ujpNWsUYrFoSFKSRqakaHj79rogOdnrFZO3ZGToVEmJ7lu8uIFnDAAAakIACAAAquw5edKwvVVoaI335ZaUyOl0uhURiK3l7MDGNm/nTrcAMMxq1bDkZC3Zt0+S9+f/nbFk717DKqpjO3asCgCNVv+dmQ9cPIXIseHhzT4AfOGiizyGf6dLS/X4ypV6edMmHW3gVYh1VVpZqWUHDmjZgQOSJIvJpL7t2mlkSoou7tJFI1NSatzO/LuhQ/X+1q3adPhwY00ZAACcI/AH9gAAgCYjr7TUsL1lLQFghcOhXINtwK3DwnzeOtiQ5u/aZdg+IS2t6mNvz/87Y11WlvINCnGcfeaf0fl/+WVlNY57vjlWVGTYnmywKrA5GZqcrEGJiYZ9W44cUa+//11/+eabJhv+Gal0OrXx8GE9vWaNxr35puKeeEK3f/mlx9dgMpl077BhjTxLAABwNgJAAABQpcjDOXpG1WvPtdWggqjZZHJbcRdIW3JydMhgNdmZQiC+nP93RrnDoeU/rYw625gOHXTmq2YUAC7as0elHlYVno9+OHrUsH2owZ9Hc3Jxly6G7ceLijTxrbea/epGybV68//WrlX6iy8a/hyQpIlpabJ48XMEAAA0DAJAAABQq3IvgqqNHs7IG5mS4rd52MxmpUZHu7219XKrsVPSfINtt/3atVOb8HANTkoyPv8vK6vGcRfv3evW1i4yUj1iY9U5JkbtDVaxfcb232oa4/tHktq3bOn2/dOhVSu/PuNs/dq1M2x/ft06v6z6q+lcwcaWU1Cgaz/6yLCvVWioUhrw6wwAAGrGGYAAAKBWns6/O9uivXt1x5Ahbu0z+/TR/yxb5pdiBtf37auXp051a3/w66/152XLvBpj/q5d+uWAAdXazCaTxnbsaFioY8XBgyp3OGocc4lBACi5Vv4Zfe0cTqc+97Ad+Xy1/MABlVZWulXJHZKYqG5t2vilmnTHVq20e84ctxWtqw4d0rBXX633+EYSW7QwbDcKjX0VGx5uWDm5NlF2uw7ceadhX4dnnvF4FIA3NufkaE9urtKio9362oSHV52LCQAAGhcrAAEAQK28ie6+2rdPpw2Cg9ToaI/bIH1hNpn0m0GDDPsW7tnj9ThL9u5V8U8Vf882PjXV5/P/zvjh6FEdMVjNNaZjR437aXvx2dZmZTWrM98aQ2F5uWEoZjKZ9GsPf+6++s3gwYbb2X35/vFVhIczMD2deeiLK3v2rNN9+WVlspnNig4NdXvLiI+v97w8FXQpNfh7BwAAGgcBIAAAqOIp6POmkEdxRYXe37rVsO+pSZM8BiHeurFvX/WJi3NrP15UpPUeto8aKa6oMFyxN7lTJ8PzCr0JAJ2Slv5URfhsozt00BiDUPGzHTu8mep55/XNmw3bb87IUP96BlOdYmJ028CBhn0NuRrTKBSXpJiwsHqN2yo0VPcOH17n+z2dPXhJ1651HlNyVQhONVj9J8nw/E0AANA4CAABAECVYg9FQFp4uc3wmTVrDLf6pkVH6/+mTFFdSwB0bd1aT06aZNj39/XrVVHLFt1zGVUDTm7Rwu38v4KyMo9n053LaPVadGio2oSHu7Vz/p+xT7ZvN9wiajOb9eZll6lVLdWoPQm1WvXOtGlu24slaU1mpk8Bsq+OFBQYttfnbEOr2axXL71UyR62F3tjrYdzLWf166fW9QgnL+ve3fD+I4WFHlcGAgCAhkcACAAAqniqAty9TRuvKgH/eOyY3v3hB8O+Wf366R9Tp3o1ztk6x8Toi2uvNTzrrLiiQs+vW+fTeJKrEIjTizMJvTn/7wxP5wCea9+pUx4r3gajCLvd62srHA6PZzn2jI3VkuuuU6xBoFqTcJtNH0yfroEJCYb9j61c6dN4vtrgIVycM3iwonz42pwRabfrvSuu0GXdunm8xptqu0bFcCRX2P/GZZfJavb914TOMTH624UXGvZ5Wh0MAAAaBwEgAACokuNhtVKk3a7uBgUyjNyzcKFyS0oM+37Rv79Wz56tQYmJtY5jNpl0Y9++Wn3TTerooXron7/+uk5nqR3Ky9N3XoRw3mz/PePA6dPaffJkrdfNO89W/xlVQK7JW1u2aNmBA4Z9/ePjteXWWzWzTx+vVpNekJSk1bNnezyDcvHevfq0gbdje/rzToyK0idXX+31qkaTpIu7dNH3t96qad2713htx+joWgO8BXv2ePx7elHnzlo0c6ZhIQ8jFpNJ16ena81NNxlW5HY4nXrt22+9GgsAADQMqgADAIAqB06f9tg3Mz1d9y1eXOsYOQUFuv7jj/Xp1VfLZLASaVBiolbPnq3VmZn6dPt2rcnM1NHCQh0tLFRMWJhSo6M1vH17Xdunj8ezxCRXOPf4qlXevTAD83buVLrBmYLnPsMXS/btU6eYmBqvCdbz/yo9rKjsGxenq3v10nvnrAy1mEyG9zglXfvRR9p4882GYVJ8ZKTevOwy/XHUKH28fbuW7tunzLw8HSkoUKjVqoSoKA1OStL0Hj00vH17j/M9UVysGz75xC/VqWuyLitLa7OyNNgg9B7bsaN+/NWv9NTq1frwxx+1/9Spav0Wk0l927XTmI4ddWPfvuoRG+s2htPpdPt7FmGz6aGxY/X7JUs8vr680lI9/M03enzCBMP+0R06aMdvfqP5O3dqyb592pCdrWOFhcotKZHNbFbL0FD1jI3VBcnJmt6jR41B73Pr1unbnByP/QAAoOERAAIAgCq7TpxQcUWF21l4kmvL4ptbtujHY8dqHeeznTt118KFetrDuX1mk0nDkpM1LDm5TvPceuyYrv7ww3qFN/N27tQDI0Z47M8vK9PGw4d9GnPx3r26JSPDY39eaanH1W3N3emSElU4HG4rz0wmk96dNk3PX3ihsvPzVeFwKDY8XJ/t3Knb5s83HCszL0+XvveeFs6c6XGbbKeYGP126FD9duhQn+daUFamy//1L2Xl5/t8r6+cku5esEDLb7zRcPt7fGSkHp8wQY9PmKDjRUU6WliocodDbcLD1SY83PDcwjOeWbNGMWFhui493a3v3mHDdFm3btqQnS2npAeWLHEL+J9bu1bX9unjMQi3mEy6pGvXehUG2XT4sH6/ZEmd7wcAAP7BFmAAAFCl3OHwWPQizGrVF9dcU+uquTOeWbNGt86f7/UZet76NidHY15/XUcKC+s1zrqsLB2tYYwVBw/6XFzkq337agwlF+7Zo7LKSp/GbC4qnU6tOnTIY3/rsDD1bttW/dq1U5IXxSvWZGZqwptv6rCHbel1daqkRBPfekvLGzGIXXnokO748star2sTHq4esbFKj4tTYlSUx/CvoKxMV3/4oe5csKDG19GldWv9vHdvXdO7t+FZjKWVlZo8d65XW9frYuWhQxr7xhsezxYFAACNhwAQAABUU9MZde1bttRjHrYMGnlxwwaNef117Thxot7zqnA49OiKFRr6z3/W6dy/czmcTn2xe7fHfl+3/0qubaWba9jqGOzVfx9dscKv463NytKAl17y27mJ83ftUu8XXtDqzEy/jOeL59at05wvvlBpPQPg5QcOaNDLL+tfPxXV+Pe2bR7P8vNGTkGBRr3+ul/PpiytrNRDy5drwptv6nRpqd/GBQAAdccWYAAAmpj5u3YZrshprDO05n73XY1n73mzBfhsKw8dUvoLL+gXGRm6Z+hQpfhYFKK0slL/+uEHPbl6tb47csSne2vzyqZNKq2oMOz7Tx3P6ntq9WqNTEkx7Pt81646jSm5tlK+tHGjW/u+c86Nq4uSigrDsT1VsPXki927ddeCBXpswoQ6VZE1kp2fr6nvvqspnTrpgZEj67Rt/Kv9+/V/a9fqk+3b/TKnunpu3TotO3BAj0+YoAmpqYZnZHqyOSdHf/nmG/37xx919hrTUyUl+uW8eXpn2jSvqv8aOfM1vrJnT905ZIiGJCXVaZxTJSV674cf9NTq1drVQKsKAQBA3Xj4v4SEHCnMfX/PNWOlzrVX7QMAADBiNpk0MiVFF3XurOHt26tbmzZuVVBLKyt14NQprTp0SCsPHdKn27f7ZcUfGk+fuDjNGTxYE9PSlHzOdt+i8nLtPnlS/9i4UX9fv97nsbu2bq3Lu3fXyJQU9YmLU0JUVLV+h9OpwwUF2pCdrRUHD+qLXbu01cfQujH0iI3VVT17akRKigYkJLiddZhXWqqtx45p2f79+ve2bbWGsRckJen/jRyp0R06KNxmq2rPzMvTuqws3TZ/vtfb5nvExuqSrl3VPz5e/dq1U4dWrQwD3eNFRfrh6FFtyM7W6sxMfb5rl0o8BOoAAKCB7cuR3lhk0GFaJO2eSAAIAAACqkVIiFqEhMhsMulkcbEKysoCPSX4UZTdruiwMDmcThWUlelUPbarGgmzWtUyNFThNptyi4vrtR02kEKtVsWEhclusSi3uLjOW2etZrNiw8Nls1h0oqhIhX46fy/cZlOLkBCFWa06VVLSbL/OAAAErVoCQLYAAwCAgMorLVUe54QFrfyyMuU3YKhbXFGhYj8XCgmEkooKZfuhKnGFw+H3wimSa+UmxTwAAGi+KAICAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMSsPl29eY904GgDTQUAAAAAAACAz04X1tjtWwC49UB9pgIAAAAAAACgkbEFGAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxDwUASk4JBXFebrJYrHoL3/5S0PNCQAAAAAAAIAH+/bt0z/+8Y9argqZJ0XOlSSThyv+I2mqp9ttNpvKysrqOEUAAAAAAAAAdbV8+XKNGjWqtsvulPSMxBZgAAAAAAAAIKgRAAIAAAAAAABBjAAQAAAAAAAACGIEgAAAAAAAAEAQIwAEAAAAAAAAghgBIAAAAAAAABDECAABAAAAAACAIEYACAAAAAAAAAQxAkAAAAAAAAAgiBEAAgAAAAAAAEGMABAAAAAAAAAIYgSAAAAAAAAAQBAjAAQAAAAAAACCGAEgAAAAAAAAEMQIAAEAAAAAAIAgRgAIAAAAAAAABDECQAAAAAAAACCIEQACAAAAAAAAQYwAEAAAAAAAAAhiBIAAAAAAAABAECMABAAAAAAAAIIYASAAAAAAAAAQxAgAAQAAAAAAgCBGAAgAAAAAAAAEMQJAAAAAAAAAIIhZAz0BAPC3vLw8bd26VZmZmcrLy1NlZaXCwsIUHR2t2NhYpaenKzQ0NNDTBAAAAACgURAAAggKq1ev1ocffqh58+Zp586dNV5rt9vVr18/TZgwQbNnz1aHDh0aZ5LnoYkTJ+rkyZNVnz/zzDMaPnx4AGcEAAAAAOcfAkAAzdrChQv14IMPavXq1V7fU1ZWprVr12rt2rV6+OGHdeGFF+rJJ59Uly5dGnCm56fvvvtOR44cqfr89OnTAZwNAAAAAJyfOAMQQLOUm5urn//855o0aZJP4d+5HA6H5s2bp/T0dD388MNyOBx+nCUAAAAAAIHHCkAAzc7u3bt18cUXa8eOHTVeZzabFRcXp1atWik/P1/Hjx9XSUmJ4bUlJSV64IEHtHPnTv3zn/+UxWJpiKkDAAAAANDoCAABNCv79+/X6NGjlZWV5dZnMpk0ZswYXXvttRozZoySk5OrBXkVFRXaunWrlixZoldffVVbt251G+ONN95QZWWl3nrrrQZ9HQAAAAAANBa2AANoNgoKCjRlyhTD8K9Xr15aunSplixZohtvvFEdOnRwW8VntVqVnp6uu+66Sz/88IPef/99JSUluY01d+5cvfbaaw32OgAAAAAAaEwEgACajTlz5mj79u2G7d9++61Gjx7t03jTp0/Xxo0bNXjwYLe+22+/XdnZ2XWdKgAAAAAATQYBIIBmYcWKFXr99dfd2u+99149++yzslrrdqJB27ZttWjRInXv3r1ae35+vp599tk6jQkAAAAAQFNCAAigWbj99tvldDqrtc2YMUOPPvpovceOiorS3LlzZTZX/5H40ksvKT8/v97jAwAAAAAQSASAAJq8hQsXatOmTdXaEhIS9Pzzz/vtGf3799cVV1xRre3UqVNauHCh354BAAAAAEAgUAUYQJNntPX3scceU0xMjF+fM3v2bL3//vvV2pYuXapp06YZXp+VlaWcnJyqzzt27FhtTgcPHtSTTz6pL774QseOHVNUVJTmzZunPn361DiPNWvW6PPPP9eGDRu0e/duHT9+XA6HQ1arVa1atVKHDh3Up08fTZ48WePGjXMrduJJYWFhtTMUo6OjlZqaWvW5w+HQ/Pnz9e9//1sbNmxQdna2zGaz2rVrp5SUFF100UWaPn26YmNjvXqeN7Zv36433nhDq1evVk5Ojo4ePSqr1ao2bdooIyNDU6ZM0RVXXCG73e63ZwIApMzMTH3++efV2i644AL17t27QZ63efNmrVu3rurztm3b6mc/+1mDPAtA43nvvfeUl5dX9fmoUaPUtWvXAM4IgK/+I8np6c1mszkBoDEUFxc7o6Kiqv0Mio+Pd5aWlvr9WSUlJc6rrrrKOX369Kq3e++91+P1v/vd76rN66233qrqmzdvnrNFixZuPz9XrVrlcbzFixc7BwwY4PFnr9FbYmKi86233nI6HI5aX9+qVauq3Ttt2rSqvtWrVzt79+5d6/OsVqvzt7/9rbOwsNCrr2lcXFy1++fNm+d0Op3OvLw85+zZs50mk6nWZyYlJTkXLFjg1fMAAN5ZsGCB28/bp59+usGe98gjj1R71uDBgxvsWQAaT2pqarW/26+88kqgpwScN5YtW+bN74x3nAn6WAEIoElbsGCB2zl8N998c4OsCAsJCdF7771X73EWLFigadOmqbS01Ot7Hn30UT3wwANyOBw+PSsrK0szZ87UqlWr9Pzzz7udY+iNN954Q7/4xS9UXl5e67UVFRV6/PHH9fHHH2vRokXq0KGDz887ceKExo4dq++++86r6zMzMzVlyhTNnTtXM2bM8Pl5AAAAAHC+4wxAAE3aggUL3NouueSSAMzEO9u3b9fll1/uU/j39ttv6/777/c5/DvbCy+8oL///e8+3/fxxx9r1qxZXoV/Z9u9e7fGjRunzMxMn+4rKSnRpZde6hb+xcXFqVu3bmrRooXhfQ6HQ7NmzdK+fft8eh4AAAC8s379ei1evLjq7dChQ4GeEgA/IgAE0KRt2bKl2ueRkZG1nqEXKJWVlbr++utVVFRU1WYymZSamqqpU6dq5syZiouLq3ZPbm6ubrvtNrexevXqpb/97W/avHmzTp48qcLCQu3Zs0fLly/XI488ovbt27vd84c//MGn4DEzM1OzZs2qFjwOHDhQL7/8srZs2aKsrCxt3LhRzz//vPr27et2/969ezVjxgy36sw1ueeee7Ry5UpJUmhoqP7whz9o3759ysnJ0bZt23T69Gnt3r1bc+bMcTvbsKSkxC9VnwEAAOBuzpw5mjBhQtXbp59+GugpAfAjtgADaLKcTqe+//77am2DBw+W1do0f3Q99dRTVSvbIiMjdd999+mGG25QYmKix3veeeedagcnS65iJC+++KLb60xNTVVqaqpGjBih22+/XVdeeaXmzZtX1X/q1CktXbpUU6ZM8Wq+a9eurfrYbDbrscce01133SWTyVTVnpCQoP79++vWW2/VE088od///veqrKys6l+xYoVee+01zZo1y6tn7t+/X5IUHx+vJUuWqHv37m7XpKWl6dlnn9WwYcN09dVXVwsYP/30U7344ovV5ggAAAAAqBkrAAE0WZmZmW7n/51dtbapORP+paSk6Ntvv9UDDzxQY/gnSR988EG1z7t166YXXnih1pAzLCxMb775piIiIqq1n13l1xdPPvmk7r77bo/Bmtls1u9+9zs999xzbn1/+MMfqoWCtQkJCdGXX35pGP6d7corr3Q78+/IkSPKzc31+lkAgKbhjjvu0MmTJ6veFi1aFOgpAfCDTZs2Vfu7fe211wZ6SgA8IAAE0GSdPHnSrS0mJiYAM/GezWbTJ598ok6dOnl1/a5du6p9ftNNN8lms3l1b3R0tC644IJqbceOHfNuomcZN26c7rjjjtovlHTrrbfq8ssvr9aWnZ1teFajJ/fcc4/X27ivv/56t7a6vEYAQGCFhoYqOjq66i0qKirQUwLgBy1btqz2dzskJCTQUwLgAQEggCbr9OnTbm3/n737jmvq6v8A/mEPAZWlgqPiQEHcuFFLBbVFrXXUXbVibd3W7dM+1K2tddFa66K2tG77qFURXDhx4wYLDqYoIMqW5P7+yM/Uyw2QBMLq5/165VXvyTnne3JJJX5zhjYJQJlMBj09Pa0fW7duVTvW4MGDVe6Xp0pubi7MzMyUS3vfLO/VRPXq1UXX2hwksnLlSo3r5z9t+JdfflGrrZGRESZNmqR2LFWzBItzWAoREREREdG/UfncSIuICEBGRoakzNTUtAxGor4xY8aoXdfY2Bh///13seK9ePGiWO3d3NzQunVrjdo0aNAAnp6eCAkJUZaFhoaq1dbDwwM1a9ZUO1b+BCcRERERERFpjglAIiq3jI2NJWX59wQsTwwMDNCuXbtSi5ecnIzLly8Xq4++fftq1W7gwIGiBGBiYiLi4uKK3POwQ4cOWsUjIiJ6W15eHs6dO4fw8HAkJCQAUKwScHZ2RufOnWFjY1PsGHK5HBcuXMDff/+NuLg4pKenw97eHvb29nBxcUHz5s0lM+K1kZOTg8uXL+P+/fuIj49HZmYmAMWXYDY2NmjevDnc3NxgZmZW7FhvEwQBJ0+exPnz55GZmYm6detiwoQJJRrjbTKZDOfPn0dUVBTi4uKQkZEBe3t71KhRQ3k/S+qQr+fPnyM0NBSxsbF4+vQpqlWrBkdHRzRv3hzNmjUrkRhl5eHDh7h+/ToePXqE58+fQy6Xw9TUFJaWlnB2dkaLFi1Qp06dsh6mxq5du4bbt2/j6dOnSE5OhrW1NWrUqAFnZ2e0a9euRP5fyy85ORmnTp1CREQEXr58CRMTE9jY2KBt27Zo27atyn+LqEsQBNy/fx9Xr15FXFwcUlNTYWRkhGrVqqFhw4Zo3769Rl+KE5UEJgCJqNzKf8AFUPwZb7r0zjvvlMqeRk+fPsWBAwfw7bffFvt+tGnTRqt2bdu2lZRdv369yARggwYNtIpHREQV2+7dSYTA1wAAIABJREFUu7FixQrldbNmzRAQEKCyrr+/v+g5Pz8/+Pj4AFBsn7Fq1Sp8//33eP78ucr2hoaG+Oijj7Bw4UI4OztrPNaEhAQsW7YMu3fvRmJiYoH1HBwc4OvrixkzZsDKykrjONeuXcOyZctw5MgRlase3mZhYYG+ffti1qxZam81MnjwYERHRyuvT5w4oRxneHg4PvnkE4SHhyuft7a21kkCMC4uDkuXLsXevXvx9OnTAuvVrl0b48ePx7Rp07T+PBUaGooVK1YgODgYr1+/VlnH2dkZs2fPxujRo5VJpT59+igTyQ4ODjhw4ICkXWZmJrp27Soq27t3L+rVq6f2+OLi4tCvXz9R2ds/l4JkZGTgp59+wqZNmxAREVFknBYtWmDMmDH4/PPPC01iHTx4EN98843yOv9hcitXrhT9v+jm5oZt27aJ6gwdOlS0p/VXX30leY0FefHiBZYvX44dO3bg8ePHBdarWbMmPvroIyxYsAAODg5q9f32zxQALl68qDxkLzo6GgsWLMCePXuQl5ensr2dnR2++OILzJkzR6Pk+7Nnz7B+/Xps2bIF8fHxhdbt0qULpk+fLtlfm6i0HQAgFPQwMjISiIh07fHjx5K/f/r27atxP3K5XAgODlb74erqKoq5ZcsWlf3Onj1bVK9t27bFfclKMplMePjwoRAUFCSsX79emDhxouDl5SXUqlWrwL+bAQhz5swpsM/z589L6t+7d0+r8WVlZQl6enpF3qcaNWqI6uzdu1ejOK9evZKM+e7du1qNmYiI/hEUFCT5+3X16tU6i+fv7y+K1b59+wLrzps3T1Q3ICBAEARBiIuLE1q1alXo78G3H+bm5sKuXbs0Gue6deuEqlWrqh0DgFCzZk0hJCRE7RivX78Wpk6dKvk9qs7DwMBAWLBggSCXy4uMk//zTEpKiiAIgnD58mWhWrVqkr6tra01uldFkcvlwvfffy9YWlpq9BodHR2FU6dOaRQrPT1dGD9+vEb3tHPnzkJsbKwgCILwzjvvKMvr16+vMsbLly8lfdy/f1+jcUZFRUn6SE5OLrTN5cuXhTp16mj8XgEgODs7CxEREQX2vXXrVo3669ixo6SPFi1aiOps3rxZrXsRGBgo2NvbaxTf0tJSWLVqlVr916tXT9Q2NzdXEARB2L9/v0bvSVdXVyEmJkatmHv37hXs7Ow0/jl99NFHQnp6uloxiN52+vRpdd5jytMeOQOQiMotBwcHGBkZib7BvX37tsb96OnpoUePHmrXNzc31zgGoDgFrThiY2MRGBiIU6dO4dy5c6Wy3LlatWpatTM1NUWVKlWQnp6uLFNnNiJPhiMiIm2kpqaiW7duGu2dm5mZiREjRqBWrVro0qVLoXUFQcD06dOxdu1ajceWmJiI3r17Y8eOHWrN5BkxYgR27typcRxAsYx2yZIlEAQBS5Ys0bj9vXv30LNnT52vqBAEARMnTsSGDRs0bhsXF4eePXtiz549ypmfhcnKykLfvn1x4sQJjeKcO3cOXbp0walTpzQeY2m5dOkSunXrhuzsbK3aR0REoFu3brh27Rpq1apVwqPT3po1azBjxgwIgqBRu1evXuHLL7/EkydPsHr1ao2XjB8+fBiDBg0qcNafKnfu3EGvXr1w5cqVQvci3759O8aMGaPVYXX79u1DVlYWDh48CAMDA43bE6mLCUAiKrcMDQ3h6uqKGzduKMsePXqEpKQk2Nvb6yxuYctTCqPtPiFxcXGYNm0a9u/fD5lMpna75s2bIz09XbS8R1MWFhZat61atarGCUAiIiJtjBs3Tpn8MzIywvvvv48+ffqgbt26EAQBkZGR2L17t+RQqtzcXEycOBHXr18vdA+xOXPmqEz+Va1aFb169YKzszNMTU2RmJiIkydP4tatW6J6r1+/xogRI3Dx4kU0b968wDibN29WmfyrVq0aevToAVdXV5iZmSEzMxOxsbF48OABzp8/L/l8sHLlSgwZMgRubm4FxsovLy8Po0aNQkpKitpttDV9+nSVyb/q1aujV69eaNy4MUxMTJCQkIDjx4/j7t27ono5OTkYOnQoLl26hKZNmxYaa8iQISqTfwYGBujevTtcXV1haWmJmJgYhISEiJZlPnr0CP369UNOTo6Wr1R3MjIyMGzYMJXJP3d3d7Rv3x61a9eGIAhITExEfHw8QkNDJZ9jExMTMXPmTAQGBkr6cXBwEH1JfvnyZaSlpSmvnZ2dRfsJuri4FPt1BQQEYPr06ZJyPT09eHh4oG3btrC3t0dqaipu3ryJkJAQyXLutWvXwsrKCgsXLlQ7bmxsLD755BNl8s/e3h5Dhw5Fx44dYW9vj1evXuHSpUsICAhAXFycqO2dO3ewZs0azJ07V2XfkZGRGD9+vCT5Z2pqCi8vL7Rs2RJVqlSBXC5HZGQkjhw5Ivk5HTlyBNu2bcO4cePUfk1EJYVLgImoXPD19ZX8HaTu0gJt5OXlCSYmJqJ46i4B7t27t8bxQkNDVS7Dyf+oXbu24O3tLcycOVMIDAwU/v77b0EQBGHQoEGiepouAX769KnGY37DxsZG1NeiRYskdfIvAT506JBGMbgEmIhINyrSEuBOnTop/9ysWTPhxo0bBbYNDAwUjIyMJK8tLCyswDYnT56ULB01MTERlixZImRmZqpsc+bMGcHNzU0Sp3v37gXGkclkQv369UX19fT0hK+++krIysoqsF1UVJTg6ekpifXll18W2EYQpEuAp02bJrmv69atE86fPy8kJiYWOgZNHDt2THI/TU1NhRUrVgjZ2dkq25w8eVJo2rSp5DX27Nmz0Fjbt29X+blpyJAhyuW9b8vLyxMCAgIKXeZdXpYAb9q0SVLX1dVVuHbtWoH95+XlCRs2bBBMTU1F7YyNjYUXL14UOb4OHTqI2q1fv77INposAY6JiVF577t27VrgUuWEhATJ510AgqGhoXD9+vUCY+VfAvz23yO+vr5CWlqaynaZmZnC0KFDJfEaNmxYYKyBAwdK6g8fPlx4/vy5yvq5ubnC/PnzJW2cnJwKjEGkiqZLgAvCBCARlQu7d++W/B3Up08fncW7cOGCJJ6uEoAxMTEF7n3Svn17YfHixcKZM2eE1NTUAvsobgIwMjJSozG/IZfLBUNDQ1Ff/v7+knpMABIRlU8VKQH45tGkSRMhKSmpyFgrV66UtF25cqXKujk5OYKTk5Oorrm5uXD8+PEi47x8+VLo3r27JNaBAwdU1j9x4oSk7tdff11kHEEQhOzsbKFZs2aitu3atSu0Tf4EoL6+vgBAsLW1LXCMxZWVlSXUrVtXFNfCwkIIDQ0tsu2LFy+Ezp07S+5RUFBQgfVV7be2YsWKImPduXNHqF69usr3WXlJAOa/FzVq1FDr/S8IgrBt2za17+PbdJ0A/PjjjyXjGjRokCCTyYqMM2vWLEnbTp06FVg/fwLwzWPKlClFxsrNzRXc3d0lbePi4iR1X716JZiZmYnqffjhh2rt0zlq1ChJjDt37hTZjugNTROAJX+WNhFRCfLy8pKcvHX48GFERkbqJN7hw4d10q8qixYtQlJSkqisadOmCAkJwcWLF7FgwQJ06dJF63361KHJXkpve/jwoWT/FGtr65IYEhERkYSBgQG2b98OOzu7IutOnjxZsi9vQadx7tu3T7KVhr+/Pzw9PYuMY2lpiT179sDR0VFU/sMPP6isf+XKFdG1lZVVgUsK8zMxMcH48eNFZW+fcKoOuVwOU1NTHDx4EH369NGorbp27dqFJ0+eiMo2btwIDw+PIttWrVoV+/btQ40aNUTlBd3P33//Hc+ePROVjRs3DrNnzy4ylouLC3777bci65UVuVyOq1evispmzJih1vsfUOwzWb16dVGZpu+XkpaQkIB9+/aJylxcXPDrr78Wujz/jRUrVkj29D5//rzoJOuiuLm54bvvviuynpGREebMmSMpV/X3yJ07d5CVlSUqmzVrllr7E06aNElSps1+50TqYgKQiMq1qlWron///qIymUyGRYsWlXisrKwsbN26tcT7VUUQBOzZs0dUVq9ePZw9exbvvfdeqYwBAK5fv65Vu/z/iAGAxo0bF3c4REREKvXv3x/u7u5q1TU1NUWHDh1EZQUdovDTTz+Jrtu1a4cxY8aoPS4bGxssXrxYVHbixAmkpqZK6uZPNHbv3l3yJWdhnJycRNf5kw7qmDx5suTelKT899PDwwPDhg1Tu729vT2++eYbUdmxY8dUHoy2ZcsW0bWdnR1Wrlypdqz3338fvXv3Vrt+aUpISJC8Z3v16qV2e0NDQ7zzzjuiMm3eLyVp27Ztkr38Vq1apfYBcXp6evj+++8lycLNmzerPQY/Pz8YGRmpVffdd9+VlKm6h4mJiZKy/P+vFqRZs2Zo06aN6EGkS0wAElG5p+rbsT/++EPyzWhx/fDDD5JNf3Xl+fPnkk24Z82apfEsuuJuWn3kyBGt2h06dEh0bW5uXuim50RERMUxevRojerXrFmzyDpJSUmSQ0NmzJihURwAGDZsGGxsbJTXr1+/lvyeBIDPP/8cwcHByseKFSs0jlUc+vr6mDJlis76j42NxYULF0Rl2tzPUaNGwcrKSnmdnZ0t+bzy8OFDyedAX19fyay3oujyfhSHlZWV6L0SHBxc5GEo+QkanrCra0ePHhVdN2jQAD179tSoDzc3N8lsUnVX79ja2mo089Xa2lqtA/5U1VF3pZKZmRmuXLkiegwePFjtMRJpiglAIir3OnbsKPnWUyaTYcSIESV28mx4eDj8/PxKpC91qFqGoe7MhjcEQcCdO3eKNY5z587h4cOHGrV58eIF9u7dKypr27at2t+oEhERaUJfX1+tJaRvMzQ0LLLOhQsXREkSY2NjrWaEGRsbo3v37qKya9euSeo1b94cPXr0UD6aNGmiUZz8J+VqqkmTJqhdu3ax+ihM/uSfmZkZvL29Ne7HzMwMXbt2FZXlv5+XLl2StBsxYoTGsd577z1R8ra8sLS0FL1XevToodHnrNevX2u9zYsu5OXlSX6GgwcPVmuZbH6DBg0SXT98+BDJyclFtuvUqZPGn1UNDAyKrFOvXj1J2fTp01XOAiYqa0wAElGFsHr1askSgfv37+PDDz9Eenp6sfqOjY3Fhx9+iIyMjGL1owlVM/c0/RAUFBSEqKioYo1DEAR8/fXXGrX55ptvkJmZKSrTZHkPERGRJpycnEQzwkpK/oSVs7Oz1nGaNWsmui5usi6/EydOqLV3WWHatWtXQqNRLf/9dHFxgbm5uVZ9FXU/8ycA7e3tNZ4hByj2etP1fSltycnJmDBhQrE/H5eku3fvSj5nt2/fXqu+8v+8BEFQuTVNfi1bttQqXlGaNm2KunXrisquXbsGZ2dn+Pv7MxFI5UrRX40REZUDTZo0gZ+fH+bNmycqP336NLp27YqdO3eiUaNGGvd7/vx5DBgwQOX+Hbpkb28vKbty5YraswATExPx+eefl8hYAgMDMXjwYLWWRQQHB8Pf319UZmFhwQQgERHpjK5maOWfIWVubo6QkBCt+sp/GMW9e/e0HldsbCwiIyNx7949hIeH4+zZs8Xq741atWoVu4/C5L+fZmZmWt/P/DO68r/+/Essi7N3WosWLbTeEqWsZWZmIjIyEpGRkbh58ybCw8Nx/PjxMt/vLz9VW+xou3WMq6sr9PX1IZfLlWX5D55RRVd/j+jp6eE///mP5JCeZ8+eYfLkyZgxYwa6du0Kb29veHh4cNUMlSkmAImowpgzZw7CwsLw559/isqvX7+Oli1bYsaMGZg2bZpav+BjYmKwcOFCBAQEiE6zbdmyJaytrXHixIkSH//b6tati5o1a4oSj6tWrcKwYcMkJxfmd/fuXQwcOBCPHj2SPFfQJueFEQQBQ4cOxe7duwtd+nTo0CEMHTpUcvrv5MmTYWlpqXFcIiIidejqd0z+mTlhYWHw8vIqkb7zJwRVebMsMjQ0FFevXlUmcnQ1c0sXsyjflv9+nj17Vmf3M3+s4iQ3dZ0YLSmJiYkIDQ3FuXPncPfuXURGRiImJqbc7fWniqote1R9Ga4Oc3NzWFlZifpMS0srsp0uP6v6+vri2rVrkkNwAMVy7OPHj+P48eMAgCpVqqBjx45477338P7773MPbSpVXAJMRBWGnp4efv/9d3h6ekqey8zMxOLFi+Ho6Ig+ffpg9erVOHHiBO7cuYPo6GjcunULQUFB+O677/Dee++hYcOG2Lx5syiZ1bx5cxw7dqxUToTT09OTnG4cFRWFd999F2FhYSrbREREYOrUqWjTpk2BMwFOnDghSdCpIyMjAx988AHGjBmDsLAw5SltOTk5OH36NIYOHYo+ffpI/lHSqFEjfPXVVxrHIyIiUlf+Uz9Lii6X5mVnZ0tOPH0jPj4e8+bNQ+3atdG+fXvMmjULO3bswLVr1wpN/mmzX9rbLCwsitW+KLq8n+np6aJEV/6EUrVq1bTuu6gvXsuSIAjYt28fevToAQcHB3z88cdYt24dQkJC8OTJk0KTf8V9v5Sk/D8vQ0NDrZeHA9Jktjp7guv6fmzYsAGbN28uMrGZkZGBkJAQzJs3Dy1atECLFi2wZcsWyGQynY6PCOAMQCKqYMzMzPDXX39h7Nix+OOPPyTP5+Tk4NChQypP3yuMt7c3du/eDSsrK3Tu3Lmkhluo+fPn45dffhHtp3f9+nV06NABTk5OaNasGUxMTJCamoqIiAjExMSI2terVw/e3t7YtGmTsuzWrVtwd3dHr1694OTkBF9f30LHMGbMGGzbtg2A4kNmQEAAAgICYGBggGrVqiElJaXAD5dWVlYIDAyEmZmZtreAiIiozBSUoCsp6enpklNpAwMDMWnSJLUSFgYGBmjcuDHatGmDnj17wtjYGB9//LGuhltsuryfMpkMWVlZyqRRSS5xLa/LMRMTEzF27Fi1lydXr14drVu3RqdOnTBgwACMGzdOrb3xSkNJz1LMf8hPbm5uifavrU8//RQff/wxfvnlF/zyyy+4fPlykW1u3ryJcePGwd/fH3v27EGDBg1KYaT0b8UEIBFVOKampggMDMS7776LmTNn4uXLl1r3ZWJigoULF2LmzJnKGQZt2rSBqampVstpNVG7dm1s374dgwcPFu1jAgDR0dGIjo4usG3Xrl2xZ88ePHnyRJQABIAbN27gxo0b8Pb2LjIB6O/vD5lMhu3bt4vKZTJZoSeqWVlZ4ejRoxqfXExERFRe5J811rdvX0yePLnE+s8/w2n//v0YOXKkymSIqakpPDw80KpVK7i6usLV1RUuLi6iL9mOHj1aYmPThfz386OPPiqx/YoBcaIu/6w9dZaAFkSdZGxJUTcRlp2djb59+xaYQGrYsCE8PDzg4uICNzc3uLq66vSE5+LK/97Iy8tDZmYmqlSpolV/+X/e+RPtZcnCwgITJ07ExIkTERMTg6NHjyIkJASnT5/G06dPC2x348YNdOrUCZcvX5YcKkJUUpgAJKIKSU9PD76+vujXrx+WLVuGrVu3apQIfPMt+sKFC/HOO+9InnN3d8eZM2cK7cPMzEz0gUObpTUDBgzAX3/9hdGjRxf6oeANe3t7LFq0CJ9++ikMDAxga2uLzp0749y5cxrHBhTLqgICAtCxY0fMnj0br169KrLNBx98gB9++AH16tUrsm7VqlVF38pq+i27np6e5EOdgYGBRn0QERGpkv/3i7m5OXr06KGTWMnJyRg9erQkAeTk5IRFixahX79+WidDyov899PCwkJn9zN/Qik+Pl7rvpKSkoo7HLWp+1nVz89PkvwzMDDA2LFjMWPGDDRp0kQXw9MZVUu0k5KSUL9+fY37ys3NLdcJwLfVqVMHvr6+yi/k7927h1OnTuHIkSM4duwYcnJyRPWTkpIwfvz4cp/sp4qLCUAiqtDs7e2xevVqLF68GP/73/8QFBSEixcvIjo6WrIXXp06ddCqVSt4e3tj0KBBhe7RsXfvXmUyzM7OTmUdPz8/+Pn5Ffs19OrVC1FRUdi2bRv27duHixcvipa2WFpawsPDA/3798fgwYNF+57o6elh//79mDRpEg4cOKCctWhlZYVmzZqpFV9PTw8TJkxA37598euvv2LHjh24e/euMnGnr6+P2rVrw8fHB0OGDIGHh4fary0iIkLtuqpUqVIFKSkpxeqDiIhIlfyHPzx+/FhnsQIDAyXJn4EDB+K3336DiYmJzuKWptK8n/k/m127dk3rvsLDw4s7HLU9f/68yDp5eXn4+eefRWWWlpY4cuRIqW1TU9IcHR0lZbdu3dIqAXj37l3JZ/yKcpBL06ZN0bRpU3z++edIS0vDkiVLsHr1atHrCQoKQmRkJBo3blyGI6XKiglAIqoUqlSpgmHDhmHYsGEAFN8OvnjxAunp6TAxMUH16tU12mzYzs6uwMSfLlSpUgWTJk3CpEmTACg+IL569Qr29vZFzgiws7PDzp07ASi+AdfX14ednZ3GM+UcHBwwZ84czJkzB4DixL2cnBzUrFlTstcKERFRRde+fXtRouXatWvIycnRSULu4sWLomtra2ts2bKl0iT/AMX9DAgIUF5fuXIFeXl5OvkM0bp1a+zatUt5/fTpU0RERMDZ2VmjfuRyueRno0vXr18vsk5ERITkQJUFCxZonPwrT6cDu7q6wtzcXLTvdVhYGPr27atxX6p+XhVxS5qqVati5cqVsLW1VX72fiM0NJQJQNIJngJMRJWSsbEx7O3t4eTkBEdHx2KdNFYWbG1tUb9+fY2XAzk4OKBmzZolskzWzs4OtWvXZvKPiIgqpQ4dOoiuc3JytFp6JwgCunXrhgYNGigfbyfCAOkSVW9vb8lJpkVJSEjQeGylKf/9zMjIQHBwsMb9yOVydOrUSXQ/f//9d1Gddu3aSdr9+uuvGsc6efIkEhMTNW73hqYnt54+fbrIOqp+zgMGDNAoTkH9lBVDQ0O0bt1aVLZ7926t+tqxY4fouk6dOnBwcNB6bMXl4+MDLy8v5WPz5s0atZ80aZLkc3txlrQTFYYJQCIiIiIi+tdp0qSJZAmiv7+/xv0cO3YMoaGhygO8oqOj0aJFC1Gd/Es/tVll8L///U/jNqXJzc1NchCFNvfz0KFDuHDhguh+tmzZUlSnXbt2kr2XN23apPGBHuvWrdN4fG9TZ//mN2JjYxEUFFRkvWfPnknKNH2/XL58udwlkXr16iW6fvDgAY4dO6ZRH+Hh4ZI9uvP3W9pu376NkJAQ5UPTxKa5ublkD0NjY+OSHCKREhOARERERET0r6Ovr4/x48eLyjT9B3xOTg5mz54tKnNycpIkAPOfWhsTE6PRWENCQnDgwAGN2pQ2AwMDjBs3TlR2+PBhjRKXWVlZmDt3rqjM2dkZTZs2FZVVqVIFQ4YMEZUlJSVh3rx5asc6evSoRvfUxMQEenp6orKTJ0+q3f6rr75Sa8Zg/vcKoEgeqksmk2HGjBlq1y8tY8aMkawqmTFjhuiwuMLI5XJMmTIFcrlcVP7ZZ5+V2Bi1kf9LhHPnzmmUiH78+DGSk5NFZXXq1CmRsRHlxwQgERERERH9K40dO1ay3ca4ceNw4cKFItvKZDKMHz8eN2/eFJVPmTIF+vrif2Y1aNBAdB0cHKz20tOrV69i8ODBkj3dytMeb2/4+vrCzMxMVDZmzBjJibaqyGQyjB07Fvfu3ROVT506VZJ4A4Dx48dLyn/66SesWrWqyFi3b99W7hutLmNjY9jY2EjiqXOwxx9//IFffvlFrTj53yuA+subX79+jbFjx+Ls2bNq1Venv5Li4OCA/v37i8ru3LmDUaNGSZJ6qkyePBmhoaGisk6dOqFNmzYlNkZteHp6iq4zMjKwYMECtdrK5XLMnDlT9P+yvr4+3n333RIdI9EbTAASEREREREWL14s2ndN28ebA60qAnt7e6xYsUJU9vLlS/To0QMrV65ETk6OynZRUVHw8fHB9u3bReWNGjWCr6+vpH7+ZYoZGRkYPHhwocmj9PR0LFu2DJ07d5YcCgEAqampGi951TUHBwcsXrxYVJaamgpPT098//33Bc72ioyMRM+ePSX7uzVt2hRjxoxR2cbd3R2jRo2SlM+cORPDhw9XuQQ2Ly8PW7duLfCeFqVr166i62fPnqFPnz4FJnNlMhlWrVqFUaNGQRAE6OnpSZZ75ufs7CyZVfb9998rD3wrSFhYGDp37ix5T77x8OHDQtuXVJvCfPfdd5K9L3fu3AlPT088ePBAZZuYmBj4+Pjgxx9/FJUbGRlJysrCgAEDJAn/H3/8ERMmTJDM7HtbVFQU+vXrhz179ojKvby8ynRPQ6rcuLM7EREREREhOTm50H+wqkuTfdHKgy+++AIHDhwQ7UeWmZmJOXPmYMmSJejZsyecnZ1haWmJ1NRUXLp0CadOnZLMWjI2Nsa2bdtUHjw2YMAAzJ8/H48fP1aWnTlzBk2aNMGIESPg4eEBW1tbZGRkIDExEaGhoTh48CBSUlKU9Z2cnBAdHa28lsvlGDlyJBYvXgw7OzvY2dnByMioJG+NVqZNm4aDBw/i1KlTyrL09HR8+eWXWLRoEXr27InGjRvDwsICqampuHDhAs6cOSO5nyYmJggICICpqWmBsVatWoVjx45JDrz4/fffsXPnTrz77rtwcXGBlZUVHj9+rHLmZefOnXHu3Dm1Xtunn36Kffv2icouXryIxo0bY9SoUejWrRvs7Ozw4sULXL9+HTt27EBkZKSy7oIFCxAWFlbk4SjTp0/HlClTlNevX7/GkCFD8PPPP6N///5wdnaGsbExnj17htu3b+Po0aMICwtT1jcwMEDt2rVF77cNGzagRYsWePfdd2FoaKhyX8H8e89t27YNTk5OaNmyJdLT0yEIAvr06aPWvVKlbt26WLVqlSRJfvr0aTRp0gRdunSBu7s77O3tkZycjBs3buD48eM+KjnCAAAgAElEQVQql05//fXXkqX2ZcHFxQVDhw5FYGCgqHzjxo349ddf0a1bN7i5ucHW1hZyuRwJCQm4fPkyLl68KHnPm5qaYu3ataU5fCIAwAEAQkEPIyMjgYiIKpbz589L/j7Pysoq62EREVEZCAoKKvCzfnEfAwcOlMTz9/cX1Wnfvn2BY5s3b56orre3t8av79NPPxX1MWHChELrp6enC15eXlq/ZiMjI2Hfvn2Fxjh8+LBgYGCgVf/9+/cXXr58KdSoUaPAOk+ePBHFc3V1FT2/fv16je+jtl6+fCl0795d6/tpbGwsHDx4UK1Yd+7cKfS+FPb45JNPhF27donK6tevX2i8AQMGaBXro48+EmQymeR9lpycLImRk5MjdO7cWas41apVE44ePSqsW7euwDqfffaZytc2duzYQvvu2LGjpE2LFi1EdTZv3lzkz2zVqlWCnp6e1u+PuXPnFhmjXr16ojbbtm0rsk1+ZmZmoj5CQ0NV1nv+/Lng7Oys9et5857/888/NR4j/budPn1anffXNPw/LgEmIiIiIqJ/tSpVquDgwYOYMmWK5KCCojRo0AAnTpyQ7G+WX+/evREQECDZI68wVlZW+O6777B3715YWlrCx8dHo7GVFUtLSxw+fBhffPEFDAwMNGrbuHFjnD59Wu3X6uLiglOnTqFt27YaxRk5ciR+/vlnjdoAiv343n//fY3ajB07Fn/88YdkqWhBjI2N8eeff6JLly4axfH09MSlS5fQs2dP9O7dW+N77+vrq/YYi2PGjBn49ddfYW9vr1G7atWqYcOGDVi2bJmORqYdGxsbBAcHw8PDQ6v2jRs3RnBwMPr161fCIyMS4xJgIiIiIqJ/GRcXF2zcuFEnfeffvwwAunfvLopX2D/8P/zwQ7zzzjvK69q1a2s8hpEjR6Jdu3bK6/ynyKpiYmKCtWvXYty4cVi6dCn++usvvHr1qsD6zs7OmDx5MsaMGaNy2a8qI0aMQJs2bfDNN99gz549BZ4Ka2dnhyFDhmDBggWoUaOGsnzZsmW4fPmy5OARVf773/+K9rnr3LmzWmMsKWZmZvjhhx/g6+uLpUuX4siRI0hPTy+wvouLCyZPnoxPPvlEoyQpADRp0gQXL17Exo0b8dNPP+HWrVsF1m3RogW++uorDBgwQKMYb5iZmeHQoUPYsmULvv32W9ES3/xatWoFPz8/9O3bV1k2depUDBw4UHmd/xCaN2xtbXHy5En88MMPWL16tWg579v09fXRuXNnfPnll6IEUsOGDbF69WpMnz5drdOHAaBDhw745Zdf8MUXXxT63n/bV199Jdo6QN2k5fDhw/HBBx9g+fLl2LFjR4GvDwAcHR0xcOBALFiwQOXSZVWWLl0qer916tRJrXZv8/f3R15envK6UaNGBdatU6cOTp06hd9++w0bN27E+fPni+zf3d0d48aNw6hRowpd6k5UUqTHKSkcAFDg4n4jIyO1j+smIqLyIS0tTXIKn6enZ6l800tERFTR5OTkIDQ0FI8ePUJCQgKysrJgY2MDR0dHdOrUCfXq1StW/6mpqTh79iwiIyORnJwMExMTODg4oGnTpujYsWOBs7dyc3MRFBSEe/fuISUlBQ4ODmjTpg06dOig8Yyv0pSdna28n4mJicr7Wbt2bXTu3Bl16tQpsVgRERG4fPkyEhISkJycDHt7e9SoUQNt2rRBkyZNRHV3796NwYMHK6/r168v2muxMHK5HHfv3sWFCxeQkJCAzMxMmJiYoH79+ujYsSOcnZ1L5PXI5XLcunULFy9exNOnT5GVlQV7e3s4ODige/fuoiRxfpGRkTh16hRiYmJgaGiIJk2aoGvXrqhVq1aBbV6+fIkjR47g3r17yM7Ohrm5OWrXro2WLVuidevWJfKa8rt+/Tpu376Np0+f4vnz56hWrRocHBzQpEkTuLu7qzwJujx7/vw5rly5gsjISKSlpSEjIwNmZmaoXr06GjZsiHbt2sHW1rash0kVXGhoKLp161ZUtekA1gBMABIREREREdG/VHESgEREZUnTBCCnfRAREREREREREVViTAASERERERERERFVYkwAEhERERERERERVWJMABIREREREREREVViTAASERERERERERFVYkwAEhERERERERERVWJMABIREREREREREVViTAASERERERERERFVYoZlPQAiIiIiIiKislCnTh0MGjRIeW1vb1+GoyEi0h0mAImIiIiIiOhfqUOHDti1a1dZD4OISOe4BJiIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSYwKQiIiIiIiIiIioEmMCkIiIiIiIiIiIqBJjApCIiIiIiIiIiKgSMyzrARARUcmLT3yFc5diEX73Kf5+mIrk1Cy8SMsGAFhXN4NDDQu0dK2Bdq0d0cqtBkxN+OuAiIiIiIiosuK/+IiIKpFzl2Lx6+5buHYrAYKguk5KahZSUrNw+/4z/Lb3NoyNDeDj1QijhzRHLXuL0h0wERERERER6RwTgERElcCT2DR8vzEM5y7Fatw2N1eGfX/dx4GgSPTxboQp49xhUcVYB6MkIiIiIiKissAEIBFRBbf3r/tY9eNFvM6Ti8ob1q+Ozu510LSxLeo4WKGKuREAIOVFFqIevUDYtThcCU9QLg3Oy5Nj/+EIXLmRgOX/8UTjBtal/lqIiIiIiIio5DEBSERUQQkCsOGXq9j2R7iovJN7bUwY1RpNG9uqbOdYyxJuTe3xYe/GkMnkOHoyGlv/CMeT2DQAQEz8S4yZdhB+M7vCq1t9nb8OIiIiIiIi0i0mAImIKqjvfryIXQfuKq9r2Vtg1sQO8OhQV+0+DAz08UGPhujt2QCBe2/jh21XIZPJkZsrw9crT8PK0hjtWzvqYvhERERERERUSvTLegBERKS5Q8EPRMm/po1ssW1dH42Sf2/T19fDyEFu+Gllb9hamwNQLAmevfAEIv5OLpExExERERERUdlgApCIqIJ5EJ2C5evPK69bNquBn77tDZvqZsXuu2WzGli/tKfyEJDMrNf4asVp5OXbX5CIiIiIiIgqDiYAiYgqmG9/uICcHBkAwNbaHMv/4wlzM6MS679h/er49r/vwdBQ8Svi4ZMX2PG/u0W0IiIiIiIiovKKCUAiogrkSngCrt9+qrxePK9bicz8y69ti1oY3Lep8nrTr9eRkppV4nGIiIiIiIhI95gAJCKqQDb9dl35587taqNN81o6i+U7opUyuZiZ9Rr7DkfoLBYRERERERHpDhOAREQVREz8S1y7mai89h3RSqfxLKoYY/iAZsrrg8ce6DQeERERERER6YZhWQ+AiIjUE3rhifLPTRrawNXZTucxP+jREP5brkAuCIhPfIXox6lwqldd53GJiIjKikwmQ3h4OM6fP4+EhASkpKQgJSUFpqamqF69OmxsbNC8eXN06tQJdna6/11MlV9eXh6uXr2KsLAwJCYmIjk5GampqTA3N4e1tTVsbGzQsmVLdOrUCdWr83MYEWmHCUAiogri5t0k5Z+7tK9TKjGtq5uhaWNb3Il4phwDE4BERFQZ3b17FytWrMCBAwfw4sULtdo0b94cX3zxBUaOHAlzc3Mdj5Aqm2vXrmHFihU4cuQIXr16VWR9fX19tGnTBhMnTsSQIUNgYmJSCqMkosqCS4CJiCqI6Mepyj+7lMLsvzfenmn4IDq1kJpEREQVz9OnTzF48GC4ublh+/btaif/AODmzZuYMGEC6tatix07duhwlFSZPHnyBD4+PmjTpg127dqlVvIPAORyOS5fvozRo0fDyckJf/31l45HSkSVCROAREQVRGJShvLPjjUtSi2uYy1L5Z+fJWeWWlwiIiJdu3XrFlq3bo3du3dDLpdr3U9ycjKGDh2KsWPHIi8vrwRHSJXNhQsX0KpVq2In7+Lj49GnTx/MmDEDgiCU0OiIqDJjApCIqILIyf3nHxRVzI1LLa6VxT+x0jNzSy0uERGRLj19+hS9evVCfHx8ifW5bds2TJgwocT6o8rl8ePH8PHxQUpKSon0JwgCVq9ejfnz55dIf0RUuXEPQCKiCkJPT0/5Da9cXnrf9ObJ/ollaKBXanGJiIh0JS8vD0OGDCkw+WdqagovLy94e3ujTp06sLOzQ15eHp4+fYrz589j//79ePz4scq2W7ZsQatWrTBx4kRdvgSqYLKzs9G/f/8Ck39VqlRBr1690KNHDzg6OsLOzg45OTmIj4/H+fPnsXfvXiQkJKhsu3z5crRs2RIff/yxLl8CEVVwTAASEVUAeXlAFTMTvMrIBgCkpmWjVo3SWQacnPrPsl8rS242TUREFd/27dtx6tQplc8NGTIEa9asQY0aNVQ+P2jQIKxcuRJbt27FjBkzkJkp3R7Dz88PI0aMQNWqVUty2FSBrV+/HtevX5eU6+np4dNPP8XKlSsLPOF36NCh+O677+Dv74/58+cjN1e6ImPu3Ln48MMPeTAIERWIS4CJiMqp5GRg925g1CjAxgZIjP8n4ff2gSC69igmTfnn0ko6EhER6YogCFi1apXK52bNmoU//vijwOTfG0ZGRvjss89w6tQplaf/Pn/+HP7+/iUyXqr4Xr9+jXXr1ql8btmyZdi0aVOByb83TExM8OWXX+Lw4cMwMjKSPP/o0SMEBASUxHCJqJJiApCIqByJjgbWrgW8vICaNYHBg4G9e4GuXYE2LW2U9W7cflpqYwp/K5ZLY9tSi0tERKQLISEhuHv3rqS8S5cuWLFihUZ9ubu74/vvv1f53P79+7UaH1U+e/fuRWxsrKS8b9++mDNnjkZ9vffee/Dz81P5HN9zRFQYJgCJiMpQbi4QEgJMnQo4OQENGgDTpgEPHgCffQYEBQEpKcDBg8CooQ7KdmfCYpCXp/1pheq6F/kcCUnpAAB9fT20bFZT5zGJiIh0KTg4WGX5kiVLoKen+V63Y8eORb169STl169fx9OnpfeFHZVfBb3nli5dqlV/U6dOhY2NjaT89OnTKpekExEBTAASEZW6lJR/lvbWqKGY7bduHWBmBvz3v8CVK8DDh4C/P+DtDbzZyqVjW0eYmBgo+kjNwomzj3Q+1l/33FL+ubVbTVSvaqrzmERERLp0+vRpSZmjoyM8PDy06s/IyAg+Pj6ScrlcrnKmIf37qHrPtWzZEq6urlr1V6VKFXh5eUnKs7OzERUVpVWfRFT58RAQIqJSEB2tmMV36BBw+jTw+rUi4de5M+DjAwwcCDg6Ft6HRRVjeHdzwsFjDwAAP2y7im4d6ymTgiU+5sepOB76SHk9tL92H1KJiIjKi9zcXJUHMfTo0UOr2X9vuLu7qyxPSkrSuk+qHJ4/f64yKefp6Vmsft3d3bFjxw5JOd9zRFQQzgAkItIBmQw4exaYOxdwdf1nae/Nm8CQIcCuXUBSEhAcrFj+W1Ty742xw1rC2FiR8ItPfIXtu2/qaPxyLF93HnJBAAA0bWQLjw51dRKLiIi0J5PJ8N5778Ha2lr0sLW1xbVr17Tud8WKFZI+ra2tsWHDhhIcfel79uwZXr9+LSl3cXEpVr92dnYFxlPF399f5f1dsGCB1mOIiIhAjRo1JH16e3tDJpNp3S8VT3x8vMry0n7PERExAUhEVEIyMhSz/D77TJHQ8/AA3uwlPmcOcOYMkJgIbN8ODBoEWGhxoG7tWpYYOdBNeb3l93CcvyzdVLq4fth2FdffOvzjs1GtUYyJEUREpCMGBgZYv349srKykJqaqnwkJydjzJgxyM3N1bjP+/fvw8/PT9RfamoqXFxcMH78eB28itJT0OyoOnXqFKvfnJwcleWmpqq3zvjiiy/g6uoqucfLly/H+fPnNY4vl8sxbtw4JCUlifrLysrC6tWrYWCgm9UCVLTy8p4jIuISYCKiYnj4UDGL7+BB4NgxxaEepqZAly7AvHnAgAFA7dolG3P0kOY4fPxvJDxNh0wmx7wlJ7FhZe8SO6F3x/47+O2tvf8++qAJOrcr4RdBREQlxsXFBX5+fpg7d66o/ObNm1i6dGmBJ4aqIpPJ8MknnyA7O1tUbmFhgYCAgAqfSHr9+jXatGkjKa9dzF/WBSV5atZUfXiWvr4+Nm/ejNatW4sObZDL5Rg/fjyuXr0KkzebAKthzZo1OHv2rKR85cqVWu8zRyVDEASV77mC3hvq0vQ9R0RU0HyOAwD6FNTIyMhIq28TiYgqOrkcuH79n/38rl5VlNvaAr17A336AL16AZaWuh3HpaupmDj3MKCv+PbXzNQQ86d2Ri/PBlr3KRcErP35En7fd0dZ1rSRLTZ//4Fy2TEREZVPcrkc3bt3x5kzZ0TlhoaGuHjxosoEhCrLly/HvHnzJOXbtm3D6NGjS2KoldKwYcPwxx9/SMrj4uLg4OBQYLu1a9di2rRpkvL58+djyZIlasV+8OABWrRogaysLFG5t7c3jh49Wqy9Dan86tWrF4KCgkRlhoaGSEtLg7m5eRmNiohKU2hoKLp161ZUtekA1gBMABJVWoKg2CPuSdxLvEjLxouX2ch9LYOJkQGqVDGGrbU5atWwQB0HSxgYcDeAwmRmAsePKxJ+Bw4olvECgIuLIuHn4wN06gTol9JtfPIEeO89IOVlIhq1CRLt69O3Z2NMGNUadraaffC7eTcJ3/14EfcePFeW1XG0wo/Le6GmvRZrlYmIqNRFR0ejRYsWSE9PF5W3aNECly5dgrGxcaHt79+/j1atWklm//Xr1w9//vlniY+3skhMTETjxo3x6tUrUbm7uzsuXbpUaFu5XI4ePXrg5MmTonJDQ0NcuHABbdu2LbJ9t27dJLP/rK2tcfPmTTiqu8kwVShRUVFo2rSpZD/L3r174/Dhw2U0KiIqbZomALkEmKgSiXqUinOXYnHxaizuRj5HRqZ0k+v8zEwN0aShDdq0qIXunerBuaFNKYy0/Hv8GAgKUsz0Cw4GcnIAQ0OgfXvFYR79+wONG5f+uB49UiT/4uKAnTtrwvEdbyxYdgopqYpv/Q8EReLoiSj0690YPl6N0KShDfT1VX/Xk5srw9lLMTgc8jdCLz7B/5/3AQBwa2qP77/pgWpVuY8MEVFF4eTkhKVLl2LKlCmi8vDwcCxfvhxff/11gW3f7CGXP/lnb2+PjRs36mS8lUFmZiZGjhwpSf4BwOTJk4tsr6+vj61bt6J58+aiPvLy8jB27FhcuXKl0MTt+vXrVS79/fHHH5n8q6TS0tIwfPhwlYfZqPOeI6J/L84AJKrgMrNe48iJKOw/HIGIv5OL3V8dRysM9GmKvj0bwaJK4TMFKpP8S3uvXVPMorSxATw9FbP8+vUDqlYtuzFGRAA9egApKcCffwJeXoryZ8mZWLD0pOjQjjesLE3QunlN1K5lhWpVTZCXJ0fqi2w8fPICt+8/Q2aW+MOjvp4e+vZqjJmfd4CJCZf9EhFVNIIgoHfv3iqXBoaFhaF169Yq23377beYPXu2pPzgwYPw8fHRyVgrMrlcjuDgYMyaNQu3bt2SPO/h4YFTp05BX83lAZs3b4avr6+k/D//+Q8WLVqksk1UVBSaN28u2kMQAIYPH47ffvtNrbhUcchkMhw8eBCzZs3C33//LXmeM3WJ/n24BJjoXyI3V4Y9h+7jl53hSHmRXXQDDZmbGWHkIDcMH9AMZqaVc7JwVhZw7pwi6bdnDxAfryh3clIk/Pr0Abp3V8z8K2v37imSf2lpimXInp7i52UyOQ4F/41tO8IRlyCdhaCOqlXssW55hxI7TISIiMpGXFwc3NzckJqaKipv2bIlLl26BCMjI1F5REQEWrVqJdlDbsKECdiwYYPOx1teZWVlISEhAS9fvkRGRgbi4+MRExODq1ev4syZM4iJiVHZrnHjxggNDUWNGjU0ivfBBx9Ilm8aGRkhLCwMrVq1EpXL5XJ4enri9OnTovI6derg5s2bqFatmkaxqXxIT09HUlIS0tLSkJGRgdjYWMTExODKlSs4c+YMEhISVLZr1aoVTp48iapl+U01EZU6JgCJ/gWu3kzAktXnEBP/Uuex7GzMMXtSR3TvVE/nsUpDUhJw9Khilt+RI0B6OmBgAHTooEj49esHNGlS1qMUu34d8PYGXr9WjLljx4LrymRyHDkehaMno3HjTiJycmQFV4ZihqBnl3o4tK8BHkbWQkwMkO/fhUREVAFt3boVn376qaR88eLFWLBggfK6oD3knJyccOPGDVjq+lSrciwoKAi9evXSqI23tzd+++032NnZaRwvPj4ebm5uSElJEZWr2sPR399fstxTX18fwcHB8Mz/LSFVGIGBgRgxYoRGbQYMGICtW7fCyspKR6MiovKKewASVWJ5eXKs3XwZO/+8I9qvLT99fT00a2IHF2c7NKpfHXY2VWBrbYY8mRwAkJH5Gk+fZSD6cSpu33+G2/efITdXdaLoWXImZn1zHB/0aIjZkzrC3KziZYfu3FEk/A4eBM6fVyzttbZWnNrr4wP07QuU1y/Kr14FevYEZDLFnoTt2xde38BAHz7ejeDj3Qi5uTJcv52Iew+SkfQ8Azk5MrzOk8HC3BSrvrVEn97W2OBvDyNDfThWA8aMUcwuHDCgdF4bERHpztixY3Ho0CHs379fVL5w4UL07dsXbm5uAIA1a9ZIkn+GhoYIDAz8Vyf/NOXm5oYFCxZg8ODBWp+66+DgAH9/fwwbNkxUHh4ejqVLl8LPzw8A8PDhQ8ydO1fSfurUqUz+/Yu0a9cO//nPf9CnT4HzdoiIRJgAJKogUlKzMGfxCdxQsc/bGy1ca6D/+87waF8HVpYmavedmfUa5y7F4kBQJMKuxalMLv4V8jcePEzBKr8e5f5U2Oxs4OxZRcJv3z4gNlZR7uQETJ6smOnXrVv5n+l27hzw/vuAqaniFOIWLTRrb2xsgPatHdG+tXQT8FWLgOeJgNH//xb4+GNg+nRg0yYmAImIKouffvoJ586dQ1JSkrIsNzcXn3zyCcLCwhATE6PyYJD58+ejQ4cOpTnUCu/ly5d48OABUlJSYGOj/YFqQ4cOxf79+7F7925R+dKlS9G/f380b94cn376KTIyMkTPu7q6YunSpVrHLU+io6PLJK6FhQXs7e3LJLY2UlNTERERgW7dunH2HxGphUuAiSqAZ88z8fmcI3gcm6by+Q5tHDHhk9ZwddZ8uUl+D5+8wIaAazh57pHK522tzbFhZW+8U6d87THy7JlieeyhQ4olvq9eiZf29ukDuLiU9SjVFxqqmJ1obg6EhADNmpVs/506Ke7R2/uWf/EFsHEjEBUFvPNOycYjIqKysX//fnz00UeS8iVLliAoKAihoaGi8tatW+PixYuSfQL/jbRZAly9enX4+flh8uTJWs8EfP78OZo1a4anT8Vf+rZq1QqjR4/G1KlTReXGxsYICwtDy5YttYpXnshkMhiW0ebL5eHwFG2WANvb22PZsmUYO3asjkZFROUV9wAkqmSep2Ri3Iy/VB7soMv9+a7eTMCi78+qjGtrbY6fvu2NerXLNgn49tLeCxcUJ/lWqQK8++4/+/lpuP92uXD0KPDRR4CtrWLmX6NGJR9j5EjF7Mj0dODNv09u3lTMMvzqK2DhwpKPSUREZWPIkCHYuXOnqExPTw9Cvin/5ubmuHr1KpqUt81wy0h4eDiWL1+unF31+vVrpKWlITIyEvfu3YNMVvA+uwMGDEBgYCBMTNRfkfG2AwcOoF+/fpJyVT+3ZcuWqVwSXBH92xOAZ8+exY8//qhcfp+Tk4O0tDTcv38fkZGRkMvlBbYdM2YMNm3aBAMDg9IaLhGVMSYAiSqRrOw8fDbzMO49eC55rkMbRyye2x1VrbT7YKmOzKzXWLLmHI6dki7FqF3LEgHr+uo0fn5vL+3980/gyRNFef36gJeXYsZcz57AW3tkVzh//QUMHKhIXB4/DjRooJs4fn7AN98oTj6uVeuf8rZtgcRE4PFjxQxKIiKq+JKTk9GsWTMkJiYWWs/f3x8TJ04spVEVLTQ0VHIqrrocHBwwZcqUEh7RP9LT07Fnzx6sWbMG4eHhKusMHToUgYGBWs8EHDNmDAICAgqt06VLF5w6darSJH3+7QnAwqSlpWHHjh1Ys2YN7t+/r7LOxIkT4e/vX8ojI6KywgQgUSUyb8lJhIQ+lJQP7NMUs77oAH197T5QakIQgM2B1/Hzr9clz7m3rAX/Zb10Oo7kZODECUXS73//A16+BPT1gVatFAm/Pn2ANm10Fr5U7d4NDB+uSGiGhAB16ugu1q+/AqNGKZYae3j8U75xIzBhguJ++/joLj4REZWuQ4cOFXpYgJeXF4KCgrROVunCt99+i9mzZ2vVtlWrVrh27VoJj0gqLy8PCxcuxKJFi1Q+v2PHDnz88cda9Z2WlgY3NzfExMSofN7S0hLh4eGoX7++Vv2XR0wAFi07OxuzZ8/G+vXrVT4fHByMHj16lPKoiKgs8BRgokriUPADlcm/If1dMeOz9iitz+d6eoDviFYwMtTHD9uuip67fCMBgXtvY+QgtxKNGR2tSEAdOgScOgXk5Sn2wvP0/Gc/v7dnrVUGO3YoluU2bKiY+efgoNt4DRsq/hsVJU4ADh8OzJqlOAyECUAiosrDx0KYBKwAACAASURBVMcHY8eOxdatWyXPVatWDVu2bClXyb+KwtDQEAsXLkReXh6WLVsmef7rr7/WOgFYtWpVbN26Fd7e3pJlv4DiBOfKlPwDAH19fezatatMYtetW7dM4mrK1NQU69atQ05ODn7++WfJ819//TUTgESkEhOAROVQSmoWVm0Ik5T36Fof0z9rV2rJv7eNHtICz5KzsOvAXVH5T9uvoWvHusXaD1AmU+zhd+iQYmlvRISivF49YOxYRSLK2xvQchudcm/LFmD8eKBJE8XMv9JIbr5ZWhwVJS63sAAGDQK2bwfi4gBH6QHCRERUQQ0fPlxlAtDKygpVq+puX9+YmBhE/P8vd09PT+jr6+ssVln55ptvsHPnTskJtpGRkbh8+TLc3d216rdr166oW7cuHj9+LHmulg4+MMTHxyM6OhrZ2dkwNTWFvb09GjRoUGpLjPX09DBo0KBSiVXRrVq1Cn/++afolG8AuHjxIqKiotBAV/vIEFGFVfl++xJVAht+uYr0DPEy+/p1q8FvZlfol+G38zMmtEOrZuJTNXJzZVi3+bLGfaWkKJa8jhoF2NgoZqF9+60iAfXf/wJXrgAPHyqWpPbpU3mTfxs3KpJ/LVsqluOW1sxGe3vAykqaAAQAX1/FrMtt20pnLEREpHvZ2dkF7on35MkTzJo1S2ex586dCy8vL3h5eSEvL09nccqSkZERJk2apPK506dPa92vn5+fyuQfAIwfPx4vXrzQuu83Hj58iClTpsDR0RGOjo7w8PCAl5cXPDw84OzsDDs7OwwePBjnzp0rdiwqORYWFvD19ZWUC4IgOd2biAhgApCo3HkUk4YDQQ9EZYaG+lg8tztMTMp2g2cDA318PbMrzEzFk4dDLzzBzbtJBbT6R3Q0sHat4sCOmjWBwYOBPXsAd3dgzRogJkaR+PPzU+zrV9lXIv3wA/D554rXGhysSISWpvr1VScAO3RQnAa8ZYviZGUiIqr4Zs6ciTt37hT4/KZNm3D06NESj5uRkYEDBw5o1XbWrFkQBEGrR2ns/5efl5eXyvLbt29r1d+5c+ewcuXKAp+PjY3FjBkztOr7jbVr18LV1RXr169HfHy8yjqpqanYvXs3unTpgsGDByMtLa1YManklPR7jogqNyYAicqZHfvvQC4X7/My0KcJGjewLqMRidWuZYmxQ1tIyn/dfUtSJpMpTu2dOxdwcVEsO502Dbh5ExgyBNi1C0hKUiS/pk7V/b535cmKFcCkSUCXLoo9/6zL4MfbsKHqBCCgWHr96JFiSTIREVVsISEh+PHHHwutIwgCxo0bVyIzyt4WGBiI9PT0Eu2zvGrUqJHK8ufPn2vcV0ZGBsaMGQOZTFZovW3btuF///ufxv0DwJIlSzBt2jRkZWWJyg0MDFCrVi1YWFhI2uzevRseHh5MApYTjRs3VlmuzXuOiCo/JgCJypFX6bn4K+RvUZm5mRF8R7QqoxGpNqS/K+xszEVlZ8Ji8PRZBjIyFAd4jBoF2NkplvauWKGYzTdnDnDmDJCYqNhjbtAgxZLff5sVKxRJ0e7dgcOHAUvLshlHgwaKU5ZTU6XPjRqlOHhl06bSHxcREZWc1NRUjB49WnKIhIuLi6RuXFyc1qfuqnLv3j3Mnz+/xPorrvv376Nt27aSx6FDh0qkfxMTE1iq+KX+6tUrjfuaPn06HjwQrwixsbFBjRr/x959h0VxdXEA/rH03hFQsTcENYAFFXvvvaMQUcCKnSRiicYejR0UDGKPLXZjx16wICg2xAIoIqAgnd35/pgPcJ1dYBu76HmfZx/YOzP33gHE5ew991TinDtx4kSJA7cRERGYN2+eUFuPHj0QHh6OnJwcJCYmIiMjA48ePcKUKVOEKvNGRUXB3d1dovF+VLdu3RL5M3flyhW59G8uJn1Emp85Qsj3j4qAEKJCwm+8Rk6u8N44vbvUgZGham2Ap6OtgUG9G2BzaHFVYD5fgGFjYnH9fCPk5QE6Ouzqtl69gIEDgSpVlDhhCeXl85H0IROf0nOQk8uHgb4mDPS0YGWhL3MadkAAsHgx0L07cOgQ+3VSlsK9oV++ZNOQv2ZiAvTvz+7T+OEDu2cgIYSQimfChAlISEgQarOwsMDFixfh6+uLQ4cOCR0LDg7GgAED0K1bN6nHjIuLw65du7Bq1SqVWilmYWGBu3fvctqjoqLQq1cvmftnGIazmg5gqyxL4vTp0wgODua0r1+/HhoaGhgyZIhQe0JCAqZNm4a/Jdi8d8aMGRB8tc/HtGnT8Oeff3IqQdvb22Pt2rXo378/evbsiaysLADAsWPHcObMGXTp0kWSWysVwzA4f/68XPssK2trazg4OMi1TxMTE5E/czExMXBzc5O5/8Lvx7cUWdSHEFJxUQCQEBVy/sorTtuAnvXKfyJl0K9bXWzZcR98fvGLx5T0Nxg6tBF69wa6dVPeyjZJ5eXzcf12PK5HxONBdBLeJKQL3Vchnpoa7KoYwbGBFdxaVIWrSxXoaJft1yjDANOmsXsg9u7NBtaUXdjk60rA3wYAAbYYyK5dwPbtgAL3hieEEKIge/bswd69ezntGzduhJWVFTZu3IiLFy8i7aul4IWpwNHR0WUOXOXm5mLatGl4/PgxoqOjkZKSIrd7kCcLCwsYGhpyVkd9W7lXWqmpqSKLnFhJ8C5acnKyyBWbffr0wfDhwwEA/fv3x+HDh4WOh4aGYtCgQejZs2epY8THxwutQGvUqBFWrFjBCf59rV27dlizZg28vb2L2kJCQuQeABQIBGL3tVO0kSNHYufOnXLts1q1auDxeELBVkB+P3PfVgAuJGqlKCGEUAowISpCIGBw7+F7obaa1UxRs5qpkmZUMjNTXU5FYF3DZGzYmIvBgytG8O9jahbWbrmNHiP2Ytbv53H45FPEvfkkMvgHAAKGwau3n3HszHPM/v0CeozYi9WBt5CUnFniOAwDTJ7MBv+GDgUOHlR+8A8QDgCK0rYt0KABEBzM3gMhhJCKIyEhQWRV2j59+hStILO2tsaff/4p8lpJqgJnZ2dj8+bNCA8PV9ngX6HatWtz2mSp0vu1W7duiWy3sbEpcx/e3t5ISkoSajM1NUVgYGDR840bN8LUlPv60Nvbu0ypwEePHhUKME6fPl0oxVecsWPHwtrauuj5mTNnSr3mR6ejo4MqItJg5PUzd/v2bZHtkvzMEUJ+HBQAJERFvHz9CVnZ+UJtLV0qK2k2ZdOqmfALGoGAwdMXqv3CHwDy8vgICruHfh77sfNgND6n50rVT8aXPOw5/AgDfj6AjdsikJvL3aibz2cLamzcCIwYAezcCWhqynoH8lG1KqClJT4ACACensCzZ8Dly+U3L0IIIbJhGAbjxo1DamqqULu5uTm2bNki1Obp6YmuXbty+ggODsapU6cUOk9l6NChA6ft+fPnePr0qcx9nzx5UmR7WVM9Q0NDOSv7AOCvv/4SCujY2Nhg9erVnPMSEhLg5+dX6jiRkZFCz8ua7q2uri50L58+fVKpFG9VJepnLiIighPolcaJEydEtssjvZgQ8v2hACAhKuJpLDdw5miv2huvNaxnyWl7ouIBwNhXaRg18QiCdz3gBOx0tDXQsmkVjHf/CUt+bY+glT0QtqEPQtb0wtLf2sPXwxluLeygqyP8LnleHh+h+x5ixIR/he6fzwc8PIDQUDaddscOoAxvsJcbdXWgevXSA4Da2lQMhBBCKpINGzaIDN6tW7dOZGpgUFCQyOIV48aNE0oPFsfIyAixsbEiH4Vpq6pCXLBLVEBNEklJSSL34DMwMECbNm1Kvf7Vq1eYOnUqp71Hjx4YPXo0p93Dw0PkvWzfvh3//vtviWN9vSekiYmJROmiRkZGQs+p2ETpRH2fCgoKsHbtWpn6jY2NxYEDBzjtNjY2+Okn1SogSAhRDSr0pyghP7Z3SV84baqa/luoTk0zTlvCO9V9IXj5xhvMXXYJ2TnC+/PUq22O4f0bopNbjTIV+cjN5SP8xmvs/fcxomKK9155E/8Z46afwPyZbmjTogaGD2cLffj6sisAS9haR2lq1QKiosQft7AA+vRh05bXrQPMuN9yQgghKuTJkyfw9/fntPfq1QsjRowQeU21atXwxx9/YMqUKULthVWBt5byLhCPx0PNmjVFHvs2YKRsbm5uMDEx4aTKhoaGwsPDA66urhL3KRAI4OPjI7IgQ58+faBdyr4fAoEAHh4eSE9PF2o3NjbmrNj8WmBgIBwcHPDli/BryIkTJ6Jt27Yi04QB4e9XvXqS7TUd+9W7hjweT2wVWmnxeDxERETItc+yMlPQi5wuXbpAR0cHOTk5Qu3r1q3DyJEj0bBhQ4n7zM/Ph5eXl8g9JwcNGlTifo6EkB8XBQAJUREfPnL3kbO20lfCTMrOQF8LerqaQqnLKZ+41e9UwbnLcZi7LFxofz9LCz3M8GmBDq2rSxSc09ZWR5d2NdGlXU2E33iDVZtu4v0H9sV3Tm4Bflt6CUbqfJw7URuzZgErVsj7buSnVi3g9GkgOxvQ1RV9zrhxbNGSnTuBb/42JIQQokIKCgrg4eHBCUQZGxsL7SEnysSJE7F//36h4hBAcVXg7t27y32+yqCtrY2pU6di4cKFQu15eXkYMmQI/vvvP9jb25e5v/z8fEydOlXkqjtNTU3Mnz+/1D5Wr14tck+41atXo3Jl8dvBVKtWDUuXLsXkyZOF2hMTE+Hn54ft27eLvO7o0aOlzkmUd+/e4ebNm0XPHR0doSvuxYOU1NTU4CyqMlkFZmpqCi8vL2zYsEGoPTMzEwMGDMDp06dRo0aNMveXnZ0NLy8vXLp0iXNMX18fv/zyi6xTJoR8pygFmBAVkZMr/A6elqZ6mSvMKpOJsY7Q8/QM6fbTU6SIyHeYt1w4+NfG1Q7/bBmAjm6SBf++1dbVDnuD+qNTm+IXbgIBg7S8K5gwNV6lg38AGwDU0snAsdMJOH0hFodPPsWxM89x824C3iayKxE6dgRq1KA0YEIIUXWLFi0SWYhi3bp1JQaSAHblVXBwsMiATllTgSuKqVOnwtjYmNMeHx+PFi1aYP369SJX833r4sWLcHNzw+bNm0UeHzduHOrWrVtiH1FRUZg7dy6nvWvXrvD09Cx1DhMmTEDr1q057WFhYTh27Fip10tiwYIFQqvYhg0bJtf+v2dz5swRuRL02bNnaNq0KUJCQpCXl1diHwzD4OTJk2jevDl2794t8pzp06dTARBCiFji/uw9CqC3uIs0NTVL/QVFCJHMb0sv4cyll0XPdbQ1cOUod88XVdPPY79Q2q9LYxtsXqE6qwSSU7IwwvdffPpc/IJ1cJ8GmDXBVa4puQwDbNh2B2H/FOfTGuhrYffmfrCpZCC/geQgL5+PS9de4+K117h2KxHZueKDtsZG2nBpbIP0jzUQuN4O166qQ4rsKEIIIQp29+5duLq6Ij9fuKBYjx49xBYKEGXZsmUiVxCNHTsWwcHBEs/Lx8cHQUFBRc9zc3OhpaUlcT/ytmnTJkycOFHscXNzc3Tq1AnNmzdH5cqVYWpqiuzsbCQnJyMyMhLnzp1DTEyM2OubNm2KS5cuQU9PT+w5eXl5aNasGacoh5GREaKiomBnZ1eme3n69CmaNGnCSTG1tbVFdHS02FRgSaxZswbTp08vem5lZYWnT5/CxMRE5r5/FIsWLcK8efPEHq9UqRI6deqEpk2bonLlyjAxMUFmZiY+fPiAe/fu4dy5c3jx4oXY6zt27IhTp05BU1WqzRFCFO7y5cto27ZtaadNA/AXQAFAQlTGvBXhOHW+eF8VdXUerp8YA56K7+HRc+Q+ofTl5k6VsWEpt5qgskz57QxuRMQXPe/TtS7mTmutsP34/tx8E3v/fVz03KmRNQJX9FCJ/f/4fAH2H43Btj2RSPucU/oF38jP00UVi4Y4uLNhmfZKJIQQUj6ysrLg5OTEqWRrbGyMqKgoVK1atcx9FRQUoEWLFrh79y7n2MmTJyVOBVbVACDDMPD09BSbJiuLmjVr4vr166UW1/D398fy5cs57YGBgfD29pZozOXLl4vc+9Hd3R1hYWES9fW1zMxMTJs2TWgfSDU1NRw8eBD9+/eXut8fEZ/Px4ABA6ROwS6Jo6Mjrly5InJlKyHk+yVpAJBSgAlREWYmwik3fL4AGRmqHWgXMAzSvtnzj6emBRH7ESvFpeuvhYJ/jg2s8MuUlgoNxk3zbg6XxsWpF/cevsfZ8JclXFE+7txPxHCff/Fn4C2RwT9tbXVUstRHZRtD2FgZQEuTG+DT1MpGUnoEBvx8EA+ik8pj2oQQQspg1qxZnOAfwK7akiT4BwAaGhrYtm2byFVEXl5e300qsJqaGoKDgzF27Fi59tuzZ0/cunWr1ODf1atXsWrVKk57x44dMX78eInHnTFjhsi983bs2CF1KvCBAwfg6OjICf6tXr2agn9SUFdXx759+zBo0CC59jt06FBcvXqVgn+EkFJRAJAQFWFqosNpS0xS3Yq6AJCSko38AoFQ2+GDBtDUZKvFurgAQ4YA/v7Ali3AuXPAo0dAJrfeiUJs2XG/6HMtTXUsnN0GGhqK/bXH46lh/kw36OkW/+EUuP0eBAyj0HFL8veeSEz85TTi3hRXPOSpqaG5U2X4T2mJ/cEDcfnIaBzfORT/hg7G0R1DcPXYGPyzdQD8p7RE059shYKmHz5+gc/sU9h5IApKvC1CCCEAzp49K3IPuo4dO8LDw0OqPhs1aoTZs2dz2hMTEzFz5kyp+lRFGhoaCA4ORlhYGGxtbWXqy8bGBuvXr8exY8dgYWFR4rkZGRkYM2YM+Hy+ULuBgQGCg4OlquCqoaGBkJAQkYFbb29vpKamlrmviIgItGnTBoMHD0ZcXFxRu76+PsLCwuDn5yfx/AhLR0cH//zzDzZu3AhLS0uZ+qpevTr+/vtv7N27V+WqbRNCVJPqVxgg5AdRoyp3D5WnL1LRoE7JLyKVKeb5R05b966G0O0GvHsHvHzJVpjNEBHHNDUFatYsftjYALa27Od16wKGhrLNLSLyHZ6/LH6xO7SfParals+LI2srA4wc6ICtO9kA5NvEdFy7HQ+35pKtwpCVQMBgxYYbOHjiiVB7q2ZV4De+OapXFf9OsZoaUMPOBDXsTDCwZ328jv+MoLB7OHc5DgzDrlBdu/UOXsSlYf7MNiqR4kwIIT8iS0tLnDlzhtPeuHFjqQJJhQICAtCuXTuRx/h8PtTVv5+tINzd3TF06FDs2rULmzZtwv379znBOVE0NDTQrFkz/Pzzzxg1apTIIg+iZGZmCqVFF6pUqRKqV68u6fSLNG7cGDdu3BC5SjM7O1vEFcI+fPiAOXPmICwsDAKB8Bu87dq1Q2BgIOrVqyf1/AhLTU0NEyZMgKenJ0JDQxEYGIioqCgwZXhXVVtbGy1atMD48eMxZMgQaGjQn/OEkLKj3xiEqIh6tc05bZGPk9Cve8nV45Qp8jE3DXTaZAs0qCPclpbGBgMTE4sDg4WPs2eBT5843RQFCL8ODBY+atUCSttz+uS54k2SNTV4GDGgoTS3KLVh/eyxY39UUXXnk+delHsAcOm6a/j31LOi52YmOgiY4YbWzSSfR7Uqxljya3t0bV8Lv6+6gvQvbOGQE+dewNREF1PHNZXbvAkhhJRdkyZNFNKvtrY2OnXqpJC+VZGWlhY8PT3h6emJ9PR0XL9+HZGRkUhOTkZaWhoyMjJgYGAAc3NzWFlZoVGjRmjVqhUMDCQv9GVtbQ1ra2sF3AVEpgGXRUhICGbNmsUJHtapUwd//PEHBg0aJFNAmXDp6urC19cXvr6+SE1NxfXr1/Hw4UOkpKQgNTUVmZmZMDQ0hIWFBSwtLeHk5ARXV1eRlboJIaQsKABIiIqoZKkPKwt9oYIa1269hUDAgMdTzRdcV26+FXquo62BOjXMOOeZmgLOzuxDlOxsbmCwMGD4+DFw4gQ4qaY6OtzAYGHA0MYGuHzzTdG5rk2rwMJMfBU+RTAy1Ea7VtVw+gJb2OX6nXjkFwigqeAU5EJH/3smFPyrWtkI6/7oiio2si2tbOtqhx0b+2D6/HOIfcX+kbDzQBQqWepjWD97mfomhBBCVIGRkRG6deuGbt26KXsqCpeeng4vLy/s379fqN3a2hrz5s2Dl5cXVZUtB2ZmZujVqxd69eql7KkQQr5jFAAkRIW0bl4Vh75K10z7nINb9xLh6lJZibMS7XlcqtCecgDQ3MlWqj32dHWLA3ii5OSwwcBvg4OFQcMLF4CvM1V0DT6hYcvcoudtXe0knpM8tHW1KwoAZmXn48XLVDSoq/iU7mexqVi+4UbR86qVjbBtTS+YGHP3mZSGrbUh1i/pirF+x/HuwxcAwPrgO2jVrEq5pVkTQgghRDbJycno3r27UMVnLS0tzJo1C/7+/lKtbiSEEKK6KABIiApp19JOKAAIAPuPxahkAHDv4cecto5uNRQylo5OyQHCvDwgPr44MHj7QSpuPSo+7tjASiHzKo1DfeHNnZ/GKj4AyDBs6m9eHrt3ka6OBlYEdJRb8K+Qpbke1v7RBZ5TjyEzKx95+Xys3nwLaxZ1lus4hBBCCJG/nJwcTvCvVatW2Lp1Kxo0aKDEmRFCCFEUqgJMiApp7lQZNlbC77Zeu/UWT1+kKGlGor378KVoZVshdZ4WLIyVs9JOS4sNDnbqBIweDTRrUZxGzVNTQ2UZ016lZW1lAG3t4k3Sk5K/KHzM8OuvEf0kuej5rImuqF3DVCFj1bAzwXh3p6LnV2+/xfU78QoZixBCCCHy4+/vLxT8GzJkCM6fP0/BP0II+Y5RAJAQFcLjqWFAr/pCbQKGwbrgO0qakWgbQiKQly9cHS8xrh6aNdWEmxuwezeQmyvm4nLwJSuv6HN9fU1oaSqvUqGpcfFGzZ/SFf9F2X0ouujzhvUs0atznRLOlt2QPg1Qs1pxgHHXwegSziaEEEKIsr148QKbNm0qet6uXTvs2bOnzFWMCSGEVEwUACRExQzu3YCTrnn7fiKO/vdMzBXl6+rttzgb/lKoTVtbHQd32WPOHODpU2DkSMDaGpg6lU3LLW8CfnHFEFWqWLdpoxrMzICGDYHWrYEhQ9iv0YIFwJYtwLFjwNWr7NcsL6/U7jgS32fgwaPiysxjhjpC0bevocGD18jiCpR3HiTi/QfFr3QkhBBCiHQ2b96M/Px8AACPx0NgYCB4PPqzkBBCvne0ByAhKkZfTxOewxpjTdAtofbVgbfQyL4Sqlc1VtLMgI+pWVj05xVORd6RAxzQ1FkfTZ3ZYNb+/cDmzcC6dcCGDUC3bsCECUD37kB5vL7U1yuuVpeZlQ8Bw4CnpEBg5lerER0c1KFeB0hOBhISgPv3gaws8deamwNWVoClJRtQrVSJ/bxSJeHPra0BfX3g0vU3Rd8bE2MdtGlRPinZ7VpVg5GBNtK/5IJhgKu33mJQb0ohIoQQQlTRwYMHiz53cnJCvXr1lDgbQggh5YUCgISooMF9GuD42ed4/jK1qC0zKx8zFpzD33/1gpFh+adoZOcUYPq8c0j9lCPUXslSH2OGNip6rqMDuLuzjwcPgMBAYNcu4ORJoHp1YPx4YOxYNrClKGamxWm3fL4AH1OyYGWhr7gBxcj4koeML8UBwDHu+hjSR/iczEzg/Xvgw4fix/v3bJDw688fPwY+fhQ/lp4eULtJErT+v4VkS5cqUFcvn3fzNTV4aO5si7PhcQCAB4+SKABICCGEqKB3797h9evXRc9TUlIwZMgQqfoyNDRESEiIvKZGCCFEwSgASIgK0tTgYcHMNhgz5SgKCgRF7W/iP2Oi/2lsXN4NRgblFwTMzinAzAXnEPNcOALFU1PDwtltoKerKfK6Jk3YAOCKFcCOHeyqwF9/ZVcJDhwI+PoCbm7yn2+t6sJFL2KepyglAPjoabLQc7vK3NWb+vpArVrsozT5+WwwMDkZePdO+PMPH4CnSakozH7+tgKxojnUtyoKAD6LTS3lbEIIIYQoQ2RkpNDzuLg4xMXFSdWXubk5BQAJIaQCoc0eCFFRdWuZYbp3c077kxcp8J55Eu+SymeftbTPOZj863+4fT+Rc8xjWCM4N7IptQ8jI2DiRCA6GggPBwYMAA4eBNq0ARwdgU2bgPR0+c25Tg0zocIfN5RUmfbW3YSiz3k8NTg2kG3Zo6YmYGsLNG7MplW7uwPTpwMrVwKhoYC6ZnH14yq2RjKNJamqlYvH+/Axs4QzCSGEEKIs8fHKeU1ECCFE+SgASIgKG9ynAQb0rM9pfxGXBo8pR3FdwYGtqJgPcJ94BJFfFZYo1KlNDXiPcZK4zzZtgD17gDdvgCVLgIwMNjhYuTLg4wN888a0VLS11eHSpDgweeHqK+Tl8Uu4Qv74fAHOhBe/o97I3kpob0J5K+ALhO7R2Kh808TNTIoL12Rm5QutXCWEEPLj0tPTg6mpadGDKNeXL1+Evh+yPExMTJR9O4QQQiRAAUBCVNycSa7o1p6bH5r6KQd+AWeweM1VpKZly3XMzKx8rA68Ba/pJ5CUzF3N1ewnWyyY2UamwhqVKgG//MJWvD17li0QEhLCpg27uLBVcUsqkFGazm1rFH2e9jkHJ869kL4zKZwNjxNaCdelbU2Fjsd8U5mlvEuefFsYhsdTnerLhBBClGf16tVITU0temhpaSl7Sj80Pz8/oe+HLI8XL8r3tRUhhBDZUACQEBXH47H77PXqXIdzjGGAI6efob/nAQRuv4cUGQOB6V9yEfZPFPqO+Qd7Dj+CQMBwzmnjaoc1izpDW1tdRA+S4/GATp2Af/4BXr0C5s8H3r4FvL3ZVYHe3kBMjOT9dmlbEybGxavStu66j+ycArnMuTR5eXxs3n6v6LmBvhZ6dKqt0DG1NNWFviefM3IVOt630r8aT0dbgwKAhBBCCCGEEKJCKABISAXA46lh/kw36kfkXAAAIABJREFUTPR0FrnqLis7HyG7H6D3qH2Y/fsFnL4Yi0+fc0T0xPUlMw/nr7zCvBXh6DFiL9aH3MHndG7wSE0NGDXIESsCOgjtrydPlSuzBULevmUDgi4uwNatgIMD0LkzsH8/UFDGGJ6WljpGD3Ysep78MQvrtt5WyLy/tTn0LhLfZxQ9H9bPXqHpv4UszfSKPo9/l1HCmfIX/654E8dKluVfcIUQQgghhBBCiHhUBZiQCsRjWGM0rGeJ31dfxfsP3CIg+QUCXLz2ChevvQIAVLU1Qs1qJrCpZABzU12o8dTA5zNI+5yDjylZeP4yFW8T00Wu9PuarrYO5s9qiY5u1RVwV1xaWsDgwezjyRO2wMWWLcCQIWwRDHd3dt/AqlVL7mdoX3scPPEECf8Phh088QSN7Cuhe8cylNyV0sVrr7DrUHTRc0sLPbh/FYhUpNo1zIoCf4+fJgO9uPtHKkr0k+KKx99WYSaEEEIIIYQQolwUACSkgmn6ky32BPbDptC7OHzyaYnFFt4mpuNtovTlddXUAH5WbUTfbYbadjqlX6AA9esDy5YBv/3GFg/ZvBlYvhxYtYrdN3DqVKBjR3au39LSUsf8mW3gM/MkBAwDhgEWrb4CfT1NtHG1k/tcb91LQMDy8KL98NTUgIBpraGnq/jVfwBbaOTS9dcAgBsRCRAwjEz7NJaVQMDgZkRxxeMmDpUUPiYhhBBCCCGEkLKjFGBCKiADfS3MnuiKfUH90aVdTairy/efspoa0Lp5Vezc2A/b1rdBZoYO3N0BgRILuxoaAuPHA/fvAxERwNixwPnzbGpw/fpsUDA1lXvdTw6V4OvpXPQ8v0CAOYsv4MDxJ3Kd37EzzzF93jnk5hZX4vUY1hiuLlXkOk5J3FoUBzU/pmbhxp2EEs6Wn2u33yLtq5Tzlk3lH1wlhBBCCCGEECI9cRt5DQdQT+xF6uoICAhQzIwIIWVmbKSDjm7V0adrHejqaOJjapZQMQZJWVroYWDP+pg/ow2G9LWHuZkurK3ZQh2hoYC5OdC8ufzmLy1bW6B3bzYN2MYGuHGD3R9w3Trg2TOgenW2vVATh0r4mJqFJ89TALAr1q7dfouXr9Pg5GgNXRlW6KV9zsGStdcQsvsB+F+lUnfrUAuzJ7qKXJmoKCbGOrh+Jx7JKWz55KSPmejdhVs8Rt4Wrb5aVC36yycrNK7niLp1FT4sIYQQQgghhPywXr9+jdDQ0NJO+w/ATQAQ96fpUQC9xV2tqamJvLw8aeZHCFGw2FdpuPPgHR49ScaTFx/x7sMXoVVphTQ0eLC1NkTdmmaoX8ccrs5VUKemmciAVUEB0Lo1EBkJ3L0L2NuXw41IQCAALlxg9wk8fJidr7Mzu2Jw1ChAT4+tmLxq0038c/Sx0LV6upoY1s8eg/s0gMVXRTRKk/opB4dOPMGug9H4kin8+7BP17r4za+VUirhnr4Qi4Dl4UXPV8zrgPatqitsvP8uvsTcZZeKnic+aw+XRjVw5IjChiSEEEIIIYSQH97ly5fRtm3b0k6bBuAvgAKAhPwQ0j7nICsrv+i5oYEWjAy1Jerj6VPgp5/Y4N+NG4Bm+WxrJ7HERGDHDmDDBiA+HjA2BoYOZfcKtLcH9h+NwZqgW8j/Zu9EDQ0emjaxRevmVeBY3wrVqhoL7d2Xk1uAuDef8OhJMq7dicetuwmcPtTVeZg81gUjBjiU68q/rwkEDEb4/ovYV2kAADNTXYSt76OQyrxvE9IxevLRogBo/drm0Mzpgx1hanj1iq3qTAghhBBCCCFE/igASAhRmL/+AqZNA/74A/j1V2XPpmR5ecCRI+yqwPPn2baOHdlVgY5N0rB03RU8fvaxxD70dDWhoc5DAV+ArOz8Es+tX9scv05thQZ1LeR1C1K7H51UVPgEAGpWM0Xw6p4wNNCS2xhZ2fnwmnYCz+PYjRc1NHjY+mdPfPlkCVdXYNEiYO5cuQ1HCCGEEEIIIeQrFAAkhCiMQAB06gRcvcquAnR2Lv0aVfD0KfD338DWrWyhEBsbYPRooJHLSxw5E4mXr9Ok7tuuijHGjmiMbu1rKSXlV5T374GOve5CzzyyqK1xw0pYOb8jTI1lr+acnJKFafPO4umLlKK2Gb4tMKwfmxvepAnw+TMQG8vuH0kIIYQQQgghRL4kDQDSn2aEkDLj8YBt2wBdXTaAlpNT+jWqoF49YNkyICEB2L4dsLZmqwaPHlYTWe/6Y9yw7hjYsz4sLcq2B6CluR76dquLzSu640DwQPToWFtlgn/Z2UC/fsDzh874yb52UXvkoySMmnAEkY+SZOr/8bOPGOt3XCj416lNjaLgHwD8/DPw6hVw7pxMQxFCCCGEEEIIkRNaAUgIkVhwMDBuHJsG/Mcfyp6NdO7eZdODd+4EsrKAOnWAsWOBPv2+IDk1FY+ffsHiJdlo3YpB27ZqMDXWgXUlA9SpYQZba0Ol7fFXEoEAGDgQ+PdfYNMmYNw4AWYsOIfrd+KLztHQ4GFgz/r4eXhjmJnqlrnvlLRshOx+gIPHn0DwVbVjtfwauHyqDXS0i4vKf/rE7v/XowdbnZkQQgghhBBCiHxRCjAhpFz06gWcOgWEh7MVgiuqT5+Af/4B1q4FHj8GdHSA3r2Bpk2B2bOBgweBAQOUPcuymTIFWL8e+O03YPFito3PF2DDtrvYdTAKTHHcDlqa6ujQujo6uFXDTw7WMBGRGvw5PRcRke9w/kocwq+/QV6+cDXpOlUdsSekKdavByZNEr521Cg2+Pf2LWBlJe87JYQQQgghhJAfGwUACSHl4t07wNERMDEBHjwADAyUPSPZCATAhQvsqsDDh4GCArZ90SK28Im+/IvoytXq1cCMGcCQIcDeveCsUAy/8Qa//3kF6Rm5Iq+3NNeDuakuDA21kZWVj6TkTHxMzRJ5romxDmb6tkBHt5pwdQViYoCHD4GaNb8aLxxo1w5YsQKYNUtON0kIIYQQQgghBAAFAAkh5WjvXmD4cHbl2dq1yp6N/CQmsumrDx8CDAMYGwNDhwKTJwMODsqeHdfx4+y+fy1bAmfPAtraos9Lz8jFtj2ROHTiCbJzCiQeR0dbA4N6N4DH0EYwNmIHefgQcHEB3NzYPf++Djza2wN8PvDkCTcgSQghhBBCCCFEelQEhBBSboYNYwNj69cD//2n7NnIj60tuwKwWTPg6FE2HXjrVnbFY+vWbGprfr6yZ8mKiGC/D9Wrs+nK4oJ/AGBkqA2/8c1wfNdQzJzQAs6NbKChUfJ/AxoaPDRtYoPZE11xcvcwTB3XtCj4BwCNGgFz5rCrJ0NDha/19ASePQMuX5b+/gghhBBCCCGEyI5WABJCZJKSwq6K09AAoqLYlOCKLjcXMDQEPDzYlGCADWRt28YWQElJYSsJjxkD+PoC1aopZ55xcYCrK7vK7vp1tpCJpHJz+Xj2MgUJ7zLwMTULfAEDTQ11mBrroFpVY9SqZgrtrwp8iJKXBzg5AfHxwKNHbAEQAPj4EahSBRg0iC22QgghhBBCCCFEPmgFICGkXJmbs6vj4uPZPei+BzEx7Ao/R8fitrp1gWXL2Pv85x92v7vly9mPnTsDx45BqMiGoqWmsmnKnz8DR45IF/wDAG1tdTg2sEK3DrUwapAjxgxphBEDGqJ7x1qwr2tRavAPALS0gJAQ4MsXwMenuN3CAujTh12ZmJoq3fwIIYQQQgghhMiOAoCEEJn16gX8/DO7Qu7wYWXPRnYPH7IfGzXiHtPRAQYPBq5dY9NvvbzY1Xd9+rBBwuXL2ZVvipSXxxb7ePaMXVnXsqVixyuL5s3ZvSCPH2cDpIXGjQNycmgFICGEEEIIIYQoEwUACSFysWYNmwrr4wN8+KDs2cgmKor9WFrBD2dnICiILRoSFMTuv+fvz6a9DhnCFsWQN4Zhg47nzwMrVwIDB8p/DGktXgzUrg1MnFj8M9CpE1CrFrtKlBBCCCGEEEKIcmgoewKEkO+DkRG7ArBzZzYIeOiQsmckvYcPgapV2fTmsjA2BsaPZx9XrwLr1gH//ssWC3FyAry9gZEjAX192ecWEADs2MGONX267P3Jk54eG+jr0IGd286dbPVfT09g7lzg5k2gRQtlz5IQQggpH+/fv8ejR48QFxeHjIwM5OXlQV9fHxYWFrC2toazszMMDQ2VPU3yfwKBAFFRUYiLi0NqaipSU1PBMAzMzMxgZmaG2rVro2HDhuDxaA0N+b5lZGQgJiYGMTExSE9PR1ZWFrS0tGBhYQELCws0btwYtra2yp4mkQIVASGEyNXUqWwAbM8etjptRWRjw67uO35c+j7evQPCwoBNm4A3b9gA6bBhwKRJwnsLSmLbNmDsWHbvvyNH2MIrqsjbmy2e8u+/QN++wPv3gJ0d4O7O7hVICCGEfK/u3buHPXv2YP/+/Xj9+nWJ52poaKBZs2bo0aMHfHx8YF7Wdx6J3AgEAhw+fBhhYWG4cuUK0tLSSjzfxMQErVq1gqenJ/r16wd19dL3SiakIkhISMDevXuxb98+3Llzp9Tz69evj06dOsHX1xf29vblMEMiiqRFQCgASAiRq5wcNniWmMim0lapouwZSSY5GbCyAn75BViyRPb++Hzg4kVg7VrgxAk2hdfZmd0vb/hwQFOzbP1cugR07cqmJYeHAwYGss9NUdLT2Xny+WxVYBMTNhB4/jz7c2FkpOwZEkIIIfL1/PlzTJo0CWfOnJHqen19fXh5eWHhwoUwNjaW8+yIKIcOHcLcuXMRExMj1fXVq1fH8uXLMWTIEDnPjJDyk5GRgblz5yIwMFCqGA+Px0Pv3r2xZMkSCgQqAVUBJoQolY4Ou/ItM5NdrVaelXHlITKS/SjtKr1vqauz++AdOwY8fQrMmQO8egWMGcOuivP3Z5+X5PFjoH9/wNKSXfmnysE/gA3wFe6NOGcO2zZuHPszsWePcudGCCGEyNv+/fvRpEkTqYN/AJCZmYm1a9fCycmpTKtviPT4fD58fX0xcOBAqYN/APDq1SsMHToUP//8M7Kzs+U4Q0LKR0xMDH766SesW7dO6gVeAoEAR44cQdOmTRFCqT4qjwKAhBC5c3YGZs0CzpypeCmfJVUAllWdOsCyZUBCAlsp18GBrRpcqxa7d+L+/eyqua+9ewd07w4IBMDJkxVnRWX37sCoUeyegGfPss/t7KgYCCGEkO/Ljh07MHToUGRlZcmlv5cvX6J169Y4deqUXPojXJMmTUJgYKDc+vv7778xcuRI8L99EUeICouJiYGbmxtiY2Pl0l9WVha8vLwwp/Ddf6KSKAWYEKIQ+fmAqyvw5Am7qq5WLWXPqGw8PdlVahkZZU/PlcXdu+x+ebt2sSvkatViV8v9/DNbNKR9e+D+fTZ9uHNnxc9HnlJSgIYNAV1dNh18xQpg0SL2np2clD07QgghRDZ37txBq1atkJ+fL/I4j8dD8+bN0bJlS1StWhU6OjpITk5GbGwszpw5g8TERLF9GxgY4NKlS3B2dlbU9H9IO3bswOjRo8UeNzIyQpcuXVC3bl1YWVlBQ0MDqampuHfvHi5duoRPnz6JvXbWrFlYsWKFIqZNiFxlZGTgp59+KjH4V7t2bXTo0AF16tSBkZERMjIy8Pr1a4SHh+Nh4YoJMdatW4fJkyfLe9pEBNoDkBCiMh49Alxc2Ed4OFARiqY5O7Npy/fule+4aWnA9u1AYCCbKqyjA1SrBjx7xhb/8PAo3/nIy/79wJAhgJ8f+6hZk61gvHmzsmdGCCGESK+goACNGzfG48ePRR7v168fVq1ahVpi3gFlGAbHjh1DQECA2D+ma9SogcePH0NHR0du8/6Rffz4EdWrV0dmZibnmLm5OVauXIkRI0ZAW1tb5PWZmZkICgpCQECAyBWfmpqaiI6ORt26deU+d0LkadKkSdi4caPIYw0aNMCmTZvQrl07sddHR0dj/vz5OHTokMjj6urqiIiIQJMmTeQxXVIC2gOQEKIyGjYEAgKAq1eB9euVPZvS8flATIxi0n9LY2rKBshiYoBz5wBDQzYQyDBsVeWtW9kVghXN4MHs/oXr17N7AnbpAuzeXTHvhRBCCCkUFhYmNvi3fPlyHDp0SGzwDwDU1NTQp08f3L59G15eXiLPiYuLw7p16+QyXwJs3LhRZPCvRo0aePjwITw9PcUG/wC2UMv06dNx8+ZNkRWb8/PzMX/+fLnOmRB5i4uLw5YtW0Qe69evH27fvl1i8A8AHBwccPDgQYSEhEBLS4tznM/nY+bMmfKYLpEzCgASQhTK3x9o3Zr9+OiRsmdTsqdPgexs+RUAkYaaGrv6MDmZrRK8cCHw4QO7aq5yZWDyZLYoSEWycSNbGMTLC3B3Z6sE//OPsmdFCCGESG/t2rUi2319fTF79myoqYlLtBKmra2NLVu2wN3dXeTxpUuXIicnR+p5ElZubq7IFU+ampo4fvw4bG1ty9yXo6Mjdu/eLfLYkSNHqCAIUWmbNm0SuW1B4c+1gQTVBn/++Wds3bpV5O+78+fP48qVKzLNlcgfBQAJIQrF4wGhoYCGBjB6NLs3oKqKimI/KmMFYKEDB9hgaZs2wN9/A/PmAW/esIU03NzYYFrDhmxa9ZYtQEX4m8DGBli9mg1cPnzIPqdiIIQQQiqqBw8eiEzbtbGxwerVqyXuT01NDUFBQahatSrn2KdPn3DhwgWp5kmK3b59G8nJyZz2cePGwd7eXuL+unTpgs4iNmfOzs5GeHi4VHMkRNEEAgF27twp8ti2bdugq6srcZ+jR4/GsGHDRB47ePCgxP0RxaIAICFE4WrVAv74g13Zpsp7Iys7AHjnDjBmDFCvHvDvv0BhFgqPB3TqBBw7xu4JOGcO8Po14O0NVK/OBgxfvVLOnMvKwwPo1g3480/A3h64cQOIjlb2rAghhBDJnTlzRmT71KlTpd6vT1dXF3PnzhV57OjRo1L1SYqJC8p5enpK3efIkSNFtt+5c0fqPglRpMjISLx//57T3rFjR7i4uEjd7+LFi0WuAqTfXaqHAoCEkHIxeTK7/9uCBWwVWFX08CFgaQlUqlT+Y794AfTowe79d/IkuyegKLVrA8uWAW/fsisrq1cHli9n2/v2BU6dAgSC8px52QUGshWBC18XBwcrdz6EEEKINC5fviyyffjw4TL1O3DgQGhoaHDaS6u4SUp37do1TpulpaVMVZZbtmwpsj0pKUnqPglRJEX97qpZs6bIAGJcXBwyMjJk6pvIF/d/GEIIUQA1NSAkhN1fb/RoNgioakXtHj4EGjcu/3FTUoBevdjCGBcusEG90ujosKsFx4xhV1YGBbHFNY4eZfcK9PICJk5kA5qqolo1YOlSYNIk9vmOHWwwU9V+DgghpCLJz8/HoEGDkJCQINSuoaGBAwcOoEqVKlL1u3//fixfvpzT7uHhgUmFv8h/UI9EbGpcv3592NnZydSvubk5ateujSdPngi1v3v3jnNuQEAATp06xWlfsGABevXqJdX4sbGxGD58OATfvJPo6OiIbdu2lXlfQ1X05s0bTlvDhg1luidra2uR7R8+fBDZfv36dUyZMoXT3qJFC2zYsEGqOTAMg9GjRyMmJkaoXUNDA/v27UO1atWk6pd8n0T97gLYlHZZtWjRQuTq1/fv38PQ0FDm/oliHQXAiHtoamoyhBAijZAQhgEYxt9f2TMR9ukTw6ipMcz06eU7bm4uw7RvzzA8HsMcOiRbX58/M0xQEMM4OrJfYy0thhk8mGHOnpXPXOWBz2eYNm3Y+QEMs2uXsmdECCEV39mzZxk1NTXOa/ZOnToxAoFA4v4+fPjAWFlZcfqrWbMmk56eroA7qDiys7MZHo/H+doMGzZMLv23b9+e07eenh7nvMTERMbMzIxzro2NDZOamirxuHw+n2nbti2nP21tbebBgwfyuDWlsrS05Nybp6enTH1++fJF5N/KQ4cOFXvNoEGDRF5z4MABqeYQGBgosr+AgABpb4t8x0T9Gzc3N5dL30uWLBH5s3jlyhW59E9ECw8PFxu3++rhVxjooxRgQki5+vlnoH9/di9AVSoM9fAhG5IqzwrADAOMHQtcvMgWyejfX7b+jIzYasEPHwIREcDQoexegp07Aw0asKnCaWnymbu0eDy2AEjhHsNUDIQQQmTXqVMnjB8/ntN+7tw5hIaGStyfr68vZxWThoYGdu3a9cOv5EhJSeGskAOAunXryqV/UdU5RW3Mb2NjI7Kq7bt37+Dn58dpL83mzZtF7pP3+++/o7Ey0iPkiM/nIyUlhdNuYmIiU7/iVvpZWFiIvWbTpk2oJGKvmYkTJ+Ljx48Sjf/mzRvMnj2b0+7i4oKAgACJ+iI/BlE/s/Xq1ZNL36J+dwGif38R5aEAICGk3AUGAhYWbGGIL1+UPRtW4fY65VkA5JdfgJ07AT8/YOpU+fbt7AyEhbF7BS5bxlYL9vdn03C9vYHISPmOJ4m6ddm9IAEgPJwtbEIIIUQ2f/75J2rXrs1pnzZtGuLj48vcz759+0RWbvz111/RokULmeZYHtLT0+Ht7S30kGdRhjQx76SJSweVVGxsLKfNUsx+HsOGDcPgwYM57WFhYThx4kSZx4yLi4O/vz+nvU2bNpg5c2aZ+1FV6urq4PP5YBhG6CFNxeavifu5KilgamlpiS1btnDak5KSRKYHi8MwDMaPH4/09HShdh0dHYSGhkJTU7PMff2oPn/+jO3btyt7GuXq06dPnDZRAWlpiPrdBYj//UVUC6UAE0IU6tAhNgV00iRlz4Tl7c0wGhoMk51dPuMFB7P337MnwxQUKH48Pp9NBR48mGHU1dmxnZ3ZlOGsLMWP/62CAoZp2pSdx+zZDJOfz2cSkzKY6CcfmFv3EooeDx8nMR8+ZjJ8KVLYCCHkR3P16lVGXV2d89q9Z8+eZbo+OTlZZOqvk5MTk5eXp+DZy8f79+8589+zZ4/c+s/Pz2dSU1M5j9zcXJn7jo6OFvm314gRI8Rek5yczFhbW3OuqVy5MpOWllbqmAKBgOnQoQPneiMjIyYuLk7me/qe9e3bl/N1U1NTY169elXqtWPGjBH5vT58+HCZxt66davI69evXy/rbX33oqOjGR8fH8bAwICxtbVV9nTKVVpaGud315cvX2Tut6CggKlSpQrn59HS0lKqbShI2UmaAkxFQAghStG/PzBsGLBxI1sAo2tX5c7n4UN2ZVp5FKQ4fRrw8WFX6e3bB6irK35MHg/o1Il9xMayqbfbtrGrAf39AXd3diVijRqKnwsAZGXnwWdKAlJWJOD0jRRc6ZuG/ALx5Yu1NNVRt5YZGtazhEsTG7g6V4G2djl84QghpAJp1aoVpk6dylnZdOLECYSFhWH06NElXj9hwgROipiOjg7CwsJoRdH/aWhowNTUVCF9b968WWR7mzZtxF5jYWGBoKAg9O3bV6g9ISEB06dPx7Zt20ocMzAwEBcuXOC0r127FtXLUpXsB7V3714cOXKE096tW7cyFd7466+/cOHCBbx9+1ao3dfXF23atIGZmZnYa9++fStyZWaXLl0wceLEMsz+x8Pn83HkyBFs3LhR6OfdyMhIibMqf7KmvYtz/PhxkSvN3dzcKnTxoO+RuO/GUQC9xV2kqamJvLw8xcyIEPLD+PSJ3XOPYYCoKEBBr6dLxTCAiQnQowewZ49ix4qMBNzc2BToGzcAOa26l0pODrB/P7B5MzsXHg/o3h3w9WU/8uS8SYRAwOB6RDwOn3yKa7fjweeLD/iVRldHA21dq2FwnwZoZG8lx1kSQkjFlpubC2dnZ061R2NjYzx69AiVK1cWed2RI0fQr18/Tvv69esrVNXfpKQkTjrunj17MGzYMCXNqGxiYmLQpEkTzt9Yurq6SEhIKDXo6OnpKXK/x5MnT6J79+4ir3n9+jUcHR2RkZEh1D5gwACRaeAEyMzMxOrVq7Fw4ULw+XyhY9ra2rh9+zYalXE/mbNnz6Jr165gGEaofdSoUdixY4fY63r06MGpAG1mZoaoqCjY2tqW8U5+DMnJyQgODkZgYKDIStC2tracCupEMrm5uWjSpAmnejnA/r/Sp08fJczqx3H58mW0bdu2tNOmAfgLoD0ACSFKZGIChIQAiYnAjBnKm8fLl0B6uuILgCQmAr17A2pqwJEjyg3+AexqR3d34Pp14PFjYNIkdk++Xr0AOzt2ZaAE20aJJWAY/HfxJYaMO4RpAWdx+cYbmYJ/AJCdU4DTF2MxdtpxeEw5hjv3E2WfKCGEfAe0tbVFrtj7/PkzfHx8RF6TkpICb29vTnvnzp1pRVE5SE9Px+DBg0UusHB3dy/TisO//voLdnZ2nPbx48fj8+fPnHaGYeDl5cUJ/llbWyMoKEiC2X+/8vPzER8fjxs3bmDLli3w8PBA5cqVMW/ePE7wT01NDZs3by5z8A9g/32J+je5c+dOHDt2TOQ1f//9Nyf4B7CrRyn4VywiIgIeHh6ws7PDr7/+KjL4R+RjwoQJIoN/tWrVQs+ePZUwI1ISCgASQpSqSxe2MvDffwOHDilnDuVRACQjA+jZE3j/nr3P8qw2XBYNGgBr17JByqAgwNycrRpcqxYwZAhw7hy7UlJSz1+mwmPyMcxddgmv47l/gMjDo6fJmOB/Gn4BZ/Dug4pUlSGEECVycnISWdTh+PHj2LVrF6d90qRJSEpKEmozMTFBSEgIpW8p2KdPn9CtWzfOik2AXbX5+++/l6kfY2Njkd+v+Ph4kemiW7duxblz54Ta1NTUEBISUmIV2+9dXl4ezMzMoKmpCS0tLVStWhUtW7aEt7c3tm/fLjKYqq+vj507d8LT01Pi8VauXIlatWpx2n18fDgFZwrTur81atQoDBkyROKxvzd5eXnYtWsXXF1d0bRpU2zfvh05OTlizzc1NYWHh0f5TfA7wzAM/Pz8xG4zsGbNGqiXxz5HRCKUAkwIUbrMTKC8ggZzAAAgAElEQVRxY3YVXnQ0YFXOGZ0LF7JVaV+/Zle+yRufz+55ePw4EBoKlLIFk8q4exfYsgXYsQPIzgbq1QM8PYHx40tP1xYwDLbtjkTI7gcoKGFvPwCwMNND/TrmqFPTDOamujA11gGPx/739DE1G0nJmYh9lYpHTz4i/UtuiX3p62liuk9z9OlaV6J7JYSQ701BQQFcXV0REREh1G5ubo7o6OiiNNmjR49y9o8D2D3Ohg4dWi5zlaeKlAL88OFDDBo0CM+fPxd5PDQ0FGPGjJGoz0mTJmHjxo1CbWpqajh9+jS6dOkCAHjz5g0cHR05FWR9fHzE7kP4o8jLy4O2tnaZzuXxeBg4cCCWL1+OGjJsonz16lW0bdsWAoHw66UxY8YIpXX36tWLU93Zzs4OkZGRCtvbrSJITExEYGAgtmzZwnkjQ5RmzZrBx8cHw4YNg66ubjnM8PuTlpYGDw8PHD16VOTxESNGiHyzicifpCnAFAAkhKiEq1eBtm2BPn2Aw4fLd+xBg4Dz54HUVDY9V94mTgQ2bQJ+/x0ICJB//4r24QO7QjMoCIiLAwwMgBEj2L0CmzThnp/+JRfzlofj2m3x+cO21obo07UO2rjaoU4N8Rtdf03AMHj0JBkXrr7GyXPPkfpJ/Lu6A3rWx6wJLaChQQvdCSE/rsePH8PZ2ZmzCqZ37944evQoUlJS4ODggPfv3wsdL20PMlVWEQKA2dnZWLp0KZYvXy72b6qpU6fir7/+krjvzMxMNGnSBC9evBBqt7OzQ1RUFAwNDdG9e3f8999/Qsfr1KmD+/fvQ19fX+IxvyeSBABr1aoFf39/DB8+XOav26xZs7Bq1SpO+4kTJ9CjRw+EhYVxgsE8Hg9nz55Fhw4dZBq7orpy5Qo2bNiAw4cPIz8/v8Rz9fX1MWLECPj4+MDJyamcZvh92rdvH/z8/Dj/bxRydnbGlStXKLhaTigASAipsPz82DTU3buB4cPLb9x69QBra3b/O3lbuhT49Vc2YLZzp2ICjOVFIAAuXGBXBR46xK5sdHZmVwSOGgXo6QGpn3Iwyf80nseliuyjTk0zeI92gluLquDJ8MXIy+fjzMWX2LLjvti03+ZOlbFqQUfoaFPBe0LIj2vZsmX45ZdfOO179uwRmRJcuXJlREVFKazSraKpcgCQYRgcOHAAc+bMQVxcnNjzxo0bh8DAQPCkrMZ148YNuLm5cfap8/b2houLC8aNGyfUrqGhgStXrqBFixZSjfc9kSQAWMja2hqLFi3C2LFjpU6Zz8nJgYuLCycVvHLlyjh79ixatWrFSQmePn06/vzzT6nGq6iysrKwe/dubNiwAZGRkaWe37BhQ/j4+MDd3R3GxsYSjdWjRw/cvHlT2qlKzdbWFtHR0eU+bmkiIiIwbdo0XL16Vew5Tk5O+O+//37obQTKGwUACSEVVk4O4OICJCSwVYGrVFH8mFlZgKEhMGECsH69fPv+5x82kNmmDfDff4CWlnz7V6aEBGDrVraC8IcPbEGX4SOykfjlJBLec/fHMTTQwhSvpujTra5Mgb9v5eXxEbY/Ctt2P0C+iFTjpj/ZYs3CztDWpj1ICCE/Jj6fDzc3N9y4cUOo3cDAAF++CL+B8j2sKFLVAOCNGzcwbdo03Lp1S+w5ampq+OWXX7B48WKZ916cM2cOVqxYwelfT08PmZmZQu3z5s3DwoULZRrve5Gfnw8HBwcYGhoWtaWlpeH9+/fIysoq8dr+/fsjLCwMBgYGUo199+5duLq6clazifq36uDggDt37kBHR0eqsSqaly9fYvPmzdi2bRtSU0W/yVxIW1sbAwYMgK+vL9zc3KQe083NrcRgl6JUqVIFb9++LfdxxYmPj8evv/6KnTt3cipWf61Tp07Yv3//D52OrgwUACSEVGh37wKurkC7dmzQTNEr5m7fBpo3Z9Nbx4+XX79XrrAFTmrVAq5dAyR807HCyM0FDhwAAoMKkJJ3CvrGyZxzHBtYYdnc9rCyUFxa0fOXqZiz+ALeJqRzjrVrVQ0rAjpW6NWXhBAii5cvX6Jx48acIMK3vocVRaoWAHz9+jX8/f2xb9++Ev94Njc3x/bt2+VWNTM3NxcuLi6lriRycXHB9evXOVWjlSUtLY1TnEQS/fr1U8i98Pl8xMTE4MSJE9iyZQtevnwp8rwuXbrg+PHjUs9hwYIFpQZjtbS0cOvWLTQRtQ/Ld4RhGJw9exYbNmzAiRMnOHskfqtmzZoYP348PD09YSWHDcV/9ABgZmYmVq5ciZUrV5YY/FZXV0dAQAACAgKkXrVMpCdpAJDyogghKsXZGZg9G/jjDyA4GPgmS0XuFFEBODYWGDiQLZRx4sT3G/wDAG1tYORIIPrVFZy7zA3+9exUG79Naw1NBe/FV6emGULX9Yb/ogu48+Cd0LFL115jy4578B5Ne74QQn5MNWvWxB9//IGpU6eKPcfe3h6LFy8ux1l93/Lz87Fp0ybMnTu3xMCrmpoaRo0ahVWrVsklaFFIW1sbO3bsQPPmzcUu3NDT08POnTtVJvgHALGxsTJVtE1LS1PICiR1dXU4ODjAwcEB06dPx++//44lS5ZwglJnzpzBihUr8Ntvv0k1zm+//Ybjx4/j7t27Ys/5/fffv+vgX0ZGBvbs2YN169aJrI79NR6Phw4dOmD8+PEYMGAAVZ2Vk2PHjmHy5Ml4/fp1iec5OTlh8+bNaNasWTnNjMiKAoCEEJWzYAFw+jQwbRrQvj1Qu7bixoqKYlcZ2tvLp7+UFKB7d7ay8YULQLVq8ulXlR397xnOXebuZTSgZ33Mmewq15TfkhgZaOOvRV0wY8E53LybIHRs2+5INHOqjJ8cKpXLXAghRNVMnjwZJ0+e5BR/ANjsnu3bt9Om7XJy9uxZTJo0Cc+ePSvxPFdXV6xcuRKtWrVSyDyaNGmC3377DfPnzxd5fPny5ahXr55Cxv6eaWpqYtGiRbCwsICfnx/n+LJly+Dr6wszs7IVOfu27+3bt8PFxYVTvAcAWrdujZkzZ0o1b1UXExODDRs2YMeOHcjIyCjxXBsbG4wdOxbjx49H1apVFTIfHx8f9OrVSyF9l+Tr9PPyFhsbi8mTJ+PUqVMlnlelShUsXLgQHh4etOqvgqEUYEKISnr8mF0N6OzMFudQ1Bt67dsDb98C3xTLk0pODtCxI3DrFnDwINC3r+x9qroPHzMx2OsQsrKF96tp36o6lgW0L7fg39dyc/kYP/MEHj/7KNRe1dYIuwP7UVEQQsgP6+rVqyL3xLK3t0dkZCQ0NBTz+zEjIwPJyewq8Ro1apR5f7v3799j+/btEo315csXzkrG4cOHo3HjxhL10759e4lXteTk5GDmzJnYuHFjiefVr18fS5YsQf/+/SXqXxrZ2dmwtrZGerrwFhkaGhqIjY2FnZ2d3MdMT09HQUEBdHV1JQ4qR0REoGnTplKPragVgOJ07txZZMpyUFAQxsuwt4ynpydCQ0M57atWrcKMGTOk7lecrKws5OTkQF9fX+IiKPIYu2/fvjh//nyJafJqamro0KEDfHx80LdvX5Vaufo92LZtG6ZMmcLZI/Rrpqam8Pf3x+TJk+kNIxUhaQqwOEcBMOIempqaDCGEKNqSJQwDMMzq1Yobw9ycYfr3l70fgYBhRoxg57tunez9VRQByy8xLl1ChB5Dxx9icnIKlDqvpOQvTJchuzhzC951X6nzIoQQZeHz+UyHDh3Evr5funSpwsaeNGlS0Ti5ubllvu7OnTti56vox8qVKyW6x5iYGKZx48Yl9mlra8ts2bKFyc/Pl/RLKLWFCxeKnU/Xrl0ZgUAg8xifP39mNm7cyHTq1IkxNzcXGsPIyIjp0qULs2bNGubz58+l9iXr9zwtLU3m+5HEhQsXRM5j4MCBUvcZHR3N6OjoiOzX0NCQiYuLk3neKSkpzNKlS5l27doxenp6QmOYmpoyPXv2ZIKCgpjMzEyZxyrNx48fS/yempmZMdOmTWOePn2q8Ln8iNLT05nhw4eX+D3Q0dFhZs6cyaSkpCh7uuQb4eHhZfndWLRUmVYAEkJUlkDAFgO5fZstDtKwoXz7j48HqlYF5s9n045lMWsWsGoVMGMG+/FH8ORFCkZPOoKv36zV0lRH6PreqFND8rQXebt07TVm/X5eqE1fTxP/hg6GifGPUTWPEEIKrV69usSVQ9ra2oiIiICDg4Ncxy0oKECVKlWQlJQEgC1OoaWlVaZrZV0NJouVK1eWOdXy5s2b6NGjB9LS0kQeNzAwwC+//AI/Pz/o6enJc5olunPnDlq1asWpKvu1rVu3wsvLS+ox9u/fjylTpuD9+/elnmtiYoJly5bB29tb7DlZWVmIiYmRej5NmjQp133g8vPzYW5uzklZrVu3Lp4+fSpxf3l5eWjevDkePHgg9pwOHTrg3LlzUleK3rZtG/z8/EpNswUAKysrhISEKDQVNiUlBRYWFiKPzZo1CwsXLqTVZgqSnJyM7t27i91zUk1NDe7u7li8eLHCUq2JbKgICCHku8HjAaGhQOPGwOjRwM2bgDxX+xcWAHF0lK2frVvZoF/v3sDy5bLPq6LYdSAa32ZqDOtvrxLBP4Ct/tuuZTVcul68gXFmVj7+ORqD8e4/KXFmhBBSvmJiYjD3f+zdeVhU1R8G8HfYd2RHBBQREREUd1Hc991My93MLSzL1LKyrCzTFrXFUnPJzMp9yaVccs+UFBVkcUEQRGVfZGeY3x/+VIZ7B4ZhhhnG9/M8Pjrn3nvmDAwy884557twYaXnFBUVYeLEiTh//rxal9YdPHjwSfinj44dO4bhw4crLPQxbNgwfPvtt7X+5jk/Px8TJ06sNPwDgLlz56Jv374qLQVes2YNXnnllUqXbZaXlZWFmTNn4tKlS1i9erVogGVhYYE2bdpUeyzaYmxsDD8/P1y4cEGuPTk5WaX+Pvzww0rDPwD4+++/sXr1arzyyivV7n/ZsmVYsGCB0uenpKRg6NCh+OmnnzBx4sRq319NffHFFwgLC0NoaKjGKjw/q+7evYvevXsjJiZG9Li/vz9++OEH0W0jqO7ijo1EpNMaNwaWLAEuXQKWLlVv3+qoAHzgAPDKK0DHjsDWrZrbq1DXpKbn4+hp+cIftjammDJGt6rSzZrSFoaG8r/q9hyKhVRapuAKIiL9UlxcjHHjxqGgoECuXWyftPDwcHypxmnsGRkZNSpYYGRkBDs7u2r9sbW1FfRjaWlZ7X7MzKqeKR4bG4sRI0aIhn+enp7Yu3cv9uzZo5WZMwsWLBC8sbe2thbMjsvJycG0adOUDvEeCw8Px6xZs+SuCwwMxOrVq3HlyhXcv38f0dHRWLduHYKC5D90W7t2LT7//PNqPiLVzZ49GzNmzJD78/PPP6utfycnJ0FbXl6eoEJwVc6ePSv6dRH7WX3rrbdw+7awAFtlzpw5I6hOPGDAAGzbtg3R0dFISUlBVFQU1q5di+blquPJZDJMmzZNpRmNyjAwMKi0kMSJEycwevRoNGrUCB9++KHK4So9VVhYiGHDhomGf+bm5liyZAnCw8MZ/ukhLgEmIp0nkz2qrHvsGHDuHNC27dNjcQmZuHT1Pq7HZeDm7UykpucjM7sARUVSAICBRAIHe3O4OlvB3c0a/r5OaNHMCX5NHTFhvAR79wI5OY9mG1bXpUtAt26Ai8ujcYm8/tNbv+2+huWrz8u1vTSmJUIn696n9gs++RvHTsfLtS3/uA9COnApAxHpv3fffRefffaZXJupqSkuXLiAqVOnIiwsTHAsLCwMATWYHi+VSnHo0CG89dZbguWc1VkCrIoHDx7A1dVVru23337Diy++qNb7ycvLQ8eOHREZGSk41qtXL2zduhUODg5qvU9lHTlyBP369ROEeuvXr0dkZCRWrFghuGbt2rWYNm2a0vfRtWtXnD59+sntSZMmYe3ataLf27KyMnzwwQf49NNPn7RZWFggNjYW7u7uSt+nqnx9fQUVmQcNGoT9+/erpf/+/fsLqmubmZkJQvfK5OXlISgoCDdu3JBr79mzJ5YsWYLOnTtDKpXKHevRoweOHTum9FLg3r1749ixp1ujfPXVV3jzzTdFzy0sLMSLL76IvXv3PmkbO3YstmzZouxDqpa4uDh8//332LBhg8Kl9I8ZGxtj2LBhCA0NRY8ePTQyHuBR8aLS0lKN9a+IgYGB6AcZ6jR9+nT8+OOPgnYPDw/s2bMHrVu31uj9k/pUdwkwA0AiqhPu3n20VLd+fWDnniwcOBaLk2cTcC9FfMlNVRzszJFytyGMy5rg/Fnnal9/586jWX9FRcA//wC+vioNo856ec5+XI1KeXLbQCLBH7+MhrOjpRZHJe6/K/fwyluH5NqGD/DFe2901tKIiIhqx7lz5xASEiIIDpYtW4a33noLERERaNu2reB1fVBQULWWApeUlGDTpk24du0arl27hkuXLiE9PV30XH0JAMWCVQDo168f9u7dW+uVVB/LyspCYGAgEhMT5dp79+6Nw4cPo6CgAC1btsTNmzfljtvY2CAiIkKppcDXr1+Hb7kXPoGBgQgLC6vy+zp58mS5qs6LFi3ChzXdhFkJYgFdixYtEBERoZb+27ZtK9hDrWHDhoiPj1e6D7FAxtraGlevXkWjRo0wd+5cLF++XHDdqlWrEBoaWmX/t2/fRuPGjZ/c7t+/Pw4dOlTJFUB2djYaN26MjIyMJ+NJS0vT6M9vUVERtm7diuXLl+PKlStVnt+0aVNMmTIF06dPh52dnVrHEhISgjNnzqi1T2W4u7sLfn7VSVFg5OHhgVOnTqFRo0Yau29Sv+oGgFwCTER1QoMGwJy37kFqeRATXt2F33dfUzn8A4D0zAIYWsSgzGo/Jr22D3+fiRfsZ6dITs6j/f7S04Ht25+98C8vvwSR0alybYH+zjoZ/gFA60BXONjJbx599oLmXlgREemCvLw8TJo0SRD+BQUFYc6cOQCAgIAA0f3AwsPD8cUXX1TrvqZNm4aVK1fiyJEjCsM/fXHv3j188803gvYWLVpg9+7dWgv/ACA0NFQQHtjY2GDDhg2QSCSwsLDA2rVrBbPGcnJyMHXqVKWWApefFQYA77zzjlKh0JIlS+SWIB84cKDKa9TB29tb0BYdHV3lTDNlFBcXiy6jdHFxUbqP/fv3i87GWrZs2ZMwZvHixWjSpIngnLfffluppcAnTpyQuz1z5swqr7G1tcXIkSOf3M7NzUVUVFSV19WEqakpJk6ciMuXL+PkyZMYNWoUjIwUly24fv06FixYgIYNGyI0NFR0Ri7Je/vttwVtFhYWOHjwIMO/ZwADQCLSebfvZCH07UPYd/wQrO2qrjJXXVHX0/D24r/x8pz9iIxJrfTckhLg+eeBiAhg3TqgZ0+1D0fnXYtNRVmFNwhddHg5rYFEgs7t5ceXmp6PB6l5WhoREZHmzZkzR7Cc0NTUFD///LPczL733ntPtPLvRx99pLYZUvpmxYoVyMuT/x0ikUiwceNGrVYr/f333/Hbb78J2r/88ku5fQh79Oghutz3yJEjokFURf/++++TfxsbG2PQoEFKjc/NzQ2tWj3dK7jiLERN6dxZOONfKpXiyJEjNe77zJkzgucCALRv316p61NTU0W/Fz169JAL6SwsLPDjjz8KgtuHDx/i5ZdfrjK4rTibTtnq2uX3AgRQqwV9unbtim3btiE+Ph4LFy6sNFTNzc3FDz/8gICAAHTv3h3btm2rsgDOs+jo0aNyP7+PffDBB2qvAE+6iQEgEemssjIZNv52BeND9yLs8r0qz7e3M0dQgCt6hTTCiIG+GDHQFwN7NUHrQFfUd7aq8vqI6BS8PGc/vl0fhuISqeg5M2YAR44An3wCTJhQ7YekF6JvpAnaApsr/0m3NgT4CZd5x97U7xkqRPTs+uuvv7Bu3TpBu9ibPBMTE6xfv15QHKK4uBiTJk1S6k20paUltm3bJvqnd+/eNXswOkYmk2Hbtm2C9v79+6Nt+U2Ka9ndu3cxa9YsQXvv3r0xdepUQfvnn38uuv/e/PnzkZCQUOV9Pebp6Qlra2ulx1l+eXZWVpZghqom9O3bV/D8BiC6F2J1KepD2VA0NDQU9+/Lf7itaJZm9+7dMX36dEEfx48fx/fff1/p/aSkPN22xcjISOkZihWLc2gj4G7QoAEWL16MhIQEbN68GR06dKj0/JMnT+KFF15Aw4YNsWjRIrnn67Nu69atgjZbW1u89tprWhgNaYPi+bRERFqUnVOE95edwLn/FP/StjA3RtdOnujS3gNtWrrC0d6i0j4zswtxNSoFp87dwclzCcjOKRKcU1Ymw8/bIhAWfg9ffdgbTo5P+/zkE2DjRmDqVODdd1V/bHXd/QfCpddNG9trYSTK8/UWju/O3WwtjISISLPS0tIwefJkwYygVq1aYf78+aLXtG/fHq+//rpgj7Hw8HB8/vnngsqhFRkbG2PUqFGix44dO4ajR49W4xHotrCwMNGAbMyYMVoYzSMymQxTpkx5slfbY9bW1qKzxoBHb/p/+OEHDBkiv+3746rAf/31l8LiEklJSU/+Xd0lg3fu3JEbn1gwp26Ojo5o3749zp07J9f+77//Yvfu3RgxYoRK/R44cEB0GbONjQ26d+9e5fU//fQTduzYIWhfunSp6HJf4FFwe+DAAbnvAfCo6vOAAQPk9vkrLzQ09MnjNDU1VfrrXnGWpjaXiJqammL8+PEYP348wsLC8N1332Hr1q0oKhK+ngceLdX/+OOPsWTJErmiIcoWTZk/fz4maOHTfktLzWypU1paij179gjahw4dCguLyt9Dkf5gAEhEOufeg4cIffsQku7lih53dbbCpNEBGNCrCSwtlNugHADsbM3QrZMnunXyxNvFnXD4RBw274hEXIJwD5joG2mY+No+rFzcB75NHPD778AHHwA9egCrVqn80PTC/RT5pS7WVibV+j5og4uT8MVUemahFkZCRKRZYjOKjIyMsGHDhkqLeixevBj79u0TvOH/+OOPMXTo0BpVBdYnFfdSe8zf318te8qJMTExqTQUWLVqFQ4fPixoL7+HnJjBgwdj7Nix+PXXX+Xajxw5grVr12LGjBmi11UMn5SVnJyM2NjYJ7fLLwfWtNdff10QAALAlClT0KRJk2o/v8PCwjBu3DjRpbfz58+HmZlZpdcnJCTg9ddfF7SHhISIzuR8zMbGBqtXr8bgwYPl2h8vBf77779FA64uXbpUOh4xWVlZ2L59+5PbPj4+ckvJtaldu3bYtGkTvvzyS6xbtw4//PCDwsIZpaWl2LlzJ3bu3Ak/Pz+88sormDhxYpWVdocOHaqJoWtNREQE0tKEq3hatWqlsf+7JBIJ6tWrp5G+STVcAkxEOiXxbg6mzT0gGv5ZmBtjzowO2LXxeTw/xK9GoZOJiSEG9/XBb6uH4703uqCerfCFWlpGPkIX/Ilft6Vj8mSgeXNg1y5Ag8XP6oS8fPlqkWJfO11Tz9YMBgbyL4izshkAEpF+2bRpk9wb9sfef/99BAUFVXqthYUF1q1bJwgPqrMU+FkQHh4u2t6mTRvY29tr5M/kyZMVjicmJkZ0U//u3bsrVejhm2++EV0OOnfuXMTFxVV5fXUsWbJEruL08OHD1dp/ZUaNGgU/Pz9Be1ZWFoKDg7Fx40aUlpZW2U9BQQG++uorhISEIDtbuJKgfv36T4rsKFJWVoZJkyYhJydHrt3CwgLr168XLLutaNCgQRg/fryg/cSJE1ilpk+pr1+/jkGDBsl9mPDBBx8oPXuutjg5OeGdd95BfHw89u3bh969e1c6xujoaMyePRuurq6YOHGiUpWG9YWi/7vmzp2rsf+7GjZsWMuPkqrCAJCIdEZGViFeffcv0eIMrVq44Pc1IzD2OX8YG6nvvy4DAwmGD2iKrWtGIKSjp+B4Tm4RvlzzJ1zqZ+PgQYAfYgHSMvlPuw0NdOvFoBgDA4nOvWglIlKnpKQk0eChZcuWopV+xXTr1k10j7HHS4FJWExBm0pLSzFx4kTk5+fLtVtaWmL9+vVK/d5zcHDA119/LWjPy8vDjBkzlKoKrIxNmzbJ7VPn6OiIKVOmqKVvZRgYGOCLL74Q/Zo8fPgQU6ZMQdOmTfHOO+/gwIEDiIqKwv3793Hv3j1ERkZi165dmD17Nry8vDBv3jzRZafGxsbYtGlTlUs4V6xYgZMnTwraP/nkE/j4+Cj1eFauXAlnZ+H+xgsWLKh2cHvu3DksX74cCxcuxPTp09G2bVs0a9YM//zzz5Nz5s2bJxo66goDAwMMGTIER44cwdWrVzFz5sxKvw+FhYXYvHkzBg4cWIuj1K6rV69qewikAxgAEpFOKC6RYu6iI0i+L5z59/wQP/ywbADqu1RdyENV9nbm+OrD3pg6rhUqvjY0NCpCYOejsLMvFr/4GSOVSircVs+bA00qk8kglZbJtRkaMhAkIv1QVlaGiRMnCpZxGRkZYf369TCpxtT1zz//XHSZ38cff8yqwIDaZ8XVxOLFixEWFiZoX7p0qcK94MS88MILovvgHT16FGvXrq3RGKVSKT799FNMnTpVLkz8+uuva31p4KBBgzBv3jyFx2/fvo2lS5di8ODB8Pf3R/369eHm5oaAgACMHDkS3377baVVcFevXo0+ffpUOobIyEjRPTWDg4NFlwQr4uDggG+//VbQnpeXh5dffhllZWUiV4nbsWMH5s6di08//RQ//vgjLl68+OR71axZM2zbtg1ffPGF0v1pW4sWLfDDDz8gOTkZa9asEVQyflbdunVL20MgHcAAkIh0wvcbLyIyJlXQ/vLYVnj71U4wUuOsP0UkEmDGxNZ4+7VgQQh4PzUbn6w4o/Ex6JLsbODiReDnn4HXXwf69AFcXYGzp03lzsusA0tps7KFn9Tr+r6FRETKWrFiBY4fPy5of+edd9CmTZtq9fV4jxRz+eoAACAASURBVLGKiouLMXHixGd6KXBWVpbCggO17eLFi/jss88E7cHBwQgNDa12f6tWrYKdnZ2gfe7cuSoHBxcvXkRISAgWLlwot7z2vffew9ixY1Xqs6aWLVtW6R57qrC2tsaWLVuqnNFYXFyMCRMmCJ5DZmZm2LBhQ5VLfysaPXq06DLqEydOVFkVWFk5OTmIjY1FXp5wdY6us7GxwfTp0xEREYEjR45g1KhRtVJ0RleVrwRNzy4GgESkdWGX7+G3XdcE7WOf88fMSa1rfTwjBzXDnBkdBO1/n4nH4RO688m/uhQXA9euAdu3Ax9+CAwZAnh7A3Z2QNu2wKRJwDffPDqnXTuguZ+53PUP84qRl6/bbwgfpAgrF7s4aW5GKRFRbYmKisL7778vaPfz88O7KpasHzhwIMaNGydov3z5MpYtW6ZSn/pAV95A5+fnY9y4cYIw1sLCAj/99FO1gyTg0d51YrO88vLyMH369GotBb579y4mT54sqLxraGiIpUuX4pNPPqn2+NRFIpHgu+++w4YNG9QyAzEkJASXLl1SKtBctGgRLl++LGj/+OOP4evrq9L9f//996LB7YIFC5QObn18fDBs2DCMHDkSPXv2RIMGDZ4cS05Oxvvvv4/AwEBcuyZ8rV4XGBgYoHfv3ti2bRtiY2Px9ttvw97eXtvDqnWVzV6lZwerABORVkmlZfhi1TmUVXhhGdLRE69Pb6+lUQFjRvgjLiETew5dl2v/6od/0aWDByzM697ssdJS4M6dR0FeVNSjvy9eBGJjAan06Xl2do8KngweDPj7P/p3UBDweCuVzdtt8M06+b6vx2UgqIVwE3FdcT0uQ9DmpsEl5UREtSUlJQUrV64UtHft2rXKSqSV+frrr9G1a1dBu4mJCWQy2TO5r6qdnR3WrFlT6/fr5eUldzspKQlvvvmm4DwfHx+l95ATM2XKFBgbG6OwUDizPy0tDU5OTpVeX1hYiC+++ALLli0TzBhr2rQpfvzxR9HnlDa89NJLGDlyJNauXYuvv/66WpWNjYyMMHDgQMyfP1/p6rqlpaVo0qSJ4PljZGSESZMmVWvs5dWvXx9//PGHaDiXkpICb2/vKvuYOXOmoGBMeHg4Fi5ciIMHDwJ4tPS9X79+uHLlChwcHFQer7Z5e3tj6dKleP/99/HLL79g165d2h5Srfnoo49qfQZzdbafoNqh6Df3PgBDFF1kbGwsV8GJiEhVO/6IxrLvzsm1Odpb4LfVw7VeXbaoSIrxs/YgPlG+ytu08UGYPqHyaoralpz8NOR7/PelS0BBwdNz6tV7FPA9Dvn8/YHAQEBkT2k5F8KTMWvBn3Jts6e2w4RRARp4JOqxePkZ7PtLPsz9Y/NouDozBCQi0qSZM2fKhR5FRUUafVNYVlYmqM5qaWnJN6IaduTIEYSGhuLmzZty7fXq1cOCBQvwxhtvwNTUVMHV2lVWVoZr167h9OnTuHDhAu7fv4/MzExkZGTA1NQUjo6OcHBwgK+vL7p27YouXbrAykr/Xz/IZDJMmjQJmzdvftI2b968OrUfIJG+O3XqFLp161bVaXMArAQ4A5CItEgqLcPP24Qbis+f1VHr4R8AmJoa4oO5IXh5zn6Un6C4ZWckxj7nDytL7b+ZyMwUzui7ehXILVdLxcQEaNIEeP55+bDPywuCvQ6V0czHAQYGEpSVqwZ8+nyizgaAZTIZ/gmT/2TfydGC4R8RkR4yMDAQXRJJmlFaWopPPvkEixcvlis8YWJigsmTJ2Px4sWi1Wp1iYGBAQICAhAQEKDS/on6SiKRYOXKldi9ezcePny0lcrWrVsZABLVYQwAiUhrjp9NwL0Ke7MFBbiiZ5dG2hmQiAA/Z/QK8cLRU7eftOUXlODA0Zt4YVjtVRXLyQFu3BCGfffuPT3HyAjw9AS6dQPatHka9vn5ASpsB6SQjZUpAps743Lk071ErkalICUtD86Oluq7IzW5EvkAaRn5cm0dWjdQcDYREREp4+HDhxgxYgSOHj0q1z5mzBgsXboUnp6eWhoZqYu9vT26d++O/fv3AwASExORnp5ep5cBEz3LGAASkdZUXJIJAC+PbamFkVRu+oQgHDt9W24W4K4DsRoJAEtKgOvXhct3Y2KAch+so379RwHfqFFPwz5/f6AG2z1VS9eOnnIBoFRaht0HYzFjYu0XbanKtn3RgrbeIV4iZxIREZEySkpKMHjwYJw8efJJm4+PD77//nv07t1biyOjiuLj43H48OEnt/v164eGDRsqfX3jxo3lbqempjIAJKqjGAASkVZk5xQh7PI9uTYvz3poH6R7M7O8POuhbcv6cuONS8hE4t0ceDSwUalPqRRISJAP+aKigMhIoPz+vI8Lckyd+ujvNm2AVq0AbW89M6CXN77/6SJKS5+mktv/iMa4kS10Ymn0Y4l3c/D3mXi5Nvt6Zmjf2k07AyIiItIDCxculAv/evTogT179sDGRrXXRaQ59+7dw4wZM57cXr9+PaZMmaL09RUrQNekuBARaRcDQCLSinP/JcmFRwDQv6e3SnvS1YaBvZsIAstT/97BuJEtqrxWrCBHeDiQX25Vqq3to336Ro9+OqMvIABw0dHCuo72FujRuSGOnHy6NDo7pwg/b49A6OQ2WhyZvG/WhcntVQgAzw/xg7GRGtdEExERPUNu3ryJFStWPLkdHByMQ4cO6WyRj2ddxUrAERHC/bcrc/v2bbnbur6nIxEpxgCQiLTianSKoK1HZ+WXI9S2zu09BIUvLl97IBcAVizIERUFXLkCpKY+7edxQY5Bg57O6KtJQQ5tmjQ6EMdOxaOs3CfDv2yPQN9ujdHES/sbsJ/+9w5O/JMg12Zhboznh/hpaURERER13/Lly1FSUgIAMDY2xtq1axn+6TBnZ2f4+Pjgxo0bAIADBw7gq6++goESG0Tn5ubi1KlTT263aNECFhYWGhsrEWkWA0Ai0oprMalyt21tTNHIo56WRlM1O1szNG5YDzdvZz5pu3Q5HQsWPA374uKenv+4IEeHDk+LcbRpAzRrBhgaauEBaIBvEwf06e6Fv44/feAlpWX44POT2LByMMxMtfcrJi0jH4uXnxG0TxwdADsdqDBNRERUF0mlUuzatevJ7c6dO8Pf31+LIyJlDBw4EF9//TUA4MaNG9iyZQsmTJhQ5XVLlixBTk7Ok9vDhg3T2BiJSPMYABKRViQl58rd9vNx1PkZcL7eDnIBYE7eQ3z5VQmcnYzh7w8MHiwf9pmba3GwteTVKW1x5nwi8vJLnrTdiMvAR1+expJ3e2jle1pUJMW8D48hM7tQrr2+ixXGjwyo/QERERHpidjYWDx48LQImEwmw7Jly1Tqy8nJqVp70ZHqZs2ahe+++w5SqfTJbRcXF/Tt21f0fJlMhpUrV8p9b62trTF79uxaGS8RaQYDQCKqdfkFJch5WCTX5uZqraXRKM/dTbixdeS1AjRraqyF0egGV2crvDG9PT5deVau/eip26hna4a3ZnWq1RCwuFiKBZ/+jWux8jNMDSQSfDS/K0xN9WT6JRERkRZcvnxZ7vbJkyflioFUR0BAAAPAWuLj44OZM2di1apVAB4t7e3fvz8GDRqE4cOHo1mzZjAzM0N2djYuXbqEzZs34+rVq3J9fPXVV9z/j6iOYwBIRLUuq8LMLABwctD9/UQc7IRT+gqLCwA82xXvhvX3xflLyTh6Sn6T6B1/RD8K5GYH10rRjYd5xXhr8d8IC08WHJv0YiCCAlw1PgYiIiJ9Fh8fr+0hkIqWL1+OyMjIJ4GtTCbD/v37sX///kqvk0gkWLRoEaZNm1YbwyQiDWIZRCKqdVKpTNBmVAeqspqbCz8zKSmRamEkukUiAT6YG4Km3vaCY/v+uo5ZC/5Ealq+yJXqcys+E5Nm/yEa/nXv3BAzJ7XW6P0TERE9C1JTU6s+iXSSiYkJDh8+jNmzZ8PYWLnVK97e3ti/fz8WLVqk4dERUW1QtDBrH4Ahii4yNjZGcXGxZkZERHovISkbz7+8U65t1pS2mPxCoJZGpJz9R27goy9Py7Wt/XIgZ5b9X1pGPl556xDiE7MFx6ytTDBnRgcM6tMEBmpcE1xaWoaft0dg/a+XUVwsDGNbtXDBt0v6abUgCRHRsyw/Px9FRU+3/bCz036VeFJdxe9nTRgaGsLG5tleRaEtd+7cwcaNG3Hy5ElERkYiIyMDUqkUVlZW8PDwQHBwMAYOHIhhw4bBUF+q1xHpoVOnTqFbt25VnTYHwEqAS4CJSAusLU0EbTm56nkxqUnlC108ZmLCF0WPOdpb4IfPByD07T9x+06W3LHch8X4+KvT2Lo3CjMmBKFzB48aBYGlpWX460QcfvwlHHfv5Yqe06F1A3yxqBfDPyIiLbKwsICFhe5v80HK4fdTP3h6egpm9ZWWlsLIiK+ZiPQZf8KJqNbVszWDgUSCMtnTpcDpGQVaHJFyHqTmCdqcHSy1MBLd5WhvgfUrBuO9z47j3H93Bcdjb6bjzUVH4eFmgyF9fdC9c0N4edZTqu8ymQwxN9Jx/Ew8/jh8A+mZip8zwwf4Yv6sjjAxZkBLREREVBWGf0T6jz/lRFTrDAwkcHayxP2Uh0/absZnaHFEyqk4q83YyAAODsLCIM86aysTrFzcF+u2XMbG36+gtLRMcE5icg6+/+kivv/pIpwcLdDC1xmNG9aDi5MlrK2ezhDNzCpESloersdlIOZGGjKyhAVkyrMwN8acGR0wfEBTtT8uIiIiIiKiuooBIBFpRVNve7kAMC4hC4VFpTq7XFMmAyKiU+TaGjeyU+t+dvrEwECC6ROCENLRA599/Q+ib6QpPDc1LR/H0+Jx/GzN7rNTW3e8MzsY9V2satYRERERERGRntH9sptEpJf8fBzlbpeWlolWcNUV12+lIztHfp/CAD9nLY2m7vDzccSmb4di8YJu8HDTzEbfzZs64ptP++GbT/sy/CMiIiIiIhKhm1NtiEjvdWzTAGt+viTXdvxsAkI6emppRJU7diZe0NYmkNV/lSGRAP17eKNv98Y4ez4R2/+IQdjlZNGlwcoyMTFEz86NMGKgL4ICXMGJmERERERERIoxACQirWju6wgHO3O5Qg5HTt7GG9Pbw8baVIsjEyotLcPBozfl2sxMjdC5vYeWRlQ3GUgkCOnoiZCOnsh5WISz55Pw35V7iIxJRfydLLmiMBWZmBjCu6Edmjd1RKd27mgf5AZzM/4KIyIiIiIiUgbfPRGRVhhIJOjbvTF+233tSVthUSl2H4rFpNGBWhyZ0F8n4gQVgDu3d2cAVQM2VqYY0MsbA3p5AwCKS6RISctHaloeSkrLkJ9fAkNDCerZmsHBzhwuTpYwNOSuFURERERERKrgu1ci0ppRQ/2wdU+U3MyvTVuvYsQAX52ZBVhcLBUsVQaAF4Y118Jo9JeJsSHc61vDvb61todCRERERESkdzidgoi0xsPNBsHt3eXach8WY9XGi1oakdDP2yNw78FDuTa/po4ICuD+f0RERERERFQ3MAAkIq0KfakNDCpUcNh9MAbn/kvS0oieirqehvW/Xha0z3qpjRZGQ0RERERERKQaBoBEpFU+XvYY0s9Hrk0mAxYuPYmke7laGhWQkVmABZ/8LahU26WDBzq0bqClURERERERERFVHwNAItK616e1h7OjpVxbTm4RXl94GGkZ+bU+nrz8Esz98Khg6a+1lQnefrVTrY+HiIiIiIiIqCYYABKR1llbmWDRvBAYGMgvBb6TlI1X3jokqMCrSdk5RQh9+xAiY1IFx95+NRiuzla1NhYiIiIiIiIidWAASEQ6oX2QG16b2k7QHp+YjUmv7cPVqBSNj+HG7QxMnr0PUdfTBMfGjWyBfj0aa3wMREREREREROrGAJCIdMb4kS0waqifoD09swDT5x3Emp8voaTCnnzqUFYmw5adkZjy+n7RfQd7dG6E2dOE4SQRERERERFRXWCk7QEQEZU3P7QTZGUy7NgfI9culZZh3ZbL+Ot4HGZNaYseXRoKqger4p+wJPzw00XE3EwXPd67qxc+frubWu6LiIiIiIiISBsYABKRTpFIgLdeDYaDvQXWbr4EmUz+eGJyDhZ88jc83W0xeqgf+nT1gr2debXu42FeMY6euo1dB2MRLbLc97FRQ/0w75WOgr0JiYiIiIiIiOoSRe9q9wEYougiY2NjFBcXa2ZERET/d+JsAhavOIOc3CKF5xhIJAho7oxW/i7wb+aIBq42cHSwgJGRBFaWJsjKLkJWdgHuJOXgelwGwiPu4/K1ByitZCmxqakhFrwajMF9fTTxsIiIiIiIiIhq5NSpU+jWrVtVp80BsBLgDEAi0mHdOzeEfzMnfLryDM5eSBI9p0wmw5VrD3Dl2gO13GfrQFe893pneLrbqqU/IiIiIiIiIm1jAEhEOs3JwQIrF/fF2QtJ+HZ9GG7FZ2rkfjzcbDB9QhD69fAGt/sjIiIiIiIifcIAkIjqhM7t3dGpXQOc/jcRW/dcQ9jle2rpN8DPGSMHN0O/7o1hZMTC6ERERERERKR/GAASUZ1hIJGgWydPdOvkieT7uTh+NgGn/03EtdhUFBaVKtWHkZEB/H2d0LmdO7oFe6JxQzsNj5qIiIiIiIhIuxgAElGd5OZqjXEjW2DcyBaQSstw83YmEpKy8SA1D5nZhXiY96hQkYW5MezrmcPRwRyNG9rBu5EdjDnTj4iIiIiIiJ4hDACJqM4zNDSAbxMH+DZx0PZQiIiIiIiIiHQOp8EQERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeowBIBERERERERERkR5jAEhERERERERERKTHGAASERERERERERHpMQaAREREREREREREeszo6T8bewJo+ujfKU6AVOFFMpkRjh49q9mRERERERERERERkUBERBQA80rOKJC7JXn6zyZvArKvNDIqIiIiIiIiIiIiqgUyAHEAMAfASoBLgImIiIiIiIiIiPQaA0AiIiIiIiIiIiI9xgCQiIiIiIiIiIhIjzEAJCIiIiIiIiIi0mNGVZ5Rzwqwt66FoRAREREREREREZHS4u4pdVrVAaB/Q6BP65oOh4iIiIiIiIiIiNTpw81KncYlwERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkx4y0PQAiIiIi0g1mRkb4un9/QXv4/ftY/d9/WhgREREREakDA0AiIiIiAgCYGBpieps2gvZd0dEMAImIiIjqMC4BJiIiIiIiIiIi0mMMAImIiIiIiIiIiPQYlwATERERaVmIpyeCPTwE7ZuvXkVybq4WRkRERERE+oQBIBEREZGW9fX2xsKuXQXtJxMSGAASERERUY1xCTAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEGgERERERERERERHqMASAREREREREREZEeYwBIRERERERERESkxxgAEhERERERERER6TEjbQ+AiIiIlCcB0MbNDd0bNYKfoyNcrKxgamiI0rIypObnIzYtDSfi4/FvUhKkMplSfdYzM0P3Ro3QvkEDNLS1hbOlJQAgt7gYGQUFiHjwAGcTE3ExORnK9Vi3GRkYoIWzM9q5uSHAxQV2ZmaoZ2YGMyMj5BQVIbuoCPdyc/FfcjLCkpORlJOj7SFrVTNHR/T08oK/kxPcrK1hZWICAMgoKEBCdjYiU1Jw/PZtJNbC10kCwN/ZGV08PdHM0RHuNjawNTUFADwsLkZafj5uZGTgv+RknEtMREFpqcbHVFOmhobo5OGBFs7O8LazQwMbG1iZmMDYwAAlZWV4WFyMrMJC3M7MxLXUVITfu1crX2siIiKqWxgAEhERadnmESPgamUl17bm4kXsiIp6cttQIsHU1q0xv3NneNvZVdlnXGYmPj19GhvDwxWGdg1tbfFBt24YExAAc6OqXxLEpKXhq3PnsCE8HGVKhosA8N3AgfB1cJBryyspwfDff1e6D0U+69ULbd3cBO19N2+udljZytUVU1u3xtiAANiZmSl93bmkJKy7dAm/RkSgUIlAaaivL15r316uzdveXvTcbwYMQHZhoaB9yt69Wg15DCQSTAgMxJudOiHQxUWpa/5JTMTq//7DrxERSofTynKysMCs9u0xuVUrNLS1VeqagtJS7IqOxqoLF3AuKUmt41GH/k2aYFa7dujp5QULY+NqXRt+/z52REVh9X//IaOgQEMjJCIiorqEASAREZGWdfb0hFe9enJtf968+eTf3nZ2+P3550WDLkUa29lh/dCheM7PDy9s3468khK547PatcMXffsqFfw91szRET8OGYLnmzfHuJ07ka5ksNDOzQ3tGzSQa8suKlL6fisTVL8+ejduLGiXSCSQKRkyOVtaYnm/fhgXEKDSGDq5u6OTuzve6twZL+/di7OJiZWe72FjIzpmMe0UfM8t/z/LThsa29lhy3PPoaO7e7WuC/bwQLCHBxZ06YKp+/apJXQzNjDAOyEhmB8c/GTmobLMjYwwLiAA4wICsDc2FqEHDiA5N7fGY6qpYA8PfDtgAFrXr69yH0GurghydcW84GB8dOIEvjl//pmYvUtERESKcQ9AIiIiHdbR3R3np02rVvhX3iAfH+wfOxbGBo9+5UvwaEbedwMHViv8K6+ftzf2jRkDU0NDla7XJe0bNEDUrFkqh3/l+To44NRLL2FCYKAaRqabOrm748K0adUO/8pr7uSE01Om4I2OHWs0Fk9bW/w7dSo+6t692uFfRcN8fXFl5kx0a9iwRv3UVGi7djj10ks1Cv/KszMzw8r+/fHT8OFP/g8gIiKiZxNfCRAREemoVq6uODRuHBzMzWvUT/dGjfB5nz4AgBX9+2NWu3Y1Hluwhwc+7N69xv1oUyd3dxyZMKHGX9/yDCQSbBg2DIN8fNTWp64IdHHBQTU8H4FHS9pX9OuHRd26qXR9cycnXJg2TW1BGQA4Wljgz/Hj0UfJ2Znq9lKrVlg1cCAMJRK19z2xZcsn/wcQERHRs4lLgImIiHSQo4UF9r74IupV2IvuzJ072BEVhZi0NKTl58PWzAyBLi54vnlzdPbwUNjf7A4d4G5jg+ebNxcce9xndFoa0v/fZ5CrK0b7+wuW7pb3avv2WH7uHFLz81V/oFpiaWyMX0eOhM3/C0SIySgowLmkJMT8/+tSJpPBztwcTR0cEOLpCUcLC9HrjAwMsHrwYPh+9x3yKyy9Bh4tf47LzJRrszc3F3yvAeBubi6KRPYVLJFKq3qIamVjaoodo0eLjhF4tOdcTFoa7uXmwtzYGO42Nmjn5ibY27KiD7t3R0J2Nn66fFnpsXjY2ODIhAlw+X+xGjFSmQz/JCbi6oMHSMnLgwSAq5UVWrm6on2DBjBQELKZGRlh++jR6LhuHWLS0pQeU0352Ntj1aBBlZ6TUVCAC3fvIjotDRkFBSiRSmFqZARHCws0c3RER3d3WFcyE3J2hw74PTIS5+/eVffwiYiIqA5gAEhERKSD3uzUCSblltjGpqcj9MAB/H37tuDcv2/fxsp//8WIZs2wacQI0RDAQCIRhH+x6el4Zf9+HI+PF+3zq3PnMC4gAD8OHSq6XNjKxATDmjXDukuXVHiE2vVBt25oVGHfxcduZWbi3WPHsCcmBsUKgjZjAwOM9vfHl337ioZc7jY2mN2hA5aeOSM49svVq/jl6lW5tsU9emBh166Cc5/ftg3/6kCBCrE9C8tkMvzw33/47sIF0bDMUCJBr8aNsaBLF/Ro1Ehh36sGDsQ/iYm4np5e5ThMDA2xY/RouFlbix7PLirCsjNnsObiRYXFL9ysrfFa+/aY06mT6DJ2W1NTbBo+HMHr16u9WIkin/TsqXBJ/vX0dCw4ehT7r19HSVmZwj5MDQ0xvFkzLO7ZEz4iRWUMJBKEtmvHAJCIiOgZxSXAREREOqh8+Hc2MRGd1q0TDf/K2x0Tg+e3bVOqQu+ZO3fQad060fCvvC0RERi7c6fCgho9vbyqvC9dY2xggJeCgkSPnYiPR+s1a7Dt2jWF4R8AlJSVYUtEBDqtX4+7CgpHjBKZbakv7j18iB6bNuHVgwcVzpSTymQ4fOsWem3ahFcOHFD49bQwNsbX/fsrdb/zgoMVzko9m5iIpt9+i8/OnKm08m1ybi7eOXYMAd9/r3Ds7Rs0wBQFzxF1c7WywkgFz5Vjt2+j9Zo12B0TU2n4BwBFUim2XruGNmvW4JiC/yuGNWsGI+4FSERE9EziKwAiIiIddjsrC0N+/RWZhYVKnX/41i1sj4qqss+hv/2mdJ97YmKw7/p10WNiM410XQ8vLziJLN/NKizECzt2IKcaFYrjs7Iw588/RY8FuboqnKlWl2UVFqL/L7/gVEKCUufLAKz+7z+M2bkTpQpCrP5NmqCLp2el/dS3shKdJQkAf926hd4//4yUvDylxgQANzIy0GXDBlx58ED0+MKuXWulcMbgpk1FFuc5EQAAIABJREFU9/1LycsTreBdldziYozZsQMPi4sFx2xNTVG/imXZREREpJ8YABIREemwKXv3Kh3UPba+iiW5L+3ZU+0+1168KNquaB88XdbcyUm0fXtUVLUCpMf2xMSIzjiTSCRoUgcD0qpM2L0bVxWEZpXZFR2Nt44cUXj8zU6dKr1+XnCw6DLZuMxMjNmxA4UieyVWJb2gAKO2bUOuSFjmaWuLIb6+1e6zujoomNG4KiwM6ZXMZKxMan4+/lAQ2tfXw1CaiIiIqsYAkIiISEedTEjAiSqW6Io5l5SkcBnwifh4nFRy5lZ5pxMSRJcBW1VSdEBXNVAQgESnpqrUX0lZGSJSUkSP6dtsq32xsdivIFhSxjfnzyP8/n3RY4N8fBRWGDYzMlK4JPf1P/+sdqBd3o2MDHx44oToscmtWqncr7J8HBxE23dHR9eo3xsK9lS0NDauUb9ERERUN7EICBERkY7aUqFQhLIeFhcjq7AQ9iJhypaICJX6zC0uRlZREewUVIGtS0xECj8AqLQicFVe2L4dliJhaFodrJBcmXePHavR9VKZDG8dOYIjEyYIjpkYGmJw06bYdOWK4NiQpk1FKxCfv3u3RoHkY2v++w/vhoQIAsheXl4wNzJCgQqzC5V1PT1dUNW5TCarcRXiolquFE1ERES6jQEgERGRjlK0kb8ycouLRQPAY3FxqvepJwGgogIRzzdvjk9Pn1a4T11lHuTlASosH65LwpKTcU3FWZLlHYuLw+2sLHiJVGHu6eUlGgAOatpUtK9Nly/XeDwAkFdSgp1RUZjepo1cu4WxMTq4u6s0E1dZ0//4QyP9ilU4JiIiomcXlwATERHpIJlMhsTs7BpdX1GZTIbEnBzV+1T5St0SpSDEauHsjDWDB9dK4Ye66FcVZ49WJAOwWSTkA4B2CvbD6yVSbVomk2FvbKxaxgQARxWE4wHOzmq7j9qkqFoyERERPZv4CpeIiEgHZRcVoUSFmWhV9anK7DZ9czw+XuHXdkpQEC7OmIERzZrBQKQy67Psn8REtfWlaB9KH3t7wcw1JwsLuNvYCM5Nys1Fcm6u2sakqLBJizoYAM5q1w79mzTR9jCIiIhIh3AJMBERkQ5SVMRD1/qsi9Ly87H+0iXMbNtW9HiAszN2vfACUvPzcejGDRy4cQNH4+IULh1+FpSUlalU+VeRi8nJKJPJBCGrkYEBnCwtkVRupqq/ggBOUZELVSmqAB3g4qLW+9GEemZmCHRxQTs3N4wNCEDr+vW1PSQiIiLSMQwAiYiI6JnzwfHj6N24MZrY2ys8x8nCAhNbtsTEli0hk8kQlZaGs3fu4MydOzibmIi4zMxaHLF23c7MRKEaC2FkFxUhITtbdB9Ae3NzuQBQbPYfADR3chItJqIqiYIZn5U9R2qTiaEhGtvZwcfeHj4ODnJ/e9raant4REREpOMYABIREdEzJzU/H/1/+QUHxo2Dr4NDledLJBL4OznB38npSaGI5NxcHI2Lw+Fbt3Dwxg1kFhZqethao4nHlp6fLxoAViw042JpKXq9q5UVXK2s1D6uimpSHbomWrq4IKRhQ3T28EAHd3d42trCkMvSiYiISEUMAImIiOiZdCszE23WrMGyPn0wrXVrmFSzaqqbtfWTGYKFpaXYHRODb8+fx7mkJA2NWHuyNRAAZino065C9WoLY2O133d1mBoawtTQEEVSqcbvq76VFSa1aoWXWrVCUyWCaSIiIiJlMQAkIiKiZ1ZeSQlePXgQX5w9i3nBwRgbEAD7CgGUMsyMjDCmRQuMadECu2Ni8NrBg7irxgIV2lasgfArr6REtL1iBWsjHajKbG1qiqL8fI31b2RggPe7dsX8zp1hblSzl+fh9+9jV3Q0PG1tMa11azWNkIiIiOo6BoBERET0zEvIzsZrhw5h7uHD6N+kCYb6+qJP48Yq7a02olkzBHt44LmtW9VaOVebNLEMVlGfBRX2GswuKhI9L7OwEJm1VJjFrIahXGUsjY3xx9ix6NGoUbWuyywsRHRqKqJSUxGZkoLL9+/j8v37T75e74aEaGC0REREVFcxACQiIqI6S92zw4qlUuyLjcW+2FgAgK+DA7o1aoQQT0+ENGyIhkoGgi6Wltg/diw6rVuHWDVXq9WGehX25VMHRTMtK1ZbVlR9ef2lS5h/5Ijax1XbfnnuuSrDv4fFxTgaF4fj8fG4lpKCqNRU3Hv4sHYGSERERHqBASARERHVWRULRqhbbHo6YtPTsfbiRQCAh40NujZsiB5eXhjStCmcFRSoeDy2dUOHImTjRo2OsTY0UFCJtybcrK1F25MrLJ1WFAA6VfK1rytGNGuG4c2aKTx+5s4dLDt7Fodv3dLIMmwiIiJ6djAAJCIiojpLlf36aiIxJwdbIiKwJSIChhIJOnt6Ym6nThjq6yt6fhdPT3Rr2BAnExJqdZzq5mBujkb16iE+K0st/XnVqwcnCwtB+8PiYtyvMLMtTcHee+4aCCVr25udOom2l8lkmHf4MFb++y9komcQERERVY/2d1UmIiIiUoG1iQk8VNijT12kMhlOJSRg2O+/Y+q+fSiTiUc1A318anlkmtGmfn219dXR3V20PTIlRfB1jEpNFRQGAYB2bm4wlEjUNqba5mhhgWAPD9FjH508iRUM/4iIiEiNGAASERFRndSuQQOdCYDWh4dj4+XLosdaqzE406ZhlSxVra6RzZuLtosVTckqLEScyMxDG1NTtHJ1VduYTA0NYWdmJvhjYmiotvsor5WrKwxEnr+ZhYVYduZMjfvXherJREREpDu4BJiIiIhqnbEawon+TZpU+5qprVvjnS5dBO0HbtzA7EOHajSe3yMj8XJQkKDdUWSpa130nJ8fQg8cwMPi4hr142plpXDJ9LHbt0Xbj8bFwbtNG0H7xJYtcfHevRqN57Gfhg/Hiy1aCNqD16/HuaQktdxHeR4KljCfiI9HkRr2+2tsZ1fjPoiIiEh/8KNBIiIiqnUWxsawMjFR+XpTQ0O81KpVta/LLylBYzs7wZ++3t4qj+Wx1Lw80fbSsrIa960LLI2NMa116xr3M7dTJ9EAOLOwEMfi4kSveVyVuaJJrVrBugbPo8fcbWzwnJ+foD2rsBBhyck17l+MpYJxP1BDdV8zIyMM0pOl50RERKQeDACJiIhIoxTtjdehQQOV+5zepo1KM+vu5uSItvs6OMDH3l7l8QCAl4IZV4kK7rMuWtS9O1xqUH23pYsL3ujYUfTYbxERCme+Hb51C/dEgjFbU1N81ru3yuN5bEmvXqJLfY/ExWkswM0tKhJtt1VDZevXO3TQm5mnREREpB4MAImIiEijUhVUcZ3YsqVK/TWqVw9LevVS6drL9++jREGgo6giq7ImK5iReD09vUb96hJbU1NsGDZMpf3lHC0ssGXkSNFry2QyfH3+vMJrS8vK8K2C46Ft22KACsvBHxvt74/xAQGix767cEHlfqvyQMGM0c4eHqjJzpadPTzwUY8eNeiBiIiI9BEDQCIiItKoxOxs0fZxgYHorKAKqiKuVlbYP3asysuHs4uKcObOHdFj09u0UWlfwcfXDlOwr922a9dU6hMAzI10b7vmgT4+1Q4BnSwscGTCBPg7OYke/+Xq1SqD0u8uXBANzSQSCXa98IJKS177eXtj47BhkIgU4zh/9y5OJSRUu09lXb5/X3R2rKetrehehMro5eWFQ+PHw7SSwiVihUeIiIhI/zEAJCIiIo06fOuWaLuhRILdL76IYCVDwI7u7jj10ktyIVJhaWm1x6MokDOQSLDnxRfxStu2Sodb9czMsLxfP6weNEj0+NUHD3CpBkUqPGxtVb5WkyYEBuKfl1+Gn6Njlee+4O+PyNBQhRV7swoLseDo0Sr7yS0uxpt//SV6zMzICHtefBEr+/dHPSWW0JoZGWFRt274Y+xYWBgbC45LZTLMVXBf6nL/4UOFBUxWDx6MLp6eSvflYG6Or/v3x+EJE6rcE1HRUnUiIiLSb7r3sTIRERHplcO3biG9oAAO5uaCY04WFjg5eTI2hIfj+7AwXH3wAOXnRBlKJOjh5YWJLVtiXECA3OylYqkUr//5J9YMHlyt8WwID8fcTp3QRGTPP1NDQ3w/aBDmd+6MLVev4p/ERMSkpSGzsBBZhYWwMzODq5UVAl1c0K9JEzzn5wdbU1PR+5HKZJi5f79SYxLfJREIbdcO+2JjkVVYqOzD04iDN25gYIUZdu3c3BARGoojt27h98hIxKSl4U52NmxMTeFuY4POnp4YFxCApg4OlfY9/Y8/RPf3E/NrRAT6eXuLLh83MjDA6x06YEJgIPbGxmJvTAyup6cjOTcXhaWlsDc3R4CLC3p5eWFSq1aV7mX42enTOJuYqNSYauKHsDC0GzZM0G5jaooTkyfjx4sXsfbiRVy+f1/wHLEyMUEXT08M9fXFxJYtYSkSZIqZFxyM3dHRSC8oUMMjICIiorqCASARERFpVEFpKd47dgyrFQR1RgYGmN6mDaa3aYOMggLEZ2Uhp6gILlZW8LS1FQ02ZP8P11Sp0FosleKNP//EvjFjFC6H9KpXDwu7dq123+V9cuoUziUlKXVuuoJ9Ejs0aIC7b76JmxkZSMnLg5WJCdxtbNBn82bEpKXVaHzVMffwYThbWqKtm5tcu6FEgv5Nmqi8dHrRiRPYHhVVrWtm7t8PD1tb9GjUSPS4vbk5XmrVSqUq0QCwKzoaH588qdK11bXpyhW81qEDgkRmRxpKJJjZti1mtm2LnKIi3MzIQFZhIWxMTeFsaQk3a2uFM1XvZGdj8alT+HHIEMExXwcH3Jw9G4du3sT9hw8R8eABNl6+rPbHRkRERLqFS4CJiIhI4368dAm7oqOrPM/e3Byt69dH90aN4OfoqDD8e/3PP2sUWhy4cQOhBw5ApqBCcU19eOIEPjxxQunz/6lktpmFsTECXVzQu3FjdHR3h7uNjRpGWD2FpaUYsGULrqWmqqU/mUyGRSdOqBS0FZSWYsivv+LAjRtqGUt5v0VG4oUdOxQWilG3MpkMz2/bhvtVzIC0MTVF6/r10dPLC23d3OBpa6sw/DsaF4c2a9fi5ytXkK2g0nA9MzOMadECczp2RKdq7sNJREREdRMDQCIiItK4MpkMY3burPZsr4oeFhdj1Pbt+FYN1VnXXLyI8bt3I0ONSyGTcnIwavt2fFTNYCssOVmjBSfUIS0/H102bMCfN2/WqJ+MggKM3rGjRrPs8kpKMPS33/DusWMq7QNZUXZREWbu349xO3eitJbCv8fiMjPRd/PmGleLzi8pwXt//43+v/yCtPx8FEul2HL1qppGSURERHUdlwATERFp2cEbN+BcYT+yh8XFNe7TqUKfuQpmAynrwPXrNeqzWCrF6O3bMT4wEJ/16lWtmWwymQx7YmPxxp9/4k65qsLZhYWioaKyM/t+jYjAsbg4fNyjB8YEBFRZQEGR+KwsbAgPx4p//1X5e/fijh04MnGiwkq5taFEKhX9eub9/zFlFRZi4JYtmBIUhMU9e6K+lZXSfReWlmJ9eDg+PnkSKSLVfKurTCbDZ2fOYNu1a1jYtSvGBQbCuBqViQEgp6gIm65cwednzyIpJ6fGY1JVREoKWq9Zg0979cLU1q2V3s8PePRztenKFXx66hQSKlTc/uD4cfTx9oaPyH6XRERE9Gwpt/FNkzcB2VeCMzr7A31a1+KQiIiISN8ZGRhgqK8vhjdrho7u7qIBRWFpKSJSUnD41i38cvWqxve8szQ2xnN+fghp2BCt69dHC2dnmBoaip6bUVCA/5KTcfHePRy+dQunEhJQpoblxKaGhght1w4TW7ZEgIsLDCvsUZhXUoJbGRkY/OuvSNRiYAUAJoaGeM7PD8ObNUOIpyfcrK0F56QXFODfpCQcunEDv0VGqnW2ZUUO5uZ4vnlz9PH2RvsGDeChIGCOSUvDuaQknIyPx87o6BqH7epmb26OiS1boqeXFzp7eMBepHhOekEB/klMxF83b2LrtWtIU7CH5OP+Pu7RA2MDAmBXrkJymUyG6LQ0fHP+PNZevKiRx0JERES14MPNIo0yAHEAMAfASoABIBEREekAC2Nj2Jubw97cHCVSKR4WF+Nubq5aQrWasDMzg42pKWxMTSGVyZBZUICswkIUqGHZaVUsjI1R38oK9czMkFVYiNziYrXMnNOUemZmcDA3Rz0zM+QUFSGzsLDSYErTzI2MUN/aGtYmJiiSSpFRUICMgoJaX+JbUzampnD4/89GdlER0vPzkalCVWgJAA9bWziYmyOnqAjJubm18jwmIiIiDVMyAOQSYCIiItK6/JIS5JeUaHUZppjMwkKVwhZ1yC8pwa3MTK3ctyqyCguRpaWvlZiC0lLE1aGvnyI5RUXIKSrC7aysGvUjw6PqwHcqLBMmIiKiZwOLgBAREREREREREekxBoBERERERERERER6jAEgERERERERERGRHmMASEREREREREREpMcYABIREREREREREekxBoBERERERERERER6jAEgERERERERERHR/9i77/Cc7v+P469MJLGF2EqHovZq+dorVNPao7VX0aKoUqWtra2iaO2GlqrxpdrSX8SI0ZpFjBoxasUKEQmJjN8fverb9Jxbkjv3nTtuz8d19brqfc55nze5VfpyPufjxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MTcUzzj0g1px5EMGAUAAAAAAACAraUcAJ67+tc/AAAAAAAAAB47LAEGAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADixf2wCkrBXcpvy17/faS0lPG3pIldXVw0fPtzeswEAAAAAAAD4lwsXLmjZsmUWjiYZKi4WzvxBUktLN/Hw8FBcXFzapwMAAAAAAACQLiEhIapbt25Kpw2RNF1iCTAAAAAAAADg1AgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxNwdPQAAAIAl9+/fV2RkpKKjo5WUlCRPT0/lypVL2bNnd/RoyCQSEhIUGRmp27dvKykpSS4uLsqdO7dy5swpV1f+rhsAAEAiAAQAAJnEgwcPtH37doWEhGjnzp06efKkLly4oKSkJMO5efLk0dNPP60qVaqoTp06atSokfLly2eXuZYsWaL79+8nq7m7u6tHjx52uZ8khYWFKTg42FAvX768atasmeL1Z8+eVVBQkM3m8fLyUo4cOVS8eHE988wz8vLyslnvtAoNDdXmzZu1Y8cOHTlyRGfOnFFcXJzhvCxZsqhkyZIqV66cateurQYNGqhcuXIOmBgAAMDxXCzUf5DU0tJFHh4ept9oAQAApNWJEyc0a9YsrVixQtevX7eqh4eHh5o1a6ZevXqpZcuWcnGx9C1O2uXLl083b95MVsuWLZtiYmJsdo9/++6779SxY0dDfdiwYfrkk09SvH7NmjVq3bq1PUaTh4eHKlWqpICAAHXp0kVFihSxy33+KTIyUvPmzVNgYKCOHj1qdZ+yZcvqjTfeUJ8+fZQ7d24bTggAAJCxQkJCVLdu3ZROGyJpusQ7AAEAgIOcOXNG7du3V5kyZTRr1iyrwz/pr6cH169fr4CAAFWoUEE//PCDDSfFPz148EB79uzR+++/r1KlSqlfv36KiIiwy73u3bunDz/8UMWLF9e7776brvBPko4ePar33ntPJUqU0OjRoxUdHW2jSQEAADI3AkAAAJChEhMTNXXqVL3wwgv6/vvvlZiYaNP+oaGhCggI0Guvvabw8HCb9kZycXFxmjt3ripWrJjucO7fNm/erBdeeEEfffSRIiMjbdr7zp07mjBhgsqWLauNGzfatDcAAEBmRAAIAAAyTEREhF5++WWNGDHCrktoJWnt2rWqUqWKdu7cadf7QLpw4YLq1KmjPXv2pLtXUlKSJk2apCZNmigsLMwG01l2/vx5tWjRQh9++KHNg2gAAIDMhE1AAABAhggPD1fDhg117NixR56XPXt2NW3aVPXr11fZsmVVqlQpeXt7y93dXffu3dOlS5d04sQJ7dy5Uxs2bHhkSHT58mU1bNhQK1asUEBAgK1/So+d/Pnzq2jRomm65s6dO7p8+XKKy2UjIiLUtm1bHTp0SLly5bJqvsTERPXr10/z589/5Hmurq76z3/+o0aNGqlq1aoqWbKkfH195e7urvj4eF29elVhYWHat2+fgoODtXPnTosBX2Jioj766COdOXNGixcvlpubm1WzAwAAZGYEgAAAwO6uX7+uevXq6cSJExbPKVmypEaOHKmOHTvK29vb9Jzs2bMrf/78qlSpkjp06KCkpCRt375dU6dO1U8//WR6TWxsrNq2bauVK1c+8SFg+/btNXPmTKuuvXDhgjZt2qSvv/5aISEhpuf8+eefGjZsmBYsWGDVPVIK/7y9vTVw4ED1799fxYoVs3he7ty5Vbp0abVo0UJjx47V+fPn9eWXX2rWrFkWg8ylS5cqKSlJS5YssekmMgAAAJkBS4ABAIBdxcXFqXXr1hbDvyxZsmjixIn6448/1KtXL4vhnxkXFxfVqVNHP/74ozZv3qySJUuanvfgwQN17txZBw8etOrnAKlo0aLq3r27tm3bph9++EE5c+Y0PW/JkiW6fPlymvtPmTLlkeFfq1atdPr0aU2ePPmR4Z+Z4sWLa/LkyTp9+rRatWpl8bxvvvlGEyZMSFNvAACAxwEBIAAAsKvhw4dr+/btpscKFy6sHTt2aOTIkfLw8EjXferXr6+DBw+qZcuWpsejo6PVqlUrRUVFpes+kFq2bKmNGzfK3d24mOTBgwdatGhRmvpt3bpVo0aNMj3m7u6umTNnavXq1fLz87Nq3r/5+flp9erV+uKLL0xnl6SxY8dq8+bN6boPAABAZkMACAAA7CYkJESzZs0yPVasWDHt3LlTVatWtdn9smfPrv/+97/q3Lmz6fGzZ8/q3Xfftdn9nmQ1a9bUwIEDTY+lJUCLjo5Wz549Td/R5+bmpmXLlumtt96yek4zAwcO1PLly03f95eYmKhevXql+M5DAACAxwkBIAAAsIvExEQNGDDANNjJkSOHfvnlFxUvXtzm93Vzc9PXX3+txo0bmx6fO3euDhw4YPP7Pom6d+9uWk/LbsBTpkzRmTNnTI/NmDFDbdu2tWq2lLRp08bi+xDPnj2rKVOm2OW+AAAAjkAACAAA7OLbb7/VkSNHTI8tWrRIpUuXttu93d3dtWzZMhUqVMhwLCkpyeJyU6RN+fLlTXf8jY6OTtVS66tXr+rzzz83PdaxY0cNGDAg3TM+Sv/+/dW+fXvTY9OnT9eNGzfsen8AAICMQgAIAADsYvLkyab1Vq1aqXXr1na/f758+TRjxgzTY7/88ot+//13u8/wJChYsKBpPTVLaGfPnq27d+8a6nnz5rV6t+K0mjlzpvLkyWOoR0VFafbs2RkyAwAAgL0RAAIAAJsLCQnRsWPHDHV3d3dNnTo1w+Zo06aNXnrpJdNjc+bMybA5nFmWLFlM6zly5HjkdQ8ePNCCBQtMj73//vvKly9fumdLjfz582vkyJGmxxYuXKiEhIQMmQMAAMCeCAABAIDNBQYGmtY7deqkUqVKZegso0ePNq2vWLFCsbGxGTqLM7p69aqhVqBAAXl5eT3yuqCgIF25csVQ9/X1Vd++fW02X2r069dPuXPnNtQvXLjAjsAAAMApEAACAACbSkhI0I8//mh6rHfv3hk8jdS0aVPTzUaioqK0ZcuWDJ/HmVy+fFnh4eGGerVq1VK8dt26dab1zp07pxge2pqPj486depkeuynn37K0FkAAADsgQAQAADY1L59+3Tt2jVDvVixYqpVq1aGz+Pq6qqOHTuaHvv5558zeBrnsnLlSiUlJRnqqXnHo6Vfe0tBnL117tzZtL5hw4YMngQAAMD2CAABAIBN/fbbb6b15s2by8XFJYOn+Yu/v79p3dKsSNm1a9c0btw4Q71gwYJq167dI6+9dOmSLl68aKgXKFBAVapUsdmMaVG9enXTzUBOnTqlmzdvOmAiAAAA2yEABAAANrV3717Tep06dTJ4kv+pWbOmPD09DfVDhw7xHkArXL58WY0bNzYNxqZMmZLiEl5Ln5HatWvL1dUx3566ubmZPqGalJSk/fv3O2AiAAAA2yEABAAANnXixAnTeqVKlTJ4kv/x9PTUCy+8YKjHxcXp/PnzDpjo8XTu3Dl9/PHHev7553X48GHD8b59++qNN95IsY+lz0jlypXTPWN6WPqMmu1oDQAA8Dhxd/QAAADAuZgFam5ubhm++++/PfPMM6ZPcp0/f17PPvusAybKeLt27dJ7772Xpmtu376t8PBwHTt2TKdOnbJ43oABAzRz5sxU9bQUuj7zzDNpms3WSpcubVr/888/M3gSAAAA2yIABAAANhMXF6cbN24Y6gUKFJCHh4cDJvqfIkWKmNYvX76cwZM4zv79+22+nNV5y/joAAAgAElEQVTPz0+ff/65OnTokOprLl26ZFovWrSorcayiqXPyIULFzJ4EgAAANsiAAQAADYTExNjuius2eYKGc3SDNHR0Rk8ifPw8vLSl19+qVdffTVN11n6Nc+dO7ctxrKar6+vaf3OnTsZPAkAAIBt8Q5AAABgMzExMab1bNmyZfAkRpY2prA0M1IWExOj1157TRUqVNAvv/yS6uvu3btnWnf054TPCAAAcFYEgAAAwO5cXFwcPYJFmXm2x8Xhw4fVrFkztW3bNlVPy5k9JSo5/mvh7m6+OIadogEAwOOOJcAAAMBmLD3BlRmeoLI0g7e3dwZP4jhPP/201bsxR0VF6dq1azp+/LjFJ/hWrVql0NBQbdq0yeL79CTLT9pZ6ptRMuuTiQAAAOlFAAgAAGzGUrBz+/btDJ4k9TP4+Phk8CSO4+/vn+qdei25f/++tm3bpk8++UTBwcGG4ydOnFCzZs20Y8cO5cqVy7SHpc/JrVu30jVbekVGRprWn6SQGAAAOCeWAAMAAJvJkiWL8ubNa6hfuXJF8fHxDpjofy5evGhaL1SoUAZP8njLmjWrmjZtqk2bNmnevHny9PQ0nHP06FGNHDnSYg9Lv+aWvkYZxdL9/fz8MngSAAAA2yIABAAANlW8eHFDLSEhQWfPnnXANP8TFhZmWi9WrFgGT+I8evfurVmzZpkemzdvnk6fPm16zOwzIkmnTp2y2WzWsPQZsTQvAADA44IAEAAA2NSzzz5rWj948GAGT/I/8fHxOnz4sKGeLVs2wp106t27txo0aGCoJyYmatGiRabXWPqM/P777zadLa32799vWn/mmWcyeBIAAADbIgAEAAA2Va1aNdP6jh07MniS/zlw4IDpBg8VK1aUh4eHAyZyLkOHDjWtm70jUHr0Z8TSDsEZYefOnab16tWrZ/AkAAAAtkUACAAAbKpGjRqm9Q0bNmTwJP/z888/m9Zr1qyZwZM4p/r16ytLliyG+qFDh5SQkGCoFytWTAULFjTUL1++rEOHDtllxpQcO3ZM586dM9R9fX1VqlSpjB8IAADAhggAAQCATdWsWVP58uUz1E+dOmVxiaU9JSUlafny5abHXn755Qyexjlly5ZNTz31lKEeGxtrcWddf39/07qlr5W9LVu2zLTevHlzubi4ZPA0AAAAtkUACAAAbMrNzc1iuDNv3jyb3uv+/fsp7i4cHByskydPGuq5cuXSf/7znxTvYbZEODY21q67GkdHR6d6lswiT548pvWoqCjTekBAgGk9MDBQ9+/ft9lcqREXF6fFixebHmvZsmWGzgIAAGAPBIAAAMDm3njjDdN6YGCgLl26ZLP79O7dW82aNVNERITFc8aPH29af/3111MVqPn4+BhqiYmJunbtWuoHTaPw8HDTeo4cOex2z/SKiYkxrefKlcu03rRpU+XPn99Qv3r1qhYsWGDT2VKyaNEiXb582VD39fXlKVEAAOAUCAABAIDNNWrUyHTn1NjYWL3//vs2ucfUqVP1zTffKDg4WDVq1NCxY8cM56xfv17btm0z1F1cXNS/f/9U3ado0aKmdbP3xdnK8ePHTeuZdcfixMREhYWFGepZs2ZVzpw5Ta/JkiWLevToYXps/PjxunXrlk1ntCQyMlIff/yx6bEePXqYvtsQAADgcUMACAAAbM7FxUXvvvuu6bElS5Zo06ZN6er/008/aeTIkQ9/fPr0ab344ov68ccfH9YiIyMthnwBAQF6/vnnU3WvMmXKWJzBHuLj4y1umPLCCy/Y5Z7ptXfvXtOlvsWKFXvkdW+99Za8vLwM9atXr1rcWdjWhg0bpitXrhjq3t7eGjx4cIbMAAAAYG8EgAAAwC66deum5557zlBPSkpS586ddfHiRat7BwYGKjExMVntzp07CggI0OTJk5WYmKhu3bqZ3sPNzU0TJ05M9b3q1KljWv/+++/t8h7A1atXmy5pzp8/v8qWLWvz+9nC3LlzTeuNGjV65HWFChXSW2+9ZXps8eLFFt/LZyuBgYEWlxu/9dZb8vPzs+v9AQAAMgoBIAAAsAt3d3fNnDnTdAfVa9euqWnTprp+/bpVvZctW2YaHCUmJmrkyJGqUKGC1q5da3rt22+/neqn/6S/3lWXLVs2Q/306dOaNWtW6odOhZiYGItPTrZp0yZT7ka7e/duBQYGmh6ztBnMP40aNcriMuu+fftq/fr16ZrPkvXr16tPnz6mx5566imNHj3aLvcFAABwBAJAAABgN02aNFGvXr1Mjx07dky1a9fWqVOn0tz373Bxzpw5cnd3Nxw/cuSI6XXPPfecJkyYkKZ75cyZU23btjU9NmbMGO3ZsydN/SyJj49Xx44d9eeffxqOubi4WAyrHOno0aMKCAgwPI0pSSVLllSTJk1S7JEjRw7Nnz/fNNx88OCB2rRpo0WLFtlk3r/Nnz9fbdq0UVxcnOGYq6urFixYIG9vb5veEwAAwJEIAAEAgF3NmDFDVatWNT128uRJVatWTQsXLlRSUlKae7/55pvasGGDcufOneK53t7e+u6770yf5kvJqFGjTIPGqKgoNWnSRMHBwWnu+U83btxQmzZt9MMPP5geb9u2rSpUqJCue9jSnTt3NHHiRFWvXl1Xr141PWfs2LHy9PRMVb+mTZvqgw8+MD0WFxennj17qkuXLo/c7Tk1rl+/rs6dO6tPnz6m4Z8kjRs3Tg0aNEjXfQAAADIbS+tIfpDU0tJFHh4eFr9pAgAA+LdLly6pVq1aOn/+vMVzqlSpog8++EAtWrQwDdss2blzp0aPHq2tW7daPMfFxUUrVqyw+CRfaowaNUqTJk2y2L9Lly4aO3asnnrqqVT3jImJ0bJlyzR69GiLQVru3Ll19OhRFSxYMNV916xZo9atWxvq9evXV4cOHVLd558iIiIUHh6uP/74Q1u2bHnk94L169dXUFCQ3NzcUt3/73dDLl++3OI5uXPn1jvvvKO+ffvK19c31b2vXr2quXPnatq0aYqMjLR4XteuXbV48eJMudQaAADgn0JCQlS3bt2UThsiabpEAAgAADLI+fPn1aBBA505c+aR5xUsWFAtW7ZU/fr1VbZsWT311FPy8fGRJN27d09XrlzR0aNHFRISoh9++EEnT55M1f3ffPNNzZgxQx4eHlbNHxcXp0aNGmn79u0Wz3FxcVHdunXVvHlzVa5cWWXKlFGuXLmULVs2JSQkKCIiQleuXNG+ffu0a9curV69Wrdv37bYz93dXT/++KOaNm2aplktBYAZoVSpUtq9e7fy5s2b5mvj4+PVtWtXLVu27JHneXh4qHHjxmrcuLGqVq2qp59+Wvnz55erq6sSExN17do1nTp1Svv27VNQUJA2bdqkBw8ePLJnt27dtHDhQrm6skAGAABkfgSAAAAg0woPD1f79u0VEhKS5mvd3d3TvetuvXr1tHLlSuXLl8+q6yMiItSkSRPt378/Tde5ubkpISEhTde4u7tryZIl6tixY5qukxwXAFasWFFr1qxJ01OQ/5aYmKgxY8Zo4sSJaV4Wbs1nxNXVVR999JHef/99nvwDAACPjbQGgPwVJwAAyDB+fn4KDg7W+++/n+Yn8dIb/knS1q1bVb16dYWGhlp1fZ48eRQcHKxXX301TdelNfzLnz+/NmzYYFX45whubm7q27evdu3ala7wT/orkBs/frzWr1+vIkWKpOnatH5GSpQooY0bN2r06NGEfwAAwKkRAAIAgAzl7u6u8ePH6/fff5e/v7/N+xcrVkxz585VSEiI/Pz8DMfPnj2rl156SWvXrrWqf86cObVmzRotWrQoTe+hSw1XV1d16dJFoaGhatSokU1724OXl5e6du2qY8eO6auvvrJqgxVLWrRooWPHjmnYsGE235HXx8dHo0aNUmhoqBo3bmzT3gAAAJkRS4ABAIBD7du3T1988YXWrFmju3fvWtXDxcVFL730krp06aJu3bo93H32woULCggI0O+//256zaRJkzRixAirZ797967mzZunuXPnpvpdhGZ8fHzUtm1bDR06VGXLlrW6z9+2bNmi4cOHp7vPP3l6esrX11f58uVT8eLFVadOHb344ovKkiWLTe9j5vr165o1a5aWLl2qs2fPWt3n6aefVpcuXfTmm29avQwcAAAgM+AdgAAA4LEUExOjoKAgbd26Vbt27dKJEycs7tjq5uamZ599VpUqVVK1atXUqlUrFStWzGLfrl27atWqVYZjgYGB6tKli03m37dvn3755Rft2LFDoaGhunTpksVzvby8VK5cOVWrVk0NGzZU48aNH250AsuSkpK0e/dubd68WSEhITp69KguXrxo8fyiRYuqbNmyqlu3rho2bKiqVauy1BcAADgFAkAAAOA0rl+/rlu3bikqKkpJSUnKnj27cubMqVy5cilr1qyp7pOUlKQPP/xQ48aNe7ixxJAhQzRt2jR7ja7ExERFREQoIiJCd+7ckaenp/LkyaO8efPadKnsky4mJkbh4eGKjIxUQkKC3NzclDNnTvn5+cnLy8vR4wEAANhFWgNAd7tPBAAAYCVfX1+bvGfPxcVFH330kcqVK6du3brpxRdf1NSpU20woWWurq7Kly8fS03tzMvLSyVLlnT0GAAAAJkaASAAAHhitG3bVqVKlVLx4sXl7s63QQAAAHgy8J0vAAB4olSuXNnRIwAAAAAZytXRAwAAAAAAAACwHwJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODECAABAAAAAAAAJ0YACAAAAAAAADgxAkAAAAAAAADAiREAAgAAAAAAAE6MABAAAAAAAABwYgSAAAAAAAAAgBMjAAQAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAMj0oqKilJSU5Ogx8AS5c+eOo0cAAAAAbMbd0QMAAPC3a9euKSgoSNu2bdOvv/6q69evKyIiQg8ePJAk5cqVS76+vqpYsaJq166txo0b6/nnn3fw1HicXbp0SZs2bdLWrVu1Z88e3bhxQxEREYqPj5ck5cmTR76+vqpSpYpq1aqlpk2bqlSpUg6eGgAAAEgbFwv1HyS1tHSRh4eH4uLi7DMRAOCJc+bMGX3yySdavHixYmNj03Rtw4YNNXToUPn7+9tpOjij48ePa/LkyVq+fPnDgDk1XF1d1bx5cw0bNkx169a144QAAACAZSEhIan5fnSIpOkSS4ABAA726aef6vnnn9dXX32V5vBPkoKDg9W8eXO9/vrrLNtEihITEzVmzBi98MILWrJkSZrCv7+v//HHH1WvXj31799f9+7ds9OkAAAAgO0QAAIAHGbgwIEaPny4TZ4q//bbb1W9enVdv37dBpPBGSUmJuqNN97QuHHjlJCQkO5+X375pWrXrk3wDAAAgEyPABAA4BBz587V7NmzH3mOi4uL8ufPr7Jly6pEiRLKli3bI88/ceKEWrZsqZiYGFuOCicxefJkLVu27JHnuLq6qkCBAipbtqyKFy+urFmzPvL8AwcOqE2bNml+khAAAADISASAAIAMd/jwYQ0aNMj0mJubm7p3766NGzfq/v37unr1qo4cOaKzZ88qKipKe/bs0aBBg+Tt7W16/e7duzV+/Hh7jo/H0Pbt2zVmzBjTYx4eHnrzzTe1efNmxcXFKTw8XEeOHNG5c+cUFRWlnTt3qk+fPsqSJYvp9UFBQZo5c6Y9xwcAAADShU1AAAAZrk2bNlq9erWhXrx4ca1cuVLVqlVLsUdYWJhat26tQ4cOGY55eXnp1KlTKlSokE3mxeOvfv362rp1q6H+/PPP6/vvv1e5cuVS7HHkyBG1atVKp06dMhzLkyePwsLClCtXLluMCwAAADwSm4AAADK1sLAwrV271lDPnTu3Nm7cmKrwT5JKlSqloKAgFS9e3HAsJiZG8+fPT/escA779u0zDf8KFSqkX375JVXhnySVK1dOQUFByp8/v+FYRESEvvnmm/SOCgAAANgFASAAIEMtWbLEdAOGMWPGqHTp0mnq5evrqxkzZpge27Bhg1Xzwfl8/fXXpvXJkyeraNGiaepVvHhxTZo0yfTYzz//nNbRAAAAgAxBAAgAyFAhISGGWs6cOfXmm29a1e+VV15RyZIlDfW9e/cqMjLSqp5wLmafuaJFi6pz585W9evSpYvy5s1rqG/dutUmuwsDAAAAtkYACADIMLGxsfrtt98M9WbNmlncYCElLi4uaty4saGemJioixcvWtUTzuPmzZs6cuSIod6yZUu5ulr3bZC7u7vq169vqN+7d0/Xr1+3qicAAABgT+6OHgAAHmd37941XWrq7e2t5s2bW933zJkz2r9/v6H+3HPPqXz58lb3dbTTp0/r/v37hnqNGjXS1ffpp582rV+7dk1ly5Y11IODgxUREWGoN2jQwPTJrtR48OCB1q1bp6SkpGT1rFmzqmVLi/tqwc6OHj1q+JpI9v3M+fn5pas3AAAAYGsEgACQDj4+PlqxYoXpjrarV69Wq1at0twzLi5Or776qkJDQ5PVvb29dfDgQatnzQyuXbtmWn/22WfT1Tdnzpym9aioKNP6zZs31b59e0O9TZs2WrlypVUzTJ48WWPGjDHUp0+fblU/2EZm+cwBAAAAjsQSYABIpy+//FIFChQw1Pv162fVcsDx48cbwj9JmjlzpsWnjh4Xln49fH1909X31q1bpnVLIU27du3UoUMHQ33VqlVWBYChoaEaP368od6oUSO9/fbbae4H28ksnzkAAADAkXgCEADSydfXV3PnztWrr76arH79+nW98847Wrp0aap7HTp0SJMnTzbUAwIC1KNHj3TP6mjPPvus6c/PbBOPtDh37pxp/VGB6axZs7Rt2zZduXIlWX3gwIGqX7++8uXLl6p7x8fHq3v37oqLi0tWz507txYvXiwXF5dU9YF9VKpUyfQzl95lumafOTc3Nz311FPp6gsAAADYg6X/K/lBksUXFnl4eBj+RwcAnnSdO3fWsmXLDPU1a9botddeS/H6+Ph41ahRQwcOHEhW9/X1VWhoqOlThpCSkpJUvHhxXbhwIVm9WLFiOn/+/COv/emnn/Tyyy8b6u3bt9d3332XqvtPnDhR77//vqG+bNkydezYMVU98HiJi4tT/vz5DbtMV6pUyfD7FwAAALCHkJAQ1a1bN6XThkiaLrEEGABsZvbs2SpSpIihPmDAANMNJ/5t/PjxpuHBwoULCf8eYf78+YbwT5I6deqU4rUtWrRQz549DfUVK1ZozZo1KV5/9OhRffzxx4Z6hw4dCP+c2GeffWYI/yTxNQcAAECmRQAIADaSK1cuLVq0yLDk88qVK3rnnXceee3hw4c1adIkQ71Pnz7sIPsIq1at0pAhQwz17Nmzm9bNTJs2TcWLFzfU+/fvr5s3b1q87u+lv7GxscnqRYoU0Zw5c1J1bzx+Fi5cqLFjxxrqBQoUUL9+/RwwEQAAAJAyAkAAsKHGjRurV69ehnpgYKDWrl1rek18fLx69OhheLVCyZIl9emnn9plzsdZZGSk1q1bpxYtWqht27aKiYkxnDNnzhzlz58/Vf1y5MihxYsXy9U1+R+JV69efeQGHp999pn27t2brObi4qLFixcrd+7cqbo3Hg8RERH6/vvv1aBBA/Xq1UsPHjxIdtzV1VULFy5U9uzZHTQhAAAA8Gi8AxAAbCw6OloVKlRQWFhYsnrBggV19OhRQzg0btw4jRkzJlnN1dVVW7ZsUZ06dew+b2b1+++/a8WKFYqNjdWtW7cUHh6uc+fO6dSpU0pMTDS9xsXFRZ999lmqn/77p0GDBmnmzJmG+tq1axUQEJCsdvz4cVWuXFn3799PVn/77bc1Y8aMNN8bmcPOnTu1fv163b9/X7du3dLly5d17tw5nT592uI17u7umj9/vrp165ZxgwIAAOCJl9Z3ABIAAoAd7NixQ3Xr1jUEVT169NDChQsf/thSkDR69GiNGzcuQ2bNrObPn68+ffqk+vwSJUpo7ty5atKkiVX3i4mJUaVKlXTy5Mlk9YIFC+rIkSPKkyePJCkhIUG1a9fWb7/9luy8MmXKaN++fcqWLZtV94fjTZo0SaNGjUr1+aVLl9aCBQtUq1YtO04FAAAAGLEJCABkArVr1zZdPrpo0SJt2LBB0l9Lf7t27WoI/ypVqqQPPvggQ+Z0Fj179tSJEyesDv8kycvLS4GBgXJzc0tWv3LligYPHvzwx9OmTTOEfx4eHlq6dCnh3xNk2LBhCg0NJfwDAADAY8Hd0QMAgLOaNGmSgoKCdPTo0WT1Xr166ciRI5ozZ47hHXJZs2bVkiVL5OnpmZGjPvYWLlyoffv26YMPPlDr1q2t7lOzZk29++67hg1Zli5dqrZt2+rZZ5813QBi7Nixqly5stX3zSwiIiI0depUh9y7Xr16atasmUPubY1PP/1UISEh+uijjx6ruQEAAPBkIgAEADvJmjWrFi5cqNq1ays+Pv5h/fLly3r99dcVHBxsuGbKlCkqV65cRo7pNA4dOqQ2bdqoUaNGWrZsmXx9fa3qM3bsWP300086fPhwsnq/fv1UtGhR3bt3L1n9pZde0nvvvWf13JnJ7du3NWXKFIfc29XV9bEL0vbs2SN/f3+99tprWrx4sXLmzOnokQAAAABTvAMQAOxs9OjRmjBhQornNWrUSP/3f/8nFxdL/2l+sly6dEnHjx+Xt7e3PD09FRUVpdu3b+uPP/7Q7t27tXHjRsPy6b8VL15cO3bsUJEiRay698GDB1WjRo0U/6zz8fHRwYMHVapUKavuk9mcOXPGYT+XkSNHauLEiQ6599/+3vDDx8dHHh4eioyM1O3bt3Xs2DH99ttv+r//+z/DDsB/K1OmjEJCQpQ3b94MnhoAAABPorS+A5AnAAHAzsaOHauNGzdq//79Fs/JlSuXFi5cmKnCvxEjRmj+/PlWXevv769vv/02XfcvXLiwChcubPH4zZs3NW3aNE2dOjXZE5aSdP78ebVs2VJ79uyRh4dHmu9dsWJFjRkzRqNHj37keZ9//rnThH/4ayOZEiVKGOqtWrWSJIWHh2vy5Mn64osvDBv8HDt2TK1bt9aWLVsy1e9jAAAAQCIABAC78/DwUGBgoKpWrWrxibUvv/xSxYoVy+DJHu3evXu6deuWVddGR0fbeBqjvHnzasKECWrSpIn8/f0NS3MPHjyo2bNnJ9vAIy1GjBihH374QXv27DE93rJlS/Xq1cuq3pmVq6urcufO7ZB7Z82a1SH3TQs/Pz9Nnz5dDRs2VOvWrQ1PA27btk3ffPON3njjDQdNCAAAAJgjAASADFC2bFmNHj3a9ImyZs2aqUOHDg6YyjnUrVtX8+bNMw1dZs6cqUGDBln1RJa7u7sCAwNVqVIlQ3Dr6empefPmWT1zZlWiRAlFREQ4eoxMr2XLlpo6daqGDBliODZjxgwCQAAAAGQ6ro4eAACeFFevXjWtb9++XWfOnLHbfefNm6d27dqpT58+druHo3Xu3Nl0F96zZ88+cul1SiIiIkzf+RYXF6fVq1db3fffYmJitG7dOn300Ufq1auX2rVrp969e2vMmDH66aefdPfuXZvdC7YxYMAAlSxZ0lDfv3+/zp4964CJAAAAAMt4AhAAMsCmTZs0a9Ys02PR0dHq3bu3Nm3aZPN3hyUmJmrcuHG6ePGi/Pz80nRtxYoV1bZtW6vuW7VqVauus5aLi4s6duyoAwcOGI7t37/fqnnu3r2rrl27KiEhwfT4iBEj5O/vbxoCpVZUVJQ+/vhjffXVV48M+Xx8fNS7d2+9//77bDKRSXh4eKht27amuybv27dPTz31lAOmAgAAAMwRAAKAnd2+fVs9e/ZUUlKSxXM2b96sefPmqW/fvja997Zt23Tx4kWrru3Ro4d69Ohh03nsqU6dOqb1kydPWtVv6NChOn36tMXj0dHR6tmzp4KDg+XqmvYH6v/88081bNjwkff42927d/X5559r1apVWrlypWrUqJHm+8H26tSpYxoAnjp1ygHTAAAAAJYRAAKAnfXv319//vlniucNHTpUjRo1stmusklJSZo4caJNetlCRESE6dLI0qVLy9vbO939CxYsaFqPjIxMc6+ffvopVTsgb926VXPmzNHAgQPT1P/u3buqX7++Yel3+fLlVbVqVfn6+urOnTvasWOHQkNDHx6/cOGC/P39tX37dpUtWzZN93wSXbt2TRcuXDDUy5UrpyxZsqS7vy0/cwAAAIA9EQACgB2tWLFCy5cvN9THjh2r8ePHJ1teGh0drb59+yooKCjdS4Hv37+vYcOGadOmTenqY0v79u1T06ZNDfWff/5Z/v7+6e7v4+NjWjd7h9+j3LhxQ7169TI8sdmuXTsdPXpUR48eTVZ/77331Lx58zQtBR43blyy8K9QoUJaunSpGjRoYDh3y5Yt6tmz58Pw9NatW+rSpYv27t1r1ZOHT5JNmzapc+fOhvqePXtUrVq1dPfPnj27aT2tnzkAAADA3ggAAcBOLl++rP79+xvqXbt21Ycffqg7d+7o888/T3YsODhYc+fOVb9+/dJ0r4SEBIWFhSk0NFS//R7RgJAAACAASURBVPabvvvuO6uX/tpLiRIlTOtmT2hZw9LutQUKFEhTn/79+ys8PDxZzdfXV7NmzdLZs2f10ksvGYLbLl26KCQkJFWB3J07dzRjxoyHP/b29tamTZv0/PPPm55fv3597dq1SzVr1tT58+clSQcOHNDq1autfkejJTdu3ND7779v056p1axZM7322ms27WnpPXx//vmnTQLAmzdvmtZ9fX3T3RsAAACwJQJAALCDpKQk9erVyxBKFSxYUNOmTZMkjR8/XuvXrze8A27YsGFq3LhxqpcC//HHH6pYsaJiY2NtM7ydlChRQq6urkpMTExW/+cS1/SwtMw6f/78qe4RGBiolStXGupffvmlfH195evrq0GDBj38Gv5t586dmj17tt56660U77Fhw4ZkX6vBgwdbDP/+5ufnp5kzZyogIOBhbdWqVTYPAO/cuaN58+bZtGdq5c2bN8MCwNDQULVu3Trd/S195tK64Q4AAABgb6wdAgA7mD17tjZs2GBaz5MnjyTJy8tL8+fPNyz3/XtX4EdtGvJPcXFxmT78kyRPT08999xzhvrmzZtt0n/r1q2m9dQuzT1//rwGDRpkqLdr1y5ZWDRu3Dg9/fTThvNGjhypsLCwFO/z789Fajdaefnll5M9zbh79+5UXfckK1CggGkAHBwcbJP+6f3MAQAAABmFABAAbCwsLEwjR4401Dt37mx4wqlevXrq1auX4dwtW7boq6++StX9fHx81KhRI9N/8ubNa91Pwk7M3gF47NgxHThwIF19ExIStGLFCkPdw8NDDRs2TPH6xMREdevWzbB5w99Lf//pUcFtjx49DE84/ts/N0IpWLBgqsMiV1fXZBt/hIeHpzokflK5uLiYfuZ+/fVXwwYsaXXv3j3997//NdRz5Mihl156KV29AQAAAFtjCTAA2FB8fLw6d+6su3fvJqv7+voa3vf3t08//VQbN240vAtv+PDhatKkSYpLgUuWLKmgoCDTY82bNzd9EtFR/P39NX36dEN9woQJWr16tdV9ly5dqhMnThjqtWvXVs6cOVO8/vPPPzd9mmvWrFmm73OrV6+e+vTpo7lz5yarh4SEaNasWXr77bct3uufX2dLS1QtuX///sN/d3FxSfdmMf+WJUsWValSxaY9U6tQoUJ26evv76+lS5cmqyUkJGjy5MnpWu48e/ZsXblyxVBv0qSJPDw8rO4LAAAA2IOl/3P4QVJLSxd5eHgoLi7OPhMBwGPsww8/1EcffWSor1q16pHvHPv555/VokULQ71+/foKDg62Ouj5ZwDo5+dnGlhkpNjYWJUqVUqXLl0yHFu8eLG6deuW5p5HjhzRSy+9pKioKMOx5cuXq0OHDileX61atWThmiS1bt1aq1atsnjdnTt3VLZsWcNmK97e3jp48KDpMmFJmj59+sMl288++2yq33sXHx+vAgUKPHyvZOnSpXX8+PFUXfski4yMVIkSJXT79u1kdRcXF61du1avvPJKmnvu2rVLDRo0MF16v379er388stWzwsAAACkRkhIiOrWrZvSaUMkTZdYAgwANnPgwAFNnDjRUG/fvn2KGw40b95cnTp1MtS3bNmiL7/80mYzOlqWLFk0fPhw02O9e/fWlClT0tRvy5YtatSokWn4V7FiRbVr1+6R1z948EDdu3c3hH958+bV7NmzH3ltjhw5TJ8gi46OVteuXZPtFPxPgwcP1ogRIzRixIg0bXqxbNmyZJvK1K9fP9XXPsly5sxp+kRmUlKSOnXqpOXLl6ep36pVq+Tv728a/tWoUcM0yAcAAAAcjQAQAGwgJiZGnTp10oMHD5LV8+XLp5kzZ6aqx8yZM5Nt8vC3d99917BT8OOsT58+Kly4sKEeHx+v9957T/Xr19ePP/6omJgY0+vj4uK0efNmBQQEqGHDhrp69arhHA8PD33xxRdydX30H3NjxozRvn37DHVLX4t/8/f31+uvv26o79q1y/DuwPS4ePGiRo0a9fDHLi4u6tOnj836O7vBgwcrd+7chnp0dLQ6deqk5s2bKygoyOJmOvfu3dOGDRvUpEkTtW3bVnfu3DGc4+Xlpblz59p8WTYAAABgCywBBgAbGDhwoOkTY99//73atm2b6j4rVqwwXbJar149bd68Oc3hQmZbAvy3oKAg+fv7W3xKTvrrz5ry5curQIEC8vb21v3793Xt2jUdPnxY9+7de2T/hQsXpri77s6dO1W3bl3DDAEBAVq7dm2qfy43b95UmTJldO3atWR1Ly8vHTp0yOJS4NQ6d+6cWrRooWPHjj2sdenSRYGBgenq+6RZuXKl2rdv/8iNU7Jmzary5cvL19dXXl5eiomJefiZe9RO266urlq9erVeffVVe4wOAAAAGKR1CTABIACkU1BQkJo2bWoIFl555RWtW7cuzf1atWplurvorFmzNGDAgDT1yqwBoCTNmzdP/fr1s+lOtm5ubpo0aZLFZcZ/u3v3ripUqGDYCTZPnjw6cuSIChYsmKb7fv/992rfvr2h/p///Edbt25N8UlEM0lJSVq6dKnefvvtZLsTly1bVr/++quyZ8+e5p5PusmTJ5vu0J0enp6emj17tulu3gAAAIC98A5AAMhAt2/fVs+ePQ0hVt68ea3eYXT27NmmyxVHjBjhdEuBv/vuO+XIkcMm/QoVKqSgoKAUwz9JGjJkiCH8k/7aDTit4Z8ktWvXzvTpr+3bt6d6Cfg/7d69W7Vr11bXrl2ThX/lypXTpk2bCP+s9N5772n+/PnKli2bTfqVLFlSO3bsIPwDAABApkcACADpMGXKFHl4eKhkyZLJ/pk1a1aq3iFnpmDBgvr8888NPQsUKKBJkybZ+GfgWO3atVNoaKj69u2rrFmzWtXD19dXH3/8sY4cOZKqjTF+++03bd682fDr26lTJ3Xp0sWqGSRpzpw5KlOmjKHvwoULTd9TaObChQvq3LmzXnzxRe3atSvZsU6dOmnXrl3y8/OzekZIvXr10qFDh9SlSxd5enpa1aNw4cL65JNPdOjQIVWrVs3GEwIAAAC2xxJgAHBimXkJ8L9du3ZNS5YsUUhIiHbt2qWbN29aPLdkyZKqV6+eGjRooFatWtnsiS5HiYuL07Rp0zR+/HhFR0cnO1aqVClNnz5dL7/8soOmc14XL17U0qVLtWPHDu3cuTPZ05b/Vrp0adWtW1cNGzZUQECA1eEhAAAAYAtpXQLsbveJAABIhfz582vYsGEaNmyYkpKSdPnyZd26dUsRERGKiYlRjhw5lDdvXhUoUEC5cuVy9Lg2c/ToUXXo0EFHjhxJVvf19dUHH3ygvn37EjbZSZEiRR6+EzAxMVGXL19WRESEbt26pXv37ilnzpzKly+fChQoYLOl6gAAAIAjEAACADIdFxcXFS5cWIULF3b0KHa1fPly9ezZM9muxt7e3nrnnXc0fPhw3vWXgVxdXVWkSBEVKVLE0aMAAAAANkcACACAA8ydO1f9+/dXYmLiw9prr72mGTNmqGjRog6cDAAAAICzIQAEACCDbdmyRQMGDHgY/nl5eWnJkiVq3bq1gycDAAAA4IwIAAEAyED3799Xt27dlJCQIEnKmTOnNmzYoBdffNHBkwEAAABwVq6OHgAAgCfJ/Pnz9eeffz788SeffEL4BwAAAMCuCAABAMhAS5YsefjvzzzzjHr16uXAaQAAAAA8CVgCDABABgkPD9f+/fsf/rhu3bq6ffu2Vb3c3NyUI0cOW40GAAAAwIkRAAIAkEH279+vpKSkhz9esGCBFixYYFWvSpUq6cCBA7YaDQAAAIATYwkwAAAZ5MSJE44eAQAAAMATiAAQAIAMEh4e7ugRAAAAADyBWAIMAE6sbdu2Kl++vCQpe/bsDp4GNWvW1IgRI2zSq1ChQjbpAwAAAMD5EQACgBPr3r27o0fAP7Rq1UqtWrVy9BgAAAAAnjAsAQYAAAAAAACcGAEgAAAAAAAA4MQIAAEAAAAAAAAnRgAIAAAAAAAAODECQAAAAAAAAMCJEQACAAAAAAAATowAEAAAAAAAAHBiBIAAAAAAAACAEyMABAAAAAAAAJwYASAAAAAAAADgxAgAAQAAAAAAACdGAAgAAAAAAAA4MQJAAAAAAAAAwIkRAAIAAAAAAABOjAAQAAAAAAAAcGIEgAAAAAAAAIATIwAEAAAAAAAAnBgBIAAAAAAAAODE3B09AAAAAJBZRURE6Pbt28lqWbJkUeHChR000ePF7NfPy8tLfn5+DpoIAIAnE08AAgAAABZMmTJFpUqVSvZPmzZtHD3WY8Ps16979+6OHgsAgCcOTwACAJxKbGysgoODtX//fh05ckTnz59XTEyMYmJilDdvXuXLl08FChTQf/7zHzVo0EDFixd39MhPvMuXL2vbtm3avn27Lly4oIiICEVERMjNzU158uRRnjx59Pzzz6tWrVqqVauWcufO7eiRkUrR0dFq2rSprly58rD29ttva9CgQQ6cCoAj7d27VyEhITp+/Lj++OMP3bt3T7dv31b27Nnl6+srX19fValSRQ0aNFCFChXk6sozKwBgCwSAAACncOTIEX322Wdau3atYbnZ38LCwh7+++LFiyVJFSpU0PDhw9W+fXu5u/PHYkbauHGjJk6cqO3bt6d47rp16yRJHh4eat26tYYMGaLq1avbe0Sk0+DBg7Vz585ktVu3bjloGgCOcuPGDc2YMUPffvutzp49m+L5y5cvlyT5+flp4MCB6t+/P3/5AwDpxF+nAAAea/fv39fgwYNVoUIFff311xbDP0sOHTqk119/XaVLlzYEFbCPsLAw1apVS/7+/qkK//7pwYMH+u6771SjRg1169ZNUVFRdpoS6bVmzRotWLDA0WMAcLCvv/5aTz/9tMaPH5+q8O+fwsPDNXr0aBUvXlxz5syx04QA8GQgAAQAPLZu3rypBg0aaMaMGUpMTExXr7CwMNWrV0+TJk2y0XQws3fvXlWvXl27du1Kd6/AwEBVrlxZ58+ft8FksKWLFy+qd+/ejh4DgAMlJSXprbfeUvfu3RUZGZmuXlFRURowYIDatGnDX/wAgJUIAAEAj6V79+6pZcuW+vXXX23WMz4+XqNGjdL48eNt1hP/c/XqVQUEBCgiIsJmPU+fPi1/f3+b9kT6JCYmqkuXLnxNgCfciBEjNGvWLJv2XL16tV577TXFxcXZtC8APAkIAAEAj6X33nvPYvjn6uqqV155Rd98841OnjypqKgoxcbG6uLFiwoKCtI777yjvHnzWuw9ZswYffPNN/Ya/YmUkJCgdu3aJdsM4p8KFy6soUOHKjg4WGFhYbp7967u3r2rs2fP6vvvv1fnzp0tvqPx+PHj6tu3rz3HRxqMGzdOW7ZscfQYABxo/fr1+uSTTywer1SpkqZPn679+/fr5s2bSkhIUHh4uPbu3auJEyeqTJkyFq8NDg5Wnz597DE2ADg1AkAAwGPn4MGDFp8qKFKkiEJCQrRu3Tp17txZzzzzjHx8fOTp6anChQurUaNG+uyzz3T27FkNGzZMLi4uhh5JSUkaNGgQTzDZ0Jo1axQSEmJ6bMiQITpx4oQ+/fRTNWjQQCVLlpS3t7e8vb1VokQJtW3bVt98842OHTumihUrmvZYvXq1du/ebc+fAlJhz549mjBhgqPHAOBAsbGxGjBggOmxLFmyaPbs2dq/f78GDRqkypUrK0+ePHJ1dVWBAgVUtWpVjRw5UqGhoQoMDFSOHDlM+wQGBmrTpk32/GkAgNMhAAQAPHY+/vhj03f+PfXUU9q/f79q1aqVYo/s2bPrk08+0XfffSc3NzfD8YiICJYC29Cnn35qWh8zZoymTZsmb2/vFHs888wz2r59u8qXL284lpSUpMmTJ6d7TlgvMjJS7du314MHDxw9CgAHWrRokS5cuGCoe3h46JdfflH//v1N//Ltn1xdXdWlSxft2bNHBQsWND1n6NChSkhIsMnMAPAkIAAEADxWwsPDtX79ekPdw8NDK1asUP78+dPUr127dpo6darpsfnz5+v+/ftWzYn/OXDggPbs2WOoV6tWTR9++GGaevn4+GjZsmVydTV+CxMUFKTY2Fhrx0Q6vfnmmzp37pyjxwDgYPPnzzetT5gwQXXr1k1Tr+eee07r16+Xp6en4djhw4fTvJM8ADzJCAABAI+V1atXKz4+3lDv0KGDqlWrZlXPwYMHq0KFCob63bt3tXnzZqt64n8svQ9uzJgxKT4FYqZs2bIKCAgw1KOjo7Vjx44090P6LV68WMuXL09W8/HxcdA0ABzl5MmT+v333w31okWLavDgwVb1rFKlisUlxevWrbOqJwA8iQgAAQCPFUthkrX/YyH9tdRoyJAhpsc2btxodV/8xezdfzly5FCTJk2s7tm8eXPT+unTp63uCeucPHlSb7/9drKai4uLvvjiC4fMc/v2bUVERJj+RUFmFRkZqYiICN26dcuhcyckJOjWrVuP3a8fMg9Lf2k2YMAAeXh4WN136NChpn9hxJ/RAJB65tvpAQBSJTY2VpcuXTLUPT09VaRIEav73r17V9euXTPUs2fPLl9fX6v7OoPffvvNUCtSpIgqV66crr4vv/yyXFxclJSUlKx+/vx5w7nnzp0zfQdhiRIlTJempkZCQoLpvTw8PFS0aFGremYW+/fvN9Rq1KhhuqQrtcqVK2daN/t9I0k3btzQnTt3DPV8+fJZfMl8aly5ckX37t0z1AsXLqwsWbJY3fdxERcXp06dOunu3bvJ6m+++aZatmxp9/vv3LlTGzZs0O7du3X48GFdv3492e9hHx8flS5dWtWrV1fDhg3VsmXLdIUQthAaGqqNGzfq/9m776gorrcP4F96EVCKAiL2ip2IotiiqFiiJmpiQwU1iRCNxt6NvSsqNhBr1KjRaGKMigU7VjQ2bNjAAoIivey8f/iTl3VmYXdZ2vr9nMM5cmfunWd22V14vPc+ISEhuHfvHh4/fizaN9HY2BhVq1ZFnTp10LRpU/To0QMODg4ajyU1NRUHDhzAP//8g/Pnz+PRo0dysVhYWKBWrVpwc3ND+/bt0a5dO7Xf4zQhKSkJL1++lDxmZWWFUqVKFXBE9ClFxZi6du2ap3EdHBzg7Ows+jyR+twkIiLVHAAgKPoyMDAQiIhIENLT0wUXFxfR+6S+vr5w8eJFtcft2LGjaExdXV0hJCREg9EXP/Hx8YKOjo7osenXr59GxrexsRGN7eLiIjpvxIgRkp+Py5YtU/vaCxYskBxz/vz5ebmlQieTyQQDAwPRfQ0fPjxP4967d0/y8Ro5cqTk+efOnRP09PRE5zdp0kTIyMhQOwZTU1PRmM7OzkJaWlpebq/YGDNmjOj+nZychKSkJCEmJkbyOZo+fXqerimTyYRNmzYJTk5OCn9XVfRlb28vLFq0SKXnfNy4caJxXF1dVY770KFDgpubm8oxf3z/9/DwEK5fv67ydaUkJycLCxcuFEqXLq1SHDVq1BCCgoIEmUym9LWkHj8PDw+VY46NjRWcnZ0l46pXr57w+vVrlcckzXN1dRU9P7a2thoZu0+fPpLPf1xcnEbGJyIqbkJCQpT5/M5aJsUlwEREeaCvr4/NmzfD2NhYrj0jIwMDBw5Uq4BEUFAQDh06JGqfNGkSWrZsqXas2iAiIkI0Qw/4sCecJlhZWYnapGaNzZs3DzVq1BC1T548Wa0lqHfv3sX06dNF7S1atMCYMWNUHq8oiYuLk6wKq6iqo7Lev38v2W5ubi7Z3rRpU4wdO1bUHhoaiqVLl6p8fZlMhsGDByMpKUmu3djYGJs3by70WWYF4ciRI1iyZIlcm5GREbZv3w4TE5N8uWZkZCTatWuHQYMG4fbt2yr3f/HiBcaOHYvmzZvjxYsX+RChWEpKCgYPHoyOHTvi7Nmzao0hk8nw77//wtnZGfPmzctTPDdu3ECjRo0wbtw4REdHq9Q3PDwc3t7e6NatG2JiYvIUhyri4uLg7u6Oq1evio7Vq1cPx44d++xnxxcVERERojYnJyeNjC31GQ1If04TEZEYE4BERHlUq1Yt/Prrr6L2O3fuYO7cuSqNFRUVJZnwadiwIaZOnap2jNoiNjZWsr1ixYoaGT8uLk7UZmlpKWozNTXFpk2boKenJ9eelJQEb29vyeXBimRmZsLb21uULDY3N8fmzZtF1yhu0tLS0KtXL9FXgwYN8jSuouRNTsulZ8yYgbp164rap02bhvDwcJWuv3LlSsnqkwsWLFC4PFmbvH79GgMHDhQl5OfPny9ZUEcTnj17hlatWuHYsWN5HuvChQvo0KGDwvcUTUlKSkLbtm0RFBSkkfEyMzMxadIkyc8cZQQHB6N58+a4detWnuL466+/0Lp1a8n3TE3LKflXv359HDt2DDY2NvkeBylH6jWVn5/RgPTnNBERiXEPQCIiDRgzZgwOHjwoKnYwb948dO3aFY0aNVJqHB8fH9EvuMbGxtiyZUue9ksrKBcvXkSTJk3k2s6ePYtmzZppZHwjIyO4u7uL2qtXr57nsSMjIyVnwyjay9HV1RXjxo0TzcY5ffo0/P39MXz4cKWuu3z5cpw/f17U7ufnh0qVKik1RlFmZ2eHXbt2aXzcw4cPS7bnVAnayMgImzdvRpMmTeRmJaakpMDb2xunTp1SKuH68OFDTJo0SdTu7u6u9PNenAmCAC8vL9FebB4eHvj555/z5Zrp6eno0qULHj58qPAcXV1dODo6wsbGBoIg4PXr13j+/LnC8//77z/8/PPP2Lp1a36EDAAYPnw4zp07l+M5pUqVgoODA4yNjSGTyRAdHY3IyEjJ2c4fzZo1C507d1b6swX4MNu1e/fuSExMVHiOiYkJHB0dYWZmhjdv3uDp06cK47h16xa6d++OY8eOQV8/f/6kyCn516BBAwQHB8Pa2jpfrk2qS01NRatWrUTtrq6uGhk/LCxM1FaqVCmFM7+JiEg53AOQiEhFjx49EszMzCT3JkpNTc21/6ZNmyTfc/38/Aoges0IDQ0VxX/27NnCDkspfn5+ko//0qVLFfZJTU0V6tWrJ+pjamoq3L9/P9drhoeHCyYmJqL+3bp10+StaZ0XL14I1tbWosetWrVqSu1NNnPmTMnnesmSJbn2zczMFFq1aiXqa2lpKTx79kwTt1fkLV++XHT/ZcqUEV68eCF3nib3AJw/f77C30u//PJLYd++fcL79+9F/d68eSMEBAQIFSpUkOyro6MjXL58Ocdrq7sH4MWLFyX3LAU+7EW4ePFi4eHDh5J9379/L/z5559C586dFd53165dlXvwBEGIjo4WypUrp/Ax8PT0FEJCQkSvn+joaCEgIECoWrWqwjj8/f1VfvyU2QMwNjZW+OKLLySv2bBhQyEmJkbp+6fi786dO5Kvp06dOhV2aEREhUbVPQAVYQKQiEgNq1atUusP3qioKMHKykrUz93dXaXN1gtbcU0ApqSkCFWqVJF87m7dupVj37CwMMHQ0FDUr3Xr1jk+d5mZmZIFAWxtbbmZfQ7evHkjmYADIKxfv16pMRQV7zExMRHCw8Nz7Lty5UrJa+/YsUMTt1fkhYWFCUZGRqIE0t9//y06V1MJwMzMTMHe3l40jq6urrBq1SqlxoiPj1dYgGPEiBE59lU3AaioYEGbNm2Ed+/eKRW3IAjCjh07JAvpGBsbC/Hx8UqN0b9/f4WJyODg4Fz7JyYmKhyjdOnSOd6POgnA3JJ/b968Ueq+SXsMGjRI8uehOP0nKRGRprEICBFRIfLx8YGHh4eofc6cObhy5YrCfr6+vqJ9c0qVKoUNGzZAR0dH43GSvNmzZ0suLWzRokWum5fXr18f06ZNE7WfPHkSq1evVthvxYoVooIAOjo6CAwM5Gb2EuLj47FmzRo4OzsjJCREdLx169bw9vZWaixFxXuSk5MxePBghXs4RkREYOLEiaL2Pn36oHfv3kpduzhLSkpCnz59kJqaKtf+008/oXPnzvl23dOnT0vu+Th8+HD4+voqNYa5uTl27NgBU1NT0bGDBw/mOcZPpaen4++//xa1Ozo64s8//4SFhYXSY/Xu3VtyyXlKSgru3r2ba/9Lly7ht99+E7VbWFjg0KFDaNu2ba5jfNz3tEuXLqJj0dHR2LdvX65jKCsuLg7t2rWT/Mx0dnZGcHCwwmIQpJ1OnjyJLVu2iNpNTEzg6elZCBERERVPTAASEWnQxwTOpxtSZ2RkYPDgwZLVULdt2yb5x9OaNWtQvnz5fIuVPti5c6fCYi2TJ09Waozx48ejcePGovYJEyZIVkR88OCB5NhDhw6V/AP7c5GYmIjdu3fjt99+w+rVqzF9+nQMHjwYzs7OsLa2ho+PD548eSLq16BBA+zatUulgim1atXCnDlzRO1nzpzBypUrRe2CIGDw4MFISEiQay9Xrhz8/f2Vvm5xNmrUKNy5c0eurU6dOli4cGG+Xvf69esK41GFo6MjOnXqJGp/9OiRKKmZV7du3ZKsVD127Fi19isbNmyYZLsylYznz58vuY/f+vXrVSrYoqenh7Vr16JEiRKiY7t371Z6nJzklPz74osvmPz7DIWHh+O7776T/I8ZHx8fFgAhIlIBE4BERBrm4OCApUuXitqvX7+O+fPny7W9fPlSctP8vn37fhYzigpbYGAgPD09Jf+w6N69Ozp06KDUOB9nlJmYmMi1JyQkYMiQIXJ/fMtkMnh7eyMpKUnu3KpVq0r+3HxOoqKi8O2336J///7w9fXFzJkzERQUhGvXriEjI0Oyz4ABAxASEqLWrMmRI0eiZcuWovZJkybhwYMHcm1r167FiRMn5Np0dHSwadOmz+IP0L1792L9+vVybcbGxtixY4doJqWmRUVFidrMzMxQoUIFlcf64osvRG2CIODVq1dqxabI/fv3Jdu//vprtcaztbWV/Dn7NCH9qZcvX2L//v2idjc3N3z77bcqx+HgjXx8zQAAIABJREFU4IC+ffuK2o8dO4bMzEyVx8sup+Rfo0aNcPTo0c/itUb/7/Lly2jdujVev34tOmZvby85+56IiBRjApCIKB8MGjQIPXr0ELXPnj0b//33X9b3Ukt/HRwcJGcgkea8ffsWgwcPxtChQyUTSxUrVkRAQIBKY9asWVNyJuHx48exbt26rO9XrVqF06dPy52jr6+PLVu2SM6sIWmNGjXC2bNnsXnzZpWWU2anq6uLjRs3wszMTK49KSlJbinw48ePMX78eFH/ESNGKLV8srh79uwZhg4dKmpfuHAh6tSpk+/XT0tLE7WlpqaqNWtv1KhRiI2NFX05ODhoItQslpaW6NWrl9yXp6enwqriyjAyMlK5zx9//CGZmJs4caLa20tIJQ5TUlIkZzsrK6fkn4uLC5N/nxmZTIYVK1agRYsWomrjAGBgYICdO3eq/d5PRPS50i/sAIiItNWaNWtw+vRpuf+5TktLw4ABA3Dx4kXs3r0be/fulevzcQkxlzjlD0EQsG3bNowfP17h0jlLS0vs378fNjY2Ko8/YsQI/Pnnn6I96saNG4eOHTsiIyNDci+vCRMmoGnTpipf73N29epVzJgxA2PHjkW7du3UHqdy5cpYvHgxfvzxR7n2U6dOYfXq1fD19cXQoUNFyzmdnJxEM3q1UWZmJjw9PUX/UdG5c2f89NNPBRKD1Ptheno6tm/fDi8vL5XGMjIyUiuRpip3d3e4u7trdMxPZw0r49P/bAA+vMfl5TXTuHFj6OrqimZO37lzB1WrVlV5vJySf40bN8bhw4dRqlQpteMtyg4ePKjW85pXNjY2+PLLLwv8usoIDQ3Fzz//jNDQUMnjOjo6WLNmjeTsbSIiyhkTgERE+aR06dJYtWqVaLZEWFgYxo8fj61bt4r6jBgxQrKICOXdmTNnMGrUKFy+fFnhOWXKlMGRI0dQr149ta7xcUZZ/fr15RJG79+/x9ChQ5Geno7ExES5Po0aNeIyJjXIZDIcPXoUR48eRefOnbFhwwbY2tqqNdb333+PP//8E//++69c+4QJE/DixQsEBwfLtRsaGmLbtm35vvS1KJg3b54ooW1nZ4egoKACK1DUoEEDyfaff/4Z1tbW6Nq1a4HEUZguXbqE+Ph4lfudP39e1NapUycYGhqqHYuFhUWel/t+lFPyDwCWLVumtck/4MPejs+ePSvw67q5ueHMmTMFft2cREZGYubMmQgMDFRYiElPTw/r169XuuATERHJYwKQiCgf9erVC3369MGOHTvk2pctWyY6t1atWpg3b15BhfbZiIiIwPjx43PdpL5Ro0b4/fffUbly5Txdr1KlSliyZAm+//57ufajR4+KzjUxMcHWrVthYGCQp2tqCxsbG8yfPx+mpqYwMjJCamoq3r17h8ePH+Py5cv477//JP8wPHjwYNYeYTVr1lT5uh9n3tatWxdxcXFZ7YmJiZLLuqdPn46GDRuqfJ3i5vz58/j111/l2nR0dLBx40aUKVOmwOJo2bIlzM3NRbMw379/j27duqFt27aYPHkyWrZsqVIhmOIiJCQEQ4YMUblfVFQUnj59KmovKj+7uSX/gA8Flk6dOlVgyWYqeAkJCZg/fz6WLl2K5ORkheeVLl0aW7duVXpvXiIiEmMCkIgon61evRqnT5/G8+fPFZ6jqIgEqS8hIQGzZs2Cn59fjnuF6evrY8SIEZg7d67GlgYOGTIE+/btw6FDh3I8b8GCBWolrPLLmTNnRAkfZZmamkoWG1CFpaWl5F57Hz18+BArVqyAv7+/aAbS8+fP0alTJ1y6dAnW1tYqX9vBwQErVqyAp6dnjue5ubnlGGNh6NKli9pVbGfNmgVXV1dR+7t379CvXz/RHpk///xzgc9StrCwwMiRIzFr1izJ48eOHcOxY8dgZWWFTp06oX379mjRogUqVqxYoHFqQnx8PO7du4cbN27g+vXrOHHihNy+saoIDw+XbK9bt25eQtSIt2/f5pr8Az68J23YsEGtBCgVbYIgYNOmTZg8eXKu1azbt2+PoKAgje/VSUT0uWECkIgon5UqVQpBQUHo0KGDXDXY7H799Ve4uLgUcGTaa/fu3fjll19yTLoCQNOmTbF69WqFSwzV9XFGWZ06deRmlGXXvn37AttDTVmvX78WLXdVVkFsxl6lShX4+fnh22+/RZcuXfD27Vu54xEREZg2bRr8/f3VGr9///7Yt2+faG/Oj8zNzbFly5YiN8vs+PHjOc6cycmIESMk24cNGyYq6lC/fv1C2/dwypQpOHv2LI4fP67wnNjYWGzbtg3btm0D8CGp27JlS7i5uaFNmzaoVatWQYWbq8ePHyMsLAz37t3D/fv3ce/ePYSHh2u0GrGi956ikBi9cOGC0ueOHz8eXbt2LdBZp5S/rl+/Dh8fH5w7dy7H8xwcHLB06VK1KlYTEZEYE4BERAWgXbt2GDx4MAIDA0XHXF1di9yMouLq6dOnGDp0KI4cOZLjedWqVcOcOXPQs2fPfFtaVrZsWaxatQr9+vUTHStZsmSB7qGmbdzc3LBv3z60bdtWtCQ4ICAAM2bMQOnSpdUae+3atThz5oxc8Z6PFi9enOcl4sXBpk2bRNsWmJiYYPv27QVSQEOKoaEhDhw4AF9fX2zevFmpPpGRkdixY0fWvVSoUAFdunSBt7c3nJ2d8zNckfT0dPz999/Ys2cPTp06let/TmiCogSgubl5vl9bVTo6OvDz84O/v79o5mJsbCxGjx4tuW9ucXfmzBnJSvT5rbD2L01JScHkyZOxYsWKHO+7ZMmSGDduHEaOHAlTU9MCjJCISLsxAUhEVEAUzT6JiopCYmJivs2gCg4OxpUrV1CiRAmVZpwdPnwYPj4+Kl1Lahlir169VP5jY+XKlejUqZNKffbt24chQ4aIqpVmZ2dnh6lTp2Lo0KEFsu9ejRo1JKtlJiYmIioqSqPLmR48eIDr168jMjISycnJKFmyJBwcHODq6qp2Mqwoa926Nb777jtRoio9PR179+7FDz/8oNa4JUuWhL29vWQC8P79+2qNqcidO3cQFhaGN2/eIDExEVZWVnB0dISrq2uhFT6QyWQYPny4qH3x4sVwcnIqhIj+X4kSJbBp0yb07t0b06ZNw6VLl1Tq/+TJE/j7+8Pf3x9ubm5YtGhRvlffTkpKwpIlS7B69Wq8fPlS7XFq166Nhw8fIiUlRek+it4Li1oCUFdXF+vWrcOQIUNQp04dtG3bVjRbftu2bRg4cKDGKysDH5aiLlu2DOnp6XBzc0Pz5s01fg1FypcvX2DXKmx3795Fnz59EBYWpvAcAwMDeHl5YebMmWoXdSIiIsWYACQiKgB37tzBlClTJI89ffoUo0ePRkBAQL5ce9SoUbh58ybs7OxUSgAmJibi0aNHeb5+VFSUyn0SEhKUPjczMxO//PILVqxYofAcc3NzjBkzBr/88gvMzMxUjkcdycnJ8PT0lCxakZGRAS8vL1y5ciVPM6oyMzMREBCAlStX4vbt25Ln6OjooGnTphgzZgy6d++e46zDEiVKqD3DraAe1+y+//57UQIQ+FC8Qt0E4K+//orr169LHlu2bBm++eabPCWNkpKSsHr1avj5+SmcBaarq4u2bdti3LhxSiU8KlWqpFJiKLsSJUrIfS8Iguj1p6enh71792Lfvn0qjZ2eni7ZvnXrVpw9e1by2MaNG1GuXLkcx/Xw8ECHDh1w/vx5bN26FXv27EFMTIxKsZ09exZubm4YO3Ys5s6dmy/Luu/evYvu3bsr3ItPEX19fVSvXh0NGzaEs7MzPDw84OTkBHt7+zwlEYsiXV1dBAYGwsvLCwDw5ZdfYsCAAZKzPH18fHDjxg2Nz147d+4cRo8eDeBDgZ+CTAB+Lnbs2IGhQ4ciMTFR8riuri769u2LWbNmFYkl6kREn5sDAARFXwYGBgIRESknPT1dcHFxUfie+vHrn3/+0fi1r127ljW+nZ2dSn3/+OOPXGPOr6/ff/9dqRjT0tKE7777TuE4Ojo6gre3t/Dq1St1Hr48GTFiRK73OXHiRLXHj4mJEVxdXVV6XLt16ybExsZq8C4LV0pKimBsbCy6z8aNG6s13tmzZwU9Pb0cH8MaNWoISUlJao0fEREh1KtXT6XnzMfHR8jIyFDreurIyMgotNc9AOHu3bsqx5yZmSlcvHhRmD17ttCmTRvB1NRUpWt6e3vnOP64ceNEfVxdXXPs8+zZM8He3j7Xazs6Ogo9evQQpk6dKuzcuVO4fv26kJqaKjmmnZ2dqP9vv/2mMIaAgADJa0ZGRub+oGqQ1OMHQNDT0xM2b94sOj86OlqwtraW7DNlyhSNxzds2LCs8adPn67x8T93/v7+gq6ursLXQNOmTYWrV68WdphERMVSSEiIMr/rjMT/6IKIiPLVjBkzlFqqNnToUIV7NqnLz89Po+MVJZmZmejRowd+//13yeO1a9dGSEgINmzYUOCbxwcHB2PlypW5nrdo0SKVlzECH2ZntmnTRrSRvoWFBVxcXNChQwe4uLhAX19+ov/+/fvRoUMHhbMwihsjIyPY2dmJ2tV5HSUmJmLQoEGi6sKfCg8Px9SpU1Ue//379+jYsSNu3Lgh125ra4vmzZvDw8MDjRo1Ej1nq1evxqhRo1S+3udEV1cXLi4umDx5Mo4dO4a4uDicOXMGc+fOhYeHR67V1YOCgvDbb79pNKZhw4YprGxarlw5zJkzBzdu3MDTp0+xZ88ezJw5E9999x3q1asHQ0NDjcRgaWkp2f7u3TuNjJ8Xenp62LRpEwYMGCA6ZmNjg0WLFkn2W7hwIe7cuaOxOF6/fi05i5g0Y/ny5fD19ZWcCW9paZm152rDhg0LIToios8PlwATEeWjCxcuYMGCBaL2bt26Yf/+/XJtkZGRGDt2rGShEHUEBgYqvVm+lOrVq6tcnOTFixfYsmWLXFv//v1V3uuuZs2auZ4zY8YM/PXXX6J2PT09TJs2DRMnTiyQff4+9fbtW3h5eYn2sGrbti1CQ0PllldmZGRg0KBBuHr1qkpLgT8mDz4yNzfHkiVL0L9/f7lkR1xcHPz8/DB37tys5ZiXLl3CL7/8gnXr1ql7i0pLSEiQ3G9s8uTJmD17tkauYWlpicePH8u1qVMRd/To0aI9/qysrFC7dm2cPn1arn358uX45ptv0KxZM6XHnzp1Ku7evZv1fdWqVeHv7w93d3fo6v7//8e+efMGs2bNwooVK7J+hlatWoW+ffvC1dVV5fv6HBkaGsLNzQ1ubm6YOHEiEhMTcejQIaxZs0ZhFeEZM2agb9++GinMExYWhr///lvy2PDhw7FgwYJck5KaYGVlJdl+7969Qq+I3LZtW/Tv31/h8UGDBmHz5s0ICQmRa09LS8OPP/6IkydP5vm5SkhIQJ8+fUTVxEkzjh8/jjFjxkge6969O9auXct9/oiIChgTgERE+SQxMREDBw4UVbpr3bo19u3bh549e2Lv3r1yxzZs2IAePXqgY8eOKl9PEARERETgwoUL2LRpE44ePZqn+OvUqYP58+er1OfixYuiBOCwYcNUSpQo48iRI5g7d66o3dTUFLt371a5gIgm+fr6ivZ2s7GxwW+//YZdu3ZhxIgRcsdu376NGTNmYN68eUqNHx0djaVLl2Z9b2xsjBMnTuCLL74QnWtpaYkZM2agefPm6Ny5M9LS0gB8+DkbNWqUUonWvDAzM4ONjY1of7Znz55p7BpSf7xbW1urNMbhw4exfv16Ufvy5cvRqlUr1KlTB+/fv89qz8zMhJeXF8LCwpRK5MTGxsol9u3t7RESEoKyZctKxr58+fKs5w748NpesmQJdu/erdJ90QclSpRAz5490bNnT2zduhVDhgzJei189ODBA9y8eRN169bN8/UU7ZXo4+OT416lmla7dm3J9mvXrqFbt255GvvKlSuiPWJtbW3RsmVLpfpnT3pL0dHRwZo1a9CgQQPRc3Xq1Cls3LgR3t7eqgWND/85cOvWLRw+fBhr1qxBZGSkymNo0vbt21Xa81ZT7Ozs0LVr13wb//Xr1+jbt6/kjOrJkydj1qxZGkm2ExGRapgAJCLKJ6NHj8a9e/fk2kxNTREQEAAdHR34+/vjxIkTouWKQ4YMwc2bNxUu3/rUkydP0KtXL9y+fVtrlnbm5GPRj0+XFBkYGGDfvn1o3759IUUG7Nq1C9u3bxe1r1ixAra2tvD19cXvv/8uKoCwePFifP3112jcuHGu1/jrr7/kqi2PGTNGMvmXnbu7OyZMmICZM2cC+PAY7ty5MyvBlJ8qV64sSgCqWhRBEZlMJlmtV5VZJTExMRg0aJBoxmaXLl3g6ekJAJg7d66oMu69e/cwZcoULFmyJNdrHD58WO61OWXKFMnkX3YTJkzAunXrspaRHj16FJmZmflSrCI7XV3dPP/nwUfx8fHo0aOHqN3T01Ny6ScAODo6auTainh6euL58+eYNGmS6NilS5c0kgC8fPmyqM3ExETpJL8iuS1P/1SZMmVQtWpVPHjwQK5dUQEWVYwePVo0O2/gwIFKJwCVUatWLYwfPx6zZs0SHRs3bhy++uorpSuc+/v7Y9myZYiIiJBcjlpYJkyYoNH/EFGWm5tbviYAZ8+ejVevXonaJ06cqLHZ30REpDksAkJElAeHDx8WdHR0RO+ffn5+cucFBQWptSl9dtevX1dqo3tVi4CoIzQ0VHTds2fPavQamzZtkry/efPmafQ6qoqMjBSsrKxEcXXr1k3uvDt37kgWrnBychJSUlJyvU737t2z+ujo6AhRUVFKxffq1Su5AhetWrVS5zZVNmDAANG96uvrC+/evcvz2JcvX87z66dHjx6i/qVKlRKeP3+edU5mZqbQvHlz0Xm6urpK/XxnLzIAQOmiNJ6enoVavCGvYmJiJJ8fVQot/PHHH0LlypVFX+fPn1c7ridPnkjGNX/+fMnzVS0CUrt2bdH5bdu2VTteQRCEhIQEyc+UnIqACIL4Zwj/K77x4sULtWNJSkqSLLQyd+5cyfOlHj8PDw+lrpWcnCxUq1ZN8vkaMGCA0jH7+voq9TlZ0EVAHB0dlYpL019ubm75dk+PHj0SDA0NRdd0d3cXMjMz8+26RESfIxYBISIqZIpmFDVt2hS+vr5ybV5eXujQoYNojKCgIBw6dEip6+np6cHS0lLyqzD2wMtv/v7+orYqVapg9OjRhRDNB4IgwNvbG7GxsXLtVlZWWLNmjVxbzZo1MW3aNNEYt2/fxvTp03O9VvbZc7Vq1YK9vb1SMZYpUwYVK1bM+j4qKkqpfnnVrl07UVtGRgYOHDiQ57EVLbVs27atUv23bNmCP/74Q9S+dOlSuX0rdXV1ERgYCGNjY7nzZDIZvLy8ct1zMCIiIuvfJUuWVLoozaezBDVdJKg4MDMzw6NHj0Rfp06dUntMRY+/pt4vk5KSRG153evszz//FH2mKEPqtZCZmYmNGzeqHcv+/fsl71ETsyc/ZWxsjNWrV0se27p1q8I9HT9lYmIi+RlZsmRJTYZL+LD/8KfLtvX09LBixYpcl34TEVH+4rswEZGG+fr6iqo/GhsbY8OGDZLL99atWydZKGHIkCFK/cFfu3ZtxMbGSn65u7urfyNF0OPHjyWX1/n4+BRqsnP16tU4fPiwqN3Pz08yQTd27FjJZbuLFi3KdXle9j2rqlSpolKc2SvMZl9GnJ86dOgg+UffokWL1EpofBQbG4tVq1aJ2vX09ODh4ZFr/ydPnoj2YwQADw8PeHl5idpr1KghuWT63r17mDx5co7XSk1NzUo4qFJ84dO9waQqHms7RQWETpw4ofaYny6J/ahcuXJqj5mdhYWFqO3T/xxQRXJystrLJr/++muYmpqK2ufPn4+XL1+qPJ4gCJLV5UuUKIE2bdqoFWNu3N3d0a9fP8lYhg0bptR72aJFiyQ/Iz+tyk15J/WfKu3atSv0wjNERMQEIBGRRm3ZsgW7du0Stc+ZM0fhL78VKlSQLGgRFRWlsILe50rRLJguXboUQjQf3Lt3D+PGjRO1d+nSRWGVS319fQQGBoqSljKZDN9//z1SUlIk+6WlpaFDhw7o1asXevXqha+++krpONPS0uQ27Ve1MrO6SpcujRYtWojab9y4IflzrwyZTIZBgwbh3bt3omOdOnVSWP00e38vLy9RfwsLC8liIB+NHj1aMnHr5+eXY+L2+PHjWQmH8+fP5xhbdhcuXMj6t7W1tcrFTbRBzZo1JZ/PI0eOqJ28+XRW7kd16tRRa7xPSc32O3funMLXdU5kMhl8fHzkKkirwsLCAoMHDxa1x8fHY8iQIaIiVbnZunWr3M/lRx07dpRMNGrK0qVLJX8O7t27l+e9FQvT06dPIQhCgX+dOXMmX+7n5s2bknu8qvJZRURE+YdFQIiINOT58+cYOXKkqN3V1RU///xzjn19fHywa9cunD59Wq49KCgIPXv2VKsqsDa6ePGiqE1PTw979+7Nt4qCLi4uCme2ZGRkwNPTU7QcrlSpUli7dm2O4zZo0ADjxo3DnDlz5No/VgWWqsBsaGgomWBWxvbt25Genp71vZubm1rjqGPSpEmiggEAMH36dFhZWWHYsGFKj5WYmIihQ4fir7/+Eh3T09MTPZ5Sli9fLjmDbPHixTkWodDX18eGDRvg4uIi91jKZDJ4e3vj2rVrGkuC7NixA1euXMn6vk+fPhoZt7jR09ND+/btsXPnTrl2mUyGvn374uTJk7CxsVF6vK1bt0omAOvWrQsnJ6c8xwt82O7hyJEjcm3x8fFYtGgRpk6dqvQ4CQkJ8PHxwdatWxWe8+lSSynjxo3Dxo0bRTNKDx48CG9vbwQGBsLQ0DDXcc6dO6fwtfrTTz/l2j8vypQpg/nz5+P7778XHZs/fz769OmDGjVq5GsMlDupz2gACAsLw4IFC/LlmqVLl1arIjQREf0/FgEhIlJBZmam0KZNG9H7pZGRkXDr1i2lxggPDxdMTExEY5QtW1aIjY1VK66OHTtmjaMNRUBq1qxZ4Jul//LLLwrjmTFjhmSfjRs3KnU/KSkpkgUDdHV1hTNnzmjoUROE6OhooWLFilnj6+joCP/995/GxldG06ZNFT7G3bp1Ey5evJhj/9TUVCEoKEioWrWqwnGGDh2aaxw3b96ULMLi7u4uyGQype5lypQpktcfNWqUUv0VSUtLE0JDQ4Vhw4bJFWwpV66c0oVDihJNFAERBEH4999/FT7nFSpUEPbs2ZNrcYGHDx8KXl5ekoU0AAirV69W2FfVIiCKitPo6uoKS5YsyTXW9PR0YceOHUKVKlVyfX8aPnx4zg/e/yxevFjhGHXq1BFCQkIU9k1KShIWLlwoGBkZSfb/6quvcrx2XoqAZCeTySSL8QAQWrdurfTrN7tPC8IUdBEQbTN8+PAC/4yuW7duYd82EVGhUbUICGcAEhFpwPLlyyU3I585c6bSs0qqV6+O6dOnY8KECXLtUVFRGD16NIKCgjQSa3GVkpKC+/fvF3YYWS5fviw528zDwwMDBw5UagwjIyMEBASgefPmkMlkWe0ymQxDhw7F1atXRYUnVPX27Vt07twZjx8/zmrr06ePxpY7KmvdunVo3Lix5DLI/fv3Y//+/ShfvjyaNWuG8uXLw8rKCunp6Xjz5g1u3bqFc+fOITExUeH4zZo1w4oVK3KMIS0tDZ6enqIYzM3NERgYqPQs0ilTpmDv3r24ffu2XLufnx+++eYbNG/eXKlxAGDixInYv38/YmNjERcXJ5rRVa9ePezevVvpwiHaqEOHDmjTpo3ke+yTJ0/Qs2dPlC1bFi1atICTkxMsLS1hZGSE9+/f49GjR7h48SKuXLmicM9JNzc3/PDDDxqL94svvkD79u1FswBlMhlGjx6NwMBAeHp6okmTJrC3t4euri6io6Px9OlThISE4N9//8XTp0/l+urp6cHa2hqvX7+Wa1+3bh3q16+PPn36wNTUFBkZGXJ7fX40atQoHDt2TLK41M2bN9GqVStUqVIFHTp0QPny5WFpaZm1R96RI0fw5s0byXu1srLCsmXLVH2I1KKjo4O1a9eiYcOGcjNwAeDkyZPYsmWL0u+9lD/++++/wg6BiIjUwBmARERKun37tuTMvYYNGwppaWkqjZWeni40atRI8r33zz//VDk2bZoBGBERUeAzCwDpGYDJycmSM/csLCyEJ0+eqHxvI0eOlLz2uHHj8vSYnThxQihfvrzcmJUrVxZiYmLyNK66du3aJTezTVNfTk5OQnR0dK7XnzhxomT/nGZ/KXL+/HnJe6lWrZqQmJio9Dg9e/ZUeF8DBgwQMjIyVI6tqNDUDEBBEIT79+8LZcqU0fjPTpUqVXJ9zao6A1AQPsw0NTMz00iM1tbWwtGjRxW+T3z8MjExEXbs2KEwpvj4eKFJkyYae+wMDQ2FEydO5PrcaWoG4EeKXsc2NjZKvQ9kxxmAmlWtWjWNv0Zz++IMQCL6nKk6A5BFQIiI8iAjIwMDBw5EcnKyXLuRkRG2bNmicmXaj3uMSfXz8fFRqiqwtvp05kthGjt2LG7duiVqX7x4McqXL6/yeHPmzJGs6Lt48WK1Nmt/9uwZPD090aZNG7mZROXLl8fhw4cLrZhEr169sGfPHpiZmWlszEGDBuHixYu57gN39uxZLFy4UNT+5Zdf4scff1T5uq6urpJVhO/fv59rVWBlbdmyBS4uLjh37pxGxivOqlatikOHDqm0319unJ2dcerUKbVes7mpXbs2du3apdTeejlxdnbGpUuX4O7unmt1608/hz5lbm6O4OBgdOvWLU8xAYCNjQ0OHDiA1q1b53ksVU2dOhWVK1cWtcfExEgWZKKC8+rVq8IOgYiIcsAEIBFRHkyfPh2XLl0StU+bNk3tJZb16tXD+PHjRe1RUVH45Zdf1BpTGxSVPyyCg4Ph7+8vam9SrnhRAAAgAElEQVTTpg2GDBmi1pimpqYICAgQLUGVyWQYMmRIrn/Yf5SQkIBp06ahZs2a2LZtm9ySx5YtW+L8+fOoWrWqWjFqSvfu3XH9+nX07NkTurrq/xri7OyMvXv3YuPGjShRokSO5yYkJGDgwIHIzMyUay9RooRKS38/NWvWLMlExIoVK5RO3P7yyy/YtWsX9u/fjy1btmDcuHGoXr161vFr166hdevWoiIYnyNnZ2fcunULvXr1ytM4pUqVwrJlyxAaGoqyZctqKDqxjh074uzZs6hWrZrKfW1tbbF27VqEhoaiUqVKAID27dujadOmeYrJzMwM+/btQ0BAgFrLynV0dNC5c2dcvXoVHTp0yFMs6jIxMcHq1aslj23atEmy4BDlv5SUFMTHxxd2GERElANFv/EeAKCwXruBgYFSVceIiLTdu3fv5PZu+6hkyZJ5Sm5kZmYq/EXa0tJS6XE6deqUteeTnZ0dXrx4oXZMynjw4AEmTZok1zZr1iyNVGdMS0vLcQ+4/GJsbAwTE5Os7xMTEyU/A01NTWFkZJSnayn6eTI3N5fc1yu733//HaNHj0ZkZKRce8mSJTFz5kz4+vpCT08vT/Fp2oMHD+Dv74/g4GDcvn1b8t6zq1ixIlq3bo3+/fujbdu2Sl8nPT1dVAEV+PD7TF5nIyYnJ0vua2hkZKR2RWBBELBmzRqMGDEiK2lpbGyMmzdvSs4ULaoEQcDbt29F7Z++ptRx69YtBAYGYt++fXjy5Emu55uZmcHV1RUDBgxAjx49VHpupJ5jfX19mJubK9U/NTUV27dvx+rVq3H16tUcf87r16+P/v3744cffpAc/+XLl+jbt69kFWsA2LVrl9IJ0oSEBGzevBlbt27FpUuXcozL3t4e7du3x8iRI9GgQQOlxv9I6vHTxGvv7du3kvs6qvLae/r0KSpUqJD1/fTp0zFjxow8xfW5UvR6z296enqwsLAo8OsSERUFp06dQqtWrXI7bRSA5QATgEREWq2gE4BU8F68eAEvLy8cPnxYrt3Q0BA//vgjpkyZgtKlSxdSdMqLi4vDlStXEB0djdjYWMTHx8PExATW1tawsbGBk5OT3B/qn4N58+bJJdR/+uknrFy5shAjKppiYmJw7do1REVFIT4+HgkJCdDT04OlpSWsrKxQs2ZN1KxZs0gkwOPi4hAaGorIyEjExMRAT08Ptra2sLe3R506dWBnZ6fUOGFhYbhw4QLi4uJgYmICBwcHNGnSRO3lzLGxsbh27RoePnyIuLg4yGQyWFtbo3Tp0qhZsyZq1aql1rhFHROARERUnKmaAGQVYCIiomIqODgYffv2RXR0dFabrq4uevfujdmzZ2ctHSwOLC0t4e7uXthhFCkjR47E3Llzs2YvfprkpQ9sbGzQrl27wg5DKZaWlrnu5aeMBg0aqDwTLydWVlZo27atSjNriYiIqHjhHoBERETF0J49e9C5c2e55J+zszMuXLiA3377rVgl/0iaiYkJGjVqlPX9w4cPc10mTUREREQkhQlAIiKiYiY0NBT9+vXL2o5DX18fS5cuxcWLF+Hi4lLI0VF2Bw8eRLt27bK+7t69q1L/7Mu3ZTKZ0gVhiIiIiIiy4xJgIiKiYiQ1NRV9+vTJSv6ZmJjg999/x1dfKdy6lwqRrq4ugoODs76/e/cuatasqXT/7MWA8lJYhIiIiIg+b5wBSEREVIysWbMGERERWd8vWbKEyb8i7NMK2OfOnVO6ryAICAsLy/q+XLly0NFRVL+NiIiIiEgxJgCJiIiKkYCAgKx/16lTBz/88EMhRkO5qVy5MipXrpz1/c6dO7Nmb+bm8OHDePXqVdb3LJJCREREROpiApCIiKiYuH//Pm7fvp31fdeuXaGry4/yoq5Hjx5Z/3727BlmzZqVa5/Y2FgMHz5crq1v374aj42IiIiIPg/cA5CIiKiYuHTpktz3gYGB2Llzp1pjffnllwgMDNREWJSLUaNGYeXKlUhJSQEAzJ49G/Hx8Zg+fTqsrKxE5wcHB2PYsGF48OBBVlvnzp3RsmXLAouZiIiIiLQLE4BERETFxM2bN+W+f/36NV6/fq3WWLVq1dJESKQEe3t7LFmyBL6+vlltK1asQEBAAJo0aYKqVavCxMQE0dHRCA0NldvjEQAqVaqEDRs2FHTYRERERKRFmAAkIiIqJqKiogo7BFKTj48PXr16hVmzZkEQBABAcnIyTp48iZMnTyrs16hRI+zatQu2trYFFCkRERERaSMmAImItFiDBg2Qnp4OAJJLDal4KV++vMYKQTRo0EAj45Dyfv31VzRv3hwzZszItRpw+fLlMWrUKPj4+MDQ0LCAIiT6vBgbG8u9p2Yv2ENERKRtdBS0HwDwlaJOBgYGSlewIyIiIiJ54eHhOHPmDO7cuYPY2Fikp6fDxsYGjo6OaNmyJRo2bAg9Pb3CDpOIiIiIiqhTp06hVatWuZ02CsBygDMAiYiIiApcjRo1UKNGjcIOg4iIiIg+E7qFHQARERERERERERHlHyYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFqMCUAiIiIiIiIiIiItxgQgERERERERERGRFmMCkIiIiIiIiIiISIsxAUhERERERERERKTFmAAkIiIiIiIiIiLSYkwAEhERERERERERaTF9cVPFisALU0CmsJMg6OPRo2f5FxURERERERERERFJioqKBmCQy1mCKZABANARH6z6BhCsNB4ZERERERERERERFZDEf4GXHQEuASYiIiIiIiIiItJqTAASERERERERERFpMSYAiYiIiIiIiIiItBgTgERERERERERERFpMogqwAqXMJEuGEBERERERERERUSFJSQeSU3M8RfkE4LAugFFu5YWJiIiIiIiIiIiowITcAE5cz/EULgEmIiIiIiIiIiLSYkwAEhERERERERERaTEmAImIiIiIiIiIiLQYE4BERERERERERERajAlAIiIiIiIiIiIiLcYEIBERERERERERkRZjApCIiIiIiIiIiEiLMQFIRERERERERESkxZgAJCIiIiIiIiIi0mJMABIREREREREREWkxJgCJiIiIiIiIiIi0GBOAREREREREREREWowJQCIiIiIiIiIiIi3GBCAREREREREREZEWYwKQiIiIiIiIiIhIizEBSEREREREREREpMWYACQiIiIiIiIiItJiTAASERERERERERFpMf3CDoCIiIg0o5SxMZxKl4aViQnMDQ1hbmSETJkMb1NS8DYlBbHJybj35g0S09MLO1QiIiIiIipATAASEREVU/ZmZuhSvTq6VK+Ohvb2cLSwyLVPhkyG29HRCI2MxMnHj3EgPBwJaWkFEC0RERERERUWJgCJiIiKmTaVKmGcmxvaVa4MXR0dlfrq6+qinq0t6tnaYqizMxLT07EpLAyLzp7Fk3fv8iliIiIiIiIqTEwAEhERFRP1bW2xpksXNC1XTmNjljAwgK+LC7wbNsSCM2cw5/RpZMhkGhufiIiIiIgKH4uAEBERFXF6OjqY06YNLn//vUaTf9mZ6OtjRuvWCBk0CHZmZvlyDSIiIiIiKhycAUhERFSElTQyws6ePeFRtWqBXK+ZoyPOeHujzebNeMolwaSFutesiRrW1qL25RcuIDUzs8DjMdHXx4gmTUTtd2NisD88vMDjISIiIu3EBCAREVERVcrYGMcHDkRDO7scz5MJAkIjI3H04UPcePUKj9++RVxKCoAPCcSSxsaobGmJRmXLws3REfVsbXMcr4qlJQ716we3oCC8/d84RNqif7166FGrlqh9zeXLhZIANDUwwHx3d1H777duMQFIREREGsMEIBERURFkamCAv/v2zTH5l5yRAf+LF7H60iVEvH2b43gnHz9G0LVrAIAGdnb4sVEjDHF2hp6CIiJOpUtj/Vdf4dvdu9W/CSIiIiIiKhK4ByAREVERtKJjR7g5Oio8HvzoEWquWoWxR4/mmvz7VNjLl/jx77/RNDAQt6KjFZ7Xy8kJPZ2cVBqbiIiIiIiKHiYAiYiIipjedepgcMOGCo/PO3MGHbZty/MefZeiotAiKAiXo6IUnrO4fXsY6PLXBSIiIiKi4oy/0RMRERUhpYyN4efhofD41BMnMOnYMcgEQSPXi0tJQfutW/FEQTKxQsmS+EZivzQiIiIiIio+mAAkIiIqQn5t3RplSpSQPLb5+nXMPnVK49eMS0nB0AMHIChIKvq4uGj8mkREREREVHCYACQiIioi7M3M8EOjRpLH7sfGwvfgwXy79tFHj/D3/fuSx1pWqIA6Zcrk27WJiIiIiCh/MQFIRERURIx0dYWRnp7kseH//IPE9PR8vb7fhQsKj3WvWTNfr01ERERERPlHv7ADICIiIsBQTw/eCgp/HI+IwOGHD/M9huMREXj89i0qliolOta6YkWNLD+uYmmJFhUqoG6ZMqhqZQVTAwOUNDbGu5QUJKSl4WFcHG6+fo3TT57gYVxcnq+nqhIGBmhfpQpcHBxQw9oaFkZGKGFoiLjkZMSlpOBuTAzOPn2KC8+fIzkjo8DjK2gGurpo7OAAt/LlUd3aGo4WFjA1MIBMEJCamYnn8fF4EBuL0OfPce7ZswJ/TJqXL49uNWqgTpkyMDM0xJvkZPxz/z7WX7lSoHEUF06lS8PN0RF1ypRBZUtLmBoYwMzQEPGpqXiXmoqHsbG48eoVTj15gmfx8YUdLhEREWkQE4BERERFQKdq1WBjaip5bMn58wUSgwDg8MOH+OGLL0THmjk6wkhPD6mZmSqPa2pggMENG2KwszPq29oq3e/m69fYGBaG9VeuICEtTeXrAsChfv1Q+pM9FRecOYPdt2/LtVUoWRKTWrTAgPr1Yayf+69HscnJ2HDtGpaeP4+XCQk5nutgbo79ffpIHpty/Dj+ffAg1+spw0RfH8cGDoShxCzSFaGh2HL9utJjVbWyws9NmqBv3bqwMjFRqk9Sejr+uHMHK0JDc6wsnZO1XbqgUdmycm07b97E4nPn5NrqlCmDdV26oJmjo2iM5PT0rATgODc3fFu7ttzxypaWktcOGTQImZ/sgykIAlwCAlS+j5ycHzwYBtmeI30FVbbbV6mCy99/L2rfe+cO5p4+rfT1ShoZYZiLC7waNEB1a2ul+12MjMTGsDBsvHZNrdc9ERERFS1MABIRERUBPRRU2n367h0OKdibLz/s+O8/hQkfBwsLPFJxVl6/unWxpEMH2CoobJKTOmXKYEn79pjUogUmBAdjw9WrULX2cT1bW5Q1N5dr+7TIyo+NGmFx+/YoYWCg9LhWJiYY26wZBjdsCN9//sHOmzcVnhv5/j10dXTQ0M5OdGxg/foaSwB+VaMGmpYrJ2qXCQJOPn6s1BgWRkZY4O6OIc7OChNTipgaGMCzXj30r1sXu27fxk///IOYpCSVxqhubY0v7O3l2s4+fSr3fY9atbD1m29gokSi1tHCQjSeIg0knh9FhXHywtneXjJJ+ylLY2PJ2JVNrurq6GBYo0aY3aYNShkbqxxnYwcHNHZwwJSWLTHy33+x55OkORERERUvTAASEREVMl0dHXSoWlXy2B937qic9MqLkCdPEPLkSZ7HMdHXx4Zu3dCnTp08j2VtYoKAr75Cl+rV4bl3L96rORvwU7o6Olju4YHhjRurPYaViQm2f/MNrExMsPrSJYXn/XbjhmQCsEv16jA1MECSBvZ37Fe3rmT7kYcP8fTdu1z7N7Szw5+9e6N8yZJ5ikNHRwff1a6NFuXLo+uOHbjy4kWexsuul5MTdvTsCT0dHY2NqY1KGRtjR48e8FDwvqIKB3Nz7O7VCxvDwjDs7785G5CIiKiYYhEQIiKiQuZUujRKK1j++08Bzv7TFFMDA/zbv79Gkn/ZdatRA8cGDkRJIyONjLe4ffs8Jf8+0tHRwcqOHeFeubLCc3bcvClaXgoAZoaG6FStWp5jsDIxUZjsCbx6Ndf+bSpVwmlv7zwn/7Ira26O4wMHorGDg0bGcylbFlu/+YbJv1xYm5jglJeXRpJ/2Xk1aIADffooLFRERERERRtnABIRERWyegr2xUvLzMT5Z88KOJq80dXRwc6ePdGyQoUcz4t6/x7HIiLw9N07vElKgqWJCRwtLPBlpUqokEMSyqVsWezr3RvttmyRTKgpa6izM0a5usq1pctkCH70CPvv3sWD2Fi8SEhACQMDlLOwQMsKFdCvXj2FiVpdHR2s6NgR9desQbpMJnm/xyMi0E4iSfht7dp5Xl7Zy8lJclnpq8REHAgPz7Gvs7099vfuneMS6KT0dByLiEB4TAyi3r+HiYEB7MzM4FK2LJo4OEBHQVLOwsgI+3v3RqP16xH5/r1qN5WNmaEhfuvRQ+Xk07P4eNEMxMqWlrCUWBIb9vKl5B6Amnb1xQvRHoBSe2PGpaRILrnPaTanoZ4e/urbF3XLlMkxhoi3b3Hy8WM8e/cOb1NSYGNqCseSJdGucmXYmZkp7Ne+ShVs/vpr9N6zJ8fxiYiIqOhhApCIiKiQKUoA3o2JQaIGloYWpLHNmuGr6tUVHr/y4gXGHz2KE48fQyaRXNHBh4Ij893d0bx8eckxvqxYEdNatcL0kyfVirG6tTWGODvLtR28fx/D//kHEW/fis6/FBWFfXfvYvLx4/i1dWuMbtpUMuFVy8YG7pUr45CCPf1+u3FDMgHYuVo1lDAwyNNz3a9ePcn2LdevSyYkP7I0NsYf334LM0NDyePP4+Mx/eRJ7PjvP4UVfh3MzTGmWTP4Nm4MA4l9A+3MzLD+q6/Qeft2Je5Emp+HB6pZWYnaw9+8Qcjjx7jx6hUexsUhPjUVUdkSjQvPnsXCs2fl+uz59lvJPTdbbdqE+NRUtWNUVtMNG+S+tzYxQcy4caLzjjx8qHKibWG7dpL7QH504vFjTD52DBeeP5fcWkBPRwdtKlXCovbtFRbs+a52bZx8/BhrL19WKTYiIiIqXFwCTEREVMgUJQBvR0cXcCR5U6lUKUxv3Vrh8V9DQuAaGIhjERGSyT/gQyXis8+eodWmTRh95IjCGVgTmjdHTRsbteL0bdwYptlmu804eRJdtm+XTP5ll5SejrFHj2LM0aMKz/laQTEX4EP1Vqm9/kwNDNAlh6RpbiqULInmEtVwBUHAhlyW/y5s1w4VS5WSPLbn9m3UWLUKQdeuKUz+AR+KnIw6fBhfrFuncHZap2rV0LVGjRxjUcSjalV4N2wo17Y/PByNAwJQc9Uq/PD33/C/dAn/PniAc8+e4XEuz6O2alS2LH5SsKRdJggYfugQ2m7ejPMKkn8AkCkIOProEVzWr8eCTxKn2c13d89xpiAREREVPUwAEhERFTKn0qUl25/FxxdwJHkzo3VrhZVZZ5w8iRknTyIjh9lo2ckEAUvPn8eow4cljxvq6eHXHJKNOcm+h9zic+fwa0iISv2Xnj+P4xERkscUPZcA8D4tTeFy3F61a6sUQ3Z969aVnJF4+ulThL95o7BfQzs7DP4ksfbRhmvX8N2ePSoVJ/nv9Ws027ABDxVUip6h5vNV3do6698ZMhkG/vknuu/ciUtKVsP9XMxt21Zyf0RBEDDs4EGsunhR6YJC6TIZJgQHi2ZPflTSyAgTmjfPQ7RERERU0JgAJCIiKmRWJiaS7e9SUgo4EvU5Wligr4IqtAfCw1VOsn3kFxqKbTduSB7r4eSEypaWao0LADdfv8bk48fV6rvo3DnJdvtcZkUpupdO1aopXIabG0WPe27FP6a0bCmZOLzw/Dl8Dh5UOEszJ5Hv36P3nj1Ik6gU29DODs0kZiqqwufgQWy5fj1PY2gjZ3t7yeXlALD+6lWsv3JFrXEnBAfjmIJk9xBnZ8m9FImIiKhoYgKQiIioEOnp6MBMQfGFt8UoAehZvz7+j737jo6qWvs4/ksjlRJK6FWU3gSJoBSpCiICAorCpYheVFSs2MWOAoIKKoqKSDF0kCYoRekiTXon1ARIIEB65v2DF66TOSeZlpkwfD9rZS3P3ufs/SQze0wedgk02P/tcnq6nlm82KW2X1q6VElpaTblAX5+6m2y9509Xly61DBRZY8Vhw8bPhuaw0Ea0pV93eIvX7Z9LjAwx70TzdQrWVK1DQ58SExJyfFgkTIFC6pz9eo25VkWix7/5Renfy6S9NeJExqzfr1hXZ969Zxud+6ePfrGjhONb0R969c3LI+/fFmv/vab0+1aJD29aJHhPpLhQUEuzVwFAACeRQIQAAAvKhgcbHqC6nkPHEjgLt1r1jQs/2HLFpf3ZDt58aLpDKYHTPrNzYGEBP164IDTMaVkZOj0pUsOP5eelaWf//nHsK6HE8kUs8M/JudwaIckPVS7tuFy0Rk7d2rb6dMOx5HdqLVrlWLQf8ebb5bxuz13H/zxh2tB+Sg/mY+/z9av17nkZJfa3xkfr+k7dhjWmfULAADyHxKAAAB4UU7LPpOukwRgVHi46Ymhk0yWvDrKbOlsrRIlnDqMIGbHDqeWuP6bsyfGTt6+3bD87qpVVSg42O52/P389FDt2oZ1uS3/7Wgy23Cim5bXnrp4UcsOHrQpL1eokG7+155+9tp6+rQ2HD/ujtB8Tp2SJQ3HgMViMR03jjJr544KFRRisu8nAADIX0gAAgDgRTkdshAUEODBSJzXpFw5w1mMhxMTte7YMbf0seXUKe01ONDCz89PTcqVc7i9NbGx7gjLKeuPHdO+c+dsykMCAx06KbdFxYoqV6iQTflfJ05oy6lTps8FBwToDoO9+JLS0vSbQdLOWUYJQEmqY7BkOTd/Hj3qajg+y2xfxfXHj7vtROSlBw8qwWBLgtDAQDUoVcotfQAAgLxFAhAAAC/KaRbZ9TKzpo7J7D93z9gya8+s/5z85cUTZC2SJpvMqHJkGbCzh3/UjopSAYPk8rbTp5Xqwt5/2W2PizPt31HeTNjmd2YJ1fVuHH8ZWVn6++RJwzpnXk8AAOB5JAABAPCijKwsXTKZBVgiLMzD0TinYuHChuVmCQNnmc1qu7loUYfasVgsindi/z53mrx9uywGS5Db3XSTCtuxDDg4IMBw/8NL6emaarLH4FU1S5QwLN9nMMPSFXEmP2NnEkbumsnmiyp4e/w5saQbAAB43vUxtQAAAB+WkJyscIPTY8sULOiFaBwXGRpqWG60ZNcVe0zac/TndCEtTZku7v/nqv3nzmn98eO6Pdvy5eCAAHWuXl0/5rIXX8dbblGRkBCb8pgdO3Ldm9Bo2bB0ZQ/Cvx57LJfI7Wc0y1CSqjqYsJWurxOxPc1j4+/MGcPy6+VzCgCAGx0JQAAAvGzXmTOGSZnrZWaNUSJKcv8pxgkmp5kWd3CmZE77LnrS5O3bbRKA0pVlwLklAB92cvmvJJU0OTSlVESEUweqOMqRg06uIgFoLtJs/Ln5Z2a0B6Dk+PgDAADeQQIQAAAv23b6tNpWqWJT7sxhCe5QoXBhRZcta1j359GjOnnxolWZpxIQZgnFUIPZk9eDn//5R6Pat1eQv/WOLG2rVFFkSIhpwqVISIg63HyzTfmO+Hi79soL9fLekgWdSABeTEvLg0h8g9kMQHcn4M3Gs7ffTwAAwD78HxsAAC/bdvq0YXnlIkVUKiJCp7Il3PJav/r19XbLloZ1Db7+2iYBaLbUMz0ry61xJZvM3DPrP7+Lv3xZvx44oI7ZknkFAgJ0f/Xq+n7LFsPnutWoYXhAjD2z/0m6ZIAAACAASURBVCQp0N+7W0AXLFDAq/37GtPx58YDXSQpOSPDof4BAED+QgIQAAAvM0sA+vn5qXXlypq8fbtH42lsMvvPYrEYHhRhtjzTmaWeOTFrL8UkMXE9+GnbNpsEoHRlGbBZAvDhunVtylIzM/WTycnC2Zm9XkfOn9eZy5ftasNVgf7+ynBzgvhGlZiSomIGswALBQcr3o2vpy+OPwAAbiQkAAEA8LLtp0/rbHKy4R/xXWrU8GgC0E/SbSYJwAMJCYYnFpsllOw5zdYRZksdL13Hy0Pn7dmjpLQ0m1lxratUUbHQUJ3Ntu9huUKF1KJiRZt2Zu/aZXfy7pzJXoqfrl2rMevX2xk58ouE5GQpMtKmvLDJ0nxnme31mV/21AQAADnz7hoQAACgTItFvx44YFjX8eabTffYywsNy5RRCZNN/dcfP25YbrZXXWk3nw5aMjzcsPz0pUtu7ceTLqena9auXTblQf7+6lKjhk35Q7Vry9/Pz6bc3uW/kvnrFWXy80X+ZpaAL+3mA13MDojx9BYFAADAOSQAAQDIB2bs3GlYHhIYqP82auSxOHrUqmVa98eRI4blcSYJuAalSrklpqtuLV3asDz2/Hm39uNpZkt3jV4Lo+W/BxMS9PuhQ3b3F2/yehmdRI38z3T8mYwXZ5mOvwsX3NoPAADIGyQAAQDIB37Zu9dmuedVz9x+u9v30zPi7+en7jVrmtYv3LfPsHxnfLxhuVnCwFmNypQxLP8nLs6t/Xja8kOHdCIpyab8rkqVrGZj1ipRQvVKlrS5b8LmzbI40N8Ok9erafnyDrSC/MJT46+hSXvX+/gDAOBGQQIQAIB8IC0zUxNMlnGWDA/Xmy1a5HkM3WvWVKUiRQzrNp08aTrTZ9OJE4blDcuUcduy0siQEN1erpxh3d8nT7qlD2/JtFg09Z9/bMoDsy0DNpr9l5GVpR9MDgsxs/fsWSUZ7JtYtWhRlXHjsu1ioaGqEhlp8xVqcIIxnLfJ5P1/V6VKhqdFO+OmyEhVK1bMsO56H38AANwoSAACAJBPjFq7VskmJ2oOuf12tapcOc/6DvDz01stW5rWf795s2ndttOnDZchBvn766Hatd0Rnh6qU8cwmZGUlqYNJnsTXk8m57IM2E8y/Fku3LfPcPZgTjKysrTi8GHDuj716jnUVk4WPPywDjz9tM1XcZM9JuGcP44cUWpmpk15kZAQ3Vetmlv66Fu/vvwM9p48nJiogwkJbukDAADkLRKAAADkE6cvXdKXGzca1vn7+WlSly6qWLhwnvT9QtOmqlG8uGHdhdRUTcnhJGKLzJcHP96okQL9Xft1I9DfX4NM9kFcsn+/0rOyXGo/P9h86pTh0tyWlSopKjxcd1aoYDg705HDP/5t7u7dhuWD3PB6SVLjsmUVbXCa9M74ePaMc7NL6emmCd0nb7vN5fbDg4LUv0EDw7r5e/e63D4AAPAMEoAAAOQjw1auND1Vs0zBglrSu7cquDkJ2KpyZb3XqpVp/RcbNpieHHvVJJMZbDWKF9fT0dEuxfdU48aqHRVlWOfo8tf8zGgWYICfn7rVqGG4/PdEUpIW7d/vVF/Td+7U5fR0m/IKhQvrlTvvdKrNq/wkjWjXzrDOLFEM10zautWwvHnFii7Pwn2zRQvTpeG+NP4AAPB1JAABAMhHLqSmatCCBbJYjI91qFasmNYOGKAmJvvhOapV5cqa3r276ayvUxcv6uPVq3NtZ/mhQ9puchjA2y1bGh5eYY96JUtqmMnS5D1nz2qxkwmw/GjK9u3KMnjdH65b1/Bwlu+3bFGGk7MfL6Smms4efL15c9P9Fu3x0h13qFmFCjblmRaLvvzrL6fbhbkZO3eaLgUf1b69Kpvs7ZmblpUqaUiTJoZ1fxw9yv5/AABcR0gAAgCQz8zZvVufb9hgWl+mYEH90b+/Pm7bVkVCQpzqI8jfX883aaIljzyioqGhpvc9u3ixzqem5tqeRdI7K1ca1hUsUEBLevdWdZMlxmZqliihX3v3Nj0B+Z2VK5Vpkii9Hh05f15/Hj1qU35H+fI2r1GWxaLvctiX0R7DV6/WRYPDQAoEBGjJI48YJvFyM6BBA73furVh3YydO/P1fnFhQUHeDsFKuAPxpGZm6qM//zSsKxURoaV9+qisgwe8NC1fXvMfekhBJv848Nby5Q61BwAAvIsEIAAA+dALv/6qBTkslwzw89OLTZvqwNNP65O2bU2XyGZXPCxMjzdsqL2DB2tEu3Y57vc2ftMm/bxjh90xz9i5U0sPHjSsKxkero0DB+qpxo3lb3CYwL/5+/npmehobRg40PQU4d8PHdLUHPYlvF79ZLKUOrvfDx1yOZl2IilJb5okcQoFB2tpnz76sHVrRRQokGtbkSEh+uree/VNp04KMHh9k9LS9Npvv7kUb14rX6iQt0OwUt7Bpf5f/vWXtp4+bVh3U2Sktg4apEcMlpJnVyAgQG+1aKHl//mP6Ws/eft2LTfZdxAAAORPtsfpAQAAr0vPylL3mBj90qtXjqf/Fg0N1QtNm+qFpk117MIFrT12THvOnNHpS5eUlpmpkMBAFQsNVVR4uJqUL686UVG5JuAkacmBAxq8aJHDcfebM0d/P/64YeIuokABfX7PPRpy++2a+s8/WnrggI5duKAzly+rWFiYyhcqpPZVq+qh2rUND7y4Kv7yZf1nzhz5zty//5mxc6c+79BBwQEBOd7n7OEf2Y1Zv15tqlRRh5tvtqkLDgjQ0Dvv1KO33qq5e/Zowd692nfunE5fvKi0zExFhYerTsmSurtqVT1Yu7YK5pAofHbxYh3IJ7P/jJZZS9LLd96p3rNmmZ7E7el46kZFqWuNGpq1a5dd7WRkZemhGTO0YeBAw8RdsdBQTerSRUPvvFPT/vlHKw4fVuz580pMSVHJiAhVKFxYHW++WT1q1TLd80+SDiYkaPDChfZ9cwAAIN8gAQgAQD6VnJGheyZP1riOHTXA5BTOfytXqJDhXnGO+mXvXvWcMUNpmZkOP3s8KUn3T5umX3v3Np09VCUyUq81a6bXmjVzuP2LaWm6f9o0HfPRk2QTUlK0YO9eda1Rw/SeM5cva47JKb6OyrJY9PCsWVrWp48ali5teE/xsDANaNDArvegkU/XrXN5ubI7nb182bC8W40aav/iizpy/rySUlMVEhioSkWKKHL48DyN53xqqjKysmxm4/r5+Wlmjx46kZSk2AsXFODnd2Vm5sGDesokAbfrzBk9OGOGZvXsqQImSeRaJUro3bvucirWuEuXdN/UqbkeCgQAAPIflgADAJCPpWVm6tF58/TovHl5/kd3RlaW3lu1SvdPm2Z4Qqy91h47prt/+knxJokWZ52+dEntJk3SmthYt7ab3+S2DHjStm1KdSI5ayYxJUXtJk3SyiNH3NbmVR/++aeeW7LE7e26YnUO75+IAgVUq0QJ3V6unOqXKqXCJvtPulOWxaK1x46Z1pcpWFDRZcuqUZkyuqVYsRyX7UvSgn371C0mRkkG+zu64lBiolpNnKgd8fFubRcAAHgGCUAAAK4DEzZvVs2xY/XDli1Kd/Lk15z8efSomk6YoDeWL3fLwRqrY2N12/jx+u3QITdEd2VJ8m3jx+eYKPEVC/ftyzHZ667lv/92LjlZbX/8Ue//8Ydb3l/Hk5J039SpejUf7vuXHw8jGW5ygIezftm7V7d/+602njjhlvZiduxQ42++IfkHAMB1jCXAAABcJ05dvKh+c+fqzeXL9XR0tB6sXVvlXDi4ID0rS/P27NFXf/2lZSaHd7jiyPnzavvjj+pao4Zea95cDUqVcriNTSdP6r1Vq5xe8vrTtm02JyXbc6qxPabv2KHV2fZKc0fbqZmZemXZMt1qsCT39KVL2plHSZj0rCy9/vvv+mnbNr3evLl61KplegKsmRNJSRq/aZNGr1vn1M/il717te/sWZtyZ5ajm0nJyFCnqVO15JFHXBo/7rRg3z69vGyZPmjd2vAQFWfsjI9Xk2+/Ve969TT0zjtVrVgxh9tYeeSI3l250m2JfAAA4D0Gv2FUPStZitoUv/KgFBzkgZAAAIA9/CQ1LFNGd1etqnolS6pOyZKqWrSoaQLh9KVL2nv2rDafPKlVR45o2cGDbkuG2aNBqVLqUqOGWlSsqNpRUSoaGmpzz7nkZG2Pi9OKw4c1a9cubTM51RR5r0RYmLrVrKlWlSurcdmyKl+okM0BMmmZmdp6+rTWxMZqxeHDWrB3b57MUM0LhYKD9XR0tHrWqqUaJUrYjJvTly5p/7lzuvO77zwWU8PSpfXs7ber3U032Rykk56VpcOJifrqr780au1ah9r1k9SkfHl1rlZNzSpWVM0SJQyXN8dduqQtp05pxeHDmrlrl/YaJGMBAEA+tHKbtHyrQcWlxdKpeyQSgAAA+JzCwcEqFBys0KAgZWRlKS0zU/GXLrl13zh3KBQcrOJhYQr091dGVpbOXL6sCx5MSMIxwQEBigoPV0hgoNIyM3U2OVkX3bzPnLeEBgaqZESEgvz9lZyRoXPJyS7tg+kOxcPCFBkSokyLRUmpqUpISVGGG5OrkSEhigwNVaC/v9IzMxV36ZIuefl7BgAATrIjAcgSYAAAfMz51FSPzuxz1oXUVBJ+15HUzEzF+ujpy8kZGTqcmOjtMKycuXxZZ9x8kM6/JaSkcJovAAA3EA4BAQAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHwYCUAAAAAAAADAh5EABAAAAAAAAHxYoN137o6VAgPyMBQAAAAAAAAADok/n+st9icAZ692JRQAAAAAAAAAXsASYAAAAAAAAMCHkQAEAAAAAAAAfBgJQAAAAAAAAMCHkQAEAAAAAAAAfJjRISBzpeT2UmYZs4f8/f3VrVu3PAwLAAAAAAAAgJH4+HitWLEil7syTl39Lz+TO+ZJ6mT2eFBQkNLS0hyPDgAAAAAAAIBLVq1apRYtWuR22xBJoyWWAAMAAAAAAAA+jQQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MNIAAIAAAAAAAA+jAQgAAAAAAAA4MMCvR0AAADwnKysLJ0/f96qrECBAgoPD/dSRFdcuHBBmZmZ165DQ0MVEhLixYiuH0av6VVhYWEKDg52e5+JiYmyWCw25cHBwQoLC3N7f96SkZGhpKQkq7LIyEgvRfM/2X/+ERERCgoK8mJEAAAgv2MGIAAAN5BDhw6paNGiVl+DBw/2dlhq0aKFVUxffvmlt0O6bhw4cMDmNb369fzzz7u9v8OHD5v2N2TIELf3503r16+3+v5Kly7t7ZAkSeXKlbOKa8mSJd4OCQAA5HMkAAEAAHzUzJkzrWZWuqtNo9l/AAAAyL9IAAIAAPioU6dOafXq1W5tc+bMmW5tDwAAAHmPBCAAAIAPmz59utvaOn78uNavX++29gAAAOAZJAABAAB82IwZM9y2DHjWrFnKyspyS1sAAADwHE4BBgAAXvf666/r7Nmz166bNGnixWh8y9VlwM2bN3e5rVmzZrkhIgAAAHgaCUAAAOB13bp183YIPuWWW27R3r17r13PmDHD5QRgXFyc/vjjj2vX4eHhKlKkiI4fP+5SuwAAAMh7LAEGAADwMd27d7e6nj59usvLgGfNmmXVRseOHRUWFuZSmwAAAPAMEoAAAAA+plGjRqpSpcq161OnTmnNmjUutZn99F9mbQIAAFw/SAACAACnnTp1Sjt37tSmTZu0a9cuxcXFeTuka9LT07Vnzx5t2rRJ27Zty5OlqpcuXdKuXbv0zz//KDEx0e3tu6Jr165W166cBnz27FmtXLny2nVoaKg6dOjgdHtmzpw5ox07dmjr1q06ceKEMjIy3N6HJGVkZOj48eP6+++/dfDgQaWkpORJP/+Wnp5+rc89e/YoKSkpz/sEAAC4ij0AAQCA3dLS0jRr1ixNnTpVa9euVXx8vM09ZcqUUfPmzdW/f3+1adNGfn5+ubY7efJkHTt27Np1q1atdNtttxne+9VXX+n8+fPXrl944QUFBARIkiwWi2bNmqWvv/5aK1euVFpamk1s99xzjwYPHqx69erZ9T1nt2/fPv3www+aPHmyjhw5YlVXokQJdenSRc8//7xuueUWSdLhw4f1888/W933xBNPqGDBgk71b6/u3btrxIgR165nzpyp0aNHy9/f8X//nTdvntLT069d33333YqIiHA5xrS0NE2fPl2zZ8/W4sWLdenSJat6f39/RUdHq3PnzurVq5fKly/vdF9JSUmaPHmyfv75Z61atcrmNOPatWvr4YcfVp8+fVSmTBmn+/m3Y8eOaerUqZoxY4Y2btwoi8ViVV+oUCG1aNFCDz/8sLp166bAQH41BwAAnjVPksXsKygoyAIAAK4/+/fvt/n/er9+/ex6dtGiRZYKFSqY/n5g9NW8eXPLwYMHc227WbNmVs+NGjXK9N7KlStb3ZuSkmKxWCyWEydOWFq1amVXXP7+/pYXX3zRkpGRYd8PzmKxpKWlWYYNG2YpUKBAru0XKFDA8tFHH1mysrIsW7dutak/duyY3f3mZu/evTbtz54925KVlWWpWLGiVfmqVauc6qNDhw5W7fz0008Wi8Viufnmm63KH3vsMbvbXLRokeWWW26x+70UFhZmefvtty2XL192OP5Zs2ZZypYta1c/4eHhljFjxlgsFovlzz//tKoLDg62q7+UlBTLe++9ZwkLC7P7+6tRo4blzz//tKv98PBwq2fnz5/v8M8EAABc31auXGnP7xjPXk30sQQYAADkavTo0brnnnt09OhRh55btWqV7rjjDh06dCiPIrvi2LFjatasmX7//Xe77s/KytInn3yi//73v3bdn5ycrPbt2+utt96ymVVoJC0tTUOHDtXTTz+typUr29WHu/n5+emBBx6wKpsxY4bD7Zw/f17Lli27dh0cHKxOnTq5FNsHH3yge+65x+qk4txcvnxZb7/9tlq1auXQcus333xTXbt2tXsJ+KVLl/TMM8/omWeesbuPf0tISFDz5s31+uuv6/Lly3Y/t2vXLrVs2VKTJk1yql8AAICckAAEAAA5mj17tp577jnDusKFC6tBgwZq1KiRqlWrdm0p7r+dPHlS3bt3t1ly6S4ZGRl66KGHdODAgWtlZcuW1QMPPKBBgwapd+/eqlatmuGz3377rX755Zdc2+/Ro4eWL19uU+fv769y5cqpYcOGqly5ss0Szi+++EKTJ09W8eLFnfjOXJc9AThz5kyHX4f58+dbJT3btm2rQoUKOR3T+++/r9dee82wLiwsTDVr1lT9+vVVsmRJw3vWrVunNm3a6OLFi7n29cEHH+jdd981rS9VqpSqVaum8PBwm7rPPvtMY8eOzbWPf0tISFCbNm20YcMGmzo/Pz9VrFhRDRs21C233KKgoCCbezIyMtSvXz8tXrzYoX4BAAByQwIQAACYSklJ0TPPPGOzd1nnzp21bt06JSQk6O+//9bGjRu1e/duxcfH65NPPlFYWJjV/Zs2bXJq9pk93nrrLf3555+SpEqVKmnevHk6evSopk+frnHjxunHH3/U7t279fvvv6tixYo2zw8fPjzH9j/99FObJGFgYKBefPFFHThwQLGxsfrrr7908OBBHT9+XB9++KHV9//MM89Y7Z/nSdHR0apQocK16+PHjzt8GnD203+zJxUdsXbtWr355ps25fXr19ecOXOUkJCgHTt2aPPmzTp16pS2bdumxx57zGYfyU2bNunVV1/Nsa8NGzYY9lWsWDGNHDlSp0+f1smTJ7V7925dvHhR69at04MPPmh179SpUx36/gYPHqy///7bqqxw4cL64IMPFBsbq8OHD+uvv/7Snj17FB8frwkTJqhcuXJW92dmZqp///52JTgBAADsRQIQAACY+vXXXxUbG2tV9vzzz2vOnDmKjo62ScxERkbqhRde0Jw5c2zq8ioBOGrUKElSvXr1tGnTJnXq1MnwoIu77rpLq1atUokSJazK165da7qk9MiRIxo2bJhVWUREhJYvX66PP/5YlSpVsqqLiorS0KFDtXHjxmsz2NLS0qwOLfEkPz8/devWzarMkdOAL168qCVLlly7LlCggO677z6nYklPT1f//v1tZiA++uijWr9+vTp37qwCBQpY1dWpU0dff/21fvnlFwUHB1vVjR07VuvWrTPsKzMzU48++qgyMzOtyhs3bqzt27frueeeU1RUlFVddHS0pk6dqkmTJhnOZM3N3LlzNXnyZKuyWrVqadu2bXrllVdUtmxZq7rChQurf//+2rVrl9q1a2dVd/LkSasDXAAAAFxFAhAAAJhaunSp1XVUVJQ++OCDXJ9r27at2rdvb1V2dZaeu1ksFhUsWFDz5s1T0aJFc7y3QoUKGjp0qFVZZmamzWm+V3388cc2J9NOnjxZd955Z4791KxZU7Nnz3YqkeRu3bt3t7p2ZBnwggULlJycfO26devWioyMdCqOuXPnavfu3VZlHTp00FdffWWT+MuuQ4cOmjBhglVZVlaWRo4caXj/woULtX37dquyqlWrasGCBSpdunSOfT3yyCPXksqOeOONN6yuS5YsqaVLl1rNwDQSERGhefPm6dZbb7UqHzVqlEN7CAIAAOSEBCAAADB17Ngxq+vbbrst12TNVc2bN7e6jouLs5mR5S6vvPJKromWq7p27WpTZjQDMDk5WVOmTLEq69y5s90z4Jo0aaI+ffrYdW9euv32262WmTqyDDj78t/sswkdMX78eKvr0NBQjRs3zu4k6cMPP6w2bdpYlc2bN09xcXG59iVJ48aNs3svxsGDB+u2226z617pSnI7e8Lx888/zzXZeFVwcLAmTpxoNXM1KSmJvQABAIDbkAAEAACmUlNTra4d2ZfsySef1IEDB6597d2712ZZsDsEBQVpwIABdt9foUIFm8M6su9xKF1JLmVPDL7yyisOxfbCCy84dH9ecPY04OTkZC1cuPDadWBgoO6//36nYjh79qx+++03q7LevXsb7smYk+yHh6SlpWnWrFlWZUlJSVq0aJFV2V133aW2bdva3Y+fn5/NjL6c/PDDD1bX1atXdzhZWrt2bXXs2NGqLHsCFgAAwFkkAAEAgKns+6StXr1aGzdutOvZQoUKqUqVKlZfRnvzueq2226ziTMn/v7+NvvJGcm+ZLly5cpq3LixQ7HVrFlTNWrUcOiZvGCUAMxtGfDixYutlj/fddddKlasmFP9b9iwwaa/Xr16OdxO8+bNVaZMGZu2/23jxo02M0379u3rcF9333233d/vqlWrrK67d+/u1Hu9S5cuVtd5tWweAADceEgAAgAAU02bNrW6zsjIUPv27TV27FivnWybnSNLNR2RPbHUsmVLp2YwZl8K7Q1NmjSxOoTi+PHjWrt2bY7PuHP5b/afZXBwsM17yx7+/v5q0aKFVVn2hPT69ettnuvQoYPDfQUFBemuu+7K9b4zZ85o//79VmX2PGckOjra6jo2NlZJSUlOtQUAAPBvJAABAICpnj172hyskZCQoKeeekqVKlXSoEGDtGjRIoeWBrtb9tNV3cFisWjr1q1WZfXq1XOqrVq1arkjJJf4+/s7dBpwamqq5s+ff+06ICDAZnaaI/bu3Wt1Xbt2bQUFBTnVVt26da2ud+/ebbWE+8CBA1b1lSpVsnvvv+zq16+f6z1bt261WUJetWpVp/orVaqU1bXFYtHOnTudagsAAODfSAACAABThQsX1oQJEwyXM544cUJfffWVOnTooMjISEVHR+uFF17Q/PnzPZoQLFy4sNvbTEpKstn/0N5DRrJzdJ+7vJJ9GXBOpwEvXbpUFy5cuHbdrFkzh5ZZZ5d9L0VXfiaVK1e2us7IyLCaJZeQkGBV72wyTpJuuummXO85d+6cTVndunVVtGhRh7+MYo2NjXU6fgAAgKtIAAIAgBzdf//9mj9/vkqUKGF6T0ZGhjZs2KCRI0fqvvvuU/HixXXPPfdo5syZysjIyNP4sh/o4Q7Zk0jSlT0NneHsc+52xx13WO2fd+zYMa1bt87w3uzLf7MnDx2V/efpys/EKOF7/vx5075cSRDb86xRAjAxMVEJCQlOfWXHEmAAAOAOJAABAECuOnTooP379+udd95RuXLlcr0/NTVVixcv1gMPPKAGDRpo9erVHojSfYySLqGhoU61FRYW5mo4buHv76+uXbtalRktA05PT9e8efNyfM5RycnJVtchISFOtxUeHm5T9u/XK/usRlf6sue1y+vZriQAAQCAO7j/n8wBAIBPKlSokN544w299tprWr58uRYsWKDFixdr165dOT73auU71gAAIABJREFUzz//qFWrVvrxxx/Vs2dPD0XrmtySTI7490m63ta9e3d98cUX165nzJihUaNGWR1u8vvvv1vNamvatKlKly7tUr/ZZ/y5ktQySrgVLFjw2n9nn7Xn7r6yi4iIsLoOCgpSv379nO4zu1tuucVtbQEAgBsXCUAAAOAQf39/tW7dWq1bt9aoUaN06tQprVixQitXrtTy5cu1Z88em2fS0tLUt29f1atXT9WrV/dC1I7JfvCJZL3M1BHOPpcX7rzzTpUuXVonT56UdGUZ8Nq1a61O5HX38l9JKlKkiNV19j0BHWG0TDYyMtK0r7Nnzzrdl9Hy3pz6lq4shx87dmyeLE0HAABwFkuAAQCAS0qVKqUHH3xQX375pXbv3q2dO3dq6NChCg4OtrovJSVFH374oZeidEyhQoVsTqk1SmzaY//+/e4IyS1yWwacmZmpOXPmXLv28/NzefmvJJtTeHfv3u10W9lfh+DgYKtZeCVLlrSq/+eff2xO6bVXbrNbJalYsWJW1xaLRXFxcU71BwAAkFdIAAIAALeqUaOGPvzwQ23cuNFmeeTChQudTsZ4kp+fn+rWrWtVtmXLFqfa2rp1qztCchuj04CvviarVq1SfHz8tbro6GiVL1/e5T7r169vdX3w4EGnZ0Zu2rTJ6jr769SwYUOr6/PnzzudcPzrr79yvadevXpWS6jtfQ4AAMCTSAACAABDe/bs0fjx462+Ll++bPfzderU0ZAhQ6zKzpw549LyT0/697JYSfrtt9+UmprqUBuZmZlaunSpO8NyWbNmzaxmycXGxl47DTgvlv9KUuPGja2uLRaL5s+f73A7Fy5c0O+//25Vdvvtt1tdN2rUyOY5o8NOcnPu3DmtXLky1/uKFy+uqlWrWpUtW7bM4f4kafXq1Ro6dOi1r08++cSpdgAAALIjAQgAAAzt2rVLjz/+uNXXhg0bHGqjXr16NmWOJtG8pUWLFlbX58+ftzod1x7Lli3T6dOn3RmWywICAgyXAWdlZWnWrFnXyvz8/NStWze39Fm/fn2rgzok6ccff3S4nWnTptmcKNysWTOr6ypVqqhixYpWZd9//73D77tJkyYpLS3NrnubN29udT158mSbOO3xxhtvaPjw4de+ss92BAAAcBYJQAAAYKhs2bI2ZatWrXKojezJr8DAQJUoUcKluDzl3nvvtYn1rbfeUkZGhl3PWywWvf3223kQmeu6d+9udT1jxgytXr362uEg0pWltJUqVXJLf8HBwXrooYesypYuXerQ7MiLFy9q2LBhVmXFixdXp06drMr8/Pz0n//8x6rs8OHDGjlypN19JSYm6v3337f7/gEDBlhdnzt3TsOHD7f7eenKDNPly5dbld19990OtQEAAGCGBCAAADBUt25dhYeHW5V9/fXXdi/hTUtL09dff23TZkBAgNtizEvBwcE2iZ1du3Zp6NChdj0/YsSIa0tr85vmzZsrKirq2nVsbKzN9+Wu5b9XPfbYYzZlAwcO1PHjx3N9NisrSwMHDtSJEyesyvv376+QkBCb+/v27WvzPhs2bJhdCcfMzEz16dPHai/E3DRp0sRmtuuHH35os1zZTFxcnPr3729VVqxYMfXo0cPuGAAAAHJCAhAAABgKDg5WmzZtrMpOnDihrl27KiEhIcdnExIS1LNnT23bts2qvGfPnm6PMy89//zzNrMAR44cqRdffNF0eajFYtGIESNyTBT6+3v3VzCjZcBr1qyxunbX8t+rGjZsaPP6HzlyRK1bt87xgJXExET16tVL06ZNsyovUaKEXnjhBcNnKleurCeffNKqLC0tTV26dNGECRNM+zp79qy6devm1P6EI0aMsDoMJC0tTZ06ddLEiRNzPPhm586datmypY4ePWpVPmTIEIWFhTkcBwAAgBESgAAAwNTLL79sU7Z8+XLddNNNevHFF7Vw4ULt2LFDhw4d0u7duzV//nw9++yzqlq1qubMmWP1XIUKFfTEE094KnS3KF68uMaMGWNTPmLECNWpU0effPKJ1qxZo0OHDmnTpk0aP368GjdurBdffFFZWVmSpEcffdTmeaNZa56W0wy/+vXr2xxs4Q6ff/65ihcvblW2Z88eRUdH65FHHtHs2bO1Y8cO7du3TytWrNArr7yiGjVq6Oeff7Zpa+zYsTkuJ3/33XdtlrFfunRJjz76qBo1aqQxY8ZoxYoV2rp1qxYsWKDnn39e1atX19y5c6/df8stt6hmzZp2fW9t2rTR448/blV2+fJl9e3bV9HR0RozZozWrFmjgwcPavfu3ZozZ4769u2rBg0aaNeuXVbP3XrrrXrppZfs6hcAAMAegd4OAAAA5F9NmjTRwIED9c0331iVJyQkaMSIERoxYoRd7YSFhWnSpEmKiIjIizDz1EMPPaRNmzbZ7CG3d+/eXJM0//3vfzVgwAB9++23VuXBwcFuj9NRLVq0UIkSJQyXurp7+e9VJUqU0Ny5c9WhQwedP3/+WnlaWpomT56syZMn29XOsGHDbPYxzK5QoUL65Zdf1Lp1a507d86qbtOmTbkesFGkSBHNmzdP/fr1sysmSRo1apSOHj2qhQsXWpVv3LhRGzdutKuNihUraubMmQoKCrK7XwAAgNwwAxAAAORo3LhxuSZbclK6dGktWLDA5qTU68mIESP00ksvWS3xzE337t312WefKSUlxarc398/X8wADAwMVJcuXQzr3L3899+aNm2qZcuWGR4yk5sCBQpo9OjRevPNN+26v379+lqyZInDfRUpUkRz5sxRtWrVHHouNDRUs2fPVu/evR167qqGDRtq+fLlbjt8BQAA4CpmAAIAcAOJiIiwSeY1atQox2cCAwMVExOjiRMn6t1339WBAwfs6isyMlL9+vXTG2+8oSJFiuR471133aVSpUpdu77llltM7+3QoYPi4uKuXVeuXNmueP6tS5cuSk1NvXZtz8nEw4cPV/v27fX4449r//79pveFhYXpjTfe0EsvvSR/f39dvnzZqj4qKsqtewAavab2Jrz69+9vs59j8eLFVb16dbuev+eee1S/fv1r1w0bNrTruUaNGmn37t167733NGbMGJskaXZ+fn7q0KGDRo0aleN7w6yvnTt36rXXXtP48eNN9268qmXLlvrmm2+uLYFu1aqVypUrJ0l2zcorUKCAfvzxR/Xu3VtDhgzRjh07cn2mTJkyGjJkiJ599lkFBub+63n292+ZMmVyfQYAANzYzP4Ze56kTmYPBQUF5frLEwAA8D0Wi0UrV67UqlWrtHnzZh0/flznz59XRkaGihQpohIlSqhevXq6/fbbdffddys0NNTbIbtdVlaWVqxYoZiYGO3Zs0cnTpyQv7+/KleurJYtW6pPnz5Wyczvv//e6oTXRo0a2b0c9EZw8eJFLV68WIsWLdLRo0d16tQppaWlKSoqSqVLl1bz5s3VuXNnlS9f3uW+EhISNHv2bP3222+KjY3V6dOnFRoaqvLly6t69erq2rWrmjRp4obv6n+2bNmiOXPmaPPmzYqLi1NcXJzCw8MVFRWl+vXrq2XLlmrXrp0KFCjg1n4BAIBvW7VqlVq0aJHbbUMkjZZIAAIAAOSp119/Xe+///616y5dumjWrFlejAgAAADXO0cTgCwBBgAAMJCYmGiz3NneJa7/9scff1hdR0dHuxQXAAAA4CgSgAAAAAb27dunxo0bW5Vt375dtWvXtruNEydOaO3atVZldvxLLQAAAOBWnAIMAABgoFatWjb7sn3//fcOtfHxxx8rPT392nVUVJRTswgBAAAAV5AABAAAMBAWFqb777/fquyzzz7Tr7/+atfz06ZN0+eff25VNnjwYLtOkgUAAADciQQgAACAiRdffFGBgf/bMSUjI0OdOnXSq6++qlOnThk+s3//fg0aNEi9evVSVlbWtfLChQvriSeeyPOYAQAAgOzYAxAAAMBEo0aN9Oqrr+qdd965VpaWlqYPP/xQH3/8sWrVqqWKFSsqJCREiYmJOnz4sPbt22fTjp+fn7755hsVLVrUk+EDAAAAkkgAAgAA5GjYsGFKTU3V8OHDrcozMzO1bds2bdu2LcfnCxQooLFjx6p79+55GSYAAABgiiXAAAAAufjoo4+0bNkyh04AlqTmzZtr7dq1evTRR/MoMgAAACB3zAAEAACwQ+vWrbV9+3atWbNG8+fP14YNG3TgwAElJibq4sWLKlSokIoXL66qVauqadOmuu+++1S3bl1vhw0AAACQAAQAAHBE06ZN1bRpU2+HAQAAANiNJcAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPgwEoAAAAAAAACADyMBCAAAAAAAAPiwQG8HAMAxP/30k44cOWJT/sQTTygyMjJP+rx48aLGjBljU162bFn17ds3T/oE7JGYmKgNGzZo165dSkxMVFpamiIjI1W+fHlFR0erUqVK3g4xVwsXLtT27dttyu+//35Vq1Ytx2fnzJmjPXv25FVodrn11lvVtm1bm/KYmBgdOnTICxH9T3R0tFq2bGlan5SUpHHjxtmUFy1aVAMHDszDyLwnpzHTuHFjVa5c2dsh5spszHTu3FnVq1fP8dn8PGauSk1N1ejRo23KCxYsqCeeeCLHts3e05722GOP5dnvJPC+Q4cOacOGDTp69KgSExMVFBSkyMhI1ahRQ9HR0SpcuLC3Q8zRtGnTDH+X7t27t8qUKZPjsz/++KNOnjyZV6HZpWXLloqOjrYpnzBhgs6cOeOFiP6nbdu2uvXWW03rT5w4oUmTJtmUV6pUST179szL0ADkYJ4ki9lXUFCQBYB3tGjRwnBc7tu3L8/6PHbsmGGfjRs3zrM+gZwsWrTI0rFjR0tAQIDp/6skWWrVqmUZPXq0JTk52dshm+rbt69h7NOnT8/12W7duuX4/Xvi66mnnjKMrX379l6P7eWXX87x52f22VatWjWnXsv8zJEx8+mnn16XYyYmJibXZ/PzmLkqMTHR8LmyZcvm+v3FxsZ6/fuTZNm7d6/dryeuD8nJyZZRo0ZZatasmeNrHxAQYLn33nstS5Ys8XbIplq1amUY+7p163J99rbbbvP6+Bo+fLhhbLm9Np74+uKLL3L8+a1du9bwuTZt2jj1WgI3upUrV9ozNp/V/2MJMADguhEXF6d7771X99xzjxYsWKDMzMwc79+xY4eeffZZ1a5dW6tWrfJQlED+4cyYGTJkiGrVqsWYASBJWr58uWrWrKnnnntOO3fuzPHezMxM/fLLL2rfvr06d+7s9RlpAID/IQEIALgu7Ny5U40aNdKCBQscfvbAgQNq06aNJk6cmAeRAfmTK2Pm4MGDatOmjX744Qf3BwbgujF+/Hi1a9fOqS0d5s2bp8aNG2vv3r15EBkAwFEkAAEA+d7Ro0fVrl07xcbGOt1Genq6BgwYoNmzZ7sxMiB/cteYefTRRzVr1iw3RgbgejFlyhQNGjRIGRkZTrdx6NAhtW/f3uv75gEAOAQEAJDPZWZmqlevXjp+/LhNXVRUlJ544gl16NBBN998s4KDgxUXF6e1a9fq+++/16+//mrTVt++fVW/fv3r4rCD3NStW1fnz5/P837WrVunixcvGtb5+xv/W2KDBg1yXW7qDqtXr1ZycrJhnVlsvs7dY6Zfv35q0KABY8YBzowZdwgJCVGbNm3yrP2rzp07p7///tu0PiAgIM9jQN7avXu3Bg4cqKysLJu62267TYMGDVKLFi1UqlQppaen6/Dhw1q2bJnGjRungwcPWt1/+PBh9e7dW7/++ut1/7ncuHFjjxxysmLFCtPEq9n4atKkSa6HmLjKYrFo+fLlhu8LibEPXK84BATIpzgEBDeaMWPGGL7/7r33XsvZs2dzfHbWrFmWiIgIm2fbtm3roehz58ohIJ4wd+5ci5+fn2GMkZGRlgMHDngttilTppj+rhIVFWWJjY3N8XlfPQTEbMx07Ngx1zEze/ZswzGTnzZod+UQEE9wdcy4cgiIJ2RmZlratWtnOvZ69erl7RDhBnfccYfNaxsQEGAZNWqUJSsry/S55ORky+DBgw3fG+PHj/fgd2DOlUNAPGH06NGm46tChQqW+Ph4r8X23nvvmcZ28803WxITE3N8nkNAAPfiEBAAgM+4cOGC3n33XZvy9u3ba/bs2SpatGiOz3fp0kULFixQUFCQVfnSpUttZjrB1r59+9SnTx9ZLBabOj8/P3333XeqUqWKFyKT/vnnHw0cONCwzt/fX5MmTVK5cuU8HJX3mY2Zdu3aac6cObmOmfvvv18LFy5UgQIFrMqXLVumJUuWuDVWX7R///58O2bc5fXXXzf9/KxTp46++eYbD0cEd5s7d65Wr15tUz527FgNGTJEfn5+ps+GhITos88+03PPPWdT99Zbb+ny5ctujdXXrFu3Ti+99JJhXXBwsGbOnKnixYt7OKorli9frrfeesuwLjQ0VDExMR6ZHQnAeSQAAQD51nfffWdzgmB4eLh++OEHBQbat4tF8+bN9fzzz9uUf/LJJ26J0VclJyerZ8+epsslX3vtNd1///0ejuqKpKQk9ejRQ5cuXTKsf++999SuXTsPR5U/uGPMNGvWjDHjhOTkZPXo0SNfjhl3+eWXX/TRRx8Z1hUsWFAxMTEKCwvzcFRwt48//tim7O6779bjjz9udxvDhw9XtWrVrMpOnjypn376yeX4fFVcXJy6d++utLQ0w/rPPvtMjRo18nBUVxw7dkw9e/Y03drjyy+/VP369T0cFQBHkQAEAORb48aNsyl77rnnVKpUKYfaefnll21mPv3222/at2+fS/H5skGDBmnz5s2Gda1atdLbb7/t2YD+n8ViUb9+/bRr1y7D+nvvvVdDhw71cFT5h9GYGTJkiEqXLu1QOy+99JLNmPn99985zTMH+XXMuMvhw4f1n//8x3R24/fff6/q1at7ITK40+bNm7VmzRqrMn9/f3344YcOtRMYGKj333/fpvzLL790KT5flZWVpUceeUTHjh0zrH/44Yf12GOPeTiqK9LT0/Xggw8qPj7esP7JJ5/Uf/7zHw9HBcAZJAABAPnS33//bZOgCwoK0rPPPmvyhLkiRYro0UcftSqzWCyKiYlxKUZfNXbsWE2cONGwrnz58po2bZrXNvr+5JNPNHPmTMO6SpUqaeLEiTkuT/Nl7h4z2ZdYM2bMjRs3Lt+OGXdISUlRt27ddO7cOcP6l19+Wd26dfNwVMgLRmO8Xbt2Ts3u6tq1q82S9y1btmjPnj1Ox+erXn31VS1dutSwrm7duho/fryHI/qfIUOGGC4Jl64cijJy5EgPRwTAWSQAAQD50vz5823K7rrrrlz3MDNjtPRu3rx5TrXlyzZs2GC4/FO6kkyaOnWqSpQo4eGorlixYoVee+01w7qQkBDNnDnT6feHLzAaMy1btlSxYsWcao8xY58NGzYY7ncmeX/MuMsTTzxheupvy5YtDfedxPXJaIw7m9z18/NT586dbcqNPqtuZPPnzzdcdi1d+ceYWbNmeW1p/bRp0zR27FjDuqJFi+rnn39WcHCwh6MC4CwSgACAfGnt2rU2Za7snxUdHa2oqCirss2bNys5OdnpNn3NuXPn1LNnT6WmphrWf/rpp7rjjjs8HNUVp06dUq9evZSRkWFYP27cON16660ejip/cfeYady4sUqWLGlVtmXLFsbMv+TnMeMuX3/9tb7//nvDulKlSmnKlCl27y+J/C0xMVG7d++2KjNL4tmrU6dONmXZlxjfyHI7OGjChAm66aabvBCZtHv3btNlx/7+/poyZYoqVark2aAAuIQEIAAg37FYLNqwYYNNeXR0tNNt+vv7q0GDBlZl6enpprNabjRZWVnq1auXDh8+bFj/4IMP6sknn/RsUP8vIyNDPXr00MmTJw3rH3vsMfXr18/DUeUvnhwzmzZtcrpNX5Kfx4y7bNmyRUOGDDGsCwwMVExMjMP7SyL/Wr9+vbKysqzKqlSp4tIM1kaNGtlsy7Bu3Tqn2/MlKSkp6tGjhxITEw3rhw4dqq5du3o4qisuXryorl27KikpybB+2LBhat++vYejAuAqEoAAgHxn9+7dSkhIsCoLDAxUzZo1XWq3Tp06NmX8IXLFm2++qSVLlhjW1a5dW99++62HI/qfF154QX/88YdhXf369TV69GgPR5T/mI2ZWrVqudQuY8Zcfh4z7pCQkKCuXbuazvgcMWKEmjVr5uGokJeMxna9evVcarNgwYKqUKGCVdnJkyd19OhRl9r1BTkdHHTXXXfpnXfe8XBEV+R22FbHjh316quvejgqAO5AAhAAkO9s2bLFpuymm25SSEiIS+0anVBp9sv3jeSXX34xPeExIiJCMTExCg8P93BUV8TExGjMmDGGdZGRkZo1a5ZCQ0M9HFX+YzRmqlSpwpjJIwsWLMi3Y8YdsrKy9PDDD+vQoUOG9T169NAzzzzj4aiQ17Zu3WpTVqNGDZfbNWrjRp99/+WXX+qHH34wrCtVqpQmT57staX1I0eO1IwZMwzrKlasqIkTJ8rfnzQCcD1iww4AQL5jNDOgTJkyLrebfT8zs75uJAcPHlSfPn1sln1JV/Yf+uGHH9zyB6Azdu3aZXN681X+/v766aefVLlyZQ9H5bytW7dq7969167DwsLUsWNHt7TNmPGcQ4cOqXfv3vlyzLjLO++8o0WLFhnW1ahRw2OzG/NyzFyvFixYoMuXL1+7rlatmurWreuWto8cOWJTxueI+23YsMF0aX1QUJCmT5/utaX1a9asMZ3dd/WwLWcPlgLgfSQAAQD5zrFjx2zKSpUq5XK72Q8BMevrRnF1/6HsS0evev75550+/dFVFy9e1AMPPGC6/9Abb7yhDh06eDgq10yaNEkjR468dl2hQgXDP7idwZjxjJSUFHXv3j1fjhl3WbZsmd577z3DuoiICE2fPl0FCxb0SCzZx0z58uVv6MSRdGXZaGxs7LXrF154QZ988olb2s6rzxGjPQSPHz/ucrvXo3PnzunBBx80PThoxIgRuvPOOz0c1RWnT59W9+7dlZ6eblj/xRdfqGHDhh6OCoA7MXcXAJDvGP1hULRoUZfbjYyMNOzLaCbPjeDJJ580PdChadOm+uCDDzwc0f8MGjRIO3fuNKxr3bq13njjDQ9HlL95csycOHGCMWPA22PGHY4ePaqHHnpImZmZhvXjxo1zeV9J5E+pqamKj4+3KXfH54hRG/9OYt4oclta37NnTz399NMejuqKq4dtnThxwrC+d+/eGjBggIejAuBuJAABAPmO0S+gwcHBLrdr1EZaWprOnDnjctvXm2+++UbfffedYV3JkiU1ffp0BQUFeTiqK0aPHq2ffvrJsK58+fKaNm2aAgICPBxV/ubpMWOUKPB13377bb4dM+6Qmpqqbt26mX4ePvvss+rdu7eHo4KnnDp1ShaLxabc1X1EJalAgQI2ZWaJJl/29ttva/HixYZ11apV0/jx4z0c0f+8/PLLWrVqlWFdvXr19PXXX3s4IgB5gSXAgI8YOXKk4UwNd7h48WKetAuYMXrPuSOZYfRHiCRdunTJ5bavJ1u3bjXdwD8wMFAxMTFu2ffJGevWrdPLL79sWBcUFKRp06apePHiHo4q/2PM5K2tW7eazszx9phxl8GDB+uvv/4yrLv99ts1fPhwD0cETzIb03n1OXKjfYYsXbrUdIZwRESEZs2apUKFCnk4qivmzp2rTz/91LCOw7YA30ICEPARX331lbdDANzGaG+cadOmaePGjS61a7avTXJyskvtXk8SEhLUtWtX0+/5o48+UvPmzT0c1RWnT5/WAw88oLS0NMP6zz77TE2bNvVwVNcHozHz888/myZ07MWYyd9jxl0mT56sb775xrAuKipKM2bMME0GwzekpKQYlj/xxBOKiIhwqW2jvQVvpM+QI0eOqFevXqZL6ydMmKCaNWt6OKor9u7dqz59+hjO/vTz89N3332nKlWqeCEyAHmBBCAAIN8x+sPg0KFDpvvmuMrsDx9fk5WVpUceeUQHDx40rO/cubOee+45D0d1RWZmpnr37m26MXyvXr303//+18NRXT8YM3kjP48Zd9m2bZsee+wxw7qrp22XLVvWw1HB08wScuvWrfNof74mJSUlx6X1Q4YMUY8ePTwc1RWXLl1S165ddeHCBcP61157Tffff7+HowKQl9gDEACQ73g6uXCj/CHy7rvvauHChYZ1N998syZOnCg/Pz8PR3XFK6+8oqVLlxrW1alTx3R2Eq5gzOSN9957L9+OGXdITExU165ddfnyZcP6Dz74QG3btvVwVPAGs1Np88qN8hny1FNPmR4c1KRJE3300Ucejuh/Bg0apB07dhjWtWrVSm+//bZnAwKQ55gBCAA+YMaMGZo+fbpX+v7000+v+72vruc/4O3122+/6d133zWsCw8P1+zZs1W4cGEPR3XFvHnzNGLECMO6ggULKiYmRmFhYR6OCjm5UcbMO++8Y1jn7THjDhaLRf3799eBAwcM6zt16qSXXnrJw1HBW4yWgOalG+Ez5KefftKECRMM664eHOStpfWfffaZJk2aZFjHYVuA7yIBCPiIu+++W+Hh4XnSdkpKihYsWJAnbcM9/vnnH8XExHil72HDhrk9AWi06Xjp0qVd7icjI0Nbt261Kff1va1iY2P14IMPmu4/NG7cONWqVcvDUV2xb9++HPcf+v7771W9enUvRHZ9Ycy4V34eM+7ywQcfaPbs2YZ1VatW1Y8//nhDJGlwhdlhHzVr1nT5AIj4+HgdPXrUrv58xdatW/X4448b1gUEBGjSpEnRse8JAAAgAElEQVReW1q/bt06vfjii4Z1QUFBmjp1qkqUKOHhqAB4AglAwEd8/vnnqlq1ap60ffz4cZUrVy5P2gaMBAUF2ZT1799f7733nkvtnj59WqVKlbIpDwkJcand/Cw9PV0PPvig6f5DTz31lPr06ePhqK5ITk5Wz549df78ecP6l156Sd26dfNwVNcnozHTr18/vf/++y61GxcXp5IlS9qUM2a8M2bcZfny5XrrrbcM60JCQvTzzz+rSJEiHo4K3mT0GSJJU6ZMUb169Vxq+4svvtDgwYOtynw5AXj14KD8uLQ+Li5O3bt3Nz1s69NPP9Udd9zh4agAeAp7AAIA8h2j2UVmp5E6wuwXXl/+Q2Tw4MFas2aNYV10dLTp0ltPGDRokDZv3mxY17JlS5cTvjcSxoz7PP300/l2zLjDsWPH1LNnzxxnN956660ejgreZjam8+pzxFc/Q64urTc7OOi+++4znX2X17KystS7d2/DU5kl6aGHHtKTTz7p4agAeBIzAAHAB5QvX15NmjTxSt95sTeb0XIjs0SEI8z+kHF1eVN+NWXKFH399deGdUWLFtW0adO89kfYuHHjNHHiRMO6UqVKacqUKQoM5NcUezFm3GPKlCn66quvDOu8PWbc4ersxvj4eMP6//73v+rXr5+Ho0J+YDam8+pzxFc/Q95//33NmTPHsM7bS+tfe+01/frrr4Z1tWvX5rAt4AbAb9YA4AMGDBigAQMGeDsMt4mKirIpu3DhgsvtGi019fPzM+zverdt2zYNHDjQsC4gIEDTpk1TpUqVPBvU/9uwYYOee+45w7qgoCBNnz5dpUuX9nBUjjl48KASEhIceub06dNW12lpaaanQ+akYcOGNmWMGdfl5zHjLs8995xWr15tWNeoUSONHj06z/rOb2MmP3Dme8mekDt16pTD7URGRqpKlSpWZWZ7vuXV54jRdhzXu99//9305NyQkBDFxMR47eCg+fPna/jw4YZ1ERERiomJybO9xAHkHyQAAQD5jtEfBmfPnnW5XaM2ihYt6tSBBv/H3p3H1ZT/fwB/3XYVUzGUfd8NIdswDTJjGyFkFyLZTRk7Y8YSIsZalmRNdjO2MNaRGQwGjX0bKVuIVKp7fn/4dn9d55zbrbuUvJ6PR49H5/P5nM/nfctJve9nefLkCdq1awdBEODv74/u3bvrHJ++vH79Gp6enrL7D02fPj3X9h+Kj4+Hp6cnUlJSJOvnzp2Lpk2bGjmq7JswYYLOB+/ExcWhfv362bpHoVBAqVSKyo35zNjb22s1Cy4uLg47duzAuXPncOvWLbx9+xZWVlYoUqQI6tWrh2+++QYNGzbUOUZ9yMvPjL6Eh4djyZIlknX29vaIiIgw6OzGiRMnYsuWLTr18fjxY709M3mBi4uLzqfvbtiwARs2bMjWPZ6enggPD1cry3iuP/zZbKifI/ktAZjVwUHLly+Hs7OzkaN679atW1ketlWtWrVciIyIjI0JQCIiA3n79i3i4uJU16VKlZLdZJvUSR06ILchf3bo84+QiIgInDt3DoB4lkpuEgQBXl5euHbtmmR9u3btMGHCBCNH9Z5SqUTPnj1x7949yfqOHTti1KhRxg0qn5B6ZnLrD/f4+HhMmjQJK1eulP1jePfu3Zg6dSpcXFwwb948uLq66hxrTuXlZ0Zfrl+/jsGDB0vWmZiYYOPGjShXrpyRo6K8JGNm73///adWro+fI/Hx8aKy/JQATE1NRY8ePWSX1vv6+sLLy8u4Qf1PcnIyPD098fLlS8l6Pz8/dOnSxchREVFu4SEgREQGcvz4cVSoUEH18eEv1SRP6g8DuQ21s0Mq8ZTTpaYbN27UMRrDmDNnDnbs2CFZV6ZMGYSFhcHEJHf++586dSoOHjwoWVe5cmWEhYXl2t5IH7u88szExMSgcePGWLFihWzyL7OzZ8+iZcuWCAgI0CVMneTlZ0Yf3rx5g06dOuH169eS9VOnTkWbNm2MHBXlRYb6OXL37l1RWV7f5iE7Ro0aJbu0vkGDBggKCjJyRP9v6NCh+PvvvyXrmjRpglmzZhk5IiLKTZwBSEREeU7VqlVFZbGxsXj16pVO++dER0eLymrVqpXtfvbs2YMzZ87kOA5DOXr0KKZMmSJZZ2Vlhe3bt6Nw4cJGjuq9vXv3Yvbs2ZJ1tra22LFjBwoVKmTkqPKPvPDMpKamonXr1rhx44aqzMTEBC1atMDXX3+NkiVL4s2bN/j777+xfft21b5g6enpmDBhAuzs7DBkyJAcx5oTefmZ0QdBENC/f3/8+++/kvVubm6YPHmykaOivKpatWo4e/asWtn169d16lMQBMk+atasqVO/ecXmzZuxfPlyybrcPjhoxYoVCA0NlawrVqwYtm7dypUpRJ8YJgCJiCjPqVu3rmR5dHS0TqcdS/0RnN09ebZt24YBAwbkOAZDiYmJQY8ePZCWliZZv2TJklzbCP/u3bvo06eP7D5cK1euRI0aNYwclW5mz56NH374IVv3LFy4UG2vLkdHR/z22296iScvPDOLFy/GlStXVNclSpTA1q1bJccPDAzEsGHDsHnzZlWZn58f2rdvj5IlS+Y43uzIy8+MvixYsADbtm2TrCtTpgzCw8NhampqlFhmzZqFsWPHZuueD5+ZYsWKYe/evfoOLdd8mGzTRrt27dS2nejduzdGjx6drT7s7e0ly52dnbFu3Tq1sqtXr2Y7xszu37+PN2/eqJWZmpqidu3aOvWbF1y+fFn24KDcXlp/8eJF2cO2zMzMEBERgeLFixs5KiLKbUwAEhHlA6GhoVizZk2ujL1x40aULl1ar30WL14cjo6OansoAu9P2MtpMuPVq1e4ePGiqNzFxUX2njdv3uDff//F5cuXceXKFezbt0/n2RCGkJqaiu7du8vuRejt7Z1rp0QnJyeja9eusqd/jho1Kk8doKKtD0/Q1MaH+/RZWFjoLcFkqGfmwoULonKpZ0YQBCxYsEB1bW5ujl27dske2GBvb4+NGzciNTVVlaB6+/YtAgMDDXoSbYa8/Mzoy+nTp2X3LrS0tMTWrVuNOrsxrz0zeUFOXsuHh1Y5Ojrq7Wsi9UbCf//9h5s3b6JSpUo56vP3338XlVWrVu2jP3H29evX6NatGxITEyXrp02bhtatWxs5qvfi4+PRuXNnJCUlSdYHBATgq6++MnJURJQXMAFIRJQP3L9/H6dOncqVseVOzdRV3bp1sW/fPrWyAwcOYNKkSTnqLzIyEqmpqWplBQsW1PhHzeDBg9VmKOVVfn5+st//2rVr45dffjFyRP9v2LBhOH/+vGRdo0aNMHfuXCNHlH8Z45mxtbVF5cqVRW3Pnj2LmJgY1XWvXr2yPK1VoVBgyZIl2Lt3r+oP1V27dhklAejv759nnxl9ePz4Mbp27Sr6/mVYtGiRxjc/6NNUp04dmJiYiGZr79+/P8cJwAMHDojKPvYkbsbSermDg9zc3HL8c1dXSqUSvXv3ltx3EQDc3d1lZwYSUf7HBCARGY1SqcTJkyexa9cu3Lp1C48fP4alpSWKFSuGL7/8Ep06dULZsmWz1eebN29w8OBBHDx4EA8fPsTTp09ha2sLJycnNG7cGN999122+0xKSsLu3bvxxx9/4Pr163jx4gVMTU3h4OCA2rVr45tvvsHXX38teVhBYmKi6hfCW7duqdVduXJFNQvK3t4+R7MhPiVubm6iZMaZM2dw7969bH9Pgfen9kqNYazlb4ayZcsWLF68WLLO3t4eO3bsQIECBYwc1XurVq2SnZlatGhRbN26VTSbhXIuN5+Zw4cPq1336tVLqzGKFSuGli1bqpZC379/Hy9evJBdoqgPW7ZskU3w5fYzow9paWno1q0bHj16JFnfq1cv+Pj4GDkq+hgUKlQIDRs2RFRUlFr5li1bMHLkyGz39+rVK8mDn7799lvJ9rdu3VLtDVqyZEnVDFBBEHDw4EHs3bsX9+7dw+PHj2FlZYXy5cujZcuW6Nq1K6ysrLIdX07NmzcP27dvl6wrXbo0Nm/enGu/W0yfPh379++XrKtUqRIP2yIiSXsACHIf5ubmAhHlDldXV8nn8ubNmwYb8+HDh5JjNmjQQOs+jh8/LtSoUUP25woAwdTUVOjfv7/w6tWrLPtLTU0VFi9eLDg4OGjsU6FQCH379hViYmKy7DMtLU0ICgoS7OzsNPYJQKhZs6bw119/ifr466+/srwXgODh4aH1104b06ZN02pcQ3z8+++/en0tGW7fvi0oFArReD4+Ptnu68qVK4KJiYmor3Xr1mm8b+XKlcLgwYNFHx4eHmr9LFy4MKcvU/Dy8pL8um7dujXLe69duyYUKlRI9t/+zp07cxyXri5evCgUKFBAMjYTExMhMjIy12LLIPezrUqVKgYZz8/PT22c0qVL67V/YzwzYWFhku19fHzU2mnzczzD999/n62fKXLPTERERJZj5eVnJsPLly8l4ytRooRW93/49cz8UatWLSExMdHAr0B/PnxmSpUqldsh5bpSpUqpfU38/f312v+cOXMk/+0cOXIk2339+OOPon6srKyEFy9eSLZv06aNqt3cuXMFQRCE2NhYoVmzZhp/D3FychIOHDigdVwtWrSQ7OfMmTNZ3nv06FHBzMxM8n5LS0vh7NmzWsehb4cOHRJMTU0lY7OxsRGuXLmSa7FliIqKkozPzc0tt0Mj+igdP35cm7/XVBvFcgYgERnc8uXLMWzYMAiCoLFdeno6QkNDcebMGZw8eVJ2b6KUlBR0794du3btynJsQRCwbt06HDp0CJGRkbKnzqWlpaF3797YsmVL1i8I72fzubq6IjIyEk2bNtXqHkOqXr06PDw8cmVsQ53cWr58eTRv3ly0f9DatWvh5+eXreVIEydOFC1psrOzy/Jr5u3tDW9vb1H5xYsXZd/9N5Y3b96gc+fOSEhIkKyfPHkyOnbsaOSo3nvx4oXG/YdmzpyJVq1aGTmq/M8Yz0yXLl0k2//333+qzx0cHLL1c+HD/SENNZMnLz8z+rJ7924EBQVJ1hUsWBARERGwtrY2clT0MenTpw8mT54sWj4+ZcoUuLq6aj2zLS4uTnI5v4eHB+zs7LTq4+bNm2jevLna9gJSYmNj8d1332Hfvn1wc3PTqu+ciIuLQ8+ePWUPDlq8eHGWWx8YyoMHD9CjRw+kp6dL1i9btuyjO2yLiPSPCUAiMqiNGzeKkn8uLi5wd3dHyZIl8ebNG/zxxx/Yvn073r17B+D9qZM9evRAZGSkZJ9eXl6i5F+jRo3Qvn17lChRAgkJCfjzzz+xa9cu1f50sbGxaN68Of755x84OTmJ+pw/f74o+deyZUs0a9YMpUuXRkJCAm7evImtW7fiyZMnAN4vFe7Xrx+io6NhaWkJAPj8888xePBgAO//IM68DKN79+6qP4rlTuzMqW7duqFbt2567TMvGDVqlCiZkZKSgq5du+Lo0aNaLROcO3cu9uzZIyr38fH5qP8QHjBgAKKjoyXrWrRogWnTphk5ovcy9h+6c+eOZH379u0xbtw4I0f16TDkMzN48GDZZ8bPzw9eXl4A3ieasuPvv/9WfW5tbY0SJUpk635tCIKg8Zlp1apVrj0z+nL9+nX06dNH8s02hUKB9evXo2rVqrkQWd7XrVs3yb1Kq1atqtWpw3Xr1lUtXc2sffv2WLRokV5iNBYnJyd4enqqnb4MvD9UZvz48Zg3b16Wfbx9+xbdunXDy5cv1coVCgVGjRqlVRwZB0jFxMTA0tISXl5eaNu2LZycnPDq1SscPnwYy5cvVyX0U1NTMWTIEFy/ft0gy28zltbHxsZK1vfq1Uv2RGBDS0lJgYeHB549eyZZP3z4cPTt29fIURFRXsQEIBEZzKNHjzBixAjVHyOWlpZYuXIl+vTpo9Zu2LBhuHbtGtq3b4/bt28DAA4dOoS9e/eiXbt2am0jIiIQHh6uui5YsCDWrl2Lzp07i8a/d+8eevTogTNnzgAAnj17Bl9fX1HyMCUlBQEBAaprBwcH7NmzB19++aWoz5kzZ6J169aqPu/cuYN9+/ahU6dOAICyZcsiODgYwPtNszMnAGfOnMl9/7KpQ4cOaNKkCU6fPq1WfunSJbi6umLjxo2oVauW5L1JSUmYNGmS5GwYBweHjzoJtXnzZmzdulWyTqFQwNnZGYGBgUaJpUKFCmqzwlavXi3ahy6DiYkJatasabSDP6pWrQp3d3ejjJVXGOqZsbe31/jMtGjRIkfxHj58GJcuXVJdf/311zA3N89RX5qEh4drfGa++OKLXHtm9KVfv354/fq1ZF3lypVx7do12UML9K1bt24oV66cUcbSh0ePHkm+aWFra6vV/ffu3ZM86TzjDcOPzfTp0xEREaF6YzZDYGAg4uPjERQUJDvL9+bNm+jbt6/q96TMunTpovXhM0FBQXjx4gXKlCmDgwcPokqVKmr1bm5uGDhwIJo1a6Y6zfv27duIiooyyMqM+fPn4+TJk5J15ubmqFixIubMmaP3caU4Ozvjm2++UV3PnDkT586dk2xrZWWFokWLGi22Bg0aoHnz5kYZi4iyjwlAIjKYGTNmqP1CvGLFClHyL0PVqlWxe/duODs7q5adhIaGqiUABUHA1KlTVdcmJibYtm2b2i9BmZUtWxb79+9H48aNVX/07N69G+fPn1c7gS4qKkrtXerp06dLJv8A4LPPPsOCBQvQpEkTVdnx48dVCUDSv5CQENSvXx/Jyclq5ZcvX0adOnXQrl07tG7dGuXLl0eBAgUQFxeHqKgobNq0CU+fPpXsc/HixQY9ZMDQ5Db3B94/J/PnzzdaLO3bt1dLZmiKTalUqiXbDc3T0/OTSwAChntmHBwc9BpnXFyc6DCK4cOH63WMDHnpmWnXrp1BEoByM5OA97MDx48fr/cx5Tg7O39UCUBSV758efz444+YOHGiqG7NmjXYuXMnevTogS+//BIlSpRAcnIy7t27h0OHDmH37t2SS2SLFCmSrdmQL168gJWVFQ4cOCBK/mWoVKkSZs+ejQEDBqjKoqOjDZIA1PR8paamYvr06XofU46vr6/a776aYktOTlb73dnQxo4dywQgUR7GBCARGcSbN2+wceNG1XWzZs1Uy8Pk1KhRA507d1YtxY2MjIQgCKrTyo4ePYrr16+r2vft21c2+ZfBzs4OixcvVttvLDg4GCEhIarrhw8fqt2TOTkopX79+mjYsKHqF9yP+bTIj0GNGjWwfPlyDBgwQLS0TalU4tdff8Wvv/6qdX9Dhw5Fz5499R0mUZ6h72fG19dX61N9tXXr1i14eHiozbpq164d2rRpo9dxiChnfvjhB0RFRUn+rHjx4gWWLVuGZcuWadWXhYUFNm7cKLkFiybDhg3Lctn6h2/yyM2CJSIiwCS3AyCi/OngwYNqG60PHTpUq/sy//H3+vVrtY3lP1xWqO0+Mm5ubqhWrZpsP2Zm6u+FyC2jyGBubo4zZ87g3LlzOHfuHGbPnq1VHJRzXl5eWLp0qeh7lV2DBg3C4sWL9RQVUd6lr2fG29sbS5Ys0VNU7w97WrFiBZydnfHPP/+oyitVqoSwsDC9jUNEujE1NUVERAS+++47nfqxtrZGeHh4lm/YSunfv3+WbRwcHFT7MAPI8sA5IqJPGROARGQQmfd+MTExQdu2bbW6r1evXoiPj1d9ZN4MPnOfZcqUQZ06dbSOp0OHDqrPY2Ji1E6U+/Bk4AkTJiAiIoK/ROYxvr6+OHLkiOxSIE0KFy6MlStXIiQkBCYm/K+PPg26PDMODg4ICQnBypUr9fbMHDlyBPXq1YOvry/evHmjKq9RowaOHj0qe/I7EeUOKysr7N69GwEBAVrvh5hZvXr1cPr06Rxtk1K4cGFUr15dq7b8f52ISDtcAkz0kWncuLHkL2E2NjYGG7NAgQKiwzgAaPyj8sKFC6rPy5cvL7tZ9IfMzMxk92bLfHpjdk/RdXZ2Vru+evWqKrlYs2ZNNG7cGFFRUQCAxMREeHp64qeffkLHjh3RunVruLi4qL3DTLnjq6++wpUrV7Bx40aEhYXhxIkTSE9Pl21fvXp19OnTB0OGDIGdnZ0RI9Ve9erV4ebmJiovVqyY7D1lypSRvCc3fJiIL1++fJ6JTe6wiwyWlpaSsZYsWdJQIRldTp6Z3r17Y8iQIXrbJ/PGjRvw9/cXLSVUKBTw8vLC4sWLs/V/WH57Zj5kZmYmGWuRIkU03te0adM8c+jEx5bMrV+/vuR2Htoe3OXq6qqW1M7w4RuMHyOFQoFx48ahX79+WL58OTZt2oRbt27JtjczM0OrVq3Qv39/eHh45Dg5V7ZsWdUWMPpWt25dybg+++wz2XsqV66cZ36GfLgsulq1ankmtooVK2qs/+yzzyRjze7v9USUM3I/VfcAkJ3vbW5uLjoViogoszp16qhOdmzRogWOHDmiU39KpRLm5uZQKpUAgJEjR2ZrM+moqCi1gzs2b96M7t27q67v3LkDV1dX0X6AGaysrODi4oLmzZujc+fOqF27dpZj7t+/X23m4+3bt3kKsJ4lJibi0qVLuHPnDl69eoWUlBTY2dmhePHicHZ21pgQ0MXFixfVksoLFy7Uekk6fbouXbqEGzduqK6tra0l31wxJGM+M0lJSZg1axbmzZuHlJQUtbpatWph0aJF3CyeNMoLz0xes3fvXrx9+1Z1XaVKFXzxxRdGjSE2NhYXL15EbGwsXr16BXNzc9jZ2aFChQqoXbs2rK2tc9Rv27ZtsX//fgDvTwQ/evSoVvdZW1sjKSkJADBv3jz4+/vnaHwioo/NiRMn4OrqmlWzMQAWApwBSEQGkvn034IFC+rc3+vXr1XJv5z0+eG7upnjA96/y3/hwgVMmjQJoaGhqpOIMyQnJ+PkyZM4efIkfvrpJ1SuXBmDBg3CiBEjODMwF9nY2KBJkyZqyV2ivKp27dpavXlgSMZ6Zq5evYru3bvjypUrauUlS5bElClTMHDgQJiamho0Bvr45YVnJq/JCwlQJyenbB/okV1c1ktEpH/8yUpEBpF52UbmxF1OfZhky+4s5A8TelIb4xcpUgTBwcGIi4tDWFgYOnbsKPsu9o0bNzB27Fg0btwYsbGx2YqFiCg/Cw8PR/369dWSf/b29ggMDMTNmzcxePBgJv+IiIiIjIwJQCIyCAcHB9Xnr1690rk/Kysrtf15PpzBl5X4+Hi168zxfcjBwQF9+/bFzp07ER8fjxMnTuDnn3+Gm5sbLCws1NpeuHAB3bp144EhREQAwsLC0KtXLyQnJwN4/2ZQ7969ce3aNfj5+cHKyiqXIyQiIiL6NDEBSEQGkXkfqevXr2fr3hcvXqg+Mv6IBKC23OTq1avZ6vPD9o6OjlrdZ2lpiWbNmmHy5Mk4dOgQHj9+jLlz56rNDDx16hROnDiRrXiIiPKbs2fPwsfHRzXr29raGrt27cL69etRtGjRXI6OiIiI6NPGBCARGUSDBg1Unz9+/Bh37tzR6r67d+/CwcFB9bF161ZVnYuLi+rzixcvSp64J+fkyZOqz83NzdUOcHj58qUq4ZhVn3Z2dhg7diyWLFmiVn7q1CmtYyEiym+USiUGDx6sOuyjQIECiIyMRIcOHXI5MiIiIiICmAAkIgNp2rSp2vWmTZu0ui8yMlLtulq1aqrPM29an5SUhG3btmnVZ3x8PH799VfVtbOzs9oMPmdnZ1XC8csvv9SqT3d3d7Xrly9fanUfEVF+tHv3bly8eFF1PWXKFK1/nhIRERGR4TEBSEQG0aJFC5QqVUp1vXDhQjx//lzjPUqlEsuXL1ddFylSBHXq1FFdd+/eXe0wkJ9++glJSUlZxvLjjz+qtfPy8lKrzxzn1atX8eTJkyz7/PC1cHkbEX3KMr/JY2Njg++//z4XoyEiIiKiD4mPwSQi0gNTU1MMHz4c48aNA/A+YdatWzfs3btXdhP42bNn49KlS6rrbt26qZ3WW7RoUXTv3h1hYWEA3i8X7tWrFyIiIiRP9QWA0NBQteW6hQsXRp8+fdTafPXVV6olwunp6ZgwYQJWr14t+9qUSiWmTp2qVtasWTPZ9hnS0tKybENE9LERBEFt9naNGjXUTgDODoVCgbp16+orNCIiIiL6HyYAichgRo8ejc2bN6uWhf3++++oV68eZs+ejdatW6tO1L1z5w5mzZqllnSzsbHBpEmTRH3OnTsX+/btw9OnTwEAO3fuRMOGDTFjxgy0atVKlQi8evUq5s+fj7Vr16qd0LtkyRLY2tqq9dmrVy8EBAQgPT0dALBmzRq8ePECEyZMQN26dWFqagoASE5ORmRkJObNm6e251/9+vXRsGHDLL8ely5dQuXKlbP+whERfURu3bqFhIQE1fVff/2F+vXr56gvMzMzpKam6is0IiIiIvofJgCJyGAsLCwQHh6O5s2bIzY2FgAQHR0Nd3d3WFhYwNHREcnJyaIltwqFAqtXr0bx4sVFfRYtWhSbNm2Cu7s73r59CwD4+++/0bZtW1haWsLR0REvX77Eq1evRPeOHj0a3bt3F5VXq1YNI0aMwMKFC1VlO3fuxM6dO1GgQAEULVoUycnJePz4sehee3t7hIaGQqFQiOoyLy0GgD59+iA4OBgmJib44osvEBgYKPVlIyL6qNy8eTO3QyAiIiKiLHAPQCIyqCpVquDEiROoXbu2Wvm7d+/w4MEDUfLPxsYG69evh6enp2yfbm5uiIyMRJkyZdTKU1JScP/+fVHyz8rKCgEBAQgKCpLtMzAwEIMHDxaVJyUl4f79+5LJv2rVquH3339HzZo1JfusWrUqSpYsqRbfkSNHcOjQIdy7d082FiKij4nUz0ciIiIiyls4A5CIDK5ixYo4f/48Vq9ejdDQUPz5559qy3IBoFixYujWrRv8/f1RunTpLPv88ssv8e+//+KXX35BeHi42umTGRwdHdGhQ6jnQLYAACAASURBVAeMHz8e5cqV09ifqakpgoOD4enpiSVLliAyMhKJiYmidubm5mjYsCG8vLzQp08f1TJmKWZmZtizZw969+6N6OjoLF8TfTxKlSqF4OBg1XXmE6qJPjUuLi5qz4MuTEz43jTRp2rEiBHo2LEjAEiuApGzZMkS1T7LjRo1MkhsRET5gXjN2nt7AHwnd5O5uTnevXtnmIiIKN979uwZ7ty5gydPnqBgwYJwcnLSeW+8x48f4969e3j27BkKFSoER0dHVKhQIcd/TKanp+PmzZuIjY1FQkICbGxs8Pnnn6NKlSqyh5jIEQQBt2/fxt27d2Fubg5HR0eUKlUKNjY2OYqNiIiIiIiIPm0nTpyAq6trVs3GAFgIcAYgEeWCIkWKoEiRInrts1ixYihWrJje+jM1NUXVqlVRtWpVnftSKBSoWLEiKlasqIfIiIiIiIiIiLKH6yyIiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxs9wOgIiISFdRUVGYMWOGqLxDhw7w8fEx2LizZ8/GqVOnROULFixAlSpVDDYukaE8ffoU+/fvx4kTJ/Dw4UMolUqULVsWrq6u6NixI2xsbHI7RJ0sWrQIv/32m2Sdh4cHhgwZYpBxHz58iIEDB0KpVIrqihcvjjVr1sDU1BQA8PbtW/Tp0wcJCQmitgqFAsHBwShXrpxB4gwNDcWmTZsk6/r27Ys+ffqorg8fPow5c+ZItq1atSoWL15skBjT0tLQr18/PHnyRFRnZmaGNWvWwMnJSVU2duxYXLx4UbKv0aNHo127dgaJ86+//sKkSZMk6+rVq4eAgACDjEtERJRdewAIch/m5uYCERFRXrFjxw7J/6+GDx9u0HE9PDwkx42KijLouESG0qhRI9nf/4oWLSps3rw5t0PUydOnT4VixYpJvj5LS0vh6tWrBhnX3d1dckyFQiHs3btX1H7VqlWy34fmzZsLSqVS7zHevXtXsLW1lRyzQoUKwuvXr9Xap6enC66urrJxbty4Ue8xCoIgzJgxQ3bMqVOnitpfvXpVsLKykmzv6OgoPH/+XO8xJicnCzVq1JAc08rKSrh8+bLexyQiok/P8ePHZf9PzPQxOiPRxyXARERERAQAuH//vmzdkydP0KNHD0yYMMGIEelXkSJFEBwcLFmXkpKCgQMHIj09Xa9jrlu3Drt375as8/X1Rdu2bUXlAwcORKdOnSTvOXr0KFavXq3XGAVBwODBg/HmzRtRnZmZGTZs2ABbW1u1chMTE4SGhqJgwYKSfY4cORKPHz/Wa5zXrl2TnO0NAHXr1sXkyZNF5dWrV8fUqVMl74mLi4Ofn59eYwSAn3/+GVevXpWsmzNnDmrWrKn3MYmIiLLCBCARERERISUlBXFxcVm2CwgIQFBQkBEiMgx3d3f07t1bsu7MmTNYtmyZ3saKi4vDmDFjJOsqVKggu4QWAJYuXYrChQtL1vn5+eHhw4d6iREAgoODcejQIcm6iRMnolGjRpJ15cqVw9y5cyXrnj9/jlGjRuktRqVSCW9vbyQnJ4vqrKysEBYWBnNzc8l7x40bh2bNmknWrV27FgcOHNBbnJcuXZL9mrRs2RIjRozQ21hERETZwQQgEREREeHBgwcQBEGrtj/88AP+/PNPA0dkOEuWLEGpUqUk68aPH4/bt2/rZZxhw4YhPj5eVC43qy4zJycnLFmyRLIuISFBb/sVxsTEyM7qlJtVl5mPjw/atGkjWbdlyxbs2LFD5xiB93ur/vHHH5J1Wc2qMzExwdq1a2W/3j4+Pnj9+rXOMaalpWHAgAFITU0V1X322WdYs2YNFAqFzuMQERHlBBOARERERIT79+/D3NwcFStWRPPmzdGmTRtUrVpVsm1aWhpGjhypdcIwr9GUjHn79i0GDRqk82vTlPzSNKsus+7du8PT01Oybu/evbIHdmSHt7c3Xr58KSrPalZdBoVCgVWrVsHBwUGyftiwYXjx4oVOMd69exc//vijZJ22s+rKly+PWbNmSdY9ePAA48eP1yVEAMCsWbPw999/S9YtW7YMpUuX1nkMIiKinGICkIiIiIjQsGFDJCQk4ObNm/j999+xb98+/Pvvv7h69SqaNm0qav/XX38hIiIiFyLVDzc3N9lTwo8ePYo1a9bkuO9nz57JLn/VZlZdZkuXLoWjo6Nkna777IWGhsouf83OXnXFixfHwoULJet03WdPqVTCy8sLiYmJorrszqobPnw4vv32W8m6FStW4MSJEzmO899//8Xs2bMl6zp16oSePXvmuG8iIiJ9YAKQiIiIiFCwYEFYWVmJyqtXr47IyEg0btxYVDdv3jxjhGYwgYGBqFSpkmSdLvvsjRgxQjIxp+2suswKFy6MlStXStbpss9ebGysbGIuJ3vV9enTB126dJGs05RozMqyZctkE3PZnVWXMVvR3t5eVKcp0ZiV9PR09OvXT3J/wuLFi8t+/4iIiIyJCUAiIiIi0qhAgQIIDQ2FhYWFWvn58+dx8uTJXIpKdzY2Nli7di1MTU1Fda9evcrRPnu//fYbwsPDJevmzp2boxNg27dvjwEDBkjW5XSfPbmluXZ2djneq2758uUoVqyYZF1O9tm7f/8+Jk6cKFnXuXPnHM2qK1myJAIDAyXrNC011iQwMBBnz54VlSsUCqxcuVL2MBciIiJjYgKQiIiIiLJUpUoV9OjRQ1S+atWqXIhGf5o0aYLRo0dL1u3duxebN2/Wui9NSUM3NzcMHz48RzECQFBQEMqUKSNZl9199jZt2oSdO3dK1umyV12RIkUQHBwsWffgwQPZw0akCIKAwYMHSyYNixcvjpCQkBzFCAADBgxAp06dJOsWLFiA06dPa93XjRs3MH36dMm6oUOHom3btjmKkYiISN+YACQiIiIirUglsLZv346EhIRciEZ/Zs6cKTszb8SIEXjy5IlW/YwaNQoxMTGicjs7O6xevVqnE2ALFSokOzMvO/vsPXv2DGPGjJGs69y5s2SSNzvc3d3Ru3dvybrly5drvc/eqlWrEBkZKSrPWMar66y6FStWoGjRoqJypVIJb29vpKSkZNlHRtukpCRRXYUKFRAQEKBTjERERPrEBCARERERaaV+/fqiRFliYuJHfRgIAFhaWmLdunWSe/Npu8/e4cOHsW7dOsk6fZ0A26JFC9lZhNruszd06FDJhKaus+oyW7JkCUqVKiUq13afvUePHmHcuHGSdUOHDkWbNm10jrFo0aJYsWKFZJ2mAz0y++WXXySXwJuZmWHjxo2wtbXVOU4iIiJ9YQKQiIiIiLTWq1cvUVloaGguRKJfzs7OsktUw8PDZZfMAkBCQgIGDhwIQRBEdfqYVZdZQEAAKleuLFmX1T57e/bswdatW0Xl+ppVl0HT6bx3796VXTKbYejQoZJLmvU9q65Tp07w9PSUrJs5cyYuXLgge++9e/cwZcoUybpJkyahYcOGeomRiIhIX5gAJCIiIiKtSc2+On36NK5du5YL0ejXlClT4OLiIlmnaZ+9H374AQ8ePBCVG+IEWGtra4SFhUkeXKJpn734+Hj4+PhI1g0bNkwvs+oyc3Nzkx1v/vz5svvsrV+/Hrt37xaVG2pW3YoVK1CyZElReVpaGgYMGIDU1FRRXcb+hG/evBHV1a1bF5MmTdJrjERERPrABCARERERaU1qXzYAWLt2rXEDMQAzMzOEhYXByspKVBcbGwt/f39R+dGjRyWXzmbMqnNwcNB7nI0aNcIPP/wgWSe3z96oUaMQFxcnKq9QoYJWy11zIjAwEJUqVRKVZ+ydl5ycrFb+9OlT2b0MDTWrTtP+jBcvXsSCBQtE5cHBwTh06JCo3MrKSnYpORERUW5jApCIiIiItCaX6AsLC0NaWppxgzGAatWqyS5RXbNmDQ4ePKi6fvv2LQYNGiS59NcQs+oy+/HHH/HFF1+IyqUOpti3bx82bNggamvovepsbGywdu1aydmKUvvs+fr64unTp6K2hp5V980332DAgAGSddOmTUN0dLTqOiYmRnaW5dy5c1GjRg2DxEhERKQrJgCJiIiISCtnzpxRS4ZkFhcXJzs78GPj7++Pr776SrIu8z57EyZMwO3bt0VtDDmrLoOFhQXWrVsHCwsLUd3Nmzcxbdo0AO/3JxwyZIhkH8bYq65JkyYYPXq0ZN2sWbNU++xFRERg+/btojbGmlW3cOFCVKhQQVSekpICb29vKJVKAIC3tzdevnwpaufm5iZ7QAsREVFewAQgEREREWklq8M+8sNhIABgYmKCtWvXSs6Mu3//PiZOnIioqCgsXbpUVG/ME2Br166NqVOnStZl7LPn5+eH//77T1RvzL3qZs6cKTo9Gvj/ffbi4uIwcuRIyXvnzZtnlFl1tra2WLt2LUxMxH8eZXyv5U5a1rSMmIiIKK9gApCIiIiIspSUlISIiAiNbfbs2YNnz54ZKSLDKleuHObMmSNZt2zZMnTt2hXp6emiOmOfADtu3DjJ8ZRKJTw9PbF69WpRnbW1NTZu3Gi0veosLS0RGhoKMzMzUd3FixfRoEEDPH78WFTXqlUrDBs2zBghAgCaNm0qO4tv4sSJsvsTLl26FKVLlzZkaERERDpjApCIiIiIsrR9+3bR0scPZ0u9e/cOmzZtMmZYBuXr64vWrVuLypVKJWJiYkTluXECbMbBJQUKFBDVPXz4UHJ/wrlz56Jq1arGCE+lfv36sl8bqRmKuTWrbs6cOahevbqo/M2bN5KnQHfu3Bk9e/Y0RmhEREQ6Eb8NR0RElE/s3LkTly9fNlj/V69eNVjfRHnNmjVrRGXDhw/H0qVL1WbCrV27VnY558cm4yTfWrVqSSZ/MsvNE2CrVKmCWbNmYcyYMVm2dXNzw9ChQ40QldjkyZOxb98+nD17Nsu2y5cvR6lSpYwQlbqM72Pjxo2RmpqqsW3x4sWxcuVKI0VGRESkGyYAiYgo34qJiZGcpUNE2XPv3j0cP35crUyhUGD06NG4cuUKfv/9d1X5hQsXcPHiRdSpU8fYYRpEiRIlEBQUBC8vL43tjLVXnZyRI0diz549OHr0qGwbOzs7rFmzJtf2qsuYrVi3bl0kJyfLtvPw8ED37t2NGJm6evXqYezYsZg1a5Zsm4zksIODgxEjIyIiyjkuASYiIiIijUJDQ1WnoGZo2LAhypUrB09PT1H7tWvXGiky4+jXrx++/fZb2fpmzZoZda86KSYmJlizZo3GGYhBQUG5Mqsus2rVqmHixImy9YULF0ZISIgRI5I2bdo0VK5cWbZ+wIABaNOmjREjIiIi0g0TgEREREQkSxAEbNiwQVTeo0cPAEDXrl1hYWGhVrdhwwakpKQYJT5jePbsGS5duiRbf/ny5Twx2/jYsWMal60ePnzYiNFIUyqVajNGPxQfH4+//vrLiBFJu3XrFh48eCBb/8cffyApKcmIEREREemGS4CJiIiIcuCLL77Icl84Q/jqq6+wceNGo4135MgR3LlzR63MxMQEXbp0AQDY29vDzc0N+/btU9U/f/4ce/fuRefOnY0WpyH5+voiLi5Otv7ly5cYMGAADh48mGvLax8+fIjvv/9eY5uNGzeiQ4cO6Natm5GiEgsKCsKxY8dk6wVBgLe3Ny5fvgx7e3vjBZZJamoq+vXrp3GZ8rVr1zBhwgQsXLjQiJERERHlHBOARESUbzVt2hSdOnUyWP9hYWH4559/DNY/5W0xMTGIj483+rhPnjwx6nihoaGisubNm6N48eKq6+7du6slADPuyw8JwLCwMGzbti3LdocOHUJwcDCGDBlihKjUKZVK9O3bV6uE9JAhQ9CkSROULFnSCJGpi46OxpQpU7JsFxMTg5EjR2L9+vVGiEps2rRpOHfuXJbtfvnlF7Ru3VrypGgiIqK8hglAIiLKt+rUqZPljBhdnD59mglAytdevXqFXbt2icozlv9m6NixIwoUKKC2JPLAgQOIjY2Fk5OTweM0lIcPH2p1sm4GPz8/tGjRQuPecYawcOFCjYd/ZPbixQsMHDgQBw4cMOpsxbS0NPTr10/rZbMbNmzAd999Z/TZilFRUZg7d65WbfPCbEUiIiJtcQ9AIiIiIpK0efNmvH37Vq3MwsJCNLO2YMGCaNu2rVpZWlqa5N6BHwulUol+/fpJzqpzcXGBs7OzqPzt27fo378/0tPTjREigPez6iZNmiRZ5+3tDRMT8a/7kZGRWLlypaFDU/Pjjz9Kzqqzt7dH165dJe8ZNmyYxqXX+paYmIi+fftKfv/c3d1RrFgxUXlMTAxGjRpljPCIiIh0whmARERERDkwbNgwJCYmGn3cKlWqGG0sqeW/rVu3hoODg6i8e/fu2L59u1rZ6tWrMXbsWIPFZ0iLFi2SPKzCwsICa9asQXp6OlxcXESHbpw+fRpz5szReNKtvqSlpcHLy0tyrzpXV1eEhITA1tZWcp+677//Hs2bN0elSpUMHmdUVBQCAgIk64KCgtCpUyecOXMG//33n1rds2fP0K9fP6PNVvTz88OtW7dE5UWKFEFISAjOnDkDd3d3Uf369evRvn37XN1bkYiIKKf2ABDkPszNzQUiIqK8YseOHZL/Xw0fPtyg43p4eEiOGxUVZdBx9eGnn34SypcvL5QvX15o3LhxbodDedCVK1ck/31v3rxZsn1SUpJQqFAhUfszZ84YJL6EhAQhPj5eSExM1Hvf0dHRQoECBSRf/88//6xqN2nSJNnflc+ePav3uD40efJkyfGtra2FmzdvCoIgCImJiULFihUl2zVu3FhIS0szaIyJiYlC5cqVJcd3c3MTlEqlIAiCsG/fPtm/PYKDgw0aoyAIQmRkpKBQKCTHj4iIULXr0qWLZJsiRYoIsbGxBo+TiIgow/Hjx2X/78z0MToj0cclwERERJ+g58+f486dO7hz5w4ePHiQ2+FQHiQ1+8/a2hrt27eXbG9lZYUOHTpo1Y+ukpOTUapUKTg4OGD06NFZ35ANmvaqq127NsaNG6e6njJlCmrUqCFqp80psro6f/485syZI1k3c+ZMVKxYEcD779nKlSslZ9BFRUVh3rx5BosRAPz9/XHjxg1ReaFChbB69WpVXG3atEHfvn0l+/j+++9x8+ZNg8WYcYqzIAiiug4dOqgtUV6+fDk+//xzUbtnz57By8tLsg8iIqK8gAlAIiIiIlKTlpaGjRs3isrd3d1ha2sre5+np6eoLDw8XLSPoK5+/fVXvHr1Sq99Zvjpp59w9uxZUbmZmRlWr14Nc3NzVZmlpSVWr14NU1NTUXttT7zNibdv36Jnz56i5ccA0KhRI4wYMUKt7Ouvv8bgwYMl+5o6dSrOnz9vkDgPHTqEFStWSNbNmzcPpUuXVitbtGgRSpQoIWqbmJgILy8vg+2tOGTIEDx8+FBUXrhwYYSEhKiVFSlSBAsWLJDs5+DBg1i1apVBYiQiItIVE4BEREREpOa3336TPHzhw9N/P/Ttt9+icOHCamVyJwnrIiwsTK/9ZTh//rzsXnUTJkxAvXr1ROUNGzaUPQRiwYIFOHbsmD5DBACMHTtWcladpoTk3LlzRQk34P1sxb59++p9tuLLly8xcOBAyRlxzZs3x6BBg0TldnZ2WLZsmWR/p0+fRmBgoF5jBIBNmzZhy5YtknWLFi2SPPijd+/eknsBAsCYMWMMOluRiIgop5gAJCIi+gR99913CAgIQEBAgFEOK6CPi9SyXXt7e3zzzTca7zM3N0fnzp216i+n9uzZg7179+qtvwxv375Fr169JGfVVatWTeNz8vPPP6uW3GamVCrRv39/JCQk6C3OQ4cOYfny5ZJ106dPR/Xq1SXrChUqJDsbLzo6GlOnTtVbjMD7WXUfHuoBaF6SDLxfctulSxfJuqlTp+LSpUt6izEmJkY0WzJDu3bt0KtXL9l7ly1bBjs7O1G5oWcrEhER5RQTgERERJ+gli1bYty4cRg3bhyGDh2a2+FQHvL48WPs379fVO7h4QFLS8ss75daBvz777/j/v37OsX1+vVrzJ8/X7J/ffjhhx9w/fp1UbmpqSnCwsJgZWUle6+1tTVWrVolmdS6d+8exowZo5cYNc2qc3Z2xvfff6/xfk377M2fPx/Hjx/XS5ybN2+WnVUXEBCAChUqaLxfbp+9d+/eoWfPnnqZrSgIAgYNGoT4+HhR3WeffSabLM1QvHhx2T0YDTVbkYiISBdMABIRERHlQNGiRWFqamr0j9atWxv0da1fv15yFlxWy38zNG/eHMWLF1crUyqVWLduXbbiuH37NlasWIHhw4ejefPmKFq0KPz9/Q1ysMbhw4dll576+fnBxcUlyz5cXV3h4+MjWbdmzRps375dpxgBwNfXV3JWnYWFBcLCwtT2J5Qjt8+evmYrPnr0CMOHD5esa9y4MYYNG5ZlH5r22YuOjsa0adN0ihEAli5dKpnoBt4v3S5ZsmSWfQwaNAitWrWSrJs2bZpeZysSERHpiglAIiKiPEgqAaNJenr6R7/kLLuvWVvp6ekGOZkzPT0dSqXS6B+G/j5LJeocHR3h6uqq1f0mJibw8PAQlYeGhmbr+xAeHg5fX18sXboUx44dM9iJuppOgK1cuTJ+/PFHrfuaM2eO5D57wPvk3ePHj3MaJnbs2IHw8HDJukmTJqFWrVpa9aNpn727d+/Cz88vxzEKggBvb2/JWXUZ+xOamGj354emffYCAwN1mq14+/ZtTJgwQbKuRYsW6N+/v1b9KBQKhISESB6Mk5KSorfZikRERPrABCAREZERxcbGIiQkBCEhIWqJloSEBCxcuBAuLi6ws7ODhYUFbG1t4ezsjDlz5uD169dq/QiCgPDwcHz33XcoWrQozM3NYWZmhmLFiqFz5844fPiwxjjOnj2riuPD015fvnypqgsJCcFvv/2m1Wt7/vy52n2HDh3S2P7ChQsYO3YsatWqhUKFCsHCwgLW1tYoX748+vbti927d0OpVGrs4/Xr12pjpqWlqeq2b9+OBg0awNbWFhYWFvjjjz+0eh2fsj///BOXL18WlXt6ekoeLCGne/fuorK7d+/ixIkTOsVnCEOHDpWcVWdiYoJVq1ahQIECWvdVqFAhrFmzRnIp8NOnT2VnCGbl0aNHsqf4fvHFFxg/fny2+uvQoQO6du0qWbdq1Srs2LEj2zEC7/fFk5tVN3PmTFSrVi3b/dnb24vKM2YrfvhzURtpaWno1asX3rx5I6qzsbHRuD+hlLJly2LGjBmSddHR0dlKIBMREeWGPQAEuQ9zc3OBiIgor9ixY4fk/1fDhw836LgeHh6S40ZFRcnec/z4cVW7woULC4IgCGfPnhXKly8v+/8uAKF69erC7du3BUEQhJiYGKFly5Ya2wMQxowZIxvHxIkTVe1KlCghqu/UqZOq3tTUVONrytCzZ0/VPWZmZsKff/4p2e7JkydC3759BYVCkeVraNCggfDPP//Ijnnnzh219m/evBGUSqXg4+Mj6uvYsWNZvobscHBwyDJ+Q3y4ubnp9XVkJvV1AyCcOXMmW/0olUqhbNmyon769eundR/R0dFCRESE6GPz5s1qfQ4aNCibr/L/bd++XfbrPHr06Bz3269fP9l+165dm62+lEql0LZtW8m+zMzMhHPnzuUoxqdPnwqff/65ZL+ff/65EBcXl63+bt26Jdja2kr217BhQyEtLS1HcYaEhMh+Lb29vbPd3/Tp02X7W7ZsWY5iTE9PF5o2bSrZp4mJid5/9hAREQmC+t8VGj5G43/MQERERLnm0qVLaN68udpsFDMzM7WZbMD7mSRdunTBnj170KpVK1y7dk1jewAICgpC7dq10a9fv2zHtWLFCpw6dQpPnz5Feno6+vfvjwsXLsgehLB7925s2rRJdT158mQ0aNBA1O7hw4ei+DX566+/0KxZMxw7dgx16tTR6h5/f38EBwdr1VYXM2bMQFJSksHH+VCZMmUM0m9SUpLkwQ3ly5eX/F5qolAo0K1bN8ydO1etfNu2bVi8eDEKFiyYZR/VqlWTnDGWlpam9X6EmmiaVVe2bFn8/PPPOe570aJFOHz4MGJiYkR1I0eOxNdff63193H58uXYt2+fZN24ceNQr169HMWYsc9enz59RHUZsxV37dqlVV9paWno3bu35Ky6jKW/2ZlBmpm3tze2bduGyMhIUd2qVavg7u6O9u3ba9XXhQsXZGfrubq6YsiQITmKMWO2qLOzs+hnQsZsxUuXLmn1756IiMjYOAOQiIg+Gh/rDEAbGxuhdOnSAgChUqVKQnh4uJCQkCAIgiA8ePBAGDdunGBiYqLWd8GCBVWzSoYMGSJcvnxZSE9PF1JSUoR9+/YJ1apVU2tftWpVyTiymgEoCOLZUT/88INku+fPnwtOTk5qs31SU1NF7ZKSkoTq1aur9enk5CTMmDFDOHXqlHDz5k3h1KlTwowZM4TixYuL2r148ULU54czALdv3642s9DJyUlo3bq10L9/f+H69euy3xcShA0bNkj+e54wYUKO+vv7778l+1u5cqVOYNOy9gAAIABJREFUcaampuo8A1DTrDqFQiFERkbqFKMgCMKePXtkf5du1qyZkJ6enmUft2/flp1VV7VqVSEpKUnnON3d3WXjDAsL06qPn3/+WbaPmTNn6hzj3bt3Zb8O2s5WTE5OFmrWrCnZh7W1tXDz5k2d45w9e7bs10GXmapERERSsjsDUA4TgERE9NH4WBOAGR+NGjUSXr16Jdl+xowZkgmKDRs2SLZ/8uSJUKxYMbX2MTExonbaJAAFQRB69eqlamdqaiq5rLdPnz5qSU25RJu/v79aXO7u7sLr168l2yYkJAjfffedWns/Pz9Ruw8TgBlLGuvUqSMcPXpUUCqVsq+N1MktK7906VKO+6xSpYqovxIlSghnzpwR4uLihPDwcGHLli3Z6lMfCcBly5bJ/p7r6+ub7f7kdOvWTXacBQsWaLw3PT1daNasmeS9JiYmwqlTp/QSY0xMjGBvby85zmeffSbcu3dP4/1///23YGFhIXl/7dq1hXfv3uklzoULF8p+Ld3d3bO8f/To0bL3BwUF6SXG1NRUoX79+rLj/Prrr3oZh4iISBCYACQiok/Qx5wAtLGxEf777z/Z9omJiYK1tbXaPUOHDtUY14d7XEkl7bRNAMbHxwslSpRQta1evbqQnJysqv9wlpPcHlpPnjwRLC0tVe0aNmwopKSkaHwdKSkpan9MW1lZqWZIZvgwAZjR99u3bzX2Teru3r0rmm0KQKhRo4ZO/Wraby3jo2nTptnqU9cE4O3bt1UzaT/8KF26tOjfmC6ePn0qFC1aVHIsS0tLjftbSiX/Mz78/f31FqMgaN5nT9NsxeTkZKFWrVqS95mZmQnnz5/XW4ya9tkDIKxbt0723hMnTkj++wbevwGT0/0JpVy6dEk2IVq0aFHh8ePHehuLiIg+bdlNAPIUYCIiolzUu3dvlCxZUrbe2toaNWvWVF0rFIosT/xs1KiR2rUu+9TZ29tj1apVqlMxo6OjMX36dADAixcv1PbMatOmjeweWqtWrUJKSorqNSxZsgQWFhYax7awsMAvv/yiuk5OTsavv/6q8R6FQoGVK1dm6+RWAtauXSt54nLPnj116rdfv34wMdH862ZUVBTi4+N1GkdbSqUSXl5esqfHBgcH63Wftox99qSkpKSgX79+ePfunajuwoUL+OmnnyTvq1y5smxdTnl7e+Obb76RrDt58qTac5jZhAkTJE+NBoBJkyahbt26eosxq1OZR4wYgfv374vKX716hT59+kj++9Z1f0Ipmk5lfvLkSY5PgiYiItIVE4BERES5yM3NLcs2n332merzypUro1SpUlq314fWrVtj0KBBqut58+bh3LlzGDNmDB49egTgfaJj9erVqkThh/bu3av6vG7duqhfv75WYzdu3FjtIIj9+/drbN+oUSPUqlVLq77pPaVSibCwMFG5QqGAp6enTn2XKVMGHh4eGtukp6fj8OHDOo2jrdmzZ+PkyZOSdQMGDEDr1q31PmavXr3QsWNHyTqpQyk0JQZNTEwMkuBWKBQIDg6Gra2tZP348eNx5coVtbJTp05h0aJFku2rVauGCRMm6DVGAKhSpQqmTp0qWSeX6Bs5cqRkYhAApk+fjurVq+s9zkmTJsn+HNq1axfWr1+v9zGJiIiywgQgERFRLnJycsqyTeakWvHixbPVXl8CAwNRrlw5AO9P/HR3d1dLGq1YsUL2taSkpOD8+fOqa22Snpk1adJE9bncbKMMX375Zbb6JuDYsWO4d++eqNzFxQUVKlTQuf/58+ejUKFCGttk9X3Vh4sXL8rOnHNyckJgYKDBxl62bBns7e0l62bPno0zZ86oridOnCj79Rg2bBi++uorg8RYtmxZzJw5U7IuJSUFffv2VSUlExIS0Lt3b8lZdWZmZggLC4OlpaVB4vT395d9A+HkyZNYvHix6nr37t1Yt26dZFtnZ2d8//33BonRwsICYWFhMDMzk6wfMWIEHjx4YJCxiYiI5Ej/r0RERPQRqVGjhuQfrtrOMsupXr16SS5xK126tNZ9yP2BqK/2+lKwYEGEhoaiRYsWUCqVqpl/wPtlnppmed25cwfJycmq6+Tk5GzN+EpMTFR9fu3aNaSnp8su2StbtqzW/dJ7JiYmCAgIEJU3bNhQL/2XKlUKR44cgbe3Ny5duqQqt7e3R5cuXeDj44N69erpZSxN7t27J5sA/Oqrr2QTdPrg5OSErVu34ty5c5L1Dx8+BPB+ub6jo6Pk90OhUGDo0KEGixEAhg8fDkEQ1J7XzO7evYsqVargxo0b8PX1lWxTvnx5uLi4GCxGMzMzrF+/Hrt375asVygUUCqVMDExwfPnzyW/lgDQsWNHmJubGyxOZ2dnbNq0CXfu3JGsv3XrVrb+ryAiItIVE4BERPTRq1y5MiZOnGj0cTt16oROnToZfdzc4urqilGjRiEoKEhVVqZMGdn9wTJ8uL/bokWLZJcOZiUlJQUJCQmyyRp9L3/+FHz99df4+uuvDTpG/fr1cfHiRdy/fx9PnjyBnZ0dKlSokOX+gPoktwzXWFq2bImWLVtqbFOgQAGMHTvWSBGJmZiYYNSoUVm2q1+/vsHfYNGkatWqqFq1apbtBgwYYIRo5HXt2jVXxyciIsqMCUAiIiLSWp06ddSuBUHI8p5Xr17pNYbXr1/LJgANteyQ9KNMmTIoU6ZMbodBRERE9MlhApCIiIi08vDhQ9HsoAcPHsDf3x8hISGy91lbW6tdd+nSRae95XjCLxERERFR9jABSERERFkSBAH9+/fHy5cvAQCmpqZIT08HAKxatQpdunTBN998I3nvh7P1OnXqhJ49exo2YCIiIiIiUuEpwERERJSlxYsXqw7uMDExwa5du1Qb2AuCgEGDBiEhIUHy3tKlS6udTHzz5k3DB0xERERERCpMABIREZFG//77L8aPH6+69vX1Rfv27REcHKwqy1gKLMXe3l5tw/5jx45la/yIiAiEhIQgJCQER44cyV7wRERERETEBCARERHJS01NRZ8+fZCUlAQAKFeuHAICAgAArVu3Rt++fVVtV61ahcjISMl+mjdvrvr8+PHjuHHjhlbj//PPP+jevTt8fHzg4+ODs2fP5vSlEBERERF9spgAJCIiIlk///wzzp8/DwBQKBRYtWoVbG1tVfVBQUFwdHQEoHkpsI+Pj+pzQRAwfPjwLE8QFgQBkydPVrVTKBTo2LGjzq+JiIiIiOhTwwQgERERSTpz5gxmz56tuvbx8UGLFi3U2jg4OGDJkiWq6wcPHsDPz0/U1xdffIG2bduqrg8dOoSBAwciJSVFcmylUolx48bh119/VZW1a9dObSkxERERERFphwlAIiIiEklMTETfvn2RlpYGAChTpgzmzp0r2dbDwwMeHh6q69WrV+PgwYOidsHBwbCzs1Ndh4aGolatWli4cCEuXLiAmJgYnDt3DqGhoWjUqBHmzZunaluwYEH88ssv+np5RERERESfFLPcDoCIiIjyHn9/f9VpvQqFAsHBwShYsKBs++XLl+P48eN49uwZBEHAwIEDcfnyZdjb26valCxZEgcOHEDbtm0RHx8P4P2JwGPGjNEYS4ECBbB9+3aUK1dOD6+MiIiIiOjTwxmAREREpObAgQNqJ/wOHDgQ3377rcZ7Pv/8cwQGBqquY2JiMHbsWFG7hg0b4tixY2jUqJFWsdSsWRMnT55Eq1attIyeiIiIiIg+pJAp3wPgO7mbzM3N8e7dO8NERERElI8lJyfj0aNHqusSJUrA0tJS4z2xsbGqU3gLFCgAJycnje1TUlIQExOjui5evDisrKzU2sTHx+Ply5cAADMzM5QuXVpV9/jxYyQmJmq8X86dO3dUnysUCtlZe4IgYM+ePdi2bRt+//13xMXFQalUAgAcHR3x5ZdfomfPnnB3d4epqanseGlpaXjw4IHqulixYrCxsdEqVvo4CYKAu3fvqq4LFiyIzz//PBcjIiIiIjK+EydOwNXVNatmYwAsBJgAJCIiojwgPT0dCQkJsLGxgYWFRW6HQ0RERESUp2U3Acg9AImIiCjXmZqaqu0XSERERERE+sM9AImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiIiIjyMSYAiYiIiIiIiIiI8jEmAImIiIiIiIiIiPIxJgCJiIiIiIiI6P/Yu+/wqqr8/fv3SSMhCYTQO6H3IhAggICANBEQFSkqoAKjYhnRGR2/OmMZdXQGHR0dBFEUG1jo0iII0pv03gJJgCQESG9nP3/4g4dw9k5ySgpn3q/rynXBWnt/9jol7c7aawHwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIv5SbJJDfvmb75QVcqzPMkw/LR69YbiHRkAAAAAAAAAB3v3HpAUZNKTIynXodUmdfSXLmUX98AAAAAAAAAAFKcESVeu/udpSe9K3AIMAAAAAAAAeDUCQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBifpY9Pj5Si7olOBQAAAAAAAAAhYq/KF1MKfLh1gGgr490z62eGBIAAAAAAAAAT/lpm7TlUJEP5xZgAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXsyvtAcAAABcE+Drq+ZVqqhhpUoKDQhQaLlyCg0IUHJmpi79v4/zqanan5CgXLu9tIcLAAAAoJQQAAIAcJPw9/HRrfXr685mzdS3YUM1rVxZ/j6FT+bPyM3Vzvh4bY2N1aLDh7Xu9GnZDaMERoyy5tU+fdSsShWH9rHff6+cUg6J21avrhdvvdWh/cs9e7Tw8OFSGBEAAID3IAAEAKCMq1K+vB7r3FmPRUaqavnyTp8f5Oen7nXrqnvdunq6a1edunRJ/9q0SR/v2KGsvLxiGDHKqtsiIhRVt65D+/0//FAKo8mvenCw7mnZ0qF9R1wcASAAAICbCAABACij/H189Gz37vpLz54q7+/vsboNwsL070GD9ESXLvrD0qVafeKEx2oDAAAAKHvYBAQAgDKoTbVq2jl5sl6/7TaPhn/XaxwerhXjxumvvXvLVixXAAAAAFAWMAMQAIAyZmjTpvpy5EiFBgQU+7V8bDa93KuXaoSE6A9LloiVAQEAAADvQwAIAEAZcl/r1vryrrvkYyt4Tt651FT9dOyYfo2J0f4LF5SQnq5LmZkKDQhQhXLlFB4UpHY1aqhjzZrq36iRaoaEFFhvcseOupCWppfWrPHkwwEAAABQBhAAAgBQRgxu0kSfjxhRYPi3Mz5er61bp8VHjijXZNfWixkZ1/79y+nTkiQ/Hx8NadJEf+7RQ13r1LGs/WLPntoQE6MVx4+78SgAAAAAlDUEgAAAlAERYWH6auRI+fuYL8+bnpOjp1es0KydO2U3nLtRN9du18LDh7X4yBE91rmz/tG/vwL9HH8EsNlsmnXnnWr+wQdKy8lx6XGgbPto+3YtMtlR1yxMBgAAgPcgAAQAoJT5+fjom7vvVsVy5Uz7Y1NSNHDuXO27cMGt69gNQ+9v3aojSUlacN99piFgnQoVNC0qSn/75Re3roWyae6ePaU9BAAAAJQCdgEGAKCUPdq5syJr1zbti09NVY/Zs90O/6634vhxPbhggWX/Hzp3VoCvr8euBwAAAKB0EQACAFCKqpYvr7/17m3al5WXpzu//lqnLl3y+HXn7d+vefv3m/ZVDw7W3S1bevyaAAAAAEoHASAAAKXoiS5dFBYYaNr3l+hobY+LK7ZrP7tqleXab4927lxs1wUAAABQsggAAQAoJaEBAXosMtK0b++FC3p38+ZivX7M5cv68dAh076oOnVUpXz5Yr0+AAAAgJLBJiAAAJSSe1q1UiWL2X8vREcrz8ndfl3x6a5dusfkdl+bzaZe9evr+4MH3aofEhCgnvXqqVvdumoSHq7aFSqovL+/JCkzN1fxKSk6npysLWfPan1MjBLT0926nis61Kih/o0aqU21aqpToYJCy5WT3TCUnJGh82lp2h4Xp19jYrQzPt7j17ZJalG1qjrXqqXI2rVVMzRUYYGBqlCunHLtdl3OzNTFjAztT0jQ9rg4bTpzRpezsjw+Dk8ICQhQ7wYN1L1uXTWrUkU1Q0Lk7+sru2EoIS1NRy9e1NbYWK06flwJJfw6+9hsale9uno3aKCWVauqfliYwoOCJEk5eXlKysjQsYsXtfvcOa09dUoni+G2+4I0q1xZY9q0UZf/F7yn5+TozOXLGvvDDyU6DgAA4L0IAAEAKCUPtmtn2n4oMVFLjxwpkTH8cvq0MnNzTXcE7t2ggcsBYMeaNfV0t24a0bz5tcCvMLl2u1adOKEPt23T0iNH5Er82adBA719++352gzDUOeZM/O12SSNbdtWL/TsqRZVqhRY8/62bSVJ+y5c0L+3bNHsXbvcDmerBwdrYocOmtChg5qEhxf5vMzcXH1/8KA+3LZNG8+ccfq60wcMUM/69R3aoz75RNl5eU7Xk6Qm4eH6U48euq91awUX4bXOtdu18PBhvbF+vXYUQ6h6vUqBgXo8MlITO3RQg7CwIp+3PS5OM3bs0JzfflOOxW3yBRndurWeiYrK1xafkqKhX3+dr61yUJCmDxyocW3ayGaz5evLyM11+roAAABWCAABACgF1YKD1aNePdO+WTt3uhR+uSI9J0d/++UXRZiEI2evXHG6Xo2QEL03cKDuadnSIdAojJ+PjwY1bqxBjRtra2ysHlm8WHvOn3eqRqWgIHWsWTNfm3FDWFenQgXNGT5ct0VEOFW7dbVq+njoUI1v3173//ijTiQnO3W+9PtMtD906qS/9+2rCuXKOX1+oJ+fxrZpozGtW2vWrl16duVKp2YENg4Pd3h+pN8DUVfG8tptt+nJLl3k51P0VWX8fHw0skULjWjeXP/dvl3PrFypTA+HXT42m6ZGRupvffqoogvPc6datdSpVi39qXt3PbJ4sdaeOuXU+dVDQhye59M33FLfokoVLRkzRg0rVXJ6fAAAAM4iAAQAoBTc3qiRfEwCMsMw9N2BAyU6ljd//dUjdW6tX1/f3Xuvqnpg7cDI2rW17ZFH9NiyZZq1c6cHRve7llWravm4capboYLLNaLq1tW6CRN066efOhUCBvn56ftRozSocWOXr32VzWbTI7fcoq516qj3Z5/pYkaG2zWdUTs0VIvHjFGHGjVcruFjs+nRzp3VuXZtDZw712NjqxwUpHn33ON0wGumcXi4oh94QC9ER+utDRs8MLr/v+6a8eNVPTjYYzUBAAAKwiYgAACUgltNbsOUpIOJiTp9+XIJj8Z9gxo31qr77/dI+HdVgK+vZg4dqj917+6RevUqVtTqBx5wK/y7qnZoqJaMGaMAX98iHR/g66slY8Z4JPy7Xptq1fTT2LHyd2IGnrtqh4bq14kT3Qr/rte5Vi2tvP9+BRXxVvGC1AwJ0caHHvJI+HeVj82mN/v109969/ZIvdCAAC0bO5bwDwAAlChmAAIAUAraVq9u2v7L6dMlPBL33VKzpr4fNarAMCzXbtfPJ09qz/nzOnvlivIMQ9WDg9WsShUNatxYIQEBlue+2a+f4lNT9fnu3S6PMcjPT4tHj1bNkJB87ScvXdK8/fv1y6lTOnvlitJychQWGKg21appSNOmGtG8ueXtrS2qVNGTXbro7Y0bC73+8z16FBhKZeflad3p09oRH6+4lBRl5uYqwNdXtUJD1alWLfVu0MAy5IusXVuPRUYW+67RklTe31/Lxo4tdD29K1lZWn3ihGIuX9b5tDRVDgpS3YoV1TciwnR36Y41a+rNfv3cGltoQIBW3H+/mlaubHlMrt2u9TEx2hobq3OpqcrOy1O14GA1q1xZg5o0KfB24Zd69dKRpCR9uXevW+P896BBTq37CAAA4AkEgAAAlDAfm02tq1Uz7SuOnWaLU0hAgL67914FmWwiIv0ebL3566/6z7ZtupCWZnpMeX9/jW7dWm/262caDknSh0OGaMvZszqclOTSON/o1y9f6JqcmakXoqP18Y4dspts6LEzPl5zdu9Wk/BwfTlypDrXqmVa99HOnfXOxo0FrtkYERam53v2NO3LysvT2xs2aPrmzQXexlstOFiv3XabHrnlFtP+l3r10ozt24t944h3Bw60DK8lKebyZb0QHa0fDh40HUuAr6+GNGmif/Tvr8Y3hGCFbcZSmFl33qk2Fp9XaTk5+temTZq+aZOSMzNNjwnw9dXdLVvqjb59Va9iRdNj/jNkiNaeOqXYlBSXxnhvq1Ya3769Q3t8aqp+OnpUu8+f1+HERCWmp+uSxTgBAABcQQAIAEAJa1SpkuVuqQcSEkp4NO55qVcv0w1EpN9n19359dfad+FCgTXSc3L0ya5dWnzkiL4eOdJ0plywv7/eHzxYt3/xhdNjtNlseiIy8tr/z165otvmzNHRixcLPffoxYvq/dlnWjt+vGkI2CAsTO1q1NBv585Z1ri/XTuVM5kdmZGbqwFffKH1MTGFjuNCWpomLV6sM5cv65U+fRz6KwUG6raICC09erTQWq7qXreuHu7QwbL/iz179PiyZbpSwKYk2Xl5+vHQIa08flwfDB5sGoa5YmSLFrq3VSvTvgMJCbrjq6908tKlAmtk5+Xpq717teDQIX06bJhpvYrlyumNfv30wI8/Oj3GiuXK6b933JGvbd+FC3p21SqtOn7c7Z2lAQAACsIagAAAlLAWVata9rmy825pqRUaqie6dDHti09NVf/PPy80/LvehbQ0DfvmG20+e9a0v3/Dhi6v7XZ1R+KU7Owih39Xpefk6IEff1Su3W7a37yQmWt3t2xp2v7SmjVFCv+u9/f16y13Rh7cpIlTtZz19759LXd2/nz3bo1fsKDA8O96aTk5emjRIn3l5u20kuTv46N/Dhhg2rfn/Hl1nz270PDveuk5ORr9/feavWuXaf+YNm0KvM3YSlhgoCoFBl77/4fbtqnjxx9r+bFjhH8AAKDYEQACAFDCwoOCLPsu30S3/T3ZpYvpzDbDMDT6u+903Ikdcq9Kzc7WiG+/tQySpkVFOV3zes+uXOlU+HfVocREy9l1N64reD2bZBoW2Q3Dpd2N8wxDc/fsMe1rWKmS0/WKqkvt2pYb12w6e1YTFy40vZW6IHbD0PgFC7TXiZDYzAPt2qm+yS27lzIzdde337p0K63dMPTYsmWmMzt9bTZN7tjRpbFe9e3+/Xp82TJl5+W5VQcAAKCoCAABAChhFSw2GrAbRpFnUJU2X5tN97drZ9r31b59bm1mci41Va/88otp3+2NGhUYuBXkYGKiPt6xw+VxrT5xwrS9oN1rq5QvbxqSJrixxpvVDMCaoaEu1SsKq1t1c+12TVmyxOUZbDl2u5746Sd3hqYpnTqZtr++fr1LIfRVmbm5mrxkiWnf2LZt5WMxG7IwFzMy9PCiRQWuGwkAAOBprAEIAEAJs9pp9HJW1k0TCnSvV88yiLMK75zxwdat+sutt+a7ZVL6PXgc0aKFPty2zemaM7Zvd+v5Pe3EbaRXWe0gHBoQIH8fH+VY3FZckOiTJxX+1lsO7c7OwCsqH5tNIy1uY567Z49lIFlUa0+dUvTJk+rrwu3dzatUUSeTtRnPp6W59B650dbYWNOxVQ8OVudatbQlNtbpmv/eskWp2dlujw0AAMAZzAAEAKCEBQcEmLbfTKFA/4YNTds3nz2rIy7u1Hu9rLw8zd+/37TPlaBI+v22S3e48vpY7exb3t9f91hsWlGYXLtdyZmZDh+Xi2n2aPsaNVTVYndmV25jNvP57t0unWe17uH3Bw4oPSfHnSFd86XFLde9GjRwqZ7V2oIAAADFiQAQAIASZhVM+FvMFiuLutWta9o+z82Q7XrzDxxw6toFOZGcrHOpqe4OyWlZeXk6lJho2vefwYPVy2JdvbKka506pu0nkpO18cwZj1zjh4MHleXCenhWm8IsPHzY3SFdE33ypGl7m2rVnK4Vc/myztxEG/0AAADvcfP8pgEAgJew2uijoLXkypq21aubtm914ZZIK9vj4mSY3NZaMyRElQvYSMXMjvh4Tw3LacuPHTNtDwsM1M8PPqhZd96pFoXsJFyarF7rX2NiPHbLemp2tlM7Rl/VoUYN0/btcXHuDumamMuXTdfmbGPxvBTEU4EpAACAswgAAQAoYVYbfVQICDDdMKKsCfTzM70lNM8wtNvN9eCudykzU6cuXzbta2Kys25BEtLSPDEkl0zfvFmZubmmfT42mx7q0EEHHntMBx97TG/3768+DRooyK/sLNNcy2JzEVfWvyvITidD2orlypmOLTE93fLWa1ddMHn/NK9SxXKNRyunLd7PAAAAxa3s/HQJAMD/iCSLcMJms6lWaKhOurDZREm6cWOOq+JTUjy+juHhxERFhIU5tDu7E3CyizvuekLM5ct6esUKfTRkSIHHNa9SRc2rVNG0qChl5+USov7TAAAgAElEQVRpR3y8Np45o19jYrQhJkYJ6eklNOL8wi1mWx5ISPDodQ46Wa9OhQqm7SEBAdo+aZInhnSNWdBYztdXtUNDnQr1XN35GQAAwF0EgAAAlLCCgo6mlSuX/QDQIhAqjk0orAKTKhabUljJ8NCGEK767/btCvLz01v9+xdprccAX191q1NH3erU0TPdukmS9ickaOXx41p+7JiiT5xQXjHt+nsjq8DX02GWs/WqW4TAgX5+6lizpieGVKgKFjt6WyEABAAApYUAEACAEnY8OVlpOTkKNlnzr0316lpx/HiJj2lYs2amgcqVrCx9s29fvjarQMhqbUN3WIWKN9N6iVdN37xZG8+c0b8HDVJk7dpOn9+qalW1qlpVT3ftqtiUFH26a5fe3bzZckapp1gFvskevq6z4VhZuE061MkAMO0m2ukbAAB4l9L/yQkAgP8xdsPQvgsX1MUkBIpyYYdbd9kkfTJsmOnGGutOn3YIAP0t1inMtds9PjartfNuph2Tr7clNlZdZs3S4CZN9Gjnzrq9USOXHkvt0FC9eOutejwyUi+vXav3t2zx2IYcN8qx2J3X06+3s7sA+9hsHr2+K5ydAQgAAFBaCAABACgFu8+dMw0AezdoIF+brcRu75SkRuHhlrvqHklKcmizmvlVHGGIVU2rYPBmsezoUS07elRVy5fXXS1aaEDjxurToIHCLGZXWgkLDNR7AweqR716GvfDD8p2MkQrikuZmapXsaLptWNTUjx2nYpOvn+sZodezsrSsYsXPTGkQlmFowAAAGUNASAAAKVgzalTmtSxo0N7pcBA3RYRoVUnTpTYWMyCyKv2mOzqa7WhRkUnw6uisLrdOK2U1/TzlIT0dM3YsUMzduyQr82mTrVqqWf9+upZr56616tnGcze6J6WLZWana2JCxd6fIxWr7ezYWVhrG41tmK10++u+Hj1mTPHE0MCAADwGgSAAACUglXHjyvPMORrchvjuLZtSzQAHNSkiWXflthYhzartdqqBwd7fPZiTZPdVyXpXGqqx65RVuQZhrbExmpLbKze2bhRNkktq1bVrfXra0jTpuobEaHAAta9m9C+vb7eu9fj7x2r17tBWJg2nDnjsevUtnitrVgFgFWDgz0xHAAAAK9ycy6gAwDATS4pI0PRFkHNqNatVdNih1NPC/Tz053Nmpn2pWRn67dz5xzbs7KUbjIDr7y/v5pXqeKxsfn5+KhNtWqmfWcuX/bYdcoqQ7/v/PvR9u2646uvVO3tt/XQokU6c+WK5Tl/7tHD4+Oweq5d2cikIB1r1XLq+KT0dNlNwubaoaEq/dUBAQAAyhYCQAAASsnnu3ebtpfz9S2WIMfM4CZNFBoQYNq36vhx0zXlDEkHEhJMz3E2xClIy6pVVd5kt9+svDzTtQm9XUp2tmbv2qW2H32kTWfPmh7To149hVi8nq7ad+GCaXuXOnU8dg2bpI41azp1TlZeno6arPUXFhioVhbBMQAAwP8qAkAAAErJ9wcPWt7K+ofOndWqatVivb5N0p+6d7fs//HQIcu+HfHxpu1DCrid2FlWtfaeP6+cYthx+GZxKTNTY77/3nQX3gBfX7Xw4CxMSdpqchu4JHWuVUsNwsI8co0e9eqpSvnyTp+3Iy7OtP3W+vXdHdI1QX5+alipksNHUddnBAAAKAtYAxAAgFKSmZur97Zs0Rt9+zr0+fv4aO5dd6nrrFnKKqadRoc2a2Z5G+eVrCz9cPCg5bnRJ05osskmJnc2a6awwEDLdeOKyiZpfPv2pn2rS3B9RHfYJMVPm6YAX1+HvltmzNCpS5dcrn3q0iXtjI83ff1cCdIKsvv8eSVlZDgEXj42mya0b6+X1651+xpWr3VhVp04oTFt2pjW+3DbNneHJUmaFhWlV/r0cWifsmSJZuzY4ZFrAAAAFDdmAAIAUIr+s3Wr4lJSTPva16ihj4cOLZb1zMICA/XP22+37P/st99M1/m7auXx48rMzXVoD/Tz0yO33OL2+AY1aaKmlSub9i0+csTt+iXBkJSRk6NKgYEOH509cKu01SYYZq+LO+yGoUWHD5v2/aFzZ4W7OROuToUKGtW6tUvnLj1yxHQ2aOdatdTNA7coB/n5aXKnTqZ9JblRDwAAgLsIAAEAKEUp2dl6btUqy/4H2rXT+4MHy8dkt2BX2STNGT5cjcPDTfuz8vL0jw0bCqxxOSvLMoj7v169VMvJHV2vF+jnp/cGDjTtO5KUpE0e3Hm2uMVahLtWG684o4lFQHq2gE1CXPXlnj2m7VXLl9c/+vd3q/Y7t9+uYJO1HosiIT1dy44eNe37YPBg+fu496PuM1FRprsTH0pM1InkZLdqAwAAlCQCQAAAStlXe/dqSQGz2h7r3Fnf33uvKgUGun2tQD8/fTZ8eIEB1DsbN1oGV9d7d/Nm0/bQgAB9OmyY6a2vhbFJmj5ggGU4+e7mzXLc97Xs2myxWce9rVqpfsWKLtftGxGhRpUqObSnZmcrphh2SP755EntOX/etG9i+/Z6sF07l+qOb99eo1q1cmdo+ufGjabtt9SsqddNbq8vqm516ujFW2817fv3li0u1wUAACgNBIAAAJQyQ9L4BQt0poCZW8ObN9feRx/Vfa1bu3xLcPMqVbR2/Hg9UEBYcyQpSa+vW1ekehvPnNHK48dN+25v1Ehf3nWXUzOwbJL+0b+/pljccnnq0iXN3rWryPXKgqUWwW6Ar6++GjlSgX7OL8dct0IFzR42zLRv4eHDxbJmpCHplV9+Me2z2Wz6ZNgwjWvb1qmad7dsqZlDh7o9tvUxMZbvw2ejovRmv35O1+xUq5YWjh6tciYh9oW0NH32229O1wQAAChNBIAAAJQBSRkZuuOrryzXdZOk2qGh+nrkSO3+wx/0eGSkqgcHF1rXz8dHUXXr6quRI7X/0UfVxWLTD0nKyM3VPfPnK8OJNeSe+Okny8Dp7pYttX3SJHUqwnp3jcPD9fODD2paVJTlMY8tW1ZsG6IUl19jYiyD3ai6dfXrxIlqU61akWr52Gy6r3VrbZs0SfUsZg9+snOny2MtzPcHD1puwOJrs+mLESP09ciRqhESUmCdiuXKacYdd2je3XfL74aA2DBcm9/5+LJllu/bP3XvrjUPPlik59nfx0d/7NZNa8ePV1WLzVSeXbXKqc8RAACAsoBdgAEAKCP2nD+vIV99peXjxqliuXKWx7WpVk3vDxqkfw8cqH0JCdp7/ryOJCUpNTtbOXa7KgcFqXL58ooIC1PP+vUVGhBQ6LVz7HaNmj/f8jZPK4eTkvTU8uX6aMgQ0/621atr68MPa8OZM/p2/379du6c4lJSlJ2Xp3oVK6pZ5cq6t1Ur9WvY0CEMut6/t2yxXOutLMux2/Xizz9rzvDhpv0da9bU7ilTFH3ypFYeP66tsbFKSE9XckaGfGw2VQwMVIsqVRRZu7buadVKEWFhltf6fPdurTl1qpgeye8mLFyo36ZMcdgR+Kr7WrfWyJYttfzYMS06fFgnk5MVn5qq8KAgNQgL04BGjXRXixYqb7Lm36HERB27eFF3NG3q9LiOXryoR5cu1acWMyN7N2igXVOm6NeYGC04dEg74+N1IS1NFzMyVCkwUE0rV9at9etrbNu2qllAgPnt/v36fPdup8cHAABQ2ggAAQAoQzafPauus2Zp0ejRamKxDt5VNptNbapVK/IMMitpOTka+/33Lu+u+9/t29W0cmU93bWrab/NZlOPevXUo149l+ovOnxY01audOncsmDunj2a0L69ejdoYNpvs9nUr2FD9WvY0OVrHEpM1FPLl7t8flGdvXJFd337rZaPG6cgi9uX/X18NLRpUw11Isi7mJGhu7791nLNvaL47Lff1Dg8XH/p2dO039dmU6/69dWrfn2X6m84c0aTFi92eXwAAACliVuAAQAoYw4lJqrLzJn67LffXL4lsqgOJCSox+zZWnj4sFt1nlmxQn9fv97j4/1izx7dM3++cux2j9YtSXbD0PBvvtHO+Phiqb/r3Dnd+umnSs7MLJb6N1p3+rSGfvWVLmdleaTepcxMDZw7VwcTE92u9eLPP+uF6GjZPfw+/PnkSQ344gtd8dBjBgAAKGkEgAAAlEHJmZmasHCh+n7+ubbFxXm8/pWsLL28dq06fvyxfjt3zu16hqS//Pyz7po3T/GpqW7Xu5yVpSlLluiBH39U9k227p+Zy1lZ6v/FF5q7Z4/HaubY7Xpn40bd+umnSkhP91jdoog+eVJdZ83Sdjffm4eTktR11iyPvsff+PVXDfryS526dMntWhm5uXpu1SoNmDtXaTk5HhgdAABA6eAWYAAAyrA1p04pcuZM9apfX49FRmpQ48YKKcKaflaOJCXpk1279MnOnUoqYMMRVy04dEhrTp7Uk127ampkpKpYbKRgJSU7W7N27tQ/NmzQOReCxJPJyfp4xw6H9l0eCDnjUlLMaxdxZt/FjAzd/+OP+nLvXk2LilKfBg3kY3N+T+crWVmaf+CA/rVpkw4kJDh17orjxxWXkuLQnufCjLlDiYnq9sknmtC+vV7o2VMNClif8EYp2dn695Yten3dunwbavx88qRSs7PzHetKQL3y+HG1/vBD/aFzZz3dtatqhYY6dX5Kdra+2L1b/9q0SceTk52+/t7z503fK0cvXnS6FgAAgCfYpI7+0qVshx5/P+kvo0thSAAAwEqgn59ui4hQz3r11LpaNbWuVk11KlQw3UAjOTNTMZcva8/589oRF6cVx4/rkAdusywqfx8fDWjcWP0bNlT3evXUJDxcFW7Y3CQjN1dHk5K0JTZWq0+c0OLDh/9ndlhtEBamEc2b65aaNdWhZk01rFTJYV09wzCUmJGhAwkJ2h4Xpy1nz2rp0aNKL2Oz0XxsNt0WEaE7mjZVz3r11KxKFQXfsNFHbEqKdsXHa+nRo/pm3z5dKqFbln1tNvWJiNCgxo3VvV49NatcWWGBgfmOScvJ0YnkZG2IidGGM2e06PBhbvcFAABl20/bpC2HTDoSJF25+p+nJb0rEQACAOAVgvz8VKFcOQUHBCg5I0NZeXllLiSSpIr/b4y+NptSs7NLbN26m4W/j48qlCun0HLllJyR4bF19kpDpcBAhZYrp+y8PKVkZZWpW2grlCt3bSbtxYwMZf6PhM4AAMCLOBkAcgswAABeICM39/eZc2lppT2UAl3OyrqpQ63ilmO3Kykjo1huzy5pyZmZZTbgvZKVxQw/AADwP4VNQAAAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8mJ9lj90u/bqvBIcCAAAAAAAAoFBxSU4dbh0A5tml1bvcHQ4AAAAAAACAUsQtwAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL+Yn7ciTGv45f/PlB6W8FlYn+fr66vXXXy/usQEAAAAAAAC4wcmTJzVjxgyTnizT420WdRZJGmp1EX9/f2VnZzs/OgAAAAAAAABuWbdunXr16lXYYU9LelfiFmAAAAAAAADAqxEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAFyMABAAAAAAAALwYASAAAAAAAADgxQgAAQAAAAAAAC9GAAgAAAAAAAB4MQJAAAAAAAAAwIsRAAIAAAAAAABejAAQAAAAAAAA8GIEgAAAAAAAAIAXIwAEAAAAAAAAvBgBIAAAAAAAAODFCAABAAAAAAAAL0YACAAAAAAAAHgxAkAAAAAAAADAixEAAgAAAAAAAF6MABAAAAAAAADwYgSAAAAAAAAAgBcjAAQAAAAAAAC8GAEgAAAAAAAA4MUIAAEAAAAAAAAvRgAIAAAAAAAAeDECQAAAAAAAAMCLEQACAAAAAAAAXowAEAAAAAAAAPBiBIAAAAAAAACAF/Mr7QEAQEkxDEPHjh3TmTNndOnSJSUnJysrK0shISEKCwtTpUqVVK9ePdWvX7+0hwoAAAAAgMcQAALwarGxsZozZ47Wr1+vLVu2KDk5udBzatSooS5duqhnz54aN26cqlevXgIjRVny6quvau/evfnaRowYodGjR5fSiLzX5MmTHT4vn3jiCfXo0aOURgTgZvfBBx9o3bp1+doiIyM1bdq0UhrR/553331XGzduzNcWFRWlp556qpRGBAAgAATglTZu3Ki3335bS5YsUW5urlPnnjt3TgsXLtTChQv1wgsvaMSIEXrqqafUtWvXYhotypp169Zp9erV+dqaNGlSSqPxbosXL1Z8fHy+tmHDhhEAAnDZ1q1bNX/+/Hxtzv4sAPds3rzZ4TXw8WH1KQAoTXwVBuBV0tPT9dRTT6lnz55asGCB2z/wZ2dn69tvv1VUVJQmTpyo1NRUD40UAAAAAICSQQAIwGucOnVKt9xyi9577z3Z7XaP1jYMQ59++qkiIyMVExPj0doAAAAAABQnbgEG4BXi4+PVq1evQsO5SpUqqVOnToqIiFBYWJhsNptSU1N15coVHThwQHv37lV2drbl+QcPHlSvXr20adMm1ahRw6kxzpkzR++//36+tlatWmnOnDlO1QEAoKwYPXq0jh49mq/tmWeeYc3Um9yYMWN05MiRfG1PP/20xo4dW0ojAgC4iwAQwE0vLy9P99xzj2X4FxAQoPHjx2vChAnq0qWLbDabZa3s7GxFR0dr9uzZlrcQnzp1Svfee6/Wrl3r1Ho2586d044dO/K1+fr6Fvl8AADKmgMHDmjPnj352s6fP19Ko4GnHDx4UL/99lu+Nl5XALi5cQswgJvejBkztGHDBtO+bt26affu3ZoxY4a6du1aYPgn/R4WDho0SPPnz9fWrVvVoUMH0+PWr1+vjz76yO2xAwAAAABQ3AgAAdzUcnJy9Prrr5v2DRgwQNHR0WrevLlLtTt06KANGzaod+/epv2vv/66MjMzXaoNAACKx+effy7DMPJ9/PDDD6U9rP8p33zzjcNr8M0335T2sADgfxoBIICb2rJlyxQXF+fQXrNmTX311VcKCgpyq35QUJAWL16sBg0aOPTFx8drwYIFbtUHAAAAAKC4EQACuKktXbrUtP3Pf/6zwsPDPXKNkJAQ/fOf/zTt+/777z1yDQAAAAAAigsBIICb2q5du0zb77vvPo9eZ8SIEapVq5ZD+/r16z16HQAAAAAAPI0AEMBNLT4+3qEtPDxc1apV8+h1bDab7rjjDof28+fPKz093aPXAgAAAADAk/xKewAA4Cq73a4LFy44tIeFhRXL9aw2E4mPj1ejRo2K5ZpFZbfbtWfPHu3fv1/Hjh3T+fPnlZOTo5ycHIWEhCgkJER169ZV69at1bZtW1WqVKnExpaUlKQ1a9bowIEDio2NVVZWlkJCQhQeHq5WrVqpR48eql27tseva7fbtXPnTm3btk2HDh1SWlqa7Ha7goOD1bhxY91yyy3q1q2b/PyK/1thTk7OtXGcOnXq2uvj4+Oj4OBgBQcHq2HDhmrbtq1atWql4ODgYh+TJCUnJ2vRokXasWOHUlNTValSJd19993q1q2bU3Wys7O1efNm7dixQ8ePH1daWpr8/PwUHBys5s2bq0uXLmrfvn2hu3CXRXFxcVq7dq3279+vxMREZWVlKSgoSA0aNFCbNm3Uq1evYnu98vLytGPHDh08eFAnTpzQhQsXlJ2dLcMwFBISouDgYEVERKh169Zq06aNQkNDi2UcN0pJSdHixYu1bds2Xb58WWFhYRo8eLD69evnVJ2zZ89q+/btOnbsmM6ePauMjAxlZGQoKChIYWFhCgsLu/bYzNZhLS779u3Thg0bdPDgQaWlpSk3N/fa141u3bqpc+fO8vEp/G/odrtdu3bt0vbt23Xu3DklJiYqLS1NYWFhql69uqKiotS5c2cFBgZ6/DEkJiZq/fr1OnjwoGJiYpSRkaHAwEAFBgaqUaNGatWqlbp166by5ct7/NrFxTAMrVu3TmvWrNGZM2cUGBioiIgITZs2rbSHVuySk5O1ZcsWHTt2TKdOnVJKSsq1z5XQ0FCFhISoZcuWat26tZo1ayZfX9/SHnKxSU1N1caNG7Vv3z6dPHlSGRkZysvLU1BQkOrWratmzZopKipKNWrUKNExrVmzRvv27bv2+RYUFKTw8HA1bdpUUVFRatKkSYmNBwCsEAACuGnl5eUpJyfHoT0hIUF2u71Iv6A5o3HjxmrYsKFD+6VLl0yPHzdunLKzs6/9/9ChQw7HHDt2TPfee69D+9/+9je1aNGi0DHt3btX//rXv7Rs2TLTMNSMr6+vevXqpdGjR+uBBx5QQEBAkc67aseOHXrrrbfytQ0cOFATJ07M17Z9+3a98sorWrZsmfLy8gqs2b17dz311FMaOXKk2yFRQkKCpk+frk8//VTnzp0r8NhKlSpp4sSJeuaZZ1SzZk23rmvm559/1vvvv6/o6GilpKQU6ZzAwEANGjRIDz74oO68806nn48ffvjBYafFyZMnq2/fvtf+n5OTozfeeEP/+Mc/lJaWlu/Y8PDwIgeAx44d0zvvvKOvv/5aV65cKfDYunXrasqUKXriiScUEhJSxEfjecePH9fzzz+fr61r16764x//mK/tp59+0ltvvaV169bJMAzLeuXKldPw4cP1xz/+UZGRkR4Z46ZNm/Tee+9p5cqVSk5OLtI5AQEB6t+/v8aOHatRo0Y5/fVv1apVmjlzZr62MWPGaPjw4df+b7fb9d577+lvf/ubLl++7FCjKAHgxYsX9cEHH2jevHnav39/kcfXtGlTjRo1SpMnT3bpDwajR4/O93WoUqVKmjFjxrX/G4ahL7/8Um+88YYOHDhQYK2IiAi9+OKLmjBhgunnZ05Ojj766CO9++67OnnyZIG1wsPDNWXKFP3pT39ShQoVnHxU+eXm5uqbb77RjBkztGHDhgLft9Lv792hQ4fq8ccfV69evYp0ja1bt+qdd97J13b69GmH4+bMmaONGzfma6tSpYo+/PDDfG2ZmZl64IEH8rXVrVvXYd3dzZs3a/LkydqzZ0++9mrVqpkGgLNnz9by5cvztUVGRhYYFn711VfFvrFXUb+3S1JWVpY+++wzzZkzR1u3bi30++hVNWrU0MiRIzVp0iS1bdu2SOds27ZNb7/9dr62U6dOORz3+eefa/PmzfnaKleurI8++sjh2I8//lirV6/O1xYVFaWnnnqqSGO60YoVK/Thhx/qp59+Mv3Z70aRkZGaMGGCJkyYoHLlyjl1rdjYWD399NP52tq1a6e//OUv+dqOHj2q1157TfPmzVNmZmaBNVu3bq2pU6dq4sSJJfKHRwBwxiJJhtWHv7+/AQBlQXBwsOnXqY0bN5b20IygoCDLr6OFfaxbt67A2hcvXjTuvfdew2azuXwNSUaTJk2MlStXOvW4Fi1a5FDn8ccfv9afnZ1tTJs2zfDx8XF6PEOGDDHOnz/v0vNtt9uN999/3wgNDXX6uqGhocZ///vfa7X69evncMwLL7xQ5LEcO3bM6N69u1uvjSQjKirK2Lt3r1PPw2uvveZQ5+OPP77Wn5ycbPTp08fymq+99lqh18jMzDSeffZZw9/f3+nHVKtWLWPZsmXXatWsWdPhmLlz5zr1mJ2xdetWh+vdc8891/rPnz9v3HnnnU4/LpvNZowbN85ITk52eWyxsbHG7bff7vb7pkOHDsaWLVucuvZHH33kUOfvf//7tf60tDRj2LBhltd8+umnC6xvt9uNd955x6XPz+s/goODjddee83Iy8tz6vHd+F6tVavWtb4LFy4Yffv2dXosw4cPN9LT0/Nd5+DBg0br1q2drtWkSROnP9ev9/PPPxvNmjVz+XkdMmSIERsbW+h1fvjhB5evUa9ePYd6KSkpDse1bt063zEzZ840/Pz8TGtWq1bNdJxTp051OHbEiBEFPrbnn3/e7c+9wj4K+95+1YIFC4zatWu7dS1fX1/jkUceMa5cuVLo9X788UeXr1OnTh3TmpMnT3Y4dtSoUUV6/Nc7ePCg0bNnT7fG9+OPPzp9zRvrDBgwIN8x06dPNwIDA50eT2RkpHHkyBGnnwcAMPPLL78U5WvPtb+8sAYggJtaRESEaftLL70ku91ewqMpGQcOHFBkZKTmzZtX6AyPwhw9elSDBw/W559/7pGxZWZm6q677tI777zj0vO/dOlS9evXr8iznq6/7qhRozR16tQiz7S7XkpKiqZMmaKpU6e6/ZyuXLlSnTt31oYNG9yqI0kbN25Uz5499euvv7pdS5LS09M1ePBgrVmzxuUaCQkJ6tWrl95+++0izcK4UVxcnO644w795z//cXkMxeXo0aPq1q2bFi1a5PS5hmFo7ty56tixo44ePer0+Rs3blTHjh21cuVKp8+90a5du9SnTx8tW7bM7VrS7zPaRo4cqYULF7p0fkZGhu69915NmzbNpc/P66WlpenFF1/U2LFjXXr/3SgmJkZdu3ZVdHS00+cuWLBAo0aNuva1bufOnerWrZv27dvndK2jR49q0KBBhc5avpFhGHr55ZfVt29fHT582OnrXrV06VK1a9dOW7ZscblGcZg9e7YmTWu1scoAACAASURBVJqk3Nzc0h5KiXnppZc0YsQIxcbGulUnLy9PM2fO1G233abExEQPja5kffvtt7rlllvc2nDt7NmzGjFihKZOneqR95Hdbtfjjz+up59+utBZf2a2bt2qXr166cSJE26PBQCcRQAI4KbWvXt30/bVq1frkUceUVZWVgmPqHidO3dOt99+u44dO+axmrm5uZo4caK2b9/uVh3DMPTAAw9oyZIlbtXZu3evw+3EBbkaTsyfP9+t60rSBx98oJdfftnl87dt26bhw4c7HWAW5NKlSxo+fHiRb/EuyOTJk7Vp0yaXz09OTtZtt93mdkhgt9s1depUff31127V8aS4uDjdfvvtbv9SduLECfXq1cv09jkrhw8f1uDBg50OfwqSnp6ue++9t9BbUIviueeec7id0hkPPvigvvvuO7fHcb1vvvlGr776qls1kpKS1L9/f7de88WLF2v69Onav3+/BgwYYLkkRFGcPXvW4bbDghiGoSlTpuiVV15x+w8X0u/rBvbv3187d+50u5YnbNq0SZMnT/bIY7tZvPXWW3r11Vc9+pi3b9/ucJv1zWDOnDkaPXq0MjIyPFLvgw8+0Pjx493+4/CLL77o9h+w4uPjNWLEiCLf1g0AnsICBABuaqNGjcq3jtP1Zs+erW3btumNN97Q4MGDS3wDgokTJ+abobJ7926H4KRatWr51ti6ymo9uieffNJyVkBwcLCGDBmirl27qnHjxgoODpZhGEpPT9eRI0e0efNm/fTTTw5rvkm/zxR49NFHtXXrVmceYj5vvvmmQwg3YMAAjRkzRt27d1ft2rXl6+urc+fO6ddff9XMmTMtZ6ItWLBAa9asUZ8+fQq97rRp0wqc6RQYGKg77rhDXbp0Ua1atWS323XmzBmtW7dOq1atcvgB/PXXX1flypWL8Ijzy83N1YQJEyx/WalSpYqGDRumTp06qX79+ipXrpzsdrsuX76sw4cPa+3atVq7dq3prKakpCS98MILmjVrltPjumrevHmaO3dugcf4+PgoKCjItM9ut2vUqFEFzm6qWLGi7rrrLrVr1041atRQZmamTp06peXLlzusG2UYhiZNmlQmZurm5eVp9OjRpqFds2bNNGLECDVs2FCVKlVSfHy8jhw5ou+++84ysIuPj9edd96prVu3FmmDh4ceesh0TT3p902Nhg4dqsjISEVERCgoKEh2u10pKSk6cuSIfv31V61evdp0JkpaWpqefvppt9Y1i46O1nvvvVfgMTabzfJ9880331iG8zabTd27d1e/fv3UokULhYeHy8fHR9nZ2Tpz5ox+++03LVmyRDExMabnv/XWWxo/frzp2qyFsdvtGjdunI4cOXKtLTw8XH/4wx901113qWnTpgoKClJ8fLzWrl2r6dOnWwZjL7/8sv75z3/mm2Xl5+en+++/X+PGjVPbtm1VpUoVJSYmavPmzZoxY4blH0rmzZunV155pUgbBrz22mv6+OOPLfs7duyooUOHqlmzZqpatapSU1N1+vRprVixQqtXr863Ru1VKSkpGj58uH777TeFh4c79EdERGjSpEn52r777jtdvHgxX1u3bt3Upk2bfG1m9aykpaXpgQceKHTGlic3MQkMDPTIBlmGYbgUBB84cED/93//Z9nfsmVLDRkyRK1bt1atWrXk4+Mju92uuLg47d+/X8uXL3dYI/Gqn376SQsWLDD9eUOSGjRo4PC6fv/990pKSsrXZva6FsemYuvWrdPDDz9sGYQGBwdr+PDh6tmzp2rXri1/f3+dO3dOe/bs0bx583T27FnT87788ks1btxYf/3rX10a1/z58/XGG2/ka+vSpYvuv/9+9e3bV3Xr1lVQUJAuXLigLVu26IsvvtCPP/5o+n1uz549+uSTTxyedwAoDawBCOCm0bFjx0LXPqhfv77x3HPPGTt37iy1cb755puma8EU1Z49eyzX/HvooYeMixcvFlojKSnJeOyxxyyfpwMHDhRaw2wNwJ49exoBAQHX/l+3bl1j+fLlhdb64osvjHLlypmO5cEHHyz0/BUrVlg+Jz4+PsZTTz1V4PNy5swZY/jw4UVat6ewNQC//PJLy3WYXn31VSMzM7PQx3Py5EnjjjvuMK0TGhpqZGRkFFrDbA3Av/71r0Z4eHi+tsDAQOOee+4xPvvsM2Pnzp1GSkpKgXWnT59u+dwEBQUZ77zzjsN6aNfbs2eP0aVLlyI91yW9BqDZep316tUr8D2cm5trzJ0716hcubLl43j22WcLHc+KFStMz7XZbMZzzz1npKWlFVojNjbWuO+++0zr+Pn5GYmJiYXWMFsD8LnnnjPq1Knj8DPgnXfeacyaNcvYtm2bcenSJcuadrvdcl26Dh06FOnrcV5envHZZ59Zrh1YlDUrDcNxDcAbP4YNG2YkJCRYnp+bm2s8/vjjRXr/NmvWzNi9e3eB45k1a5blOqnvvvtuoY9nzZo1lud36tTJWL9+fYHnnz171hg7dqzlY5g4cWKhY7iqbdu2DudPnz69SOdarQE4adIk0/bXX3/dWLVqlREXF2fk5uZa1nVlDUBPeemll0yf08jIyAK/ho8ePdr0vJo1axqLFy8u0rWjo6ONhg0bmtYZPny4U4+jffv2DjX++c9/Fvl8V9cAvHLlisPXnasfPj4+xpNPPlnguoZ5eXnGnDlzjEqVKpnW8PX1NTZt2lTgGMzWAGzfvn2+r/cVK1Y05syZY9jt9gJrRUdHW36fiIqKKvT5AICCOLsGoBUCQAA3jd27d+cLnwr7aNy4sfHoo48aP/zwg1sL9jvL3QDwueeeM308Tz31lNNjeeGFF0xrFeWXNrMA8PqP+vXrGydOnCjyWGbPnm1ap0aNGgWel5ubazRv3tz03KCgIKc2N3n77bcLfd8UFgAOGDDA9LzZs2cXeRyG8fsvL1abLURHRxd6vlkAeGPANWbMmALDjhslJCQYFSpUsPzldP/+/UWqk5OTYzz88MOFPtclHQDe+NG9e/cCg63rxcfHmwYgkoyAgADj2LFjBZ5vFcK8/fbbTj0uu91ujB8/3rTWt99+W+j5ZgHgje+bO+64o0gbRVy1adMm0/G0adPGuHz5slOPb9OmTaYh3q233lqk8wsKAO+7774Cw6Sr8vLyjFtvvbXA907z5s2LvJHRtGnTTGtcvymNmezsbKNFixam544ZM6ZIf2y46r///a/h6+vrUMfHx8fYt29fkWp4OgAMCgrK94edevXqGStWrCjyYzKM0gsAv/nmG9M/StWuXbvAz50rV66YbigRFhbm9IYR8fHxppsrlS9fvtCw6nqlFQD+6U9/Mn1v+/v7G4sWLSry9U+fPm00aNDAtFbnzp0LfC7MAsDrPypWrOjURktr1641Dex9fHyK/L0GAMwQAAL4nzR//nyXdiT19fU1unbtarz44ovG2rVrjaysrGIbo7sB4C233OJwfr169Yo0K+xGWVlZRpUqVRzqPfPMM4WeW1AA6Ofn5/QsS7vdbkRGRjrUstlsBf4iazUOPz8/Y8mSJU6NwTAM49lnny3wvVJQAJidnW36y1u/fv2cHodhGMbx48dNf4mcM2dOoeeaBYDXf7zxxhtOj+eNN94wrRUWFmbs2bPHqVq5ubnG0KFDCxxjaQaAzZo1M5KSkpyqGRcXZ0RERJjWe/LJJws8t3r16g7n3HLLLU7vcmsYhpGYmGj6x5Ci/NJuFgBe/zFt2jSnx/Pqq6+a1ipsdpqVBx980KFWREREkc61+v7QvHlzIzU1tchjWLVqleVzFBgY6NROvomJiUb58uUd6vTo0aPA82bNmmV6/cGDB7v0vnn33XdN6xVlFrZheD4AvP6jZcuWRZrdfqPSCAC3bt1qOps4KCjI2LZtW4HnLlu2zPTxF/V5vNH7779vWq8os4GvKo0AMCkpyQgJCTEde1G+/93o8OHDljMBC5rhXVgA+MMPPzg9ljFjxpjWKmrQDgBm2AUYwP+ku+++W0uXLlWtWrWcOi8vL0+bN2/Wa6+9pt69eys8PFxDhgzR9OnTXdrJsbjk5eWZjmfcuHFFWmPsRgEBAaYbqCQkJLg0vqv++Mc/qkOHDk6dY7PZNHbsWId2wzAK3LnQau3Hxx57TEOGDHFqDNLva/81b97c6fOk3zdxMFuD7eGHH3apXsOGDVW/fn2Hdndfn3HjxunPf/6zU+fY7XbNnDnTtO+tt95yWA+qML6+vpo1a5YqVKjg1HklwWazaebMmU6tVSb9vman1fqMc+fOtdyM6Ny5czp//rxD+0MPPSQfH+d/RKtcubLatm3r0O7u+2bw4MF66623nD7PbD2yFi1aqEePHi6Nw2xNUHcf2+uvv67g4OAiH9+7d2/L4x9++GG1bt26yLUqV65s+lzcuO7ajd555x2HtmrVqumLL75w6X3zxBNPaODAgQ7t8+fP15UrV5yu5ykVK1bUkiVLimWNOU+LjY3V8OHDHdaAtdls+uSTT9SpU6cCzzf7XAkICNCDDz7o0nh69+5t2u7u50tx+/zzz5WamurQPnToUJc2MmnatKleeeUV074PP/zQ6XqSNGLECI0YMcLp88aNG2faXtZfEwDehQAQgNfo37+/9u3bp2nTpik0NNSlGmlpaVq2bJn++Mc/qk2bNqpZs6YmTZqk1atXl+pubUlJSaYLtkdFRblc02yjC3c2ZPDz89OTTz7p0rkdO3Y0bbcaz5kzZ/TTTz85tFerVs3yh/3C+Pv76x//+IdL58bHx5u2e/r1cec96O/vr9dee83p86Kjo013Se3UqZPLAWe1atX0/PPPu3Rucbr77rvVs2dPl8697bbbNHLkSIf2pKQkLVy40PScknrfuPN5bbPZ9Pe//92lYMns8XXr1s3lsXj6sdWtW9dyUwQrfn5+atasmWnf1KlTnR6DWWBY0Of5li1bdOjQIYf2Z5991ung+iqbzWb6tSE9Pd2t3Z/dNWXKFEVERJTa9YsqPT1dw4cPV1xcnEPf888/r9GjRxdaw+xzpUWLFi6Hn1WqVDFtLwubLhXEbGd4Hx8f/etf/3K55pQpU0w31Vm+fLlLm7U888wzLo3D2Z9zAKA4EAAC8CqVKlXS22+/rZiYGH388ccaOHCgypUr53K9c+fOaebMmerfv7+aNGmiWbNmme7SWtzCw8N1/Phxh49+/fq5XNPTP3QOHDjQ6RmYVzm76+7atWtNxz9+/Hi3ZpYNGTJEdevWdfq8qKgo09fHlVpXGRa7H7pq5MiRprMKCxMdHW3aPnXqVJdCoaseeugh+fv7u3x+cZgyZYpb5z/xxBOm7WZhtfT7L/hm7xtnZ1Vez9Pvm759+6pdu3Yunfv11187PDaz2WtFVRxfs1x5D5uFMo0aNVLTpk2druVsaGe2o3NgYKDb792OHTuahrMrVqxwq66rfHx8XP6DUkkyDEMTJkzQ9u3bHfqGDRumV199tUh1/vKXvzh8rrgTvt6MoVJqaqp27Njh0N6nTx81btzY5bp+fn6mMymzs7O1adMmp2o1a9bM9O6JonD25xwAKA5+pT0AACgOYWFheuSRR/TII48oPT1d69ev1+rVqxUdHa3du3e79MPxyZMn9cgjj+jDDz/U3Llz1bJly2IYuTk/Pz81bNjQozVPnz7t0Xq9evVy+VxfX1+njrf6oX38+PEuj0H6/ZfO0aNHOz0TMDg42KOvj91uV0xMjMfqSb8HOa7YvHmzQ1toaKjpbDdnVK1aVbfffruWLl3qVh1PqVOnjuVtc0XVs2dPNWzY0GHG5LZt20yPDwwM9Pjn9alTpzxaz9X3jfT7c+pJnn5srn4N9/Nz/PHZ1VrOfu1btWqVQ1vfvn0VEhLi0vWvN2DAAIevrbt27XK7ritatWqlmjVrlsq1nfHKK/8fe/cZFsXV9gH8Ty+CIAgoCoodQQTFrmBUBFTsWGLU2FtsiT62mIiJsbfERGPsJVHEhsaoqFFQsSJEESk2sCCIWOjtvB+84BXnDGyZXYr377r2A2fm3HN2dneWufeUxfD39xeUN2vWDHv27JE5wWxhYQELCwvJ2iX1Z0Udrl+/zu39+vnnnysde+jQofj2228F5deuXYO3t7fMcdT5fw4hhKgC9QAkhFR6hoaG8PT0xMqVKxEWFobExETs27cP48aNU2h40a1bt+Dq6lqmQ6OUdfr0aVy4cEHSmG3atJE0Xkl4SSkbGxvY29srHbtLly5Kx1DWunXrSpz/UBGKDCvNy8vjJq/at28v17xpYsrDuS7k7u6uVI9G4P1Qyu7duwvKo6Ki8O7dO6Viy2LXrl2IiYmRNKYyw5GllJycjJ9//lnSmFImXKSMJSYnJwe3b98WlCuTlPgQ7xoeFRVVJtNfKDNUXF0OHDgAPz8/QbmFhQUCAwMlScoqIicnR+aeh+XJ1atXueWKTsvwoXr16nF/kBD7cUaMOv/PIYQQVaAEICHkk2NhYYHBgwdj8+bNePDgAeLi4vD777/D19dX5iEamZmZ6Nu3L86dO6fi1krnzZs3OHPmDAYPHoxevXpJPkRI6t4+JYmOjhaUtWrVSpLY8i5iIpUXL14gICAA3bp1U3iOITEaGhqi85aVJCEhARkZGYJyqc51ixYtJIkjBanawpvnqaCggDvJvxRSUlJw7Ngx9OzZE6NGjZI8vhRJdUXl5uYiIiIC8+bNQ9OmTXH//n1J4/N68ilKHcPZY2NjuXPB8uY3U4SVlZWgLCsrS/LzLouyfN/J4ubNm/jyyy8FQ+51dXUREBCAunXrqrU9BQUFiIuLw9q1a+Hg4FAhf6CMjIwUlFWtWhX169eXJL6zs7OgTN7rsjr/zyGEEFWgIcCEkE9e/fr1Ub9+fYwfP75oVeCjR49i9+7dSExMFK2XnZ2NL774Av/995/ohNvqxhjDkydPEBsbi5iYGMTGxiI6Ohp3797Fw4cPVXpsU1NTlcYvlJ2dzU1K8VY/VYSlpSUsLS2RlJQkSbwP5eXl4fHjx4iJiSl6xMbG4vbt2yW+15RlbGys0PCj1NRUbrlU51qeFVNVzcHBQZI4YvPlKdOjs6CgAI8fP0ZsbGzRZzomJgaRkZF48uSJwnFlYWJiotL4wPv32YfPLTY2Fvfu3cPdu3e5Ca9Pldh7aOfOnaLzTMpDbMXfmJgYheY3VIY63neKevbsGfr06cP9HtqwYQPc3NxUduyMjIyiz0rh90dUVBQiIyO5q+dWJLzvm8aNGyvdM7uQvb09jh8/Xqzs1atXcsWoCCtSE0JISSgBSAghH9DS0kKHDh3QoUMHLFmyBP7+/li0aBHi4uK4+z9//hyLFi3Chg0b1NzS9+Lj43HhwgWEhITg2rVriI2N5d6UqIO6hjuJJaUUXQGTx9zcXJIE4N27d3HhwgVcvHgRN2/exMOHD8skoaHozbSqz3W1atWgoaEh+cIVirZFCmI/Bsiz2mRsbCyCg4MRHByMmzdvIi4uDtnZ2ZK0Tx4GBgbQ1dWVNOa7d+8QEhKCixcv4tKlS4iKikJycrKkx6isxJIVvIVBpPTmzRuVxucprwnAwt7/T58+FWybOnUqxo0bJ9mxcnJycPXqVQQHB+PixYtFCf/ycL1UBd73jZQJN16s9PR05OTkyHydk2LqC0IIKUuUACSEEBE6OjoYNmwYBg4ciFmzZokm+bZv3w4/Pz+1rfCWk5MDf39/bN26FRcuXKi0NwNixJJSUvZAVObm882bN9i5cye2bNnCna+rLCh60yKWtJLqXGtpacHIyEgt8+OVRqqEg9i5EXvfFkpPT8fevXuxZcsWueelUhUpb3ZDQ0OxefNm+Pv7l9mPFBWdvL2VpFIWn8+ymj+vJIUr/vI+nx4eHlizZo0kx4mNjcXmzZuxa9culfREL6943zdVq1aVLL7YNf7169ewtLSU7DiEEFKe0RyAhBBSCj09Pfzyyy9YsGABd3tGRgZOnDihlraEhITA0dERw4cPx/nz5+VO/hkZGcHLywtbtmxRehXXsiI215aU83np6ekpVG/v3r1o0KABpk+frlDyz9zcHEOGDEFAQACaNWumUBt4NDQ0FKondk7Lw7mWmlRzuBkYGHDL09PTRescO3YMjRs3xoQJExRK/pmamqJfv37Yu3evJBPmF1L0ffOh5ORk9O3bF+3bt8eOHTvkTv5pa2vDxcUFixcvxurVq5VuT0VWVonTij60VCo//PAD9u/fLyhv2LAh9u/fr/R1MTs7GzNnzkTTpk2xatUqhZJ/DRo0wMyZM3H48GGl2lIWcnNzBWVSftfo6+tzy+kHCULIp4R6ABJCKqSkpCQkJCQIyh0dHVWWUFi8eDFOnz7NvUE/f/48hg8frpLjFjpw4AA+//xz5OXllbqvtrY26tWrB0dHR9jb28PR0RHOzs5o1KhR0Xw6oaGhKm2vqoj1sJJymJoisfz8/LBo0SKZ9tXT00OTJk2KXhsHBwe4uLigTp06RfssW7ZM7jZITR3nWmzeMXWT6jmJxRHrybJhwwZMmzZNpmS+jo4OGjVqhKZNm8LBwaHoffPhJPm7d+9WrOEq8PjxY3Tu3BmPHj2Saf+aNWvCwcEBTZs2RdOmTdG8eXM0b968KKn68fxdnxqxHky9e/dWaSL9w+vSpyogIIB7fTcxMUFgYKDSQ1UzMjLg7e2N4OBgmfavVq1a0efEwcEBzZo1Q4sWLYqu2aqcU1ZVeN83Un4/iMWSspchIYSUd5QAJIRUSEeOHMGECRME5Xfv3lXZ6oGampqYPn06vvjiC8G2Bw8eqOSYhe7evYsRI0aIJv/09fXRuXNn9OzZE506dUKTJk3KTc8qqZU0jEcq8sY6cuRIick/U1NTdO/eHd7e3mjfvj3q1asnac8GVRFLAEp1rjMyMsrNIg9SJQDFzg0vQRAcHIzp06eLJv+MjIzg4eEBb29vdOzYEQ0aNFDLarNSyMvLw8CBA0tM/rm4uMDb2xuenp5o1qwZTbBfCrHzs3btWtSrV0/Nrfl0hIWFYeTIkYLPqZaWFvbt24cmTZoofYxp06aVmPyzs7NDjx494O3tDRcXF1hbWyt9zPJG1QlA3rVZU1NTbQuYEUJIeVD+7z4IIYRD7B82Vc+R1KFDB265Mit8ymLevHnIysoSlGtra2PmzJn43//+V25WIlY1HR0dGBkZCYalxcbGShI/JycHz549k3n/vLw8zJo1i7vN2NgYixcvxvjx42FoaChJ+9RJ7HMm1blW9crU8rh//z46d+6sdByxHwN4C6d8/fXXKCgoEJTr6+tj4cKFmDp1KoyNjZVuU1nYs2cPbty4wd3WtWtXrFq1Cs7OzmpuVcUmtvhOcnIyJQBV5Pnz56Ir/q5YsQJeXl5KH+O///7Dtm3buNuaNGmCtWvXwtPTU5Ih+eUZL8Eta+9hWfBGjZiYmEi2yjAhhFQEdMUjhFRIYr9+R0ZGqvS4Yj0wVNnb7sWLF9yhb7q6uggMDMSKFSs+meRfIV4vT6kWTrh9+7ZcvdIuXLiA+/fvC8otLCwQGhqKGTNmVMjkHwDUrl2bOxm/VOf65s2bksSRQlhYmCRxrl27xi2vXbt2sb/Dw8O5z79q1ao4f/485s+fX2GTfwBEExpTpkxBUFAQJf8UYGNjwy0XW6WeKKdwxd8nT54Itn355Zf4+uuvJTnO9u3bub2AP/vsM9y4cQNeXl6VPvkH8IeaP3nyRLJVwnnX+I+vy4QQUtlRApAQUiE5ODhwy2WdP0dRYj0MVbmC3IULF7i9hL755ht4e3ur7LjlWatWrQRld+/eRUpKitKxr1y5Itf+586d45b//PPPou/TikJLSwstW7YUlF+6dIn7npTX1atXlY4hFXlfdzGXLl0SlBkbGwveC//++y+3/pIlS9CmTRtJ2lJWsrKyuHOMOjo6Yt26dZ9EMkMVbG1tuT9+Xb58uQxaU7kxxjBmzBhuQr99+/bYtGmTZMfifYcYGRlh7969kq7EXd6JXffEehLLIz09nfsDcUW/1hJCiLwoAUgIqZCqVauGBg0aCMoPHz4sSRJIjFiPJVXNOwgAUVFR3PJx48YpFTc1NVWp+mWJlwDMz8/HX3/9pXTsffv2ybU/7/UxMzNTepXl8vL6tG7dWlD25MkTnD9/Xqm4ubm5CAgIUCqGlMLCwhAdHa1UjKdPn3Jv5lu1agUtLa1iZbz3ja6uLkaOHKlUG8rD+yY2NpY7X+moUaOUmvtSynk+K6r27dsLyoKCguReEZ5n165dmDBhQrHHmjVrlI5bES1ZsoT7fWJra4tDhw5J1uufMca97vj4+KBmzZoKx62InxWxZNyBAweUjn348GHuKsPt2rVTOjYhhFQklAAkhFRYPXr0EJRlZGRg/fr1Kjumv78/t/yzzz5T2TF5N/QGBgaws7NTOGZBQYEkv6qXFTc3N24voi1btih1IxwTE8PtwVUS3o1Ww4YNlVqsISkpCY8fP1a4vpTc3Ny45Zs3b1Yq7okTJ5CUlKRUDKnt3LlTqfpbt25Ffn6+oLxjx46CMt7n2sbGRqlhv2K9XNRNLAmp7A8lYsOrPyW8eWhjY2Nx9uxZpeLm5ORg9uzZ2Lx5c7GHVMMvK5KDBw/iu+++E5RXqVIFR48ehZWVlWTHysjIQHZ2tqC8adOmSsWtiJ+V2rVrw9bWVlB+8OBB7hyM8tixYwe3nJdQJ4SQyowSgISQCmvw4MHc8qVLl8qdxJFFeHg4Dh06JCg3NjaGu7u75McrxEt0KTuELjAwEPHx8UrFKEv16tVDp06dBOURERGic4/JYu7cuZL0pFH29dm4caPois/q5unpiRo1agjK/f39FR56mJeXh2+//VbZpknul19+wdOnTxWq+/TpU6xatUpQrqGhgeHDh3PLZSmTx44dOwSL45QFseehzGT7qamp2LNnj8L1K4sBAwZwz+NPP/2k1LXr999/5ybku3XrpnDMiujWrVvcFX81NDSwc+dOyeeuVOOjKwAAIABJREFUFPusKHMtKCgowK+//qpw/bLE6zn/9u1bLF++XOGYZ8+e5SbIHR0dJVnBmRBCKhJKABJCKqz27dtzh4Lm5eXB19dX0h5uKSkpGDhwILd3z4QJE1Q6WT9vfsGMjAyFe4ilpKRg6tSpyjarzI0dO5ZbPnfuXIWSm8ePH8fhw4flrsd7fWJjY7nvFVncvn0by5YtU6iuKujo6HCHpTLGMHHiRIUSTmvWrMGdO3ekaJ6k0tLSMG3aNLkTKfn5+Zg0aRLevXsn2Obh4cGdroD3vklISFA4gffw4UMsWLBAobpSs7Cw4JaLTWcgi6lTp5aL4c1lzcbGhrvy7L///qtwr9yEhAQsWrSIeyyxHsCVUWJiIvr06YP09HTBtu+//17paR14DA0NufP8KfNZWb9+fYXsAQgAo0eP5iY/V65ciZiYGLnjZWRkYNq0adxtyk6jQgghFRElAAkhFZrYr8LPnz+Hm5sbtm3bpnAiptDNmzfRqlUr7kqvBgYGmDlzpsKxeXPSfKx+/frcckV6ur169Qrdu3fnrmpY0QwcOJCbRHn58iU8PDzkGl56/fp1DB06VKF28JI7KSkpOHLkiNyxoqOj4eXlhaysLIXaoirjxo3jDmm+ffs2+vbtyx3CJsbf3x/z5s2TsnmSOnTokFztY4xh0qRJOHbsGHf75MmTueW89012djb27t0r87ELJSQkwMPDA2/evBFtozrZ2tpy50jbsWOH3NdjxhhmzZql0HmprObPn88tnz59OgIDA+WK9fr1a/Tv35+7wNW0adMUnsqgvPRgllVWVhb69u2LhIQEwbaBAwdyhwRLhXctOHbsmELDr/fs2YPZs2dL0SwuVb+ujo6O6Nmzp6A8MzMTXl5eePbsmcyxcnJy0L9/f9y9e1ewzdLSEmPGjFGqrYQQUhFRApAQUqF99tlnov/EZWZmYsyYMXB0dMTu3btFb47FFCaF2rZti4cPH3L3WbJkCXdVRlklJiaWuk/37t25E+evWLFCdCVRnjNnzsDFxQVhYWGi+zx//lzmeGXNwMAAixcv5m6LiYmBq6srTp8+XWqcbdu2oWvXrgr3vBJbiXnatGmIi4uTKQZjDNu3b0fr1q1LvMGR5f2iCvXr18fEiRO5286ePYt27dohIiKixBh5eXnw8/PDsGHDJFlBWJWWL1+O4cOHl3rNePLkCXr06IE//viDu93NzQ29e/fmbhN738ybN6/Uc/mhAwcOoEWLFtwfKAqp+31jaGjInRYhIiJCruTqkydP4O3tjdWrV4vuk5mZKfe1vaLr0KED9weL7OxsDBw4EEuWLJEpKf/ff//Bzc2N21vexsYG48ePV7iNZXWtUtSkSZO4q5LXrVsX33//PR4+fIgHDx5I8vg4ica7Frx9+xYjRoyQ+ceVtLQ0TJkyBSNGjCgxya7s66KO13XFihXQ1dUVlD98+BAdOnSQ6f+euLg4dO3aFadOneJuX7p06Se1wjIhhJQmEAATe+jo6DBCCCkvMjMzWevWrUWvWYUPLS0t1rp1azZr1iy2bt06tnv3bnbixAkWFBTEAgIC2B9//MGWLFnC+vXrx6ysrEqNN2jQIFZQUCBzO5cvX86NExAQUGrdAQMGiF6P58yZwxISErj1Xr58yfbv38/c3NxKfT4AmJ6eHgsPDy+xLYGBgdy6OTk5Mp+Lj8XExHBjxsfHl1gvPz+fde3aVfT5aGhosC5durDt27ezu3fvsvT0dJaens4iIyPZxo0bRd83PXr0EJTNnz+f24a8vDzWuHFjbhxTU1O2du1alpqayq0bHx/Pfv/9d9a0aVOZXh9ra2uWnJxc4jn58ccfBfXs7e1leyFK8PbtW1a/fv0S/zfo168fO3jwIIuLi2NZWVksNTWVhYeHs6VLl7JGjRrJfK737NmjdHvFXLt2TaZzDYBZWlqyWbNmsdDQUJaYmMhyc3NZfHw8O3XqFBs1ahQzMjISrWtkZMRiYmJKbEvbtm25datUqcKWLFnCkpKSuPWeP3/OduzYwVq0aCHT8zA1NWWPHz8usS0bN24U1LOwsFD4PO/du1e0PV5eXuzSpUvcetnZ2ezChQts7NixTE9PT6bnt2TJklLbo6OjI6i3b98+hZ6bp6enINaECRMUirV06VJBrEaNGpVaLzk5mdnY2Iiek/r167NFixaxmzdvsrS0tKJ6r169YsePH2dDhw7lnpPC6+aZM2dkfg7NmzcXxKhdu7bo+/dD796947bh1KlTMh+fZ+rUqYKY/fr1E92/YcOGMl8XlH08fPiw2LEjIyOZlpYWd99mzZqxo0ePstzcXEGb8/Pz2a1bt9iCBQuYmZmZTMceMGAAy8/Pl+kcuri4COpbW1uzFy9eyFR/woQJgvqDBw+Wqe6yZctEn4OGhgbr3bs3279/P3v27FnR/2EpKSns3LlzbMyYMczQ0FC0fs+ePUv93y0qKopbNzIyUqb2i+HFPHv2rFIxCSGftgsXLshy/Z+BUlACkBBSoaSmporeTKvi0b9/f5aVlSVXGzdv3iwar2XLlqxPnz7Mx8eHubq6sqtXrxarGx0dLXqzVvho2LAh6969OxswYABzc3NjjRs3Zpqamtx969Wrx+bMmcPdpq+vz4YPH84WLlzIdu/eLXge5SkByBhjiYmJzM7OTrLXtnPnziwiIkJQLpYAZIyxw4cPlxhTW1ubOTk5MW9vb9a3b1/WoUMHVrduXdH927dvz0aOHMndVr16dTZhwgS2cOFC7k26qhKAjDEWHh7OqlatKtm5Hj9+PPP39xeUl0UCkJcwUPShpaUlU2I/ODiYaWhoiMbR1NRkTZs2ZV5eXqxfv36sY8eOrEGDBqL7N2/enE2ePJm7rWrVqmzMmDFs4cKFLDAwUNAWqROA+fn5pSYoq1evzjp37sz69+/PPD09WfPmzUVv3PX09Ni6detEr2ldunRh8+fPZ3PnzuW2p7IlABlj7MaNGzJ/HqtUqcL09fVl2venn36S6zl07tyZG8fY2Ji5u7szX19f5unpyT777DNBXUoAvjd27NgS6xgZGbH27duz3r17s549e7JWrVqxatWqie4/Y8YM1qRJE+62Zs2asW+++YbNnTuXPX/+XPScdOnSRbQtH76u7u7u3PrKJAALCgrYkCFDZDqfOjo6JSb8Pnw4OjqylJSUUo9PCUBCSEVBCUBCyCcrMzOTTZgwocQbamUfWlpazM/Pj+Xl5cndPl5SSewRHBwsqL9t2zZJnlv37t1ZSkoKi42NLXXfESNGCNpR3hKAjDEWFxdXYu80WR8tWrRgr1+/ZpGRkYJtJSUAGWNsxowZkrzHJkyYwLKzs9mhQ4dK3XflypWCdqgyAcgYYyEhISXeeMr66NevH8vNzS03CcD4+Hi2cOFCpZ+Xjo4O27Vrl8zt4b1eijyGDBnC0tPTZfpHcN68eYJ2SJ0AZIyx2NhYZmFhofRzs7a2ZpcvX2aMMebk5FTivkZGRty2VMYEIGOMhYaGMktLS0neQ4D8yT/GmOiPSR8/bG1tBXUpAfje27dvuT3u5H0YGBgUXT9Hjx5d6v5RUVGi52TevHkyHbN27drc+sokABljLCcnhw0bNkyy8+7q6soSExNlOjYlAAkhFYW8CUCaA5AQUmno6+tj06ZNOH/+PHd1YGV5eHggLCwM3333HbS0tOSu7+TkBE9PT4WPP2rUKGzcuBH6+voK1TcwMMBPP/2EEydOwMzMDA0aNKg0KzzWr18foaGh8PHxUTiGj48Pzp8/DxMTE4Xqr169Gl9//TV3BUNZ2NraYt++fdi0aRN0dXXh5eWFmjVrKhRLlTp27IgrV67A1dVV4RhTp06Fv78/d27LsrR48WJs2bIFBgYGCtW3tbVFUFAQhg8fLnOdBQsWYPHixQpdUwDAysoKf/zxB/766y8YGhqiQ4cOaNSokUKxpNagQQOcPn1adCEjWQwYMAA3b95Eu3btALxfJZT8v7Zt2+LGjRvw8PBQKo6NjQ3++ecfhRbomTJlCs2npiRjY2OcOHFCqe/kzp0748qVKxg2bBiA9/8zKGPSpEll+rrq6Ohg9+7dWL9+vVLt0NTUxFdffYXg4GBYWVlJ2EJCCKl4ytd/3oQQIgE3Nzdcu3YN58+fx759+3DkyBG8ePFCoVhWVlbo06cPJkyYgBYtWijdtr1796J37964fPmyQvUnTJiA9u3bY/78+Thx4oRMiykYGBhgxIgRmD9/PmxtbYtt+/333+Hu7i7XirkNGjTAnDlzBOWamor/plStWjVuzKpVq8ocw8LCAoGBgQgMDISfn1+Ji518yNbWFn5+fhg5cmRR8q569eqC9pR2Y6apqYnVq1fD09MT3333HXdCeR5zc3N88803mDFjRrHEk4GBAbZt24Z+/frJtSpw+/btBW3nrZasjEaNGiE0NBTbt2/HsmXL8ODBA5nqOTk5YeXKlejevXtRWZMmTQTtdXBwkLS98hgzZgzc3d0xZ84cHDlyRKbPmJmZGaZMmYLZs2fD2NhY7mMuXLgQXbp0wbfffovz58/LVKdq1aqYOnUq5syZU+yYWlpa2LFjB7p37y7XwjYuLi6C10GKm39nZ2eEhYXBz88Pf/zxB969e1dqHQ0NDXTu3BkLFy7EZ599VmzbpEmT8PfffyMoKEiudsyePVuwOIK9vb1cMQoNGjQIzs7OxcratGmjUKy2bdsKznv16tXlimFjY4NTp04hMDAQS5culfnaA7y//k2ePBmTJk2S63r78fEPHz6MIUOGcFcTLomuri732m9nZ6dQWwp169YNhoaGxcpKuq6MHz8eL1++VOqYshL7kalGjRo4d+4c1q9fj9WrV8u84q2joyN+/PFH9OnTp1h5x44dMWvWLKxatUqhdtrY2ODIkSMYMmQIUlJS5K7v6ekJU1PTYmVOTk5yxdDQ0MC0adPQr18/LFu2DLt375bpGgIA2tra6NWrFxYuXCj3/2/m5ubc96W8n82P8WLWqVNHqZiEECIPsW4KgQBEu1Ho6OggJydHNS0ihBCJFRQU4MqVKwgLC0NkZCSioqKQlJSEtLS0ohtkY2NjVKlSBba2tqhTpw6cnZ3Rpk0bODs7K5XYEmvPwYMHERAQgIiICCQnJ4MxhmrVqsHa2hoNGzbEd999h7p165YYJyYmBidOnEBwcDDi4uKQkpKC7OxsWFpawtLSEg0bNkTnzp3h4+NT4o1dYmIi1qxZgzNnziA+Ph6ampqwsLBAy5YtMWTIEPTo0UPS568u4eHhOHHiBEJDQxEXF4fk5GQUFBQUvc7Ozs7w9vaGl5eXSnqiXbt2DadOncKlS5eQkJCAlJQUMMZgaWmJmjVrokmTJvDw8ICnpyd3xcNCd+/exdq1a3H58mU8f/4cenp6qFmzJlq3bo1x48ahZcuWkrddHowxhISE4OTJk7hx4wYePnxYdLNoYmICOzs7tGzZEj4+PujUqZPCPSSlcv36dbRu3VpQHh8fDxsbm2Jljx49wqFDh3Dx4kVER0cjKSkJ+fn5MDQ0hK2tLZo3bw4PDw/06NFD4Z65H4uIiMDJkycREhKCR48eISUlBfn5+bC0tISVlRUaN26MLl26oGfPniX2VHzw4AHWrFmD4OBgPH36FDo6OrCysoKrqytGjRqFjh07StJeebx58waBgYEICQlBREQEkpKS8ObNG5iYmKBmzZqwtrZGhw4d4OPjgwYNGojGycvLw5YtW+Dv74979+4hKysL1apVg729PTp27Ii5c+eq8VmVP/fu3cPJkydx6dIlxMbGIikpCVlZWTA0NIS5uTlq166Ntm3bolOnTujUqZPCvU8/lpycjG3btiEoKAgxMTFIS0uDrq4uqlWrBjs7O7i6uoqu3E6Ky8nJwT///IMLFy7g2rVrSEpKQkpKCgwMDFCzZk3UrFkTLVu2RI8ePUod8RAYGIitW7ciPDwc7969g5GREerVq4e2bdti7ty5giTdx0p6XevWrQtXV1f88MMPUj59Uenp6Th58iQuXLiAO3fuID4+vijpbGRkhFq1asHe3h6dOnVCz549Jf/xixBCypvg4GC4u7uXtttMAOsASgASQggh5BMiTwKQEEIIIYSQ8kreBCDNAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJaZd1AwghhBBC1KV+/frw9/cXlJubm5dBawghhBBCCFEPSgASQggh5JNhZmYGX1/fsm4GIYQQQgghakVDgAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcQoAUgIIYQQQgghhBBCSCVGCUBCCCGEEEIIIYQQQioxSgASQgghhBBCCCGEEFKJUQKQEEIIIYQQQgghhJBKjBKAhBBCCCGEEEIIIYRUYpQAJIQQQgghhBBCCCGkEqMEICGEEEIIIYQQQgghlRglAAkhhBBCCCGEEEIIqcS0y7oBhBCijFu3buH06dNldvyWLVuiW7duZXZ8UvHduXMHf//9d7EyY2NjTJ48uYxaVPYSExOxc+dOQfmMGTOgp6dXBi0ihFQG69atQ3Z2drEyb29vODk5lVGLPj1r1qxBbm5usbJevXrBwcGhjFpECCGfDkoAEkIqtNDQUMydO7fMjj916lRKABKl3Lx5U/AetrGx+aQTgE+fPuV+ridNmkQJQEKIwvz8/PD69etiZRYWFpQAVKOFCxciIyOjWFmtWrUoAUgIIWpAQ4AJIYQQQgghhBBCCKnEKAFICCGEEEIIIYQQQkglRkOACSGkkjp58iQOHz5crKxu3bqYN29eGbWIEELIpyAlJQXz588XlP/444+wsLAogxYRKaSmpnKnZ/jhhx9gaWlZBi0ihBAiD0oAEkIqpQYNGqBu3boqP07jxo1VfgxFhYeHY/PmzcXKWrduTQlAQgghKpWWlib4/gGA//3vf5QArMDEXtdZs2ZRApAQQioASgASQiqlUaNGcXsfEEIIIYQQQgghnxpKABJCCCGEEEIqvVu3bqGgoKBYGfVIVK87d+6AMVasjHoPEkKIelACkBBCCCGEEFLpqWNqEFIyOzu7sm4CIYR8smgVYEIIIYQQQgghhBBCKjFKABJCCCGEEEIIIYQQUolRApAQQgghhBBCCCGEkEqM5gAkhBCiMMYYYmJiEBUVhaSkJLx9+xbGxsaoUqUKGjRoAAcHBxgbG6u1TampqYiIiMD9+/eRnp4ObW1tmJmZwdbWFi1atIC+vr5KjssYQ3R0NCIjI5GSkoK3b9+iatWqqFmzJhwdHctk3qPHjx8jKioKCQkJSEtLg56eHgwNDWFnZwcHBwdUr15dLW24ffs2nj17VnROzMzM0LRpUzRp0gSamhXzt8jMzEzcvn0bUVFRePv2LTQ0NGBkZIRGjRrByckJRkZGKj3+y5cvERsbi/v37yMjIwPv3r2DoaEhjIyMYGxsjCZNmqBBgwbQ1lbfv3o5OTm4evUq7t27h8zMTNSoUQPdunWDmZmZXHGys7Px4MEDxMXF4fnz58jNzUVubi6MjIxgYmICa2trODo6wsTEREXPhC8lJQXh4eF4+PAh3r17Bz09PZiamqJJkyZo3rw5tLS0ZI714sULREdHIykpCS9evICGhgbMzMxgZ2eHFi1aQEdHRyXPIS8vD5GRkYiOjsbr16/x5s0bmJiYwMTEpOiaraprpCrFxMTg6tWrSE1NhampKZydneHk5FTWzVK5/Px8PH78GHFxcUhISEBubi7S09NhbGwMExMTmJubw9HRETVq1CjrpqpFbGwsoqOj8ezZM6SlpUFfXx9VqlSBnZ0dHB0d5b4WKaugoABRUVGIjIzE69evkZaWBjMzM5iZmcHFxQU2NjZqbQ8hhFACkBBCJJSXl4effvoJGRkZxcq1tLSwYMECGBoaKhT33r172LFjh6C8efPmGDp0KABg4cKFyM3NLdp25coVwf4JCQmYO3euoHzixIlyTY5+8eJFbNmyBSdOnEBycrLoftra2mjVqhWGDRuG4cOHo2rVqjIfo9CiRYuQlZVV9Le+vj4WLVpUbJ+CggIcPHgQv/76Ky5evIj8/HxuLD09PXTu3BlTpkxBz549JUk+3blzBxs3bsTBgwfx4sUL0f3q1auHoUOHYsqUKahZs6bSxxUTFRWFzZs348iRI3j06JHofhoaGnBwcICvry/Gjh0La2trydrw5MkTbNq0CX/99RcePHggup+lpSUGDhyIqVOnokmTJpIdXxFBQUE4e/ZssbJBgwahRYsWxcpCQkKwfv16/PPPP4LPeSFdXV24ublhzJgxGDhwoGRJuP/++w/bt2/HyZMnce/evVL319PTQ7t27TBo0CAMGjQI5ubmch9zx44dgmPNnDkTVlZWRX/n5+fjl19+wfLly5GYmFhs37Nnz6JLly6lHictLQ07duzA8ePHERwcjMzMzFLr1KtXD3369MHQoUPRqlUrGZ/R/4uJicG2bduKlbVp0wb9+vUr+psxhiNHjmDt2rW4fPmy6LXF3NwcI0eOxJw5c0RXNM3Ly8POnTuxceNGhIWFCVZCLWRoaIi+ffti9uzZcHZ2lvt5faygoAAnTpzAjh07cPr0abx79050X319fXTs2BEjR46Er68v9PT0ZDpGQEAAbty4UfT327dvufutXLkSpqamxcratm2Lvn37FiuLiIjAX3/9Vaysc+fO8PLyKlZ2+fJlzJo1C6GhocXKx4wZgy1btgiOv3z5cqSmphYrGzhwIFxdXUWeGbBu3TrB+1pKvO+0kuTn5+PAgQM4dOgQzpw5I3g+PJaWlvD29sbgwYPh6ekp83ffwYMHcf369aK/xd47q1atQrVq1YqVffxZKvTTTz8J3h+DBw+Gi4uLTG362OXLl7Ft2zYcP368xO9gDQ0NODo6wtfXF6NHj0atWrXkPlZwcDBOnDhRrKxPnz5o165dsbL4+HisWrUK/v7+JbapTp06GDFiBCZOnCjpdzAhhMgrEAATe+jo6DBCCCkPfv31V+51asmSJWXWpnXr1nHbNH36dIXi5eXlsdatWwviGRoasqioqKL9DAwMRK/bpT1CQkJkaktERARzd3dX6Bjm5uZsw4YNrKCgQK7nb2pqWiyOiYlJse0xMTGsbdu2crfHzc2NPXz4UK62fOjly5ds+PDhTFNTU67jVqlShS1btozl5+czxhjbsWOHYB8bGxu52/P06VM2ZMgQudsDgOnr67M5c+awzMxMhc8HY4xlZmayOXPmMH19fbmOr6WlxaZMmcLS09MZY4zduHGDu9+bN2+Ual9JvvvuO8HxduzYUbT96dOnrHfv3nKf2yZNmrCzZ88q1bYHDx6w3r17Mw0NDYU/4yYmJmzlypUsJydHrmP36tVLEOv27dtF21NTU1mXLl1Ej1vac8/Pz2crVqxg5ubmCj83AMzHx4fFxMTI9dxOnjwpiDNhwoSi7fHx8SU+N97DwsKCBQUFCY4VHh7OHBwc5P5c+Pn5FV0rFHH27Fnm5OSk0DmtW7cuCwgIkOk4o0ePVvi1mzx5siDen3/+Kdhv7ty5xfZZsWIF09LS4sYcM2YMt51169YV7Lt169YSn1uzZs2Uem/K8tmU1YEDB1iDBg2UOl6LFi1YcHCwTMcbO3aswseZOHEiN6a1tbVg3927d8t8DgpFRkayrl27KtQ2PT09NmPGDPb27Vu5jrly5UpBrF9++aVoe35+Plu+fDnT09OTqz1VqlRhGzdulPv/I0IIuXDhgizXmRkoBSUACSEVQnlMAObn57PPPvtM0CZNTU2ZE20fWrZsGfc5fvhPJ2OqTwCuXbuW6erqKn2z06NHD7n+6S4pAXjp0iXBdnkeFhYWxZKosrp+/Tr3Jkaeh4+PD8vMzJQkAXjs2DFWrVo1pV+bZs2asUePHsl9Phh7nyxp3ry5Usd3dnZmiYmJ5S4BePPmTVazZk2Fn5empibz8/NTqF2nTp1SOjn24aNnz54sIyND5uOXlAB88+YNc3FxKfF4JSUAX716xXr06CHZczM1NWUXL16U+bmVlAAMDw9X+DXX09NjZ86cKXYcZa7PHye+ZJGXl8dmzpypVNK48DF+/HiWm5tb4vHUnQD8/vvvS4xZ2RKAubm5bObMmZIdU0tLq9TnzVj5TQBu3rxZ7iQb71G3bl0WEREh83FLSgBmZ2ezQYMGKdWeGTNmyHUeCCFE3gRgxZx4hxBCyjFNTU1s27ZNMPddQUEBRo8eLdPQtkJRUVHcoUGenp6YMmWKsk2V2YwZMzBz5kzk5OQoHevEiRPo3r070tPTlYpz69YteHp64vXr1wrHSE5OhpeXF9LS0mSuExoais6dO+PZs2cKHxcAjh07Bl9fXxQUFCgVZ8uWLejbt69Mw8BKc/v2bbi5ueHx48dy1Xv8+DE6dOiAiIgIpY4fHh6Obt26iQ4fLAuRkZHo1q0bnj9/rnCMgoICfP/99/jmm2/kqnfu3Dn06tULKSkpCh/7Y3///TdGjRqldBzGGIYMGYJbt24pVD8rKwve3t6C4XTKeP36Nby8vEocdi6L2NhYdO/eXeHXPDs7G4MHD0ZiYiIuXLiA/v37y3Xd/9jy5ctx7tw5mffPzc1F//79sXbtWtFhxvLYvHkzhg0bpvS1Sip79uyBn59fWTdDrSZOnIgH9+2TAAAgAElEQVS1a9dKFi8/Px9jx47F33//LVlMdfnxxx8xfvx4ZGdnKx3r0aNH6NixI3fKFHkwxjBixAj4+/srFWfdunXYtGmTUjEIIaQkNAcgIYSoQN26dbFmzRqMGzeuWHlsbCy+/fZbrF69utQY+fn5GD16dLH57wDAzMwM27Ztg4aGRrFyFxeXYv8QJyYm4unTp8X2qVKlCneutZIWLFiyZAnWr18vur1atWrw8PBAw4YNYWpqitevX+PBgwc4deoUXr16xa1z5coVjB49Gvv37xeNW5KXL1+id+/exRJ3+vr68PLygo+PD+rWrQsTExO8efMGEREROHjwIC5dusSN9fjxYyxbtgw//vhjqcd99OgRevXqVWLy0sjICO7u7rCzs4OJiQmePHmCqKgoXLt2TbDv8ePH5U62fejo0aOYOHGi6LxkBgYG6Nq1K5o0aQIrKyukpaUhISEBQUFBSEhI4NaJj49H3759cfnyZRgYGJTahrS0NPTo0UM0HgDo6OjA3d0d9erVg4WFBZKSkhAXF4fg4GBB2+/cuYPp06eXelx1ePv2LXx8fLjJVSsrK7i5uaF27drQ0dHBkydPcP36dcTGxorGW7NmDerXr4/JkyeXeuw3b95g+PDhxeb1/JCOjg46dOiAZs2aoVatWtDV1UVOTg5evnyJO3fuICQkRPR9un//fowYMQI9evQotR1iNmzYgH/++Ufh+n5+frh69aro9vr166Nt27Zo1KhR0dypGRkZRYs9xMXFceulpaVhypQpCrctLS0N/fr1Q1JSUlGZiYkJBg0aBC8vL1hbW6OgoAAPHjzAsWPHcPDgQe7nLyUlBUOGDEFYWFixuSK1tLTQs2dP9OvXDw0aNICenh6ePn2KoKAg7Ny5k/uaMcbg5+cn01yKADB27FgEBgaKbre2toaHhwfq1KkDY2NjJCcnIzY2FqdOnRKd19Lf3x+NGjXCDz/8wN1ep04dtGzZsujvnJwc3L59W7Cfo6OjYF5BeRZCePTokVp//CoPDh48iK1bt4put7CwgJubG5o0aQJjY2Po6uoiIyMDjx49QlhYGG7dusVNBDPGMHnyZNy7d0/0Wq/M62prayvrU5TZzp07sXDhQtHtWlpacHd3h6OjI6ytrZGVlYWnT58iJCREdN7Ud+/eoWfPnrh586ZccyF/6McffxT8P9O4cWMMGjQIrq6usLKyQkFBAZ48eYLz589jz549oj90LViwAL6+vgrN2UoIIYqiIcCEkAqhPA4B/hBveJumpia7dOlSqXV5Q00AsP3798t07KVLlwrqtm7dWq72BwUFic4pZ2dnx/7880/RoWE5OTnszz//ZDY2NqLfJ/v27Su1DbwhwAMHDixW1qtXL/b48eMS4/z999+sevXq3HZYWFiwvLy8Euvn5+ez9u3biz4XCwsLtmXLFpaWlsatf+/ePTZixAiZhgHJMgT4/v37zMTEhFu/WrVqbNWqVUVz6n2soKCAnT17tsThm/PmzSu1DYyVPETMwMCA/fTTTyw5OZlb99mzZ2zu3LlMW1tbpvOi7iHAlpaW3CFjhw4dEp1LLzQ0lHl4eJR4TmQZdr548WJufW1tbTZ79mz28uXLEutnZGSwX3/9VXRoeO/evWU6L7whwAcOHOAOaW3Xrh2bN28e279/P7t8+TKLjIzkDjd+/vy56DyRrq6uMg3jvXbtGuvcuTM3hoaGhkzze/KGAH88p9yQIUPYixcvRGPIMx2Ai4sLu3XrlmisJ0+esFatWok+p+fPn5f6nDZu3Ch6fGdnZ3bq1CnRecbS09PZzz//LPqe0dLSYteuXSu1DYwx9ujRI26MuLg4merzhgDPnj2bOwdtrVq12MSJE9mmTZvYuXPn2K1bt1hSUhI3riJDgBMSEtj9+/eVesTFxYnOV+fr6yt67Ly8PNaoUSNuPVtbW3bgwIFSv7sePHjARo4cKfq+kHWeR8beT/XAiyHP/JuKDgGOiopihoaG3ONramqy6dOns6dPn4rWv379OnNzcxM9D+3atSt1vk3e/2UjR44s9h1WvXp1tmPHjhLn80tNTWW+vr6ibfn1119LPR+EEMIYzQFICPnElPcE4NOnT5mZmZmgfY0bNy5xHq579+5xb7C/+OILmY+tbAIwIyOD1atXj3t+e/XqJZro+lhaWhrz9vbmxrGxsWFZWVkl1i9tjr/p06fLPHH2jRs3RG8gSks6bN26VbQNXbt2LTFJ8KEDBw6UOpeiLAlAsXPq5OTEEhISZGpLfn4+mz59OjeOrq5uqUnV0NBQ0TnG7O3tWXR0tEztuHLlimhy9sOHuhOAHz/69OkjUxsKCgrYunXrRM+Nt7d3qfVtbW0F9TQ0NJi/v79cz+vevXvchI6+vn6pnz3G+AnAGjVqFPu7b9++ciUAVqxYwT0vnp6eci1Ek5eXx4YOHcqN9fEcqTy8BOCHj6+//lqma8vVq1dLTWK7ubnJNPdpcnIyq1WrFjdGaa/906dPWdWqVbl1J0+eXGqiqNDz58+Zs7MzN07Hjh1liqGKBODH77u6deuywMBAmZ8XY4olAKXw008/cc+Hs7Nzid+l586d49Zr2LAhe/bsmVxtWL58OTfWyJEjZY5RlglAsR9WjI2N2fnz52U6dn5+Plu0aJHo57S094LYD7OFD2tra5m/9woKCtiAAQMU+o4ghJBC8iYAaQgwIaRSOnXqlMrnEWvZsiV8fX1L3Mfa2hobNmzA559/Xqw8Ojoa3333HVauXCmoU1BQgDFjxgjmjLK1tcUvv/yifMNltHHjRu5cWj169MCRI0egpaUlU5wqVarg6NGj8PHxwalTp4ptS0hIwK5duwRDpWU1cOBArF27VjAcWkzLli0xc+ZMLFmyRLDt/v376NChA7ceYwzLli3jbmvXrh2OHj2KKlWqyNzm3NxcDBs2TOH5uc6ePcsd4ti4cWMEBwfDxMREpjiamppYt24dNDQ0sG7dumLbcnJysHLlyhLfc8uXL+c+hzp16uD06dOoXbu2TO1o06YNjh8/ji5duogOQSxr7u7u2LdvH/T19UvdV0NDA9OnTwdjDDNnzhRs/+eff3Dr1i24uLhw69+9exfx8fGC8lGjRpV6zflY48aNsWjRIsGw6qysLDx79gx2dnZyxQPeTy9QaO3atZgxo9QflovhvXerVq2KHTt2yHR+C2lpaWHTpk04duyYYB7Phw8fytWmj3l5eWHlypUyXVtat24NX19f/PXXX9zt1tbWCAgIEMwLy1O9enXMnz+fO8y1tOkCFi9ezP3e++qrr+T67qhRowbOnz+PDh06IDIysti2ixcv4sKFC3B3d5c5nlQ+fN916dIFhw8fRtWqVdXeDnkdOXIE3377raDc0tKy1O8OsaHsW7duRc2aNeVqx+zZs7F//36EhYUVK1f2s6IOFy9eRFBQkKBcT08PR44ckfn9qKmpie+//x5paWlYtWqVYPsPP/yAESNGQFtb/ltkXV1d/PPPP2jUqJFM+2toaOC3337DqVOnBNcvsSkOCCFEVagHICGkQhDrAaiOx5dffilzO3lDPbS0tFhoaKhg3zVr1gj21dTUZOfOnZPr3CjTAzAnJ4f7K33t2rVZSkqKXO0olJiYyB1S2apVqxLrifUANDMzY4mJiXK34/Hjx9x4K1asEK0TFBTErVO1atUShxyVpKShs6X1AOzWrZugjp6eXtHqrPLKyclhrq6ugpimpqaiPVUTEhK4vZ40NTXZ5cuXFWrH2rVrS/zMlVUPQGNjY7l72xT6eLh64eOrr74SrbNr1y5uHXlWq/zQw4cPufF415+P8XoAFj5mzpypUHt4n+mxY8cqFIsxxnx8fATxPv/881LrifUA1NbWZvfv35erDYcPHxY9Tzt37pQr1suXL7m9R0taDTgxMZG7KmqrVq1Ydna2XMcvFBERwY05bNiwUuuqogdg4aNRo0bs1atXCj0ndfcADA8PZ0ZGRtzrtSxD3XnDhl1cXBRuD6/3W+PGjWWuX1Y9AMWuowsXLpT5uB/Ky8tjTk5O3JgHDx4UrVdSD8BFixYp1JYvvvhCEEuWlaEJIYQxWgWYEELKpd9++w1WVlbFyniLfBQuEvKxGTNm4LPPPlN5OwudOnWKu8rtwoULYWZmplBMKysrzJ07V1B+/fp1hVbtHD9+vOCcysLW1pbbM01ssQUA+P3337nlixYtgrW1tdxtAN5PGi5Lj6CPPX78mLsi6OjRo+Ho6KhQW3R0dLg9HF+/fi3otVloy5YtyMvLE5SPGjUK7dq1U6gdU6ZMQePGjRWqq0oLFiyQu7dNodWrVxctYvGhvXv3Chb4KfTkyRNBmbm5OZycnBRqg1jbS3rPl8bc3Fx0QYiSvHv3jrtytzLXN97z4703ZdW/f3/Uq1dPrjrOzs7ccmtra0EP8NKYm5tzFyMoaRX2vXv3cldFXb58OXR1deU6fiEnJyfuitFHjhyRZAVWRS1duhTVqlUrs+PL6sWLF4LFqgpt3LhRtMf5h3jXAqk/K8pcB9ThzZs3OH78uKC8du3a3P8pZKGlpYU1a9Zwt/35559yxzMyMuL29pYF731Q3l8TQkjFRQlAQghRg+rVq2Pz5s2C8qioKCxatAjA/w/9/XgIpKOjI3fIqiodOHBAUGZpaYkvv/xSqbjjxo3jJr1Onjwpd6yxY8cq3A55Eof5+fk4ffq0oNzExAQTJ05Uqg1Dhw6Vu97BgwdRUFBQrExDQwP/+9//FG4LAHTt2pWbxBAbgsYr19DQwJw5cxRug46OTrlb4VNfX1+p19nW1pb7OqempuL8+fPcOr169YK/v3+xx759+xRug6xD5OUxefJkmYe9f0hbW1vw3Pz9/dG9e3eF2yL18/Px8ZG7TvXq1bnlXl5eCg0nFIsnJiAgQFDWqlUrpX84+vrrrwVl6enpCAkJUSquoho2bIi+ffuWybHlkZWVhX79+nGH8s+cOZObWOVZuXKl4LOizPVIU7Pi3fpdvHiR+2PJ6NGjuT+uyKpr165o0qSJoPzMmTOC79jSDBo0SOHh6Ir8kEkIIYqiOQAJIURNevfujS+//BI7duwoVr569Wr0798fV65cEdxU6erqYvfu3XLNi6Usxhh3rp1evXop3JOkkJGREdzd3QW/5l+/fl2uOPXr10f9+vUVboc8zyMyMpI7r9aQIUNgYGCgcBsAYNiwYdzEcEl4ycgWLVpwewzJq2fPnggPDy9WduPGDcF+mZmZgv2A9z0ZGjZsqFQbBg8ejK+//lqpHlxS8vHxkXlORTEjR47E1q1bBeXXrl2Dl5eXoLxZs2Zo1qyZUsf8UFJSkmSxCvXq1UuhegYGBnLPY1iaFy9eSBqvZcuWctcRu6YoEgt4P7eZrFJTU3Ht2jVB+YABAxQ69ocaNmyIRo0aISYmplj59evX0a1bN6Xjy6tHjx4VIok1fvx4hIaGCso9PT25c/+KUSQZXRKpPyvqcOXKFW75sGHDlI49dOhQfP/998XK3rx5g5iYGG5yUIyHh4fCbdDR0VG4LiGEyIsSgISQSsnR0RH29vYqPUarVq3krrNu3TqcPXsWCQkJRWV5eXkYPnw4nj59Kth/8eLFokPLVCU+Ph7Pnz8XlCvTQ+dDHTt2FCQAP55ovjRt27aVpC2y4N3EAe8Tusrq2LEjqlatKvOCNYwx7o2+MjcfH7fnY1FRUcjPzy+26MvNmze5wxGlOCeWlpZwdXUVvelTN29vb6VjdOzYEebm5khJSSlWLm/iW1GbNm2SNJ6BgYHoAibqdv/+fe4PFsqwtLQsl7HE3Lx5E/n5+YJyqa7ZnTp1EiQA5b1mS0XR6QXUadmyZdi9e7egvHHjxti3b5/MC2hJLT09nduu8u7q1auCsjp16si82EZJPDw8BAlA4P21WZ4EoDr/JyGEEGVQApAQUikNHToU8+fPL+tmCJiYmGDbtm3o3r17sdVTP765At7fdM2aNUudzQMA3L59m1su1dxstWrVEpTdvXsXBQUFMvfskHd+LmWInQ9XV1elY2tqasLZ2RnBwcEy7f/kyROkpqYKylX52mRmZuL+/fvFbrbEzokiSXEeFxeXcpMAbNGihdIxNDQ00KJFC0Gi6ubNm0rHLkloaCh++eUX0dVpFdW0adMy77Xy8uVLbNu2DWvWrEF6erqksaXsca2O3tu8z6OGhoYkCRIA3HlO79y5I0lseTVv3rxMjiuro0ePYsGCBYLyatWqITAwEKampmpvU2ZmJvbv34+VK1ciOjpa7cdXFq+3uVQ/QDg5OUFTU1Mw5DcsLAzDhw+XKYaWlhbq1KkjSXsIIUTVKAFICCFq1q1bN0yePBm//vqr6D5Vq1bFzp07y6SngNgQoUOHDokuCCGPqKgoQVl6ejri4+NlHsaqzgngX716JSirXbu2ZD17mjdvLnMCUOy1uXjxoiRDu3iLMwDvX7MPkwm8cwJId1NWXm7ytbW10bRpU0li8RKAL168kCvxzVNQUID4+HjExMQgNjYWUVFRuHPnDiIiIkRfT2Wp8/P3+vXroucWHR2Nu3fvIjw8HA8ePCj2I8qnLDExUVCmr6+PDRs2SBI/LCxMUHbv3j0wxlQyv2RJyvPiHxEREfjiiy8EySRtbW3s379fsoSsmMzMzKLPSkxMDKKiohAREYF79+5V2EUlGGPc7xtFF7z6WJUqVWBnZ4f79+8XK09OTpY5hqmpqdo/B4QQoihKABJCSBlYvnw5Tp06hbi4OO72devWwc7OTs2tek8suaPIip/yHlfWBKAiq+cqitfjTsphfRYWFjLvK/ba8OaXk9LH54B3TvT09JSeK6+QOoZNysLU1FSynm41atQQlBUUFODt27cy9wpKT09HaGgoQkJCcOfOnaKbfXWvyCrV6/whxhiioqIQEhKCa9euITo6GjExMXLdiH+qeJ/HzMxMhVdIlUV2djbS09NhZGSksmPwqOK9J4UXL16gT58+3BV/V61aJdk0DYUSEhIQHByM0NBQ3Lt3D7GxsUhISKh0SfG3b99yh7ebm5tLdgwLCwtBApD3mRKj6OIfhBBSFigBSAghZaBKlSrYvHkzunTpIthmb28v8wqBqiDPP75S4t04iVHnr+288yHlTag8scrqtXn37l2p7ZByaFt5ucmXsh1iPZdev35d4rnLzc3FsWPHsGXLFgQFBZWLxVGkTMDfu3cPW7ZswZ49eyrkAgXlgdgPA6r27t07tSYAdXV11boglqyys7PRv39/PH78WLBt7NixmD59uiTHSUxMxM6dO7F9+/YKOZRXEWLfear+Dpan9zT1/iOEVCSUACSEkDIiNpw2KioKhw4dQv/+/dXcovdkXZBCah8nmcqLj4dzAVB69d8PValSReZ9y8trwzsnUt6Yy3NOVEnK11ksUVLSa3r48GHMnDmTm1iQhYaGBtq1a4e+ffvif//7n0IxeKRYhfXZs2eYPn06AgICFI5Ro0YN9O/fH9HR0Th79qzSbaqoyuq6IM+PNlIor4mW8ePH4/Lly4LyTp06lTjVh6wyMzPx7bffYsOGDdzFl2RhbGyMXr16QVdXFzt37lS6TeqSmZnJLVf1901ZfaYIIUTVKAFICCFl4OLFi1i1apXo9smTJ8PNzQ3Vq1dXY6ve4yUq1DHJdXkdusTrnSXlzYE8N9FiSSRbW1toa6vuK11XV7fY37xzImUCV92JBTHqeE6Ghobc8m+//RZLliyROb6BgQHs7e1hb28PJycntGjRAi4uLjA3N0dubq6kCUBl/ffff+jevbvMPf40NDRQp04d2Nvbw9HREc7OzmjRogUaNWoETU1NTJo06ZNOAPKuC/r6+tzFO6SkaDKqMlm+fDl27dolKK9bty4OHjwouHbK6+XLl+jevTtu3bolcx1LS0s4OjrC3t6+6LPi6OgIXV1dbNmypUIlAMWG10p5beYtIqTuoe2EEKIulAAkhBA1e/fuHUaOHMmd16bQixcvMHXqVMlX75QFb6iirq6uYI6cTwUv2fXmzRvJ4ssz1EhsGGlQUJDKJ5j/kNg5kWpRAFUtXiEvKV9nsaFsZmZmgrLNmzeXmPzT1NREy5Yt0aNHD7Ro0QIODg6ws7OTpGeeqqWkpMDb27vE5J+VlRW8vb3h7u4OBwcH2Nvb0w15CXjXhcaNG3NXTyXSCQwMxPz58wXlRkZGOHr0qFzzu/Lk5+ejf//+JSb/jI2N4eHhga5du8LR0REODg6Szo9X1sSmR5DyRzje9015XmyGEEKUQQlAQghRs6+//hoPHjwodb99+/bB19dX7UOBeQmJzMxMpKWlfZI34bwbkPj4eMmSXU+fPpV5X7GbkuTk5DJPAObn5+PJkyewsbFROr4850SV3rx5g7dv30oyyTvvOWlqagrmn3r9+rVobz0DAwPMmjULkydP5i4qUhF8//33ePbsGXdbly5d8N1336FTp04VIplZXvCu2bR4imr9999/3BV/NTU1sWvXLjg5OSl9jN27dyMkJIS7zd7eHn5+fujTp4/SvQzLsypVqkBXV1fQ2/T58+eSHYO3ijbvM0UIIZUB/XdFCCFqVDiZ/8c2b97MHa41adIkvHz5Uh1NKyKWWIiPj1drO8qLevXqCcrevHmDmJgYSeLLM7SrvLw2vHMCADdu3JAkflhYmCRxlMUYk6wX1fXr1wVlFhYW0NLSKla2e/dubs/DWrVq4fr161i8eHGFTf5lZGRg+/bt3G0//PADzpw5A3d3d0r+yYn3fkhKShKdP40oJykpCX369OEOQ/Xz80O/fv0kOY7Y/IGDBw9GWFgYfH19K3XyrxDvfyN5vjdLkpKSwv3+LC8r0RNCiNToPyxCCFGT5ORkjBs3TlA+YMAAjBs3Dhs3bhRsS0pKwldffaWO5hVp1aoVtzw0NFSt7SgvxM7HlStXlI6dlZWF27dvy7x/nTp1uDf76n5tVP0ekSqRKAVe4k5eubm5uHnzpqCcdx55iwNpaGhg3759cHBwULotZSkkJAQZGRmC8sGDB+Pbb78tt4s8lHetW7cWlOXl5ZWrz1FlUbji76NHjwTbBg8ejAULFkhynJcvX3KvGU2bNsWuXbvK5WrIqsK7ToaHh3MXo5LXzZs3ufMPi33HEUJIRUdDgAkhRE3Gjx8vmPeqevXqRb/y9+7dG0OGDMG+ffuK7bN//374+vpiwIABamlnjRo1UK9ePcEw5X///RdjxoxROv6JEyfw5MmTYmWNGzeGu7u70rFVwdXVFZqamoKbjX379mHkyJFKxT5+/Diys7PlqtOuXTscPny4WNm///6rVDsKXb16FREREcXKqlevLhiGXqNGDdjY2CAhIaFYub+/P5YtW6ZUD66oqChERkYqXF9qAQEB+Oabb5SK8ffff3MXAWnbtq2g7M6dO4Ky1q1bo2PHjgofn5d0KwtiyW5lzy9vEv9PiaurK3R0dJCbm1us/N9//0WnTp2Ujv/XX38Jeru1bt0azs7OSseuaCZMmIBLly4Jylu2bInt27dLlsS+c+cONzH11VdfKdXrr7xcC+TRpk0bHDhwoFhZamoqgoOD0blzZ6ViHzlyhFverl07peISQkh5RQlAQghRg+3bt3P/0fz5559hZWVV7O8zZ84Ihv1OnjwZ7u7ualsVuH379oIE4KFDh/Dq1Sul5sZ5+/YtBg8eLEiGrF+/vtwmAE1MTNC0aVNBYiYoKAgJCQlKzXnHWz2yNO3btxckAO/cuYMrV65wE0ryGDdunCBJM3r0aO48lO3bt8f+/fuLlT1+/Bhnz56Fh4eHwm1Q5Jyo0tWrVxEbG4uGDRsqHIM37B94fw4/xpu7zdXVVeFjA+KJN3XjTWegqakJFxcXpeLykqafEgMDA7i4uODatWvFyrdv344FCxYIhpnLIyoqCsOGDRMko/755x+FY1ZUK1eu5K6gW7NmTRw5cgQGBgaSHUtsDsfKci2Qh9j32p49e5RKAGZnZwu+w4D3r2fdunUVjksIIeUZDQEmhBAVe/ToEWbMmCEo79u3L4YOHVqszMLCAuvXrxfsm5SUhClTpqisjR/r06ePoCwzMxO//fabUnF/++03bk+obt26KRVX1YYNGyYoy8/PV2q41/Xr1/H333/LXa9Pnz7cXiarV69WuC3A+xt63s2h2GvDOycAsGDBAoWHZr148YI7FL4sMcawaNEiheuHhITgxIkTgnJra2tu76y8vDxBmaGhocLHB4CtW7cqVV8qH/dQA96vMK6trfjv0WFhYZLNB1aR9e3bV1D26NEjBAQEKBV35cqVguSfnp6eJD0LK5Jjx45h7ty5gnJ9fX0cOnQItWvXlvR4vOsAAKWSjO/evRP0pKsI2rRpU+yH0kJ//vknHj58qHDcX3/9Fa9evRKU9+7dW+GYhBBS3lECkBBCVKigoAAjR47E27dvi5WbmZmJJtM+//xz+Pj4CMr9/f2VvpmTlY+PD3cS7CVLluDevXsKxUxISMDSpUsF5U2bNkXTpk0ViqkuX375JXR0dATle/bswdmzZ+WOl5eXh2nTpimUKGvYsCH35jsgIABHjx6VOx7wPrnLG4ZpZGQEb29vbh1vb2/UqlVLUH79+nXRyetLM2fOHO4CGGXtr7/+QnBw8P+xd9/xNZ7//8Bf52TKHpKIRETEjL0FGTa1CfqxR6lZarbVUEqrRqsoWrs2pfZeKVWxNxEjRjNIIpG9rt8f/fEV932SszK9no/HeTy4zn297+u+73Puc84719C4XkpKCkaNGiU7lG/o0KGyiS+5Xr66/Mg9c+ZMoelV6eDgIClLSUnRekXPjIwMjBgxQtdmFQv9+vWTvUeNGzdONsmhjvPnz8v2eGvXrh3Mzc21ilkU3bhxA3369JG9X//6668697yWI/deAXS7F0ycOLFQ3l9zY2hoKPsHp+TkZHz++edaxfz333/xzTffyD43aNAgrWISERUFTAASEeWhBQsWyCYOfthvIBAAACAASURBVPrpJzg7O6ust2zZMlhbW0vKR40apXJokDoyMzPV2s7ExES212JKSgq6d++OiIgIjfabmJiIHj16SBKhALT+Ap+fSpUqJZuUFUIgICAA169fVzuWEALDhw/XaRGRKVOmyJYPGTJE495QWVlZGDZsGO7cuSN5btCgQbCxsZGtZ2hoiMGDB8s+N2HCBOzdu1ejdixYsEA22VAYCCHQo0cP3L9/X+066enpCAgIkO1VaWhoKLsgEAC4ublJyo4cOYJXr16p3+D/7/bt2+jevbteJsvXB1XD5bXplZSZmYmBAwdKhr1+qFxdXWWTJBEREQgICNB4nsTw8HD07NlT9rWjyz27sLwW1fXixQt06tRJdsXfyZMno1+/fnmyX32+VwBg/vz5+PXXX3VpUo7y+rp+9tlnsgnuP//8U2UiT5W4uDh06NBB9vuIr68vGjZsqHU7iYgKO84BSETFUlBQkE7zHmnCw8MDAQEBkvLr16/j66+/lpR36NAh1x8NLi4umDdvHoYNG5at/M2qwHLz1qgjOjpa7W0/++wzrFixAmFhYdnKb9++DR8fH2zatEmt+YiePn2KgIAA2R/q7u7u6Nu3r9ptKkgzZ87Enj17JEOzYmNj0bJlSyxfvlx2rrx3xcfHY9SoUdiwYYNObWnfvj1atmyJY8eOZSuPjo5GixYtsGbNGtlh3HLtGTZsmOzryczMLNcf+p9//jmWLVsmmdstPT0dPXv2xNy5czF69OgcFwVJT0/HzJkzMXv27FzbW5BevHiBFi1a4Pfff891vsqnT59iyJAhOHr0qOzzI0eOVDlksFWrVpLkcHx8PEaPHo3169ervcDKtm3bMGLEiBx7f2mTVNRFixYtZBfUmTlzJtq2bYuKFSuqFefp06cYPHiw5PX/rtjYWJ3aWhTNnDkTO3bskEyzcOLECbRu3Rrr169H+fLlc41z/fp1dO3aFU+ePJE85+vrq9Pw35cvX+o0n2Z+SktLU7nib4cOHWR7tOtLpUqV4ObmJrkGGzduxMcff6yyZ/b7EhISMHHiRKxYsULlNvp4r7x8+RKVKlXSOY4qbm5uGDNmDBYuXCh5bsaMGUhKSsLMmTNhYmKSY5yQkBD07dtX9g9lSqUS8+bN01ubiYiKkj0AhKqHkZGRICIqDJYuXaryXpVfj3bt2knalZKSImrUqCHZ1sbGRjx79kytY8vKyhLNmzeX3ee2bdtyrf/9999L6ikUCnHlyhW1z++RI0eEUqmUbYNSqRQDBw4Ux48fFxkZGZK6ISEh4ssvvxQWFhYq6586dSrXNtjY2Ejqrly5Uu1jkNO4cWNJzNmzZ+da78svv8zxtfDRRx+JXbt2idTU1Gz1IiIixPz584Wbm5ukjq2trXB1dc1WVqZMmVzbEhoaKqytrVW2pW3btmLnzp0iKSlJUjciIkIsWLBAuLi4qKy/ZMkStc7lxo0bczwnDRs2FGvWrBHx8fHZ6sXFxYmVK1eKmjVrSuoYGhqKKlWqSMrj4uLUapM2AgMD1Xq/K5VKMWDAABEUFCSysrKyxbh165aYMmVKjtfF3d1dvHr1SmU7rl27pvI999FHH4l79+6prJuWlib27dsn/Pz81DqWAQMG5HpeOnToIKk3ePBgtc/r+/z9/WXb4uTkJDZu3CjS09NV1g0NDRXjx49XeU9592FlZSWeP3+eY1sOHTokWzchIUHj40pNTZWNtXfvXo1jCSFE06ZNJbE+//zzXOstW7ZM5TkxNTUV48ePF+fPn5e8drOyssSVK1fEiBEjhJGRkWx9CwsLERoaqlb7Hz9+LBtj6tSpatXftGmTpK6JiYladXPi7u4uibtq1SrZbe/cuaPyXFpYWAhbW1u9Pby9vSX7nzhxosrr+P3334vXr1+rPM6oqCgxd+5cUbp0abXuBSdOnFDr/D158kS2/uTJk9W7AELItun333/PtV58fLzw9PRUeQxVq1YVv/32m4iJiZHUvXnzppgyZYooUaKEyvoTJkzItQ3z5s2T1PPw8FD72OXs3btXEtPMzEynmET04Th9+rQ69/m3w7rYA5CIKA8EBgbKDgtduHCh7LxpchQKBX777TfUqFFDMnxr1KhR8PPzUzlPEABYWlpKyoQQ8PHxQa9evVCmTBlkZGQgMjISY8eOhZeXl2T7Vq1aYfbs2fjiiy8kz2VlZWHt2rVYu3YtLCwsUKZMGTg5OSE5ORlhYWG5DhMODAwstCv/qjJjxgycO3cOJ0+elH1+//792L9/PwwMDFCqVCmULFkSz58/l139FPivx8G6devwzTff4NmzZxq1pXz58tiwYQO6du0qO2H8oUOHcOjQIZiYmKBMmTIoVaoUsrKyEB4enus8Ut26dcPIkSPVasf//vc/BAUFqexhcv78eZw/fx6DBg1CqVKl4OTkhKioKERERMjOjQf8N9fk7du3ZYcl56dy5crByMgIISEhb8uysrKwbt06rFu3DiYmJnBzc4ORkRHCwsJyHWZpZmaGzZs3yw7vf6NGjRr4+OOPsXHjRslz+/fvx4EDB1C3bl3Ur18fDg4OEELgxYsXCA0Nxblz52Tb0LBhQ8TFxUnm71y3bh0SEhLQsWNHmJubo2nTpihVqlRup0Unc+bMgbe3t+TaR0ZGok+fPvj888/RrFkzlC9fHpaWlnj58iUiIyPxzz//yL5uzczM0KFDB2zbti1beXx8PLy9vTFmzBh4eHjA3t4ePj4+eXpshcGnn36KCxcuYPXq1ZLnUlJS8OOPP+LHH3+Era0tXFxc4OjoiPj4eISGhubYI1SpVGL58uVq9SAE5D9/AGDu3Lm4du0aatWqBTMzM8TExKBy5cqS3u6FndxiVrqQG446ZcoU/Pbbb5J5+1JSUjB16lTMnj0bzZo1Q9WqVWFjY4PY2Fi8fPkSV65cwY0bNyTvMYVCgX79+snOCdq1a1eMGTMGNWvWhJGRkcoe5Kqu67x583Djxo1s17VSpUoYPny4uqcgV5aWltixYwd8fHxkz9ft27fxySefYOTIkXBxcYGrqyuSk5Px7NkzREZG5hjbz88vT3t0EhEVduwBSERFQmHsARgUFCTbg6dt27ZaHePChQtl9xsQEJBjvaCgILWP4a+//sox1vTp04VCodDbOfvyyy/VPv7C1ANQCCFevXolGjVqpJfzsHTpUiGEEHXr1s1Wrk4PwDe2bNkiTExM9HZtunbtKtLS0jQ6n+np6aJXr1562f/IkSOFEEIMGDBA8lx+9wCsVauWePjwoWyvIU0fZmZm4sCBA2q1JSIiQnh4eOjlfA4ZMkSkpKSITz/9NNdtz5w5I2mLvnsACiHE1KlT9XJs7u7u4sqVK+LGjRu5bvvxxx9L2lEcewAKIURGRobo37+/3u4JSqVSrF69WqP2Z2VlSXo25/aef1dh7wGo70e1atVk27Bt2zaVPYI1eVhaWoqdO3eKtLQ0YWlpmeO2FSpUyPEcyvVkl3t8+umnsvW17QH4RlBQkOz3Am0ffn5+OfamfBd7ABJRYaNpD0AuAkJEpEevX7/GgAEDJHNcWVlZaT0B99ixY2VXGdy+fXuOE4J7e3ujevXqWu3zfTNmzMDmzZtha2urUxwbGxusXbu20M/3lhNra2scP35cp7kLjY2NsWbNGrV72eWkV69eOHnypNo9c3Jq04wZM7B161bZydZzYmhoiE2bNmHatGk6zb355ZdfYsmSJVrXzwvlypXDmTNn0KBBA61juLu748SJE2rP2+Xk5ISDBw/C09NT633a29tj5cqVWLlyJUxMTNCrVy+tY+nbnDlzMHr0aK3rKxQKBAQE4MKFC6hVqxaqVauGatWq6bGFRZuBgQHWrl2L+fPnw9TUVKdYZcqUwcGDBzVeGVWhUOi199eHKiAgAMuWLYOxsbHWMRo1aoR//vkHXbt2hZGREbp3765Tmwr6ujZr1gznzp1DrVq1dIqjVCrx2Wef4ciRI7CwsNBT64iICjcOASaiIs3T01N2AY789O6X0EOHDqFevXqSxTF69OihclW/3BgYGGDVqlWYMWOG5LlTp06he/fusgsDGBgYYMuWLWjZsiXCw8O12ve7evXqBV9fX3z77bdYuXIlUlNT1a5rbm6Ovn37IjAwEKVLl9Zov126dJEMayxXrpxGMd7XvHlzySIMVapUUbu+mZkZfv/9d/Tq1QtTp07FrVu31K7bsGFDrFixAjVr1nxb1rJlS3h4eLz9v729vdrxAKBx48a4fv06FixYgB9//FGjSd0NDAzQpUsXBAYGokaNGhrt911KpRKzZs1Cx44dMWXKFJw6dUrtup6enli6dClat279tqx+/fpISkrKtp2miUl9cXFxwV9//YV58+bh+++/V3v4X4kSJTB69GhMmzYNVlZWGu2zYsWKuHz5MiZOnIi1a9ciLS1NrXomJiYYM2YMvvrqq2wrOPv5+aFPnz6yQ4tz0qRJE5QoUSJbmTqL/+REoVBg8eLF8PX1xaRJk2QXWVClUaNGWLBgAby9vbOVL126FK1atVL7PAH/re4t9/lhaKj512OlUikbS9P73Rv+/v6SleLfvWfkRqFQYMKECejUqRMCAwOxbds2jVZqtbe3xyeffIIvvvhC49fuG5MnT0ZwcLDGK4ID/y368P751Mf7v3379njx4kW2MlWfJ5aWlvn2/SKn7wfDhg1DnTp1MGLECFy8eFHtmB4eHvjuu+8QEBAAhULxtnzmzJk4dOhQrtN0qDJp0iQEBwdj9+7dWtXv0KGD5DOqbNmyGsWoXLkygoODsWzZMsydOxf//vuvRvVbtGiBb7/9VvaPqzmpVKmS5DXh5OSkUYz3lS5dWhIzt8VMiIj0jUOAiYiKiZcvX4qpU6fKTp5tYWEhatWqJW7cuKFRzOjoaLF8+XLRvXt3UaZMGdnhwe7u7qJPnz5i2bJlspNyFxdZWVni5MmTYvTo0cLLy0sygb5SqRTly5cXn3zyiTh+/HietycpKUls3bpV9O/fX3h6egpDQ0PJtXFychKdOnUS8+bNE2FhYXnSjqtXr4opU6aI+vXry0687urqKnr37i127Nghu4hMflM1BPh9sbGx4ueffxZt2rQRtra2kjr29vaiXbt2YsmSJSI6OlovbXv+/Ln49ttvRcuWLYW5uXm2/RkYGAhnZ2fRvn178fPPP4uoqCiVcdLT08UPP/wgypUrJxke2Lx5c7UXeNCn9PR0sX37dtG/f39Ju960rXbt2mLcuHHi77//zjHWP//8I1q1apXtPahUKkXVqlXFzz//nE9HVDg9e/ZMLFiwQLRv3144OTlJzrOBgYGoXLmyGDx4sPj9999lFw/SRlZWlli3bp1o2rSpZKoCQ0NDUb58efHjjz/qZV8fglOnTolRo0aJ6tWrS4YGlyhRQlSsWFEMHjxY7N27N8cFdcLCwsT//vc/yYI6ZcuWFaNHj861HVlZWWL9+vWiWbNmKq/rggUL9HnoKqWlpYm9e/eK4cOHCy8vL2FsbCx5fdva2gpfX1/xzTffiDt37uRLu4iI8oOmQ4D/789B0gRgR1XZQSMjI43+wkpERIVDYmLi294PNjY22XoI6SIlJQXR0dFITU2FlZUV7O3ts/U4+JBkZGTg5cuXSEpKgrGxMUqWLKnzMDxdpKenIzo6GklJSTA3N4ednV2+96TLyspCdHQ0Xr9+DUNDQ9jb28Pc3Dxf25Cb6dOnY+bMmdnKatWqhStXruRYLy4uDtHR0QCAkiVLat1bShMJCQmIjo6GsbExnJycZHsA5yY2NhaxsbGwsLBAyZIltYqRF9LT0xETE4Pk5GQ4OjrCzMxM4xhpaWmIiIiAQqFAyZIlJT0Y6b/PgujoaGRkZMDOzk5vnwU5SU9Px4sXL5CSkgJLS0vY2NgUWK/e4kAIgejoaMTHx2t978nMzERERATS09Nhb2+vcpGPnBS265qZmYno6GgkJCS8vQdoc1xEREVBUFCQOosqjgfwE8AhwEREHxRzc/M8SbyYmpqqvbpxcWdoaJjnK6lqwsjIqMDbo1Qq4eDgkOOq1UWVtbV1jqv65gULCwud56yytbXVeU7PvGBkZKTzkDpjY2O4ubnpqUXFU159FuTEyMhI6yHRJPUmuVWyZEmtYxgYGOj82V3YrquBgQEcHR3h6OhY0E0hIip0Csefe4mIiIiIiIiIiChPMAFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMMQFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMMQFIRERERERERERUjDEBSEREREREREREVIwxAUhERERERERERFSMGRZ0A4iIiIgKWtOmTTFlypRsZc7OzgXUGiIiIiIi/WICkIiIiD54rVq1QqtWrQq6GUREREREeYJDgImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMSYAiYiIiIiIiIiIijEmAImIiIiIiIiIiIoxJgCJiIiIiIiIiIiKMcOCbgARkS4ePHiAy5cvF8i+K1SogFq1ahXIvj90t2/fxq1bt7KVWVlZoU2bNgXUouJhz549SE1N1UssKysr2NnZwdbWFs7OzjA3N9dLXCLSr7t37+LGjRvZyiwsLNCuXbsCatGHh59pRESUH5gAJKIi7fDhwxg1alSB7HvcuHFMABaQP/74A4GBgdnKvLy8+GNJR5988gmioqL0HtfAwADVqlVDs2bN0LFjR7Rq1QoKhULv+yEize3evRtTp07NVlahQgUmAPMRP9OIiCg/cAgwERER5anMzExcu3YNS5YsQZs2bVCjRg1s2LChoJtFRERERPTBYAKQiIiI8tXNmzfRr18/dOnSBbGxsQXdHCIiIiKiYo9DgImIiKhA7N69G97e3jh79izs7OwKujlEeW7v3r24fft2trIaNWpwuG0Rt2/fPskcfryuRERU2DABSETFkp2dHWxsbPJ0H/b29nkan6gwUCgUKFeunEZ1EhMTERMTg/T09Fy3vXv3Lnr27IlDhw7B0JBfS6h427JlCzZt2pStbOjQoUwUFXFbt26VTGswePBgXlciIipU+E2biIqlCRMm4MsvvyzoZhAVeUZGRnjw4IFWdaOionD27Fns2LEDO3bsQFpamux2x48fx4IFCzBlyhRdmkpERERERCowAUhEREVO9+7dUbly5WxlVlZWBdQaUsXR0RFdu3ZF165dMXv2bPTr1w9nzpyR3Xb+/PkYNWoULCws8rmVRB+2zp07w8PDI1sZ34f5i59pRESUH5gAJCKiIqdq1aqoWrVqQTeDNODu7o6TJ0+ic+fOOHDggOT5ly9fYuXKlRg3blwBtI7ow1W5cmVJ8onyFz/TiIgoP3AVYCIiIsoXhoaG2LJlC5ydnWWfP3jwYD63iIiIiIjow8AEIBEREeUbS0tLfPHFF7LPnTlzBqmpqfncIiIiIiKi4o8JQCIiIspX3bt3h0KhkJQnJSXh7t27BdAiIiIiIqLijXMAEhEVkJSUFDx48ADx8fFITEyEra0t7O3tUaZMGRgYGBR08wpMeHg4Hj9+DABwcXFBmTJlZJNFeSkzMxOPHz9GTEwM4uLiYG1tDUtLS3h4eMDY2Dhf2wIAjx8/xvPnz2FsbAwXFxeULl0639ugT6VLl0bZsmXfXud3vXjxQuf4z549Q2RkJFJSUpCWlgYrKytYW1vD0dGxQCbWF0Lg3r17iIqKgo2NDUqXLo2SJUtqFSshIQGPHj1CamoqXr16BUtLS1hYWMDa2hqurq56brl6MjIy8ODBA8TExCA5ORk2NjZwc3PT6hgzMjLw4sULvHjxAjExMbCxsYGDgwNcXFzyoOXZxcTEICwsDPHx8VAqlbCwsICbmxvs7e3zfN95JSIiAo8fP4YQAqVLl4abm1u+308LSmpqKh49eoTExETExcXB1NQU5ubmsLGxgYuLCwwNP5yfQYmJiXj06BHi4+ORkpICa2trODg4wNXVFUplwfQHiY2NxaNHj5CQkAAjIyPY2dnBxcWFC9AQEeWhD+eTj4ioEPjnn3+wadMmHD9+HHfu3IEQQrKNiYkJ6tWrhzZt2qBPnz6S1RnVtWfPHslwykaNGqFMmTJaxQOAU6dOSRI0VatWhZeXl8o6+/btQ3Jy8tv/K5VKdO/ePds2Qghs3LgRCxcuxJUrV7I9FxsbCxsbm2xloaGhku2srKzQpk0bjY7nXc+fP8fvv/+OAwcOIDg4WHYoqoGBAby8vNCyZUv0798fNWvW1Hg/GRkZ2LVrV65tT09Px9KlS7FkyRI8ePDgbbmDgwOioqI03m9hU6pUKdkE4MuXLzWOdf78eezduxdHjx7FzZs3kZSUpHJbd3d31KxZE507d0aXLl1ga2ur8f5evnyJkydPZitzc3NDw4YNs5XFxcXh+++/x6pVq7K9b1q1aoUjR46ova+dO3fi8OHDOHfuHMLDw1Vua2VlBS8vL/j5+aFnz56oVauWBkf1f44ePYpXr15lK+vcuXO25Hd6ejo2btyIDRs2qBy67ebmhq5du+Kzzz5DuXLlVO7v9evXWLduHTZv3ozg4GBkZGRItildujSaN2+O0aNHS86zttLT07F//35s374dJ0+eVHluHRwc4OPjg65du6J79+4wNTVVK35CQoJkXssnT55Itnv48CG2b98uKe/SpQuMjIyylR04cACJiYnZygICAiR1N2/ejAULFuDSpUvZyiMjI+Ho6CjZ//vbWVhYoF27djJH9X/Hcf78eZXP60OdOnVQvnx5tbdPTk7G7t27cfjwYZw+fRphYWHIysqS3dbExARVq1ZFw4YN0bNnT/j4+Kj9hze56xoWFibZ7tGjR2pfV31/pgkh8Ndff2HTpk04efIkQkJCZLcrUaIEGjRogHbt2qFPnz5a/xFhx44d2b7PlChRAh06dJBsd/PmTaxYsQJ79+6VPWeGhoaoWbMm2rVrh+HDhxfYHzWIiD40ewAIVQ8jIyNBRFQYLF26VPY+NXv27IJuWjanT58WjRs3VnlfVfVQKpWiV69e4sGDBxrv09HRURJv8+bNOh2Hj4+PJOb06dNzrFO6dOkcP0Pi4uJE+/btVZ6D2NhYScyff/5Zsp2Xl5dWx/Ts2TMxePBgYWhoqPH1admypbh69apG+0tISMi17U+ePBF169aV3aeDg4NWx6kOudeMsbFxnuyrUaNGsse3evVqtWOcOnVK9jWp7sPU1FRMmTJFxMXFadT2M2fOSGL16dMn2zbBwcGiTJkysvtt1apVrvuIjo4WEyZMEObm5lofn7e3tzh//rxGxyaEELVr15bEio6Ofvv8qVOnRIUKFTQ6zwsXLpTd1+bNm0WpUqU0Oq5evXqJ+Ph4jY/rjaysLLFq1Srh5uam8Tl1dHQUixcvFhkZGbnuJyQkROtrB0D2denu7i7Z7l2vX78WnTp1UhkzMjJSEnP58uWS7SpUqJDjsW3YsEGnY1PnsXTp0lzPsRBCpKWlifnz52v8Onr3Ub58efHHH3+otb/79+/rdFx5/Zl26NAhUatWLY3bZWhoKAYOHCiePXum8T7f//x0cXHJ9vyrV6/EwIEDhVKp1Kg9EydOFCkpKVqdByKiD8Hp06fVuaeOw//HOQCJiPJQRkYGxo0bBz8/P5w7d07j+llZWdi6dStq1KiBVatW5UELC9arV6/g6+uLAwcOFMj+t23bhmrVqmH16tWyvY5yc+zYMTRo0AA//fST3tr06NEjeHt7S3rkFDcRERGy5Q4ODrnWFUJg1qxZaN68OYKCgrRuQ0pKCubOnYtatWohNDRU6zjvO3XqFPz9/fH06VOt6l+9ehX16tXDggULJL29NPH333+jUaNGen19/vLLL2jRogXu37+vdp2UlBR8/vnnmDp16tsyIQQ+//xzfPzxxypfC6ps3boVfn5+Ofb0VCU8PBwtW7bEkCFDZHvj5SYqKgpjxoxB8+bNNW53XouPj4e/vz/27NlT0E3JNxEREWjevDkmTpyo0/V48OABunfvjkGDBmn1WVAYpKSkYMiQIWjbti2uXr2qcf2MjAysXbsW1apVw7Zt2/TWrgcPHqBOnTpYu3atyh6Zqtozf/58+Pj4ID4+Xm/tISL6kDEBSESUR1JTU9GhQwcsWrRIdqivJhITEzF06FBMmzZNT60reJmZmejatatWP1T0Yc6cOejdu7dkqKOm0tLSMH78eHz55Zc6tykuLg5t27bFs2fPdI5VmP3777+yw78ASIYnyvn0008RGBio0Y/JnDx69Ag+Pj56GVp99+5ddOnSRevE3fnz59GkSRM8evRI57YA/yXaxo8fj2XLlukca9myZRg1ahQyMzO1qj937lxs3LgRADBp0iT8+OOPWrfl8uXLGDt2rEZ17t69i4YNG+LEiRNa7/eNoKAg+Pj44Pnz5zrH0oesrCx0794dFy9eLOim5Jvw8HA0atQIZ86c0VvMtWvXYvjw4XqLl19ev36NFi1aYPXq1TrHevXqFXr37o0FCxboHCssLAw+Pj54+PCh1jGCg4PRvXt3nb9HERER5wAkIsoTQgj07dsXhw8fVrmNQqGAl5cXypYtC2tra0RGRuLhw4c5/vCfPXs27O3tMX78+Lxodr767rvvcOrUqQLZ9+LFi/HVV1+pfP7NtXF3d4e1tTVevnyJkJCQHK/Nd999h7Jly+r043HMmDEq52oqTv744w/ZH3OGhoaoWLFijnV///13/PrrryqfNzQ0hKenJypXrgwzMzMolLIZBwAAIABJREFUlUokJiYiNDQUd+/eRXp6umy98PBwjBs3Dps2bdLsYN6Rnp6Ovn37Ii4uTqv6r1+/RkBAQI492xwcHFCjRg3Y2dnBwsICCQkJiIqKwo0bNxATE6Oy3uTJk9G+fXuULVtWq7YdO3YMY8aMyVZma2uLTp06oUaNGrC0tERMTAzOnTuHgwcPIi0tTTbOZ599hosXL0p6JRobG6N169Zo1KgRHB0dkZiYiCtXrmDPnj0qk/Rr167F5MmTc33NAP8tDNO6desce2WWLFkS1apVQ+nSpZGUlITw8HBcuXJF5bHcv38fnTt3xl9//YUSJUrk2oa8NG/ePBw7dqxA25CfhBDo37+/yj8kAIClpSWqVasGV1dXmJubIzExEfHx8bh161aOf2RZvXo1evbsqdOcsvkpMzMT3bt3x99//61yGwMDA1SvXh2urq6wsrJCeHg4QkNDVb4fhBCYNGkSSpYsiQEDBmjVrsTERHTs2BH//vtvtnJPT0+0b98e7u7usLCwQFxcHK5cuYKDBw8iNjZWNtaxY8ewYcMG9OvXT6u2EBFRzjgHIBEVCYV1DsCFCxeqvIeWKFFCTJ8+XTx+/Fi27qVLl8TgwYOFQqFQeQ9WZ16vwjwH4MWLF4WRkZEkVunSpUX37t1FYGCgWLFihdi8ebNIS0uTxNRlvqTTp0+rnO/PyspKzJo1Szx9+lS27vXr18Xw4cOFgYGBymsbEhKS4/5VzQG4fft22Zienp6id+/e4ttvvxUrVqwQu3fvVus4tZEfcwDGx8cLZ2dn2WNt0qRJjnVTUlIkr6c3D1tbW7FgwQIRFRWlsv6rV6/E6tWrhYeHh2wMhUKh8tq/S9UcgF999ZVs3Fq1aonBgweLefPmiZUrV4rTp0/Lxp0+fbrK+0ZAQECO7/usrCxx7tw50bNnT5X3ji+++CLXYxNCfg5AKyurt/82MTERM2bMEMnJybL1Hz9+LJo0aaLOnDQCgOjdu7d4/vy5bKzY2FgxYMAAlXWnTZuW6/GkpaXlOAdr27ZtxenTp2Xn9YuNjRWrVq1SOZ8jADFx4kS1zqsQQvzvf/+T1B86dKja9eXmALx69aowNjaWlDs7O4uuXbuKr7/+Wixfvlxs3rxZdj41beYADAsLE9u2bdP5sXDhQtl54ZRKpTh+/LjK/e/du1fl9WjYsKE4cOCASE9PV1n/7t27Yvz48cLExEQ2hjrzdL6rb9++khiDBw9Wu74un2nTpk1TeS6srKzE999/L/v+ysrKEn///bf4+OOPVdY3MzMTt27dyrUNcnMAjhw5MltZ1apVxYkTJ1TGeP36tZg2bZrKeQKrV6+u1vkgIvqQaDoHoCpMABJRkVAYE4BPnjxROXF/jRo1xL1799SKc/ToUWFvby8bp3bt2rlOQl9YE4AGBgaiSpUq2cr8/f3F0aNHRWZmplrt0PbHUnJysihfvrzsOW3cuLEIDw9Xa/8XLlxQmYjq0KFDjnXlEoDOzs6Sa92zZ0+tFnDQRV4nANPT03Nc8GXOnDk51t+0aZNsvfLly4uwsDC12xEfHy/8/f1lYy1evDjX+nIJwCpVqmRLDBsaGorx48fnmhB+IyMjQzg5OUniKhQKsXz5crWPTQghVq9eLZsErFSpklr15RKAbx4WFhbi2LFjucZISkoS1atXz/VLaW7X/I0+ffrI1s8taSyEED/88INs3RIlSoht27aptf/ExESViUhDQ0Nx9+5dteLkRQKwWrVq2f7frFkzcfjwYbUWKhFCuwSgPiQkJKh8rc2aNSvHum3btpWtN2zYMLU/R4QQ4u+//xaWlpay1zQmJkbtOAWVALx165bsH9MAiEaNGqn8Q+P7/vzzT2FhYSEbx9/fP9f67ycAjYyMst2DOnfuLFJTU9Vqy9q1a1XeL7RZEI2IqDjTNAHIIcBEVCzdvHkT27dv13vcKlWqoFq1ajluM2vWLNn5vypUqIAjR47AyclJrX21bNkS+/btQ8uWLSXxrly5gu3bt6N3797qN76QyMzMxJ07d97+f968eZgwYQIUCkWe73vx4sV48OCBpNzPzw8HDhxQexhfvXr1cObMGTRr1kwyB9i+fftw6dIl1K1bV+12hYeHv/23sbExfv/9d/Ts2VPt+kXBo0eP0L9/f5XzdVlbW+c6fHrv3r2SMqVSic2bN8PNzU3ttlhaWmLz5s0oV64ckpOTsz139+5dteO8693XtKOjI/bs2YOGDRuqXf/8+fOIjIyUlA8cOFDjYeWDBg3CqVOnsH79+mzloaGhyMjIgKGh9l//Vq1ahRYtWuS6XYkSJfDjjz+iZcuWKrcZPnw4vvjiC7X2u2jRIuzatUsyPDq3xVuio6Mxa9YsSbmJiQkOHz6MZs2aqbV/MzMzrFmzBubm5vjll1+yPZeRkYE5c+Zg3bp1asXSt5s3b77995w5czBlyhQolYV7mm8hBAYMGIArV65InuvVq1eOUzQkJibKzuNYu3ZtLF26VKNjb9y4MWbPni2ZTzIjIwOhoaGoX7++2rEKQmBgoOy0BjVr1sTBgwdhY2OjVpzOnTtj586d6NChg2TI+8mTJ3HkyBG0bt1a7Xa92yZfX19s27YNxsbGatUdMGAA9u/fL/sd7ubNm/Dw8FC7HUREpB72ACSiIkFVD8C8enz11Vc5ticqKkp2SJGhoaG4du2aVsco1zsDgGjQoEGO9QprD0BNzqcq2vSWSE5Olu1hVbp0aREREaFVO06cOCE7XCmnHj1yPQDffaxZs0artuiDvnsARkZGip07d4r//e9/KnupvHnMmDEj13ienp6Seq1bt9a6fZ07d5bE69atW6715HoAvnmYmpqKc+fOadyWRYsWycZTt8fw+44ePSobT9VQ23ep6pXVtWtXjdvh6uoqG8vZ2VkkJSVpFEtuqKKhoaHIyspSWScwMFB2/0uWLNH4WIT4bzhx/fr1Za97dHR0rvXzogfgm8ekSZO0OqaC6AGoathq3bp1RWJiYo51Vb3/Nm3apFVbYmJiZONpMt1CQfQAfPDggeznj6mpqXj48KHa+37XnDlzZM9F27Ztc6ynaloNMzMzERoaqnE7/v77b9l4K1as0Oq4iIiKK017ABbuPw8SERUx27ZtQ2pqqqR8xIgRqFGjhlYxhw4dipo1a0rKg4ODce/ePa1iFgYVK1bEzJkz821/e/bske1h9c0336jdK/N9/v7++PjjjyXl27dvV7nYRE7atm2LgQMHatWWvJKeno7y5ctr9ChdujRMTEzg5OSEbt26YdOmTTmej8aNG2Pq1Kk5tkMIITvh/0cffaT1sbm7u0vKUlJStI4HAOPGjUOjRo00rie3wEyFChXUWuBCTrly5WTLdTk+bVa6btCggWz5uHHjNF44o3HjxpKyjIwMlYt0ZGZmYtWqVZLymjVrYuTIkRrt+w0jIyMsXbpUUp6SkoI//vhDq5j6UK5cOcyZM6fA9q+JzZs3Y/bs2ZJyZ2dn/PnnnzAzM8uxvtx7RaFQoF27dlq1x9bWFtbW1pJyXe8FeW3jxo2yK6FPmjRJ5fs/N+PHj5ete/ToUURERGgcb9iwYShfvrzG9Ro0aABzc3NJeWG/JkREhR2HABMR6dGBAwckZQqFAhMmTNA6poGBAcaNG4dBgwZJntu/fz8qVaqkdeyCNHHixHwdprZlyxZJWZkyZbRe4fCNyZMnY+PGjdnK4uLicObMGfj7+2sUa8qUKTq1JS8IIfDw4cM8i+/m5oY//vgDJiYmOW6XlpaGzz//XFKuybC09xkZGWldV46pqSk+++wzrep6e3tLzoG2yT8AOg3zlePm5oZ69eppXE9Vcr1bt24axypVqpRG2//111+SIfrAf4lMXaYcqF+/Pvz8/CSrmB84cACffPKJ1nF1MWHCBL1f87wQHByMIUOGSFYBNzU1xc6dO+Hq6pprDA8PD8m90tzcXO3hrnL0fS/ID3LfN4yNjTFuXK5zvatkamqK0aNHS76zZGZm4tChQxr/gWrYsGFatcPAwADOzs65DvEnIiLNFP5vCkRERYQQAufPn5eUN2vWDGXLltUpdrdu3TBy5EjJfGXBwcE6xS0oSqUSPXr0yLf9paen4/jx45Lybt266fzDr0aNGihfvrxkbsFz585plAB0dHSEn5+fTm0papo1a4bt27er1QPTxMQE33//vV73HxcXp9d4Pj4+Giep3ggICEBAQIDe2qLvY2vSpIlW9eR6czk5OcHT01PjWJr2GDx8+LBsezp27Kjxvt/XrVs3SQLw77//1jmuNhQKhV5fO3nl2bNn6NKli+RzDAB+/fVXtXvOent7w9vbW2/tyszMREJCgt7i5YfU1FTZ+RPbtWsHOzs7nWL37t0bkydPRmZmZrby4OBgjRKAnp6eqFKlitbt0PT9TkREuWMCkIiKJTs7O516A6hia2ur8rnQ0FBER0dLyjt06KDzfq2srODj4yP5QXvhwgWdYxeEKlWq5Hgu9e3GjRuIj4+XlLdv314v8f38/CQJwHcn5leH3PDG4qpkyZKYNGkSxo8fX2A9b5KSknDo0CG9xixM13DXrl16jadtYjOvY+Xk7NmzkjJ/f3+9JBbkkvVRUVF48eIFHBwcdI6vCU9PTzg6OubrPjWVlJSELl26ZFvw6I3JkyejX79+BdCq/xw8eLDIDS29evWq7HQj+vi+Ubp0adSpU0fy/ULT7xvaTIVARER5iwlAIiqWJkyYoNV8Vbq4ePGibHmdOnX0Er9WrVqSBODDhw8RHR0Ne3t7vewjv2iyQq4+XL9+Xbbcy8tLL/Hl5pLTNAGozfDKosTMzAy+vr5o164dBg4cCEtLywJry6lTpzBt2jQ8ffpUr3ELwzWMiIjA0qVL8d133+k1roWFRaGMlRO5933VqlX1ElvuPQ/8977XdOi/rgrD6y4n4v+v+Hvp0iXJcx06dND7a1VdCQkJ2LBhg9orURcm+fF94/2E3/Xr15GWlqb2ar669P4jIqK8wQQgEZGeyC0wAUB2AQ9tqFpE5N9//y1yCcD87iEjNw+YoaEhbt++jTt37ugcPyoqSlJ27949ZGRkqD0vV8mSJXVuR14wNDTEpk2btKprYmICBwcHlCpVCi4uLmr/cNSXtLQ0PHjwAPfu3cOdO3dw9epVXLx4Mc/mNMzvaxgeHo6QkBDcu3cP165dw/Xr1xEcHKxyUYwPyevXr2WHQaekpODYsWN62YehoSEyMjKyld26dSvfE4CF9d7xxowZM7Bjxw5JedWqVbFx48Z8mQs2Njb27Xvlxo0buHbtGs6fPy/bM7wokPu+YWhoqLc/asl930hLS8OLFy/g4uKiVoz87OVPRETqYQKQiEhPYmNjJWWGhoZ6S845OzvLlr969Uov8fOT3IqLeSkmJkZSlpGRodMCErlJS0tDXFyc2tc/L4as64NSqSz084tlZmbi6tWrOH/+PO7du4eQkBCEhIQgLCxMMo9VXsqraxgeHo4zZ87g5s2bCAkJwf379xESEoLXr1/nyf6KA7n7MQAsXrwYixcvzrP9yv0xIK/l9/1UE1u3bsWsWbMk5fb29tizZw+srKz0ur+4uDicPXsW165dw/3799/eD16+fKnX/RQ0ude3jY1NrospqSun7xvqJgAL62caEdGHjAlAIiI9kUvEWVlZ6bTa5LtU/cgriglAff/oy41cAjA/vH79Wu0EYH6fk6IuNTUVu3fvxvr16xEUFFQokmH6vIa3bt3CypUrsW/fPq6EqYWCfM/nt8J677hw4QIGDRokWfHXyMgI27ZtQ/ny5fWyn+fPn2Pt2rXYsWMHrl+/jqysLL3ELczkPvf1mQjWx/eN/OjZSUREmmECkIhIT+R++Jmbm+stvqofeUUxAWhgYJCv+yuoc6RJMiC/z0lRlZGRgZ9++glz587VulePQqFAvXr1IIRQOZeWNvRxDS9cuICJEyciKChI6xgODg7w8/PD9u3bdW5PUVVQ7/mCWE22MN47nj9/rnLF359++gnNmzfXeR9hYWGYOnUqtm/frnVPXzMzM3z00UfYv38/kpKSdG5TfuH3DSIi0gYTgEREeiL35VufPyhUrVKoryE/xZmpqWmB7Lcw9EorTmJjY9GpUyecOXNGo3qOjo6oVq0aatWqhTp16qBp06YoW7YsJk2apNcEoK6WLFmC8ePHS+aVy4mJiQmqVKmC6tWro06dOqhbty68vb3x7NmzDzoBWFD3Rb7ngeTkZHTp0gX//vuv5LkRI0Zg5MiROu/j2LFjCAgI0CghZWhoCA8PD9SoUQO1a9dGnTp14OPjAzMzMzg4OBSpBCC/bxARkTaYACQi0hO5Ca/lJqHXlqofOvk50XZRHVold44qVKiA8+fP5+l+C3Kl2+ImIyMDHTt2xNmzZ3Pcrlq1avDz84OXlxeqVq0KLy+vIrFIzoYNGzB27FjJcMl32draokWLFqhdu/bbY/Pw8CiUPcAKmp2dnWz5jh079NL7TBUjI6M8i10UCCEwcOBA2cS6v78/Fi1apPM+rly5gk6dOsn2LnzD1NQUvr6+qF+/Pry8vFClShVUrly52CSwPoTvG0REpH9MABIR6YnchNcZGRmIjY3Vy5dmVcMdVf3QzQtFdfiP3PnX13Wh/LF06VKVyT9nZ2eMHz8ePXv2RNmyZfO5ZbqLiYnB6NGjZZN/SqUSvXr1wvDhw9GkSRO1V5X+0Kl6b6ekpPB9n4dmzpyJbdu2Sco9PDywfft2nROkQggMHTpUZfLP19cX48aNQ+vWrWFmZqbTvgozue8br169Qnp6ul6S0IXh+wYREekfv0USEemJg4ODbPn169fh6+urc/zr16/Lludn76aCmlhfV3LXJiYmBikpKQU2PJjUJ4TAwoULZZ/r2LEj1q9fX6RXnFy5cqVs7x1bW1vs3LkTfn5++d+oIs7W1hYGBgaSueHCw8MLqEXF3/bt2/HNN99Iyq2srLBnzx69fFadPHkSly9flpQbGBjgl19+wbBhw3TeR1Eg95mWnp6OO3fuoEaNGjrHLwzfN4iISP+4PBMRkZ7UrVtXtvzKlSt6iX/p0iVJmZ2dXb71eIqLi0NERES+7Evf6tSpIynLysoqVPO/kWrXrl3DkydPJOW1a9fGH3/8UaSTfwCwd+9eSZlCocAff/zB5J+WjIyMUL16dUl5Xg/7/1BdunQJAwcOlPRiVSqV2LBhA7y8vPSyH7n3CgB8//33H0zyDyiY7xseHh6FdsVpIiJSDxOARER6UrlyZVhbW0vKDx06pHPs5ORknD59WlLeqFEjKBQKneOr48KFC0V2DsB69erJDov666+/9BL/zp07uHTpUrbH8+fP9RKbgKtXr8qWT5s2TafhbmlpaVrX1RchBK5duyYp9/f3h7+/v9ZxC8OxFTRvb29J2dmzZ3OcZ1Fd0dHRkve8vpIvRc2///6Lzp07yy5CMWfOHHTs2FFv+5K7F9jb2+Ozzz7TKW5Re7/UqVNH9t6nj+8b0dHRuHDhgqRc7v1ERERFCxOARER6olQqUb9+fUn5sWPHdO459+eff8oOEWzUqJFGcVJTU7Vuw/79+7WuW9DMzMxQq1YtSfn69et1TgZER0ejTp06qFevXrbHsWPHdIpL/0duNVEAOg+tv3//vk719eH169eyK8f6+PjoFDc0NFSn+sVB48aNJWXh4eE4cuSIzrGnTJkiec8PGTJE57hFzZsVf+X+4NG3b19MmTJFr/uTuxd4e3vr9IeAqKgoxMfH69KsfGdmZibbw3XPnj06r0S9ZcsW2e8Kmn7fICKiwocJQCIiPWrbtq2kLDMzE4sXL9Y6ZlZWFn766Se195cTbRORycnJWL9+vVZ1C4t27dpJyu7evatzMmDFihVISUmRlLds2VKnuPR/5M6vQqHQaehvVFQUjh8/rkuz9ELu2ADdV9vcvHmzTvWLg1atWskumvLzzz/rFDcyMhJbtmyRlH9o73khBAYNGiTbW6xhw4b47bff9L5PufeLrlMAFNX3itznf1JSElasWKF1zPT0dCxZskRSrlAo0KZNG63jEhFR4cAEIBGRHvXu3Vv2B+fChQvx4MEDrWKuXbsWwcHBkvKqVavK9jh8w9jYWFIWFBSkVRsWLlxYZBcAeaNfv35QKqUfe2PHjlW5omRuwsPDMXfuXEl5nTp14OLiolVMkpJLhgkhdOpZO3ny5EIx7M/W1lZ2GL8ux3b+/Pkim9TQJycnJ9nE/4EDB7Bz506t43711VdITEyUlHfq1EnrmEXRrFmzsHXrVkm5i4sLdu3alScLLMmtQqvLe+XFixeYPXu2Lk0qMH379pW9d8yaNUvrc7Jo0SLcvXtXUu7t7Q1PT0+tYhIRUeHBBCARkR65uLigV69ekvKUlBT07NlT42FGly5dwvjx42WfmzBhQo51nZycJGVHjhzBvXv3NGrDjRs38O2332pUpzDy9PREly5dJOUhISH49NNPNZ7fMD09Hb1795a9puPGjdO6nSTl7OwsW37gwAGt4i1ZsgTr1q3TpUl6Y2RkhJIlS0rKDxw4oNXw9LCwMPTq1QsZGRn6aF6RN3HiRNnyESNG4M6dOxrH27JlC1atWiUpr1evHpo2bapxPAB6mZMwv+3YsQMzZsyQlJcoUQJ//vmnyvesruTinjlzRnaKjNwkJSUhICAAL1680EfTJPL6ulapUkW2F2B8fDx69eql8R+2Tp8+jcDAQNnnVL2PiIioaGECkIhIzwIDA2FiYiIpv3z5Mjp06IDw8HC14pw5cwbt2rWTTTBVqVIF/fr1y7F+pUqVJGUZGRkYMGCA2j8Mbt26hVatWqkcpljUzJo1S3auqPXr16Nfv35ISEhQK058fDw6d+4s26OybNmy6N27t85tpf/j6+ursqeLJj/e09PTMW3aNIwdO1blNnILGeQ1uZV+r127JptoysnZs2fh6+uLsLAwldsUxPEVJB8fH7Rv315SHhUVBT8/P/zzzz9qx9q4cSMGDBgg+9zkyZO1bmNsbKzWdQvC5cuXMWDAAEmCS6FQYPXq1ahXr16e7Vtu3s/k5GRMnTpVoziPHj1Cy5YtZRfXekPX90p+XNdZs2bJ9mwPCgpCt27dEB0drVacw4cPo1OnTrLfDRo1avTB9W4lIiqumAAkItKzihUrqvwx8tdff8HLywtLly5V+eMgNDQUY8eOha+vr2xyw8DAACtWrMh10vPOnTvLlp8/fx6+vr459n5JT0/Hjz/+iEaNGiEyMvJteYMGDXLcZ2FXtWpVfPHFF7LPbdq0CZUrV8aaNWtU9iZJTk7GmjVr4OXlhYMHD0qeVygUWLlypU4T0pOUs7MzGjZsKCl/+vQp/P39c119NTMzE1u3bkXdunUxe/bsHHvmXL16Fa9evdK5zZqQ65kK/NdLbeHChbn25rt37x6GDh2aa/IPAE6dOqVtM4usJUuWyK7QHhUVhSZNmmD48OG4efOmyvqXL19Gjx490LdvX9lh4506dUJAQIDW7bt48WKhGI6urjlz5sgmx8zNzbFq1Sq0atVKb4/3E7SdO3eW/WPA8uXLMWLEiFwXwIiKisLXX3+NmjVr4ty5czlum1NyUB0XL17UaeEtddStWxejR4+Wfe7QoUPw8vLC6tWrVZ6X27dvY+jQoSr/2GhiYoLly5fLJhmJiKjokU5URUREOvv6669x5swZ2UUGYmNjMXr0aEyYMAGNGzeGm5sb7OzsEB4ejvv37+Py5cs5xp41axaaNWuWaxs6deoEDw8PPHz4UPLchQsXUK1aNbRu3RrNmzdH2bJlYWJigqdPn+LatWvYtWuXpOdA06ZNERgYiNatW+e678IsMDAQ586dw9GjRyXPPX/+HIMHD8aIESPQsGFDuLm5wcnJCfHx8Xjw4AGCg4Nz7CX4+eeff3ALAeSXGTNmyA53u3XrFurWrQtfX180b94cFSpUgIWFBWJjYxEZGYng4GCcOnVKNpler149XLx4MVvZq1ev0KFDBwQGBqJChQpQKBRwd3fPq8MCAPTs2ROzZ8/G7du3s5VnZGRgwoQJWLBgAbp27Yo6derA3t4eGRkZiIyMxP3793Hy5EncuHFDMoS9QoUKiIqKkiSzv/zyS2RmZqJVq1YwMDBAuXLlZOcLLU7KlSuHNWvWoEePHpLzlJWVhV9//RW//vorKlasiKpVq8LV1RUKhQJRUVG4cOGC7D30DRcXF40WuyhRooSk7MmTJ2jTpg369euHUqVKITExEc+ePcPIkSNle5MXNFXTJSQkJOh99fP3e+tWrlwZH3/8MTZt2iTZdvny5di0aRO6dOmChg0bolSpUjAwMEBUVBTCwsJw+vRpBAcHS5KtNjY2KFmypGTl7HXr1sHR0RG9evWCtbU17OzsVC7OI3ddnz17hjZt2qB///5vr+vz588xfPhw2e219cMPP+DcuXOyi7FERkZiyJAhGD16NJo0aQIXFxfY2tri+fPnuHv3Lm7cuJFj7EWLFqFmzZp6aysRERVOewAIVQ8jIyNBRFQYLF26VPY+NXv27IJumoiPjxeNGjVSeS/V5jFp0iSN2rB//36hVCp13q+Xl5d4+fKlOHnypOS56dOn59iG0qVLS+osXrxYhzMrxM8//yzbRnW9fv1aNG3aVK/XZvjw4SIrKyvXfSckJMjWP3TokC6nRC8cHR0l7TI2Ni7oZr3Vt29fvVwrU1NTsXr1anHjxo1ct+3YsaOkHWfOnJHdNiIiQutjCwoKEiYmJno5vvbt24vY2Fjh7++f67aPHj2StKV27dqS7b7++mutjmvChAmSWE2aNNEq1t69e2WPISUlRa36K1euFAYGBnp7z7u6uoqQkBCNjuG7775TO35cXJykvru7u2S7BQsWaNSG9y1fvlwSs0KFCiq379q1q97OYW6PPXv2SPb/9OlT4ezsrJf4Xl5eIiQkREycODHXbbdv367ynMydO1ftfcbGxkrq6/qCE5HKAAAgAElEQVSZ9uLFC1G9enW9nvs5c+aovX9DQ0NJ/S1btqhdX47c8SxatEinmERExc3p06fVuae/nZyc/bmJiPKIpaUlTpw4gT59+ugcy9TUFL/88gt++OEHjeq1b98eS5culR0ypa7GjRvjxIkTsLe31zpGYWNhYYGjR49i8ODBOscyNjbGrFmzsGzZMp3OM+Vu1apVsr0ANeHp6YnTp09j0KBB8PLyQvny5fXUOt00a9YM69at06k3nqGhIb7++mvs3bsXNjY2nLfrPUOGDMGePXtkF13RlLe3N4KCglChQgWN6vXs2bPY97jMa66urti/f7/On0m9e/fGP//8gwoVKqicMkNdAQEBBXpdS5YsiTNnzujlPW9hYYENGzaonC6DiIiKLg4BJqIizcrKCh4eHpJyVcN08luJEiWwYcMG9OjRA1988QXu3r2rUX2FQoEOHTpg/vz5qFixolZt+PTTT1GhQgUMHjwYT548UbueoaEhJk6ciOnTp8PU1BTAf8fz/vnO7Vy7ubm9rf+G3HxcmrC2tpa0w9XVVaMYpqamWLVqFXr06IEpU6bkOhRKTosWLbBw4ULUqFFD7TpKpVL2NWtmZqbx/vWtbNmysLCwyFZWmOYzNDY2xr59+/Ddd9/h22+/1Wh+LTs7O0ybNg2jRo16+0NdoVDghx9+QI8ePTRasdPU1FT2GhoYGKgdQ06vXr3g6emJfv36abxCbatWrTBv3rxsw/WGDRuGX375Bffv39colouLi2TosLb3VDs7O8m5Kl26tFaxzMzMZM+7Jon39u3b49atW/jqq6+wbt06pKena9SGUqVKYerUqRgzZoxW86J5eHjghx9+0HqlcDc3N8l+bWxstIr1htznaJkyZVRu7+TkJHsd8oK5ublsee3atXHt2jUMHDhQ42HH1apVw9y5c7MtDtO0aVN07twZu3fv1qqd5cqVw/z583NcYCgn+vhMs7Kywu7du7Fx40Z8/fXXePTokUb1lUolevTogR9++AFly5bVqG65cuWQmZmZrez9zxJNubq6IjExMVuZrt8diIhIHocAExHpWUZGhti3b5/o27dvjsOXFAqFqFatmpg0aZK4ceOG3vafkpIi1q9fL/z9/YWZmZnK/Xt6eoqJEyeKx48f623fhV1mZqY4fPiwGDBggHBxcVF5bgwMDETNmjXFuHHj9HptSHMRERFi+vTpombNmiqHuRsZGYmmTZuKRYsWiZiYGJWxNm3aJFxdXWWv9/Dhw/PxqP6TmZkpdu7cKTp06CCsra1Vvh7Lli0rRo4cKYKDg1XGevr0qfjoo4+EQqGQ1HdychLPnz/PxyMrXMLCwsSsWbNEw4YNZYcwvnueunbtKjZu3ChSU1P1su/9+/eL+vXrq9yniYmJiI+P18u+iruzZ8/m+rlasmRJ0bt3b7F//36RmZkpGychIUF8+umnskPxraysxNGjR3Nty4EDB0SDBg1yvK6vXr3S9ymQSEtLE7t27RI9e/YUDg4OKtujVCpFrVq1xFdffSXu3buX5+0iIiL90nQIsKo/me4B0FHFczAyMipSq5URERVG4eHhePDgAWJjY5GSkgILCws4OjrC09Mzz//KnZ6ejrt37+LFixeIiYmBiYkJbG1tUalSJTg4OOTpvouCiIgIhIaGIjY2FqmpqbC3t4ednR3KlSsHKyurgm4evScuLg4hISGIjo5GUlISHB0d4eTkhDJlykh6n6qSmZmJmzdvIiwsDEIIODo6onr16jr3YtFVZmYm7t279/a9WqJECbi4uKBUqVIavVcjIiJw8+ZNxMbGws7ODuXLl8/zxU2KkuTkZNy/fx8RERGIi4uDmZkZ7O3tUapUqTw9T5GRkbhz5w5evnwJExMTWFlZwd3dHWXKlOHKq1p4+PAhwsPDER0dDaVSCWdnZzg7O6NUqVJqn8+4uDhcv34dkZGRMDc3R9myZVG5cmWNrkdhuq5CCDx//hwPHz7Eq1evkJqaCktLSzg5OcHT0xOWlpb52h4iItKfoKAg+Pr65rbZeAA/AUwAEhERERERERERFSmaJgD5p0UiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYowJQCIiIiIiIiIiomKMCUAiIiIiIiIiIqJijAlAIiIiIiIiIiKiYsywoBtARJSfMjMzERYWpvJ5a2tr2Nvb52OL6EOXlJSEiIgISbmHh0eO9V6/fo0XL15kK1MqlXB3d9dn80hN4eHhSE5O1kssMzMz2NnZwdjYWC/xiChvqLp/lytXDgqFogBa9OFJTExEZGSkpDy3z1Aiog8RE4BE9EE5duwY2rZtq/J5Pz8/nDx5Mh9bRB+6o0ePokuXLpLyjIwMGBgYqKy3c+dODBw4MFuZpaUl4uPj9d1EUkP//v1x7NgxvcY0NzeHo6MjGjRogCZNmqB169aoVKmSXvdBRNo7deoUPvroI0l5cnIyTE1NC6BFH56jR4+ia9eukvLMzEwolRzsRkT0Lt4VieiDsnHjxhyfDwoKwrNnz/KpNUREqiUmJuLRo0fYunUrxo4diypVqqBdu3Y4ceJEQTeNiIiIiIoYJgCJ6IORlJSEXbt25bhNVlYWtmzZkk8tIiJSnxAChw4dQosWLdC/f38kJiYWdJOIiIiIqIjgEGAi+mDs/n/s3XdcleX/P/DXYYpsWYobNyAmijkjFSUnmoqVe6ZmpR8zx6cyNctsaKVm46MWJalJkisXAQ4cOEDEgblxIQIyZZz790c//Ir3dcNZrOPr+Xicx8PHdd/Xdb1vOec+57zPNcLDkZWVVeZ5oaGheOeddyogIiIi3YSEhOD06dOIiIiAs7NzZYdDVO6uXr2KS5culSizs7NDhw4dKikiMgT+XYmIKg4TgET0zChr+m+xkydPIjExEZ6enuUcERGR7s6cOYPBgwdj//793DCEjN5vv/2GefPmlSjr0KEDjh49WkkRkSFs3LgRc+fOLVHm5+eHY8eOVVJERETGi1OAieiZkJKSgj179mh8/saNG8sxGiJ6Vhw9ehQPHjzQ+HHnzh2cO3cOkZGRWLp0Kbp161Zq+wcPHsQHH3xQQVdDRERERNUVRwAS0TNh06ZNKCgokJX7+fnh+PHjsvINGzZg4cKFFREakU5at26NOXPmlCiztLSspGhIiZ2dHRwdHbWq4+bmhpYtW8Lf3x9z5sxBbGwsJk6ciLi4OOH533zzDWbOnAk3NzdDhExEGmrSpInsPgwAZmb8ilVRmjVrJvwbqFSqSoiGiKhq47sTET0TlKb/fvXVVwgODpbt/Hvp0iUcO3aMa9BQleXr6wtfX9/KDoMqQPv27XH06FEMGTIEO3bskB3PycnBl19+iU8//bQSoiN6drVo0QJLly6t7DCeaV5eXvwbEBFpiFOAicjoXb58GUeOHJGVN2vWDJ06dcKwYcOE9UJDQ8s7NCIijVhaWmLjxo1o1qyZ8PjWrVsrOCIiIiIiqk6YACQio7dhwwZIkiQrHzlyJAAgODhYWG/Tpk0oKioq19iIiDRlbW2NxYsXC49dvHgRN27cqOCIiIiIiKi6YAKQiIyeaPqvSqV6nAB8/vnn0bBhQ9k5t27dQmRkZHmHR0SkscGDB8PGxkZ4LCYmpoKjISIiIqLqgglAIjJqJ06cwPnz52XlnTt3hoeHB4B/k4FVdRpwfn4+0tPTKzWGqhBHeno6srOzK61/AMjMzERGRkalxlDZcnNzkZWVVeH9FhUVIS0tDYWFhRXed1VjYWGBzp07C4/dvXvXYP3k5uYiLS2tyoyCzsnJEW7kpAu1Wo20tDTk5OQYpD1DyM/PN+hzPCMjA2q12iBtaSMrK6tKvGcZSmFhYaW/91S2jIwMZGZmVnYYle7Ro0dIS0sz2H3IELKzs5/55ycRaYebgBCRUVPa/KN49F+x4OBgfP7557LztmzZglWrVum1u2paWhrS0tJKlLm4uMDW1lZ2bmxsLDZu3IioqCgkJiY+/mBnYmICZ2dntG3bFl27dsWoUaOEoxZLk56ejgcPHpQoc3Z2hp2dnezcEydOYNOmTYiMjERiYuLjpI+JiQmcnJxKxNGoUSOt4ijL+fPnERYWhqioKJw9exbJycmPj5mamqJBgwbw9PSEv78/Xn75ZTRp0sSg/aempmLv3r3Yu3cvzp49i0uXLiE1NbXEOba2tnB3d0fr1q3x3HPPYfDgwfD09DRoHGXJycnBnTt3SpSZmJiU+fe4c+eOLPFRr149WFhYlCiTJAm7d+9GWFgYjh49ivPnzyM/Px8AYG5uDjc3N3To0AHdu3fHiBEjtN7ptjR3795FaGgodu/ejdOnT5e4ThcXF7Rr1w79+/fHiBEj4ODgUKLu1atXZYkPe3t7ODk5GSy+yubu7i4sv3//vtZt5eXlITo6Grt378apU6eQlJSE5OTkEssmWFlZwcXFBZ6envDx8UGfPn3wwgsvwMRE+9+R1Wo1rl69WqLMwsIC9erVk50bGRmJlStXIiIi4vE91NPTE2fPntW4v/Pnz+Ovv/5CdHQ0kpKScOnSJeTl5T0+bmJiAkdHR3h4eMDHxwcdO3bE4MGDdX6+pKSkyJIl7u7uqFGjRomya9eu4eeff8aePXuQkJBQImnm7OyM5557Dv369cPYsWNlz/GnJSYmIiQkBFFRUbh+/TpSUlIev1Zr1aqF1q1b48UXX8S4ceO0ft8ozf379/H7778jIiICp0+fxpUrV0okMN3c3NCiRQt06dIF/fr1Q5cuXbRq/8qVKyWeh0+/fwH/JmUuX74sKxf9n2t670tOTsZXX32FrVu3IikpCcC/0+93794tu4a8vDzcunVL1n/jxo0Vd6HNz8+XbTxmaHZ2dnB2dtaqzq1bt7B7927s378f58+fx6VLl2Q/etnb26NBgwbw9vZG+/bt8fLLL2v9GcDQf1elv0Hxj7y6yMnJQXh4OPbu3YvY2FhcunQJubm5j4/b2tqiSZMm8PPzQ69evdC/f39YWVnp1FdycjIePXpUoqxhw4YwNTUtUVZQUIA///wT4eHhOH78OC5duvT49WZpaYk6deqgc+fO6NGjB1555RVYW1vrFA8RPZv+BCApPczNzSUioqqusLBQqlOnjuweZmFhIaWmppY4V61WS40bNxbe88LCwvSKY+HChbI2//e//5U45+LFi1Lv3r0V77tPP0xNTaVXXnlFunv3rsZxfPTRR7J2vvvuuxLnXLp0SXrppZe0imP48OHSnTt39Po/kiRJioqKkl588UWN+wYgqVQqqU+fPtLJkyf17v/y5cvS5MmTJQsLC61iKH60adNG2rZtm9b9bt26VdheYWGh1vVsbW3L7C8oKEhW79SpUyXOiYyMlHx8fDS+dmtra2n27NlSbm6u1tf/pHv37klTpkyRLC0tNerXzs5OWrp0qVRQUPC4DQ8PD9l5M2bM0CsuTQQEBAhjPHfunMH7mjJlirAvba4zIyNDWrJkieTs7KzT871OnTrSl19+KeXn52sVe0ZGhqyt1q1blzgnOztbGj16tLBfNzc3jfrZs2eP1K1bN52uzdzcXBo6dKiUlJSk1bVJkiSNGTNG1l5kZGSJ6582bZpkbm6uUSz29vay94tiN27ckIYNGyapVCqN2jIzM5OmTp2q9+v08uXL0tixY7W+V3p5eUmbN2+W1Gq1Rv3UqFFDp78fAOnAgQOy9gYMGCA7Ly4ursQ5P/30k2RnZydsc+/evbI2Dx06JDy3tP/j+Ph4na9L08fUqVM1+j8ujmf48OGSiYmJ1v2oVCqpa9eu0sGDBzXur2bNmjpfV1RUlKy9yMhI4blFRUUax1QsNTVVmjNnjmRra6tVXPb29tL8+fOltLQ0rfv09fWVtXf//v0S54SFhQnf25QeDg4O0ieffFLm5wgiqv6ioqI0uS/MQBmYACSiam/Pnj3Ce9igQYOE58+ZM0d4/rBhw/SKo6wE4ObNmyVra2udPgy7urpKR48e1SiOshKAW7ZskWxsbHSKw8XFRYqJidHp/yczM1MaN26czl8IgH8Tke+//77OH3Z/+eUXvb6UPPkYMmSIVl+wq1oCcNGiRTp9EQQgeXt7S7du3dL42p+0a9cuycXFRad+u3bt+vgLU8+ePWXHjS0B+PLLLwv7WrRokUb1T548KTVq1Mggz3dPT0/pypUrGsdeVgIwIyND6tixo2J/ZSUAc3NzpfHjxxvk2iwsLKTVq1drfG2SVHoC8OLFi1LTpk11imXu3Lkl+omKitL59eLn5ydlZmZqdV2S9O8PZStWrJCsrKz0+n/t37+/lJKSUmZ/FZ0AFL1HPvkwtgSgWq2WPvvsM8nMzEzv/lQqlfTGG29o9B5cVROAf/75p+Tm5qbX/0OdOnWkHTt2aNVvaQnAwsJCaerUqTrH061bNykjI0OreIioetE2Acg1AInIaGk6/beY0m7A27dvx8OHDw0W15N++eUXvPLKKzqv4XLv3j307dsXFy5c0CuO0NBQBAcH67y+W0pKCvr164dz585pVS85ORldu3bFunXrdOq3WFFRERYvXowRI0ZovT7PokWLMHLkSIOtB7Zlyxb069evWq5XN3v2bHzwwQc6rx2WkJCA3r17a/16Wb9+Pfr374+UlBSd+j148CD8/f3x4MEDvaZ9VRenT58Wlru6upZZd8+ePejSpYtsGq6uEhMT0bVrV4PsQFxQUIDBgwfjyJEjOtXPzs5Gjx49sHbtWr1jAf6dqjlt2jR89dVXereVlJSEbt264dKlSzrVX7p0KX788UcAwKFDh9C3b1+dXy/Hjx/HhAkTtKpTUFCA0aNHY8aMGSWmQupi+/bt6NatW4nlHSrbd999h/fee6+yw6gwkiRh0qRJmD17tkHeqyRJwqpVqzBu3DgDRFfxvvjiCwwaNEjvdVRv376NAQMGGOSeoVarMXLkSHz77bc6t3HgwAEEBQVVy88jRFQ+uAYgERml3NxchIWFycodHR3Rv39/YR1fX180bdpU9gUtNzcXW7duxejRow0aY3R0NCZMmCBbZL9Ro0bw8fFBvXr1kJ+fj2vXriEmJkYxOZeamoqpU6ciIiJCpzgOHjyIcePGyeJo2LAh2rRp8ziO69ev4/Dhw4pxPHjwAFOnTtV45+T79++jV69eZSYNnZyc4ObmhszMTNy9e/fx2lYiGzduRK1atbB69WqNYggPD8eCBQtKPcfMzAx169aFra0t1Go1MjMzkZycXGqSLCIiAitWrMA777yjURxVwerVq4XrYLZu3RotWrSAm5sbsrOzkZSUhGPHjikmWhMSErB48WJ89tlnGvW7bds2TJw4sdTNJszNzR+v/XTjxg1hsvbs2bMICgpC7969Neq3ukpISBCujQWgzPUwb9y4geDg4DITOO7u7rC1tUWNGjWQmZmJmzdvlvq6S05OxtSpU7F9+/ayL6AUixcv1vk+BgDTpk0rcydkGxsbuLq6wt7e/vGGFWUl0ubMmYPevXujVatWOsWVnp6O8ePHy5ILHh4e8PPzg5OTEzIzM3HixAkkJiYqtjNz5kw4OTlh3Lhxsh+NHB0d0bVrV9SvXx+5ubk4f/48jh07pvi62rRpE2bOnImOHTuWGb8kSRg7diw2bNhQ6nnW1tZwd3eHSqVCcnJyqT9snT9/Hv369cOhQ4cqfa2y+Ph4vP3225UaQ0VbuXIl/ve//5V6joWFxeP3vvz8/MfvfaUJCQlB//79FX9QrYrWrFmj0Xu1m5sbnJyckJqaWmqiUK1WY+bMmbC2tsbEiRN1jmv+/Pn47bffSpSpVCq0a9cOTZs2fXzfSExMxKlTpxRf65GRkVi9ejXeeustnWMhIuPHKcBEVK399ttvwvvX5MmTS603f/58Yb2XXnpJ51hEU4A///xzqW7duiXKevXqJcXExAjXR8rNzZVWrlwp2dvbK96bn1xnSkQ0vWnZsmVS/fr1S5T16NFDOnz4sGIcq1evlhwcHBTj2L9/f5n/J0VFRVKvXr0U22jZsqW0Zs0aKTk5uUS9wsJCaf/+/dL48eMlU1NTxfqbNm0qM4ZHjx5JDRo0ENY3MzOTJk+eLEVHRwuncuXk5EgRERHSpEmTFNfycnBwkB49elRmHFVhCvD69etLrOelUqmkiRMnShcuXBC2kZKSIs2bN09x6piFhYVsDSORK1euKD6nVSqVNGLECCkiIkI2lSsxMVGaO3eucJ2m5s2by8qMaQrwsGHDhP1YWVlJOTk5pdZ99dVXFV8zvXv3lsLCwoRrWBUUFEhxcXHShx9+KDk5OSm2ceTIkTLjV5oCHBMTI3w+mZqaSi1btpSGDRsmTZkyRVq8eLGw3YMHDyrGVbt2bemTTz6RLly4IJwWePfuXWnDhg2lrhk4YsSIMq9NksRTgJ+ebt2hQwfhFFVJkqTjx49L7dq1U4zj6Ye7u7sUEhIivNdcvXpVGjx4sGLdUaNGaXRNH3/8sWIbjo6O0oIFC2Rr6UmSJCUkJEgLFiyQHB0dFetPmjRJsd+TJ09KsbGxjx/Tp0+X1ffy8ipxTvFDNMVZNAX42LFjiuud1q5dW+rdu7c0adIkadasWcI1IXWZAnz79m1pzpw5ej/effddxbXq3nvvPcX+79+/r7jch5WVlTRr1izp+PHjwvU9Hz58KO3cubPUNQNbtGih2Lfo7/rmm2/K2vD09NT476rPFOCYmJhS1+Ps3r27tGHDBik7O7tEvaysLOnXX3+VunfvrljX0tJSOnHiRJkxiKYAb9iwocTanubm5tLs2bOl69evC9u4ceOG9PrrryuuB+rs7FxirVwiMh5cA5CISBJ/0AcgRUdHl1rv9OnTwnpmZmZabbjxJFECsFatWo//rVKppG+++Uajti5cuCC5uroKY3zrrbdKrStKAD4dx4oVKzRaoP3ixYuKa+W88cYbZdZfsWKFsK6pqam0bNkyjT6onj59WvLy8hK2U6dOHSkrK6vU+r/++quwrqurqxQbG1tm/0/G8XQyt/ixffv2MutXhQTgk88DGxsb4VpXIrt27VL88rR+/foy6yttfOPu7i7t27evzPr//PNPqevFFT+MJQH4v//9T/Eay/qR4saNG8KkuampqbR27VqNY0hNTZX8/f2FMbzzzjtl1hclAJs0aSI1a9asRJm3t7f03XffabyovtK6iAEBAVJ6errG1/ftt98KExt2dnZSXl5emfVFCcAnH1OmTCkzMZGdnS21b9++zOf1888/L9vQ6mlqtVpxjdW6deuWeT1xcXGKif7g4GCNEv0pKSlScHCwsA2VSqXx+rGffPKJrH6HDh00qitJ4s8FgYGBsnvonDlzpLNnz2rUpi4JQEN5//33hX136NCh1B8DlBK6TZs2lS5duqRx/xEREYo/4MTHx2vcztKlS2X1/fz8NK6vawIwPz9f8TOEra2ttG7dOo36X7t2rWJC1dfXt8z3clEC8Mn3ZDc3N403Olu7dq1iElCTH2eJqPphApCInnn3798X7k7YqFEjjZJbLVq0EN77NE3SPU2UANSn3R07dgjb6dSpU6n1ylrgfPny5VrF8ddffyl++SjN/fv3hV8aTE1Ntd5xOTU1VfLz8xPG8fnnn5dad8iQIcIvo6JFxssSHR0tjEFptNKTqkIC8Mn3d22vf9GiRcK2pk+fXmq93bt3C+s5Ojpq/OVbkv5NKJW1Y3F1TwAWFRVJy5YtK3Wkys6dO0tt45tvvhHWW7hwodbxpKamCn+I6NmzZ5l1RQnApx/z58/XaPRssZycHOHGFI0aNSrzhwCRmTNnCuPS5HlZWgJw+PDhGscQFxdX6u6+TZs21Xhx/+zsbMUfbMpK4CntzP7mm29qvJuvJP37HJ42bZqwrcDAQI3aKI8E4JOPLl26SJcvX9a4PUmqvARgaGio8Pnh7u4uGzn/NFFyuUaNGtL58+e1jkPph7SffvpJ4zYqKwG4Zs0aYT1LS0utk2V79+5V3BX7559/LrWuKAFY/LC3t5cSEhK0imXSpEnCtpYuXapVO0RUPXATECJ65m3atEm4XtWIESOgUqnKrK+0dk1oaKjesT2tX79+mD59ulZ1+vbtC19fX1n57du3dY4jMDAQM2aU+eOQrI6fn5/WcXz11VfIyMiQlS9evBiDBw/WKoZatWohLCwMtWrVkh1btWpVqev0idYKCwwMxAsvvKBVDADQrVs3tGnTRlauz9+kMsydO1fr6//Pf/4jXMOrrGtfuXKlsDwkJASenp4a929nZ4fw8HBYWVlpXKe6uHfvHtatWwdfX1+8++67iusudu7cGX369Cm1LdHGGg4ODpg9e7bWcdWqVQuvvvqqrPzWrVtat/W0efPmYcmSJbCwsNC4TlxcnHBdw/nz5+u0vtwbb7whLNfn9ezm5obvv/9e4/N9fHzQuXNnxeM///wz7OzsNGqrZs2aipszpKamKtY7cOCAcE3XgIAALF++XKP302ImJib4+uuv0a1bN9mxPXv24OLFixq3VR68vb2xc+dONG7cuFLj0MTx48cxfvx4SJJUotzKygpbt26Fu7u7Yt3c3FzhJkKjR49Gi+Ge+mUAACAASURBVBYttI4lODgYzs7OsvKq/t6nVqsV16n9+uuv0aNHD63aK35NiIjW1tXUZ599Bi8vL63qvPfee8LX5p07d3SOg4iMBxOARGR0tN3992lKCcCYmBhcuXJF57ieZmJiovNOcX379pWV6bqDr0qlwtdff10hcRQWFgq/BPv4+GDOnDk6xVCvXj0sXbpUVn7lyhUcOHBAWCc7O1uYrHj55Zd1igGAMGml69+kMtSuXRv//e9/ta5nbW0tTBqWdu3JycnYtWuXrLxv377o16+f1jE0atSoyi5wPnPmTAQHB2v8GDhwILp06YKmTZvCzc0N48ePR1xcnGL7NjY2WLNmTZlxiBIsffr00TlxKtoQQ9/ne/v27bFkyRKt6yklj7T9QaGYh4cHLC0tZeWZmZk6tQf8+zzQNGFXrGvXrsLywMBAdOrUSau2/P39heWlXZNoMyULCwv8+OOPMDU11ap/ADA1NcXatWtldSVJQkhIiNbtGYqJiQk2btyo9d+nMiQnJ2PQoEGyhLdKpcKPP/4o/FHuSVeuXBHuCKvre5+ZmRmaN28uK6/q730HDhzAP//8Iyvv0KGDzht3vP766/Dx8ZGVx8fH4+TJk1q316ZNG51iadCggTBpWNX/JkRUMbgLMBEZlStXruDw4cOy8vbt26Nly5YateHt7Q1PT0/ZboySJCE0NBTz5883SKwBAQFl7tqppFGjRgaJAQC6d+8u/ABfHnHs379fuHve+++/DxMT3X+TGj16ND788ENZUm/Hjh3CL755eXkYNmyYrFzpC7cmatSooXPdqmDcuHHCpIcmtH0e/PTTT8Ivoe+//75O/QPArFmz8MUXXwjbrUx//fVXubWtUqmwbt06tG7dusxzO3bsKPs76ZPwLo/n+5w5c7QaVVbMyclJ9nq2s7MTjkzShEqlgqWlJR49eqRTfRHRiMmy1KtXz2Bt1a9fX1j+9CiyYllZWQgPD5eVjx07Fg0bNtS6/2JNmzbFsGHDZLubbt++HYsXL9a5XX0EBQVpNeq4suTk5CAoKEj449XcuXPx2muvldmGiYmJ8L1PNKtAU9XxvW/r1q3Ccn0+i5iamuK9994T/oi8detWrf+PX3/9dZ3uhwDQuHFjJCQk6FSXiIwbE4BEZFRCQ0OFX2g0Hf1XLDg4GB9++KGwfUMlAEUfwjVla2trkBgqOo6dO3fKyuzt7TFw4ECdYwAAS0tLDB06VDaSMSoqSni+k5MTNm3apFefTxNNQaxOKvJ58Pfff8vKmjRpgueff17nGFxcXNC9e3fs3btX5zaqE1tbW6xfv17jJJ6uo3yV5OXlGbQ9BwcHnUfs9evXT6eRo0okSTLo9TVp0gQNGjTQup6NjY2w/MUXX9S6LW1fo5GRkcJ72qhRo7Tu+2mvvfaaLAEYFxeH9PR0ODg46N2+tsaOHVvhfWpLkiSMHTsWJ06ckB0LCgrCRx99pFE7LVu25HsfxEsiuLi4IDAwUK92+/fvDzs7Ozx8+LDM/kqjUqkwdOhQneMw5GdEIjIunAJMREZFNP3XzMxM6xETStOAExISEB8fr1NsT+vYsaNB2tFXRcYRHR0tKwsMDNRqvS8lojV7EhMTS10H0FDy8/OFI0+rC2tra41GkSnRZpSCWq3GsWPHZOWDBg3SebRDsQEDBuhVv7ro3r07jhw5otcIPn2J1obTx/PPP6/TtNLyEBMTI1xHVld169Y1WFsqlarUNd4MRfTjibOzs9ZTj0X8/f1hZlZyDIIkSTh79qzebWtLpVKVutZiVbFw4UJs3rxZVt66dWuEhIToNYJeH2lpaaUuUVAVPXr0CKdOnZKVDxw4EObm5nq1bWVlJVyPNTY2VnG0rUiTJk3g4uKiVyxERCJMABKR0Th16pRs2i4A9O7dG66urlq11apVK8WEyNMjF3RhYWFRJaYcmZqa6pX40UZ+fr7w7yPaPEMXogXMs7KycPXqVYO0ryQ5ORmjRo3C9evXy7Wf8uTl5SX7Ql5ezp07JxsdAeg3Ba2YoZ5LVZGDgwOGDBmCiIgIREREVNr9Izs7G5988gk2btxo0Haryg8iJ0+exOjRow3apiFHtVlbW+udpNCEKKnj7e1tkCStnZ0d3NzcZOWVkQBs0qSJzlPFK8rGjRuxaNEiWbmzszPCw8MrbbRXUlIShgwZgpycnErpX1dxcXHC6f3t2rUzSPuidtLS0pCUlKRxG8b8XkZElYtTgInIaOi7+cfTgoODcebMGVl5aGgolixZotdoJQcHh0r7xf5J9vb2FTbq5tatW8JRNbVr10ZaWpre7SslsM6ePQsPDw+92weAoqIiXL9+HWfPnkVcXByOHj2KXbt2Vbl157Tl5ORUYX0pfck3xBeeikpma2PixIk6/f9aWFjAxcUFbm5uaNSoEXx9fSssSfuku3fvIjExEfHx8Th16hS2bt0q3MVbX7Vr1zZ4m2XJy8vDhQsXkJCQgLi4OERHR+PYsWNajdTRhL4jW8urrdKINryqX7++Qe7VwL87SScnJ5coq4w1y+rUqVPhfWojNjYW48aNkz0nzc3N8fvvv1fYrsUFBQW4evUq4uPjER8fj0OHDiEiIsLgr5WKcPPmTWF527ZtDdK+0nvZtWvXNF5vuSLfk4no2cIEIBEZhaKiIoSGhgqPrV69GmvXrtW6zdTUVGH51atXcfjwYXTp0kXrNos5OjrqXNeQKjKOBw8eCMsnTJiACRMmlFu/T3/J1ER2djZOnTqFCxcu4OLFi0hKSsLFixdx6dIlg24MUFVU5PNAKYGgtOGBNhwdHWFtbY3s7Gy92zKUWbNmabwBUWUpLCzEmTNncP78eVy8ePHxIykpqVySfSLlufZbcnIy4uPjZdd2/fr1apnAqAii12lISEi57tary71aX5Wx5qCmbt26haCgIOEaeytXrlTc2Vkf6enpOHny5OP3vOLHlStXUFBQYPD+KkN6erqw3BDvQQAU1/vUJnleVT4jEpHxYQKQiIxCZGSkcGc8ADh48KDB+wsNDdUrAVgRU7g0UZFxKCUAy1tmZqZG5yUkJCAkJASRkZE4efJktR/Vp42KfB6IvgSpVCqDTWOzs7OrUgnAqurOnTsICQnBvn37cPjwYWRlZVVqPPb29gZrq6ioCDt37sSWLVtw4MABXL582WBtPwvUarVikqQ8aXqvNiQ7O7sK71MTubm5ijv+Tp8+HZMnTzZYXzExMQgNDUVUVBQSEhIqZN3cyqSUiDPUPUipHW1eU1XlMyIRGR8mAInIKChN/y0vmzZtwooVKyplSl51ZaipY9oq60vln3/+iY8//hhHjx7VuQ8HBwfUrFlTMQlN/0f0PLCxsTHYlHg7Ozvcvn3bIG0Zo4SEBCxYsADbtm3TeUSPhYUFGjZsqNWaVmUxxBfenJwcrFixAqtWrdLrtdi8eXOjGvGkrYcPH6KoqKjC+62MBKAhNqAytOIdf2NjY2XHAgICsHz5cr37UKvVCAkJwWeffabX2otubm4oLCxUnDFRFYlGNZuYmCjuuq0tpQRgZX0GIiJ6Er+5ElG1l5eXh7CwsArtMyUlBXv37hXu9kZilbXmodKXyry8PEyYMAEbNmzQuk1nZ2e0bdsWvr6+8Pf3R8+ePTFlyhSsW7dO33CNnmjKpSGnVRv76BV9LF++HO+++67Wo1utra3h4+ODtm3bolOnTujfvz/Cw8MxduzY8glUB+fOncPgwYNx4cIFreqpVCp4eHjA19cX7dq1Q58+feDj4wN7e/tnNgFYWffqyh6FWlUsWrQImzZtkpU3a9YMGzdu1PuHxwcPHmD48OHYt2+f1nXd3d0fv/f17NkTXbt2Re/evREREaFXTBXJ0tJSVqZWq1FQUGCQhLBS8rwqrPtMRMQEIBFVe9u2bauwdaqeFBoaygSgFmrVqiUs//7778t1IXPRuj6SJCE4OBjbtm0rta6VlRX8/Pzg6ekJLy8veHp6wtvbW+tdpen/iJ4H+fn5yMvLQ40aNfRuvzLuBdXBF198gXfeeafUc0xMTNCmTRu0bt26xHO+UaNGVfrL67Vr19CjRw/cuXOn1PNq166Ndu3awcvL6/G1tWrVCtbW1hUUafVga2sLMzMzWaJ4ypQpGDJkSLn1a2VlVW5tVxebN2/GwoULZeX29vYIDw9XfB/VVF5eHl566SUcP3681PPs7Oxk731eXl56918VKK37mJGRARcXF73bV5rqy3X9iKgqYAKQiKo9pem/b7zxBsaNG2eQ9kVTbrZu3YqcnBzUrFlT7z6eBUoffps3b14ui5mX5ocfflBM/llaWuLVV1/FsGHD0L17d34pNTClL5Dp6el67wQrSRITgAJnz57FvHnzFI8HBARg9OjReOmllwzyBbiiTZ48WTH5V6dOHUyePBkDBgyAr69vhe2iW52pVCo4ODjg/v37JcqdnJwQEBBQSVEZvxMnTmDs2LGyUdKmpqYIDQ1Fq1at9O5j8eLFisk/GxsbjB07FoMHD0a3bt2Mdh06pc8iaWlpBrn/KU31ZQKQiKoCJgCJqFp78OABdu3aJTz2xhtvGOQDs729vTABmJmZie3btyM4OFjvPp4FSomfu3fvVmgcarUaS5YsER7z8/PDhg0b0LRp0wqN6Vmi9DxITEzUOwF47do1o9ylWV+ffvqpcDqrq6srQkJC0Lt370qIyjCOHTuGPXv2CI9Nnz4dy5YtYxJfB05OTrIEYEXfq58lxTv+5uTkyI59+umnBplt8PDhQ3z99dfCY4GBgVi/fr3e9+DqQOk96OzZs2jevLne7ScmJmrVLxFRRaq68zmIiDSwefNm5Ofny8rbtm1rkOQfADRt2hTt27cXHgsNDTVIH8+CevXqCafenDx5skLjiI2NxfXr12XlLVu2xP79+5n8K2eenp7C8ri4OL3bNkQbxqagoAB//vmnrLxGjRrYt29ftU7+AcCWLVuE5W+++Sa++eYbJv905O3tLSur6Hv1syI3NxeDBg1CcnKy7NjYsWMxa9Ysg/Sze/du4TqLL7zwArZt2/ZMJP8AwMfHR1h+6tQpg7R/4sQJYbnSex8RUUViApCIqjWl6b+vvvqqQfsZPny4sHzXrl3c2U1DJiYm6Nixo6z80KFDFRqH0vSnjz/+GLa2tjq3Wxm7ZlZHrVq1gpOTk6w8KipK77Yr+rlUHSQlJQmnRU+aNAmtW7fWud2qstmK6PVsY2ODjz/+WK92n/XXc+fOnWVl8fHxlbJTrzGTJAnjx48XPo87d+6MNWvWGKwvpfe+L7/8Uq/pvtXtteLu7o769evLyv/++2+DtC9qp0mTJnBzczNI+0RE+mACkIiqrWvXruHgwYOychMTE7zyyisG7Ss4OFi4dtSjR48UR6CQXKdOnWRlMTExuHbtmt5tjxs3DiqVqsSjW7dusvNEfZmYmOg9xUo0qpDkVCqVMLnw119/KS6erglJkrBx40Z9QjNKV69eFZb369dPr3aryvNd9Hr29/eHjY2Nzm0+ePAA2dnZ+oRV7Ynu1YWFhfj999/1bnvDhg2ye7WFhQUePnyod9vVzeLFi/Hbb7/JyuvXr4+wsDDhjrW6Er1WijfG0UdVuRdo4/nnn5eVHTp0SPF+qamzZ88KRwCKXk9ERJWBCUAiqrZCQ0Nli2UDQNeuXYW/7uqjQYMGwqRFcRykmZ49e8rKioqK9B7lkJKSgk2bNsnKRQvWi77YOzg46LUDbUpKCmJiYnSu/6wRTTt99OgRfv75Z53b3LdvX7X8IlrelBJZ+k73Cw8P16u+oYiuz1iurTK1a9dOuGnB6tWr9W571apVsrIOHTrAzs5O77ark99//x0ffvihrNza2hrh4eEGHzEmeq3o20d8fDyuXLmiVxuVoUePHrIySZLw3Xff6dWu0uuje/fuerVLRGQoTAASUbVVUdN/iylNA46MjMStW7fKpU9j07lzZzRp0kRW/vXXXyMpKUnndj/88EPh4ukvvfSSrEw0zffhw4d6TWNavHgxN5/QwqhRo4QjtBYtWqTTlHq1Wo25c+caIjSjo5RU0WfpgrCwMIOtl6Uv0fXpM5I0JycHn3zyiT4hGQULCwvhBlexsbFYv369zu3+8ccfOHz4sKxcdK82ZidPnsSYMWNkP2KqVCqsX78ebdu2NXifovc+fV4rAPD+++/rVb+yDB06FBYWFrLyFStW4PLlyzq1GR8fj++//15WbmVlhSFDhujUJhGRoTEBSETVUlxcHBISEmTl5ubmGDZsWLn0OWzYMJiamsrK1Wq1cAoPyalUKrz99tuy8pycHIwZM0aYxCvLzp07hSMI/fz8hNN8RCMeCgsLdV4/bsuWLcIRLaTM3t4eI0eOlJWnpqZi6tSpWq8v9/nnn3ODAgVKI3x0XXPx4sWLmDJlij4hGZSrq6us7ODBgzol9NVqNaZMmaLXjxHG5K233oKJifyrwn/+8x9cvHhR6/aSk5MxdepUWbmlpSUmTpyoU4zV0e3btxV3/P3ggw8wdOjQculXdC+4du2aziP4li9fLtxgqDpwcXER/licl5eHMWPGIDc3V6v2MjIyMGbMGBQWFsqOjR07Fvb29jrHSkRkSEwAElG1pDT6LzAwULjBgCHUrl0b/v7+wmOcBqy5iRMnokGDBrLymJgY9O3bV7hhgZKIiAi88sorwoSR0s6JoqQg8O8oQm0TT2vXrsWrr76qWE+0QzX9a8aMGcKF5zdu3IgZM2ZonMBZv349R/+VwtPTUzjyZ+XKlbh3755WbR07dgw9evRASkqK8HhBQYFOMepDtLHQ3bt3tU7KZ2dnY8yYMQgJCVE8pzKurzJ5enoK19NNS0uDv78/zpw5o3FbycnJCAwMxN27d2XHRo4cqfO07eq2KUnxjr83b96UHRs6dCgWLFhQbn0rvfdp26darcbHH39c6u7E+r73VcTfdd68ecJRgAcPHkRwcLDG64CmpaVh4MCBOH36tOxYzZo1+f5ERFWKWWUHQESkLbVarZhwK6/pv8WGDx+OiIgIWXlsbCwuXryI5s2bl2v/xsDKygorV65EUFCQbPpTVFQUWrVqhWXLlmH48OGKOxOmpqZi2bJl+PLLL4W/uAcEBAinrwH/fglydXWVJT/+/vtvjB49Gt9++22ZuwGfPn0aH3zwAbZt21bqefHx8ZAkSbiBzLOuRYsW+M9//oNPP/1Uduybb75BbGws1qxZAx8fH2H9e/fuYe7cuVi3bt3jMnNzc1hZWck2ExB9yXtWWFhYIDAwULZ5w/379xEYGIgtW7bAw8Oj1DZu376NL774Al999ZXw9Vbs7t27uH37NurUqWOQ2DXRv39/fPHFF7Lyd955BzY2Nhg/fnyp9YuKihAWFob58+fj0qVLpZ4bFxdXbiPMq6rPP/8cf/31Fx48eFCi/M6dO/Dz88M777yDd955Bw4ODsL6+fn5+OWXXzBnzhzcv39fdtzFxQVLlizROb7r16/j4cOH1Wb9wG+++QbHjh2TlZuYmKB27dqYN2+ewfoKDAwssfbcSy+9BHNzc1kiOyQkBK6urvj444/LvFdGR0fjv//9r3ADtifFxcXpHjgq5u/aokULzJo1Szjlf/v27fDx8cGqVavQu3dv4UjYoqIihIeH480331RcBuaDDz4Q/uBJRFRZmAAkomonKipK+Ou5tbU1goKCyrXvIUOGYPr06cKRIKGhoeX6670xGTBgAGbMmIHly5fLjt2+fRujRo3C22+/jX79+qF58+aoV68e1Go1bt26hePHj2PPnj3Iy8sTtl2rVi2sW7dOMelmamqK2bNnY/bs2bJjv/76K/bv348xY8bgxRdfhIeHB6ysrJCeno7bt2/jyJEj2Lt3r/DLj4uLi2xkVGJiImbOnImFCxdyCpDAwoULsX//fsTGxsqOxcTEoE2bNvD19UWvXr1Qr1492NjY4Nq1azhx4gT++usv2evw66+/xurVq2Ujk/TZ4MUYvPvuu9iyZYss4X769Gl4e3tj+PDh6Nu3L7y8vGBra4usrCzcv38fp06dwt9//41du3bJ1rgUPd8lScLIkSPxww8/lJlUNBR/f3906tRJtglPQUEBJkyYgDVr1mDEiBHw8/NDnTp1YGpqijt37uD69euIiorCjh07ZFMgTU1NYW9vL0t6rVixAm3btkVQUBDMzJ6Nj9B16tTBTz/9hKCgINlI50ePHmHJkiX47LPP0KNHD3To0AG1a9eGtbU1UlNTcerUKezZs0c46g/4d0mI77//XuONKETJqezsbIwcORLz5s1D/fr1kZ+fj5SUFDRp0gTOzs7aX3A5UxpVplarsXLlSoP2ZWdnVyIB6OjoiNdff13YzxdffIE//vgDY8aMQdeuXdGgQQNYWlriwYMHuHHjBg4fPoy//vpLuPan6F6we/dufPrpp3jrrbdgZWVVapyiv2tOTg5GjhyJuXPnokGDBo//rh4eHnBxcdH0v6BMCxcuRGRkpHATr8uXL6NPnz5o0KABBgwYAA8PDzg5OSElJQX//PMPwsPDcfv2bcW2e/XqJfycQURUFf0JQFJ6mJubS0RElWXChAnCe9Nrr71WIf336dNH2H+LFi2E5y9cuFB2rre3t14xbNy4Udams7NzqXU++ugjWZ2WLVvqFcfvv/8ua9PR0VGjuoWFhdKrr76q+F6jy8PR0VE6fvx4mX3n5uZKXl5eBulTpVJJ77//vrR9+/YyYxs3bpwslq1btwrPLywsLPUaRPVsbW3LvPagoCBZvTFjxpRZrzRz5syRtRkYGKhR3eTkZKlx48Z6/x3efPNNSZIkydPTU3ZsyZIlel2fJgICAoRxnTt3rtz71sTEiRMN9jrr16+flJycLJmYmCieY2trKzVr1kwWR0ZGhvD8vXv36nxtR48elSwtLQ1ybU5OTtLevXtL/f8yNzeX7OzspPDwcFksY8aMkZ0fFBSk03WtW7dOp9e4yLVr14TXosn9UpIk6fvvv5dUKpXBnkMqlUpavXq1VtewadMmjds/cOCArP6AAQNk54nuydo4dOiQsP/c3Fzh+R988IHB/g/Leojue/fu3ZPc3d0N0r65ubm0atUqac2aNYrnmJiYSI6OjtKCBQsU/w83b96scZ9RUVGy+pGRkcJzi4qKNPob3rt3T/i+oc+jQ4cOUkZGhkb9+/r6yuq/9957GtVV8tprr8nanDhxol5tElHVFBUVpcl9aQb+P64BSETVSl5eHrZs2SI8Vt7Tf4sp7QZ84cIFnDhxokJiMAampqYICQnB7NmzDTJF1sPDA/v27UP79u3LPLdGjRrYtWsX6tWrp1efdnZ2CAsLw6JFi+Dv71/qSIe0tDTZCCwC3N3dER0djdatW+vcxmuvvYYvv/wSAIQjQ5/1EYAAsGrVKgQEBOjVhomJCd5//338+eefcHd3R9euXRXPzczMrLA1MDt06ICffvpJuEmTNtq2bYvjx48jICAAvXv3VjyvoKBANs3c2E2aNAmbN28W7t6tLWtra6xdu1a4IUhpevbsCWtra737f5a5uLhg586deo9Ir1OnDiIiIjBt2jT06tVL8T1crVaXueN4z549DfK80pWLiwuio6Px4osvGqS9QYMGYf/+/dVmWjoRPVuYACSiamXHjh1IT0+XlTs5OSEwMLBCYhg0aBAsLS2Fx7gZiHZMTU2xbNky7Nu3D61atdKpDXNzc7z55puIj4+Hr6+vxvXq16+P48ePl/pFX4mJiQleeeUVJCYmYtCgQQAAGxsbzJgxo4yaJFKvXj0cOXIE06ZN0yqJY25ujo8++gi//PLL4ymZop01NZ1iaMwsLCywY8cOzJo1S6eEu5+fHw4fPoxFixY9Xg/rv//9b5VZ33L48OHYt2+fTkl9V1dXrF69GseOHUPjxo0BAIMHD4a3t7ehw6zWhgwZgjNnzqB///46txEQEID4+HiMHTtW67q1atUSrhlK2mnTpg2OHz+u0Y9lT7OyssK8efNw/vz5xz8AeHh44LXXXtM5HkdHRyxbtkzn+obg5OSEffv2Yfny5XB0dNSpjdq1a2Pt2rUICwur1IQmEVFplD61/QlggFIlc3Nz7mxIRJUiNzdXOMLHzMyszI0bDOnhw4fCXUpFceTl5SE3N7dEmampqV6/Dufn58vWElKpVIoLsVelOJSo1WqEhYVh/fr12L9/v+Iaf8VatGiB4OBgTJkyBe7u7lr3V0ySJOzevRvLly/H33//XepOn05OThg2bBimTZsmHLFWWFiIN998E99//71wZ+CxY8eW2LQC+Hc0UVZWluzcsr6EiOpp8n+flZUlu0YLCwu9RtaIXpfm5uY6fQlKSEjAl19+ic2bNwv/X4B/R/QNGjQI7733Hry8vB6Xq9VqWFlZyT6jREVF4YUXXtA6Fm2I/l+Bf0eJ6jsyzdDOnDmDFStWYPPmzaXutlmjRg0EBgZi8uTJ6NOnjzDZ9+OPP2LGjBnCtc0aNmyIq1evliiTJEn4I46NjY3ipj/ayMrKwrp167B69WqcP3++1HM9PT0xatQoTJs2TXgfvHr1KoYNGyZcoxIAwsPDMXDgwBJl2dnZsuefrq8FQ99fRTus6/r8PHbsGH744Qf88ccfSE1NLfVcNzc39O3bF9OnT9fqRxolxZuKKG28AAAHDhyQjVAtj3tfYWGh8DXk4OAgfL0ofYYpD1ZWVqWOfi4sLERYWBi++uorHD16tNSd193d3fHqq6/i7bffRv369WXHi3fRVpqhsWDBAnz44Yelxvvrr79izpw5SE5OVjxHdC9X+hvomsjLyMjA2rVr8euvv+LUqVPC9/Jipqam6NixI0aOHInRo0ejZs2aWvcn+jxZo0aNMtdOLI3oPmRpaalTfERUtUVHR8Pf37+s02YCWAEwAUhERFVQXl4eTpw4gQsXLiAlJQVpaWmws7ODk5MT6tatiw4dOsDV1dXg/WZnZ+PYsWNISkrC/fv3kZeXB1dXP9pteQAAIABJREFUV7i7u8PDwwM+Pj7C3QCfduXKFezfvx83b96ESqVC7dq10bZtW7Rt29YgSY5nQX5+Po4cOYKEhASkpKSgsLAQtWrVQqtWrdC5c2dhwubmzZvCL6eXL19+PLKL/k9RURFOnz6N+Ph4pKamIi0tDS4uLnB1dUXDhg3h6+ur0ZfQ9PR07N69G0lJSXj06BGcnZ3h7e0NPz+/Sp0Gd/v2bRw+fBi3bt1CamoqTE1NUbduXbi6uqJNmzbC58rTJEnC4cOHcfz4caSkpMDGxgaNGjWCn58fmjZtWgFXUbWp1WqcPXsWiYmJuH79OjIyMmBubg4nJye4uLigbdu2aN68ucH7LSwsxOHDh3H69Gncv38fJiYmsLW1Rf369dG0aVN4eXkpjtQnuYyMDBw+fBhXr15FamoqCgsL4ebmBnd3dzRr1gyenp4atXP27FlER0fj9u3bMDc3h7u7O/z8/ODl5aVRormoqAiHDh3C6dOnHyeW7ezsKu3vmpqaihMnTuDSpUtIS0tDZmYmbG1t4eTkhKZNm8LPz48bfBFRpWICkIiIiJ5J+/fvl61zZ2FhgczMTOFOk0RERERE1ZW2CUCzco+IiIiI6AlpaWmyheFNTU3RsGFDvdqNiIiQlXXo0IHJPyIiIiJ65jEBSERERBUqLCwMEydOLFFmamqKO3fuwNnZWac2JUnCtm3bZOWG2tmRiIiIiKg64y7AREREVKHatGkjKysqKkJ4eLjObe7cuRNnzpyRlXfv3l3nNomIiIiIjAUTgERERFShfHx84ObmJitfsGCBcKfSsqSnp2P27Nmy8vr162uyLgoRERERkdFjApCIiIgqlIWFBcaPHy8rT05OxsCBA5Genq5xW6mpqRg0aBDOnTsnO/bWW29ptPMkEREREZGxYwKQiIiIKtyMGTPg4uIiK4+Ojoa3tzd++OEHPHz4ULF+SkoK1qxZg1atWiEqKkp2vHHjxnjjjTcMGjMRERERUXXFTUCIiIiowrm6umLNmjUYOnQoJEkqcSw5ORmTJ0/GW2+9heeeew5NmzaFg4MDCgsLcffuXdy8eRMnT55EUVGRsG1LS0uEhobCysqqIi6FiIiIiKjKYwKQiIiIKsXLL7+MH3/8EZMnTxYm8/Ly8nDkyBEcOXJE4zYtLS2xadMmPP/884YMlYiIiIioWuMUYCIiIqo048ePx86dO+Hh4aF3W82bN8fBgwcxcOBAA0RGRERERGQ8mAAkIiKiStW7d28kJCTg888/R6tWrbSu7+3tjVWrViEhIQHt27cvhwiJiIiIiKo3TgEmIiKiSmdlZYVZs2Zh1qxZOHnyJGJiYhAbG4urV68iPT398YYg9vb2cHZ2RuPGjfHcc8/hxRdf1ClpSERERET0LGECkIiIiKoUX19f+Pr6VnYYRERERERGg1OAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiDEBSEREREREREREZMSYACQiIiIiIiIiIjJiTAASEREREREREREZMSYAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiDEBSEREREREREREZMSYACQiIiIiIiIiIjJiTAASEREREREREREZMSYAiYiIiIiIiIiIjBgTgEREREREREREREaMCUAiIiIiIiIiIiIjxgQgERERERERERGREWMCkIiIiIiIiIiIyIgxAUhERERERERERGTEmAAkIiIiIiIiIiIyYkwAEhERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERsys9EPmwiOSZIZ9+w6VT0RERERERERERESk6MyZRABWZZxl0RxwCgAAlcIZfwL2AwBngwZHREREREREREREFYtTgImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRErZRdgBfbWgJNdOYRCREREREREREREOrt8W1isfQLQswEQ2F7fcIiIiIiIiIiIiMiQFv0CqCVZMacAExERERERERERGTEmAImIiIiIiIiIiIwYE4BERERERERERERGjAlAIiIiIiIiIiIiI8YEIBERERERERERkRFjApCIiIiIiIiIiMiIMQFIRERERERERERkxJgAJCIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGBCAREREREREREZERYwKQiIiIiIiIiIjIiJlVdgBERETPkrq2tqhtY1PZYQAArqSn40FubmWHQURERERE5YwJQCIiogo0zc8P87t1q+wwAAAjwsKw4cyZyg6DiIiIiIjKGacAExERERERERERGTEmAImIiIiIiIiIiIwYpwATERERkUFZmJrC2txcVp5TUIBHRUWVEBERERHRs40JQCIiIiIyqIEtWmDzsGGy8inbt+O7EycqISIiIiKiZxsTgERERFVAWl4eXt+2rUL7PJqcXKH9ERERERFR5WACkIiIqArILSjA5sTEyg6DiIiIiIiMEDcBISIiIiIiIiIiMmJMABIRERERERERERkxJgCJiIiIiIiIiIiMGBOARERERERERERERowJQCIiIiIiIiIiIiPGXYCJiIio2jM3MUEjBwc0sLdHLSsrAEBuYSEe5OYiKTUVKTk5FR6TS82aaO7kBOeaNWFhaorsggI8yM3F3awsXElPr/B4jJmJSoX6dnZo5OAAp5o1YapSIb+oCGl5ebiSloabDx9CquwgiYiIiCoRE4BERET0WO8mTWBvaSkrv5udjehr1/Rq28rMDP2bNxceO37rFq5qmRRzrlkTI1q3xsAWLdCpfn1YmSl/rLmVmYn9V65g09mz2JWUhCKpfNJBXerXx+g2bdC7SRM0cnBQPO9edjYO3biB8PPn8VtCAh4VFWndVxs3NzR3cpKV7/nnH2Q8eqR1e0/ydHGBl4uLrDzy6lVZMtW5Zk10b9SoRFnHevWE7frWqYNhnp6y8iM3b+LGw4daxVjT3BxDPT0xpFUrvNCwIRxq1FA8Ny0vD1FXr+KP8+fxe2IicgoKtOqLiIiIqLpTKZT/CdgPAJzlRzq1AgLbl2tQRERExmpJjx6Y362brPxWZibqfvllJURU0kgfH4QMHiwrL1Cr0enHH3Hi9m2d2/4yMBAzO3aUlV968ABtv/sOWfn5GrXjam2N9154AZN8fVGjlKSfkqvp6VgQGYmQuDiDjQrr3qgRlgYEoEPdulrXvZudjeUxMfgiJgaFarXG9ZT+P32+/RZn7t3TOo4nfeDvj4Uvvigr91+/XpYI7tqgAQ6MG6dXf6/8/js2nj2r0blWZmb4T6dO+E+nTo9He2ojLS8Pnx48iK+OHkVeYaHW9YmIiIiqtEW/AGr5p1yuAUhERESP/RIfj82JibJycxMT/DR4MCxNTXVq94WGDfH288/LygvUaowMC9M4+TfM0xNnp03Dmx066JT8A4BGDg74adAg7BwxAi41a+rURrEaZmb4tl8/7B89WqfkHwC4WVtjaUAAoseNQ+NSRg3SvyML46ZOxUc9euiU/AMAxxo1sDQgAMcmTUIrZ8GP3URERERGiAlAIiIiKmHK9u24lZkpK/dyccGi7t21bs/GwgLrgoJgopJPPFgUFYWjyckatbO4e3dsHDoUznom7Yq91LQpDo4fj4b29jrVr2VlhX2jR2NK+/ZQCa5NW53q1cOhCROYBFQwonVrRI4di2a1ahmkvdaurjg0YYLidGUiIiIiY8IEIBEREZXwIDcX48PDIQnWyZvVuTM616+vVXuf9eoFD0dHWfmB69fxyYEDGrXxcc+eeO+FF8pMtBVJEm5nZeHGw4fI12BdveZOTtg1cmSp68eJWJubY/trr6GLBv8Xmfn5uJyWhpScHKjLWHuwjo0Ndo8aBScdR7cZq9dat8bPGo5AvZedjavp6cjVYHqvY40a2DlihHAtRSIiIiJjwk1AiIiISGb3P/9g1fHjmN6hQ4lyU5UK6wcNwnNr1mi0kULvJk3wert2svL0vDyMCgvTaDOOMW3aYF7XrorHb2dl4bvYWGy7eBGnbt8usa5fs1q1ENSyJca3bas43bOVszN+GDAAwzZvLjOWYmv690enUkaO7UxKws9xcfjr0qUSG3LYW1rCv1EjTG7XDn2bNhUmNJvVqoWPe/bE69u3axxPZUq4dw+9QkJKlHVr0AAf+PvLzl1x5Ah2JCXJys/cvavY/vN16yqOIAWArPx8/HjyJMIvXMCh69dR8MQ6irVtbDCgeXOMbtMGXRs0ENZ3rFEDW4KD0e777zVKGhMRERFVR0wAEhERkdCcffsQ4OGBlk8lzprVqoWlAQF4a9euUuvbW1rix4EDhUmuaTt24FpGRpkxNHF0xOp+/YTH1JKEJQcO4NODB5GtkIxMevAAnx8+jBVHjmBq+/b4tFcv4W7BQz09EdSiBcIvXCgzple8vTHSx0d47E5WFiZt24btFy8Kj2c8eoQ/L1zAnxcuILBJE4S8/LJwHcIJvr74NjYWp+/cKTOeypael4d9ly+XKFMaUXn+/n3ZuaWxNjfHb0OHwkJh5F9IfDxm79mDu9nZwuN3srLww8mT+OHkSbzcqhVW9e2L2jY2svO8XV3xbpcu+Cg6WuPYiIiIiKoTTgEmIiIioZyCAoz6448SI6qKTffzQ/dGjUqt/1WfPqhvZycr/yU+HqEJCRrF8HWfPqhpbi4rzyssxNBNm/DB338rJv+eVKhW45tjx9Dr55/xIDdXeM6Snj0VR5kVszY3xxe9ewuP3c3ORpe1axWTf0/b/c8/6PXzzyVGCBYzVakwQ7DD77PmvRdeQCOFNRHn7tuH0X/8oZj8e1rYuXPo/L//4WJqqvD47M6dOfWaiIiIjBZHABIREVUBtW1s8GDOnArrb1RYmHAq5tNib93C4qgo2eYfKpUKa4OC0GbNGjwUJLAGtmiBMW3ayMqvpKfjjZ07NYqxc/366NusmfDYtB078Mf58xq186RDN24gePNm7Bk1Spbs83JxQb9mzbCtlATe5Hbt4G5rKysvUKvRf8MGXE5L0yqeuLt3MXvPHnw/YIDs2KCWLWFpaopHz+i0VFdra7wl2Dka+Hcq8aeHDmnd5pX0dLz0yy84+frrslGKdpaWeL19e3ys4bqURERERNUJRwASERFVASYqFRxr1Kiwh9KUSpFPDh5EzM2bsvJGDg7C0XBOVlb4rn9/WXmhWo1RYWHChOH/Y+8+w6Oq1r+P/9JJSEJCB5EWepWudOnSQUERURBBFFAR5Kjo8aioCHKOHitwBEUUQSSASC+iVOkgvfceEhJISJvnBX98CHtNMi0Ehu/nuvIi9957rXsmkyn3rGIyrH59Y3zqX39p0pYtDrVhsvTQIY1ds8Z4rG/Nmnav881kVN7nf/6pDSdPupTP15s3G0el5QkKUovSpV1q0xs8X6eOcfTnltOn9crixS63eyg2VoPsFKH71qgh9/dzBgAAuP1QAAQAAJlKTU/Xk9HRSkhOthzrW6OGHipTJkPs83btjOusvf/HH1p17JhDfRYICVH7cuUs8ZT0dL25bJmDmdv34cqVxtvTOipKuQ1FJ0lqWrKkiufJY4lfunpV76xY4XIu6Tabvt261XjsvsKFXW73Tubr42McQSpJ/1y+XKmGaenOmPrXX9p57pwlXjoy8q69zwEAgHejAAgAALK0PyZGQxctssR9fHz0v44dFfl/0ym7V66sRytXtpy35vhxvevEBgsdypdXgK/1bcrs3bt1wMlptiYXEhP13bZtlnguf381tbO2YZcKFYzx6N27dTEpya187G2MUbFAAbfavVPVLFLEuPbf3gsXMp2i7ah0m03/XbfOeKzNTQVtAAAAb8AagAAAwCHjN25Uh3LlLCPzioaF6dO2bTVs0SLjjr3xycl6YuZMp0ZttY6KMsZdWffPngX79+u52rUt8VpFixrXR2xpJ6dpDm5okpmtp08b17Q7HBvrdtt3olv19zepWaSIx/oAAAC4XVAABADgNnAlJUVTDCPSssshFwtLz8yZo+3PP68CISEZ4j2rVlXNIkWMu6gOmjfP6c0x6t5zjzG+6MABp9rJzMqjR43xKgULWmIRuXKpXN68lniazabfDh92O5eraWl6dckSt9vxFvb+/os9+Pc/EhenY5cuWXaqNv39AQAA7nQUAAEAuA3EJiXp2blzczqNLJ25fFn95szRrMcesxyrmD+/JTZtxw5NtrO+nT0RuXKphGGtvZjERJ2/csWptjITk5ioxNRUBftnfDtkKgBVLVhQPj7W7SH2XrigxNRUj+WEa6rbWYdvj2GzFHecjI+3FADL5sunXP7+SuLvCgAAvAgFQAAA4JTZe/Zo4ubNerpGjUzPOxoXpwEuFDVL5MljLLbFXb2qbpUqOd1eZhJTUiwFwLJ58yrQz0/JaWl/x0zr0UnStjNnPJoPJH9fXxW7qSgnXRttWf/ee2Wz2TzWl2k3bD8fH1XIn19bTp/2WD8AAAA5jQIgAABw2ksLFqhpyZIqHRlpPJ5ms+nJ6GjFurA5xj2G4o8klYqI0PRu3Zxuz1n+vr6KyJVLZy9fzjKn0wkJ2Z7P3aZIaKj8DAVgPx8fTXvkkVuSQ/6bprgDAADc6dgFGAAAOC0+OVlPzZqlNDujsT7/80+tOHLEpbbDg4LcSc0jwgIDM/xuL6dLV6/einTuKmG34d8fAADgTkcBEAAAuCQtPd3udMwWpUsrl79rEw2CDNMyb7WbC343TxO+Lp4CoMe5+rjxpNuhCAkAAOBJFAABAIDTcgcE6NsuXeTva34rUalAAb3XrJlLbd8Omy+E3jQC7Mb1AG9kWqsQ7klMScnpFBgBCAAAvE7Of8UKAADuOJ+1bauyefNmes5L99+v2Xv26HcnpwLHJCYa48sPH9b7f/zhVFuu2nnuXIbf7eWUh5FiHmfvvj4aF6e+c+bckhz2eXi3YQAAgJxGARAAADilW6VK6n3ffVme5+vjo286d1b1L79UfHKyw+1ftLNxSEpampYcPOhwO55kL6c8uXLd4kxujZwcAWfvvg7y98+xvz8AAMCdjinAAADAYcXCw/VV+/aWeEJysvbHxFjipSIi9FGrVk71YW8EWKHQUKfa8SR7OdnbBflOlzc4OMf6Tk5LU4KhYJwvOFi+TLkGAABwCQVAAADgEF8fH33bubOxODR88WL1io427grcr2ZNPVSmjMP9HL90ybjmXvl8+XJsg5AjsbHGeM0iRTzWR/6QEJWOjLT85MSmGMXCw295nzc6ZLi//X19VblAgRzIBgAA4M7HFGAAAOCQoQ88oGalSlniiw8e1FcbNsgm6T9r1mhY/foZjvv4+Oh/HTuq6pdf2h1Jd6PktDTtOn9e1QsVyhDP5e+vOvfco5VHj7p1O1zx19mzSk1Pt2x6Uih3bhXPk0dH4+Lc7mNyly7GQmnpTz4xFsSyi6+Pj+rcc88t689ky+nTqlqwoCXeqEQJbT97NgcyAgAAuLNRAAQAAFmqUbiwRhp29Y27elV9Z8/W9XF/by5frvblyqlC/vwZzisaFqbP2rbV4z//7FB/vx85YikASlL7cuU8VgB8qEwZ9alRwxKfuHmzFuzfnyGWmJqqDSdP6v5ixSznd69cWR+tXu1WLr4+PnrA0PaVlBQdcbK46O7OxJULFFBkDq9t+PuRI+pVrZol3r5cOX2xfr1H+qhUoID+1bSpJb704EGN27jRI30AAADcLpgCDAAAMhUSEKDvH35YgYbpt0MWLNCxS5f+/j0pNVV9Zs82TgXuUaWKulWq5FCf8/ftM8b71qjhsSmxbzRurG6VKll+ziQkGM+/uSh43ZPVq7udy4MlSyrCUHTbe+GC0g33ZWZM7TjDkQ1estvC/ftlM9zu1lFRKpPF7tOOGly3rvHvf9Uw/RwAAOBORwEQAABkakzLlqp404g+SZq7d68mbdliia89flz/WbPG2NYX7dqpsAObeSw5eFBnL1+2xPOHhGhgnToOZJ25VlFRqn/vvZb42cuXtfXMGeM1P/71lzFetWBBPeJgYdOevjVrGuPLDx92uq2ybhTIwgIDb4sC4LFLl/S7YaSnr4+P3mzc2O32S0ZE2L2diw8ccLt9AACA2w0FQAAAYFe7smX1XO3alnhMYqL6//KL3ev+uXy5dp8/b4nnDwnR+A4dsuw3JT1dEzdvNh57t1kzlc+XL8s27AkLDNR/H3rIeOyH7dvtjrjbc+GCVhw5Yjz279atFRYY6FI+NQoX1qOVKxuP/bRjh93r4q9eNcY7lC/vUh6S9GHLljm6A/CNxtuZhvtk9erqUK6cy+36+vjo87ZtjSNJlx8+rBPx8S63DQAAcLuiAAgAAIwK5c6tiZ06GdeUGzRvnk7ZmSorXVsz72k7U4E7lCunPg6MMvvP2rW6nJJiiQf7++uXxx9XiTx5smzjZgG+vvqua1djATElPV3/Wbs20+vf/+MPY/ze8HBFP/aY09OTwwID9W2XLvI13MeHYmO19vhxu9fau/87lCvn0u7EXSpU0IBatZy+zhl+vo6/9Zz211/ae+GC8di3XboY12N0xHvNmqlt2bLGY6NXrXKpTQAAgNsdm4AAAHAbCA0M1D8aNLjl/W45fVoLDVMefSR93amTCubObTk2Y+dOTbUzHfZGa/5vKvDNuwJL0sdt2mjZoUOZbnBx9vJljfz9d33QvLnlWNm8efV7nz7qFR2t3+2MyrtZwdy5NblLF7WOijIe/2bLlix381104IDm7dtnLCA1L1VKv/Tood6zZjk0iqxASIh+6t7duNutJP3rt9+U2ep/G0+eNMZ9fXz0U7duajBxok5nUqS9UY8qVfRtly5ubyCSlQIhIQ6fm2azacjChfr18cctxyJz5dLiXr307Ny5mrp9e6b303UhAQEa26qVBhhGtErSuhMntNDOOo8AAAB3OgqAAADcBsKDgjSqRYtb3u+4jRuNBcDn69RRO0OR6+zly3r+118dbv+fdnYFDg8K0sROndRi8uRMizdjV69W5woVVO+eeyzHiufJoxW9e2v6jh0av3GjVhw5otT0dMt5RUJD9XSNGhpav77d3W0PxcZq2KJFDt2mgfPmadOzzxrbalG6tHYMHKjRq1bp+23bjAXO8KAgPVW9ul5r1EhF7KyHuPHUKU3Zti3TPDacPKmjcXEqbhgJWToyUpuefVYDf/1Vs/fssTutuXRkpD5s0cKyhuGyQ4dU5557XJ7WbE/jEiWcOn/evn36ZssW43p9oYGB+r5rVw2oXVsfr12rhfv3G0eMhgcF6fGqVTW8QQOViogw9nM5JUVPRUc7VEgEAAC4E1EABAAAGVQqUEBjWrUyHhswd67OXbnicFvXpwL/8fTT8rtpdFmzUqU0uF49/XfdOrvXp6Snq9v06Vr7zDMqGhZmPKd75crqXrmyLiYlaee5czqTkKC4q1eVNzhY5fPlU/l8+TId2ZaYmqonZs7UJTtr6t3scGysnpg5U7Mfe0z+himteYKC9F6zZhr54IPadf68DsfG6szly8oTFKR78+RRjcKFjddddzEpSU9GR2e5+69N0gcrV+rLdu2Mx4uEhmrmo49qf0yMFh04oF3nz+vClSvKFxKiomFhal6qlOoULWq5bw7HxuqxGTO0d/DgrO8MOy4nJxvjzUqV0ryePbVw/36dvXxZgX5+KhQaqiUHD2rTqVPGa57/9VdVKVhQtYsWNR5vVLy4GhUvrsTUVG07c0ZnEhJ0/soVReTKpVKRkapasGCm97fNZtOgefO0x850YwAAAG9AARAAAPwtyM9P33ftqmDDWnbfb9+u6N27nW4zs6nAHzRvrgX799td6026tiNs88mTtfTJJ+0WAaVr00IbGHb2zczllBR1nDpVq48dc+q6efv26cnoaH3bpYsC7BSXfHx8VKlAAVUqUMDhdpPT0vTwtGnaee6cQ+dP2LhRvapVM+5ofF2ZvHlVxsGdgU8nJKjVd985VeQ1yezv+VCZMnqoTJkMscdmzLBbAExMTVXrKVO0uFevTNc2DPb3N44UzUy6zabnf/1V3xh2swYAAPAmbAICAAD+NrJZM91XuLAlfjI+XoPnzXO5XXu7AocEBOjbzp0zHaElSbvPn1edCROcLtRlZl9MjJp/+62WHTrk0vVgDy/1AAAgAElEQVRT//pLbaZM0dnLlz2Sz7FLl9Ts22+1/PBhh69Js9nUYepUbTtzxu3+9164oMaTJmlfTIzbbR24eFHrTpxwu53rYhIT1XjSJIfWnnTU+StX9OiMGRpnZ7dhAAAAb0IBEAAASLo2PfPlBx4wHuv3yy+6mJTkctuZ7Qp8f7FiGu7ABign4+PVaNIkvTB/vltFtyspKRq9apWqf/ml20WqZYcOqfIXX2jSli3G2+aI1PR0Td66VTW++kqrXChwxiQmqtGkSZqwaZNsLuRgs9n0zZYtqve//3mk+HfdgLlzFefgtGpHXE5J0eM//6wu06a5lWeazaYp27ap8hdfaMbOnR7LDwAA4HZmb0GcOVKeDlJ+65EHKkqtzbunAQCAzAX7+yuXYXptTrmalqYr/7dxQu6AAAX6+VnOsUmKdaP4d6M8QUHyNazHl2azObwGn3Rt5GCvatXUs1o1PVCsWJYjCNNtNm0/e1bfbd2qiZs3u1XMtKds3rwaULu2Hq1SRfdkMlX5uoMXL2rOnj36eO3aTHdDdkatIkU0qG5dda9cWSEBAZmeezklRb/s2aN/r1mj9YYdhSNy5bK8UYxPTjZutGJP5QIF9EW7dllu/vHYjBmatmOHw+36+fioa8WK6lW9ulqULm2csn6zAxcvavqOHfpqw4Ysd3sGAAC4Y70zRUq3filMARAAANzRwgIDVa9YMZXLl0/FwsMVFhiodJtNMYmJiklM1L6YGK05dsyjo9GyUiF/ft1XuLDK5s2rPLlyKXdAgC4kJur8lSs6k5CgVceOZWsRKsDXV/cVLqzaRYuqYO7cyhscLD9fX8VfvaqjcXHadf681h4/rqTU1GzL4UYV8udXo+LFVToyUpHBwbqcnKz45GQdi4vT/pgYbTp1SvF2Ng7JSpCfn2oXLaqKBQqoRJ48CgsKkr+v799//yOxsVpz/LhOJyR4+FYBAADchigAAgAAAAAAAF7MTgGQNQABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBiFAABAAAAAAAAL0YBEAAAAAAAAPBi/k5fcSZW2rgvG1IBAAAAAAAA4DKbOex8AfDgqWs/AAAAAAAAAG57TAEGAAAAAAAAvBgFQAAAAAAAAMCLUQAEAAAAAAAAvBgFQAAAAAAAAMCLZbIJyFVJscYjvr6+euWVV7InIwAAAAAAAAB2HTt2TD/88EMWZwUtlUI2SJKPnTPmSOpg7/KAgAAlJye7mCIAAAAAAAAAV/3+++9q0qRJVqcNkfSxxBRgAAAAAAAAwKtRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwItRAAQAAAAAAAC8GAVAAAAAAAAAwIv553QCgLdKSkrS1q1bdfToUV28eFGxsbG6fPmy8uTJo4iICEVERKhEiRKqVq2aAgICcjpdAAAAAADgpSgAAh60a9cuTZw4Ub///rs2b96slJSULK/JlSuXatasqYYNG6pPnz6qUKGCWzmkpKSobdu2lvjIkSNVr149t9qG8x577DFduHAhQ2zQoEHq1KlTDmWUM5555hkdOXIkQ6x3797q2bNnDmUE3F0mTpyoqVOnWuK+vr6aNGmSihYtmm19t2rVSjabLUOsY8eOGjx4cLb16Um//fab3nvvvQwxf39/zZ8/P4cyurt8/vnnmjVrlt3jNWrU0OjRo29JLrNnz9Znn31m93jBggX1/fff35JcbmdPPPGEzpw5kyE2dOhQtWnTJocycszWrVs1bNgwSzw6OlqhoaE5kBEAeBYFQMADFixYoFGjRmnFihVOX5uUlKTVq1dr9erVGjNmjJo0aaIhQ4aoY8eOLuWSnp6uJUuWWOIvvfSSS+3BPX/88YdOnjyZIXa3Ff8kae3atdqxY0eGWOPGjXMoG+Duc+DAAeNrg3TtS4mZM2dmW99Lly5Venp6hlj58uWzrT9PO336tOW+CwwMzKFs7j579+61+9iVrr3OjhgxQnny5Mn2XMaPH59pLsWLF8/2HO4Eq1at0uHDhzPEevTokTPJOCEmJsb493XkC30AuBOwBiDghtjYWPXp00cPPfSQS8W/m9lsNv3222/q1KmT2rZta/n2FAAAT4uOjs7WAiCQna5evarZs2dnez8XL17MtPgHAMDtjgIg4KLdu3frvvvu0zfffJMt7c+fP181a9bUX3/9lS3tAwBw3eDBgxUXF5fTaQAumTZtWrb3MXv2bCUnJ2d7PwAAZBemAAMuOHLkiJo1a6ZTp05lel5UVJTq1KmjkiVLKiIiQkFBQYqLi1NcXJx27dqljRs36ty5c3avP3nypB588EGtXbtWUVFRnr4ZgMPKlSuntLS0DLFvv/1WDRs2zKGMAHjSyZMnNXz4cI0bNy6nUwGctnjxYsXExChv3rzZ1sdPP/2UbW0DAHArUAAEnJSamqpu3brZLf6FhoZq4MCB6tOnj0NrHG3atEkTJ07UN998o8uXL1uOnz9/Xl26dNH69esVFBTkdv6AKw4dOqTU1NQMsStXruRQNgCyw4QJE9SzZ0/W58QdJyUlRTNnztQzzzyTLe0z/RcA4A0oAAJO+uKLL7R+/XrjsRYtWmjixIm69957HW6vZs2aqlmzpoYOHar+/fsb32Bu375dY8aM0RtvvJFlez4+PipdurQlHhIS4nBOgKcVK1ZMiYmJGWKRkZE5lA0AE5vNpv79+2vLli3KlStXTqdz2wgNDbW8rgYEBORQNrBn+vTp2VYAnDVrFtN/AQB3PAqAgBNSUlI0atQo47EuXbroxx9/dHlnwFKlSmn+/Pnq0aOHZsyYYTk+duxYDR48OMtd7gIDA3XgwAGXcgCyy4IFC3I6BQAO2LNnj0aOHKmRI0fmdCq3jfbt26t9+/Y5nQZu4ufnl2FpiuXLl+vs2bMqWLCgx/syTf+9uX8AAG53bAICOOHXX381Tv299957NWnSJJeLf9f5+/vrhx9+UNWqVS3HYmNjNX36dLfaBwAgK6NHj9b27dtzOg0gUw8++GCG31NTU/Xzzz97vB/T9N/AwEDVr1/f430BAJCdKAACTpg/f74xPnz48CxH5jkqICBAn3zyifFYdHS0R/oAAECSHnnkEUssJSVF/fr1Y3QTbmvdu3e3xLLji9JZs2YpJSUlQ6xFixbZuuEIAADZgQIg4IRt27YZ4926dfNoPw8++KDKli1ria9atUo2m82jfQEA7l4fffSRChUqZImvW7dOn3/+eQ5kBDimS5culrUYf//9d7ubtLnKNP3XVHwEAOB2RwEQcILpTWV4eLjxw5O7TOsNXbp0ScePH/d4XwCAu1PevHntjjofMWKEjhw5coszAhyTL18+tWjRIkMsPT3dWLBzVUxMjHH6b6dOnTzWBwAAtwqbgAAOstlsOnPmjCUeFhaWLf2ZRgBK0vHjx53aZTg7XLhwQYsWLdLmzZt15MgRXbp0ScHBwcqbN68qVqyo5s2b67777nOorZMnT2rx4sXav3+/Tp8+rbNnz8rf31+RkZEqU6aMGjVqpPvvv19+fn7ZfKvuHNu2bdOGDRu0b98+HTlyRCkpKYqLi1NERIRCQ0MVGRmpSpUqqVq1aqpRo4b8/b33qX7v3r36448/tGvXLh07dkwJCQny9/dX7ty5VaJECVWsWFGNGzdWyZIlb1lO+/bt05IlS7R9+3adP39e8fHxioiIUGRkpKpUqaKGDRuqatWq8vHxuWU5AZl59NFH9d133+nXX3/NEE9ISNDzzz9vid8ukpKStG7dOq1bt0779u1TXFycLl68qIiICOXJk0dRUVGqVauW6tevr9DQ0JxON4OjR49q3bp12rx5s86dO6eLFy8qKSlJefLkUUREhMqWLas6deqoZs2aCg4OzpYcDh8+rBUrVmjHjh06evSo4uPjFRAQoJCQEJUoUUKVKlVSkyZNVLx48Wzp3xO6d+9uWZ5l2rRpeuGFFzzS/uzZsy3Tf1u1aqWIiAiPtG9is9m0Y8cOrVy5Urt379bJkyeVkJCgwMBAhYaGqmTJkqpSpYoaN26sokWLZlsecXFxWr58uTZs2KCDBw8qPj5evr6+Cg8PV/ny5VWnTh01adLklu0YfuXKFa1cuVIbNmzQ3r17denSJV25ckXh4eHKnz+/ypYtq3r16qlu3bpe/b4HANzBsyPghJvfBErS+fPnlZyc7PYGIDcrX768atWqZYn7+mY9cLdBgwa6evVqhtjHH3+shg0b2r1m4cKFGjFiRIZY7969NWjQoL9/P378uN588019//33xvviRnXq1NHYsWPVqFEj4/G//vpLb7zxhubOnZvlOlOlSpXSK6+8ogEDBjhcNGnVqpViYmIyxN5//321atXKoetN+vfvr02bNlli/fv3d7lNR504cUJjx47VtGnTdPLkSYevy58/v7p27aoXXnhBlStXduiaiRMn6osvvsgQM/2NBg0apPDw8AyxBx54QJ9++qnl3L59+2rr1q0ZYgMGDNAzzzzjUE43unLlisaPH68JEyZo586dDl1Ts2ZN9evXT3369FFQUJBT/S1btkzDhw/PEOvZs6eGDBmSITZv3jy9/fbb+vPPP7Nss3LlynrxxRfVt29fh/6ngez2xRdfqEqVKoqPj88QnzdvnqZOnaoePXrkUGZWu3fv1tixYzV9+nRdunQpy/ODg4PVsWNHDRkyRPXq1XO6vzVr1mjw4MEZYgEBAVqzZo1T7SQkJOi7777T+PHjtWXLFoeuCQ8P1xNPPKFBgwapYsWKTvVnkpKSosmTJ+urr77Shg0bHLqmdu3aGjhwoJ544onbrrDSuXNnDRgwIMN7njVr1ujo0aMeKVya1hT09LIv18XFxemzzz7TxIkTdfDgwSzP9/HxUf369TVgwAD16NHDY1+UbtmyRaNGjVJ0dLSSk5MzPTc8PFy9e/fWa6+9psKFC3ukf1M+//73vzVjxgwlJiZmeX7evHn15JNP6uWXX87xL8wB4E4xR5LN3k9AQIANuBvly5fP+D+xcOHCnE4tg+DgYEuOc+fOzfSaH374wXLNq6+++vfxH3/80RYeHm73ecH04+vra/voo48y9JOenm4bNWqUzd/f36m2JNnatm1ri4+Pd+g+KFSokOX6qVOnOn9n3qBJkyaWNt96661MrylatKjlmk8//dThPtPS0mz//Oc/bUFBQU7fXzf++Pv72wYOHGhLTEzMss+RI0e63E/r1q2NbTZo0MBy7jvvvOPw/XDdzJkzbUWKFHE5vxIlStjmz5/vVJ8zZsywtPPyyy//fTwhIcH2xBNPuJRPo0aNbMeOHXP6fgCc9frrrxsfg5cuXfr7nE8++cR4TsGCBW3nz593uW9fX19LmwMHDnS6nfj4eNvAgQNtfn5+Lj8HdOvWzXb69Gmn+p0/f76lncDAQKfamDt3ru3ee+91Oe/AwEDbu+++a0tJSXGq3xstXbrUFhUV5XIOlSpVsq1fv97l/l31wgsvGPNJT0+32Ww2W4cOHSzHbn7v4YoLFy7YAgICMrQbFBRki42NtdlsNlunTp0s/RYvXtzpftLT021ff/21LTIy0q2/zerVq926vQkJCbZnn33W+P+a1U9YWJht0qRJf7dVsmRJyzlff/21U/lcuHDB1qtXL5uPj49L90lwcLBt5MiRttTUVIf7XLZsmbGtmJgYp3IHgFtlxYoVjjwnvqT/w7ADwAllypQxxt944w3LiDtv8sknn6hHjx4OjbS4UXp6uoYNG6bx48f/HXvxxRf16quvKjU11ek85s2bp6eeeuqu2QglISFB7dq10zvvvOP24ys1NVWff/652rVrp4SEBA9leOukpaVpyJAh6tq1q1sLvB85ckRt27bVm2++6ZHHUWxsrFq2bKkpU6a4dP0ff/yh5s2b6+zZs27nArhr0KBBuv/++y3xs2fPaujQoTmQ0f938OBB1atXT59//rlbuxP/9NNPqlGjhkMjdT1l5MiRat++vY4dO+ZyG8nJyXrzzTfVp08fpaenO3WtzWbTO++8oxYtWujAgQMu57Bz5041aNBA33//vcttZAfThhzTpk1zu13T7r+tWrVSnjx53G77uqSkJPXq1Ut9+/bVxYsXXW5n586daty4sXEEviNOnDih+vXra9y4cU4/viQpPj5effr00RtvvOFS/zfbsmWL7rvvPn333Xcuv1YnJibqjTfeUIcOHXTlyhWP5AUAdzoKgIATGjRoYIyvX79e3bp1U1xc3C3OKPt99913GjJkiPENWHh4uEJCQrJs44UXXtCuXbv06quv2n1zGhISYplOajJz5kzNmDEj68TvcDabTT179tSCBQs82u6yZcs0bNgwj7aZ3Ww2mwYMGKCPP/7YY+2NHDnS7fshJSVFDz/8sN1pgLlz53boMb1371716dPHrVwAT/D19dX48eMtO6tK0uTJk7V48eIcyOpa4b5JkyYOT/nPyqlTp9SyZUuHp8C6Y+zYsXrzzTc91t6UKVP09ttvO3XNSy+9pLfeessjX3okJyfrySef9OhGG+7q2LGjZR266+vWuSO7d/9NTU1V9+7dPVZQTU1N1QsvvKCPPvrIqevOnTunZs2aadu2bW7n8N5779ndVMhRGzZsUJMmTdwqmN9o/vz56ty5s0tfPAOAt7m9FvIAbnM9e/bUv//9b+OxX375RVWrVtW//vUv9ezZ0+l1xm5HW7du1SeffJLhQ0Pr1q313HPPqUWLFsqdO7eka98cR0dHa9SoUTpx4oSlnatXr6pZs2Y6ffp0hniFChU0ZMgQderU6e+dlOPi4rRgwQJ98MEHljXjrvvwww+zbQ2e28UPP/ygOXPmGI8FBASoVatWatWqlSpXrqyIiAjlypVLSUlJOnr0qLZu3ao5c+Zo8+bNxuvHjx+vAQMG2N2opX79+vrHP/6RITZmzBjLqIDu3burVKlSGWLlypVz9CY6bOzYsfrf//5n93hUVJQef/xx1a5dW0WKFFF6erpOnTqltWvX6scff7S7i+m///1vVaxY0aV1CCXp1Vdf1bJly/7+3c/PTz179lSPHj3UoEGDvzcIunz5slauXKkJEyZo5syZxg/h8+bN0+LFi9WyZUuXcgE8pWrVqho+fLjee++9DPHrhfjt27c79MWPpyQmJqpjx446fvy48bifn59atGihrl27qlSpUipQoIBiY2N15MgRzZ07V3PnzlVSUpLlukuXLqljx47asmWLChYsmC2579mzx7K27nW+vr5q3ry52rZtq2rVqikyMlK+vr6Ki4vTtm3bNHv2bC1dutT4fDF69Gj16dPHoc2N/vOf/+i///2v8ZiPj48aNmyojh07qkqVKipSpIguX76skydPasmSJYqOjjaOTk5PT1fv3r1VuXJlVapUKcscslt4eLgeeughRUdH/x2z2WyaPn26Xn31VZfajImJ0dKlSzPEcuXKpY4dO7qV642GDx+uX375xe7xypUr6/HHH1fVqlV1zz33KCkpSSdPntTKlSs1bdo0y3uqG9utWLGi2rVrl2UOaWlp6tatm/bu3Wv3nKJFi+qxxx5T9erVde+99+ry5cs6duyYFixYoPnz51tGSb7yyivGLxEccfz4cbVr187ujJOiRYuqc+fOatasmYoUKaLcuXPrxIkT2rFjh37++WetW7fOeN3ixYv1+uuva/To0S7lBQDejjUAATtatGiR5Tz7iIgIW+/evW0LFixwa70eV3lqDcAbf4KDg23Tpk3LtI1z587Zateu7dDaLMOHD7ddvXrVblvJycm2nj17Gq/18fGxnTp1KtNc7uQ1ANPT023lypUz3vb777/ftmfPHofyXbBggd318l555RVHb7bNZrMZ12x0Zu1LV9cA3LZtm2UNphv/zyZNmvT3OlAm6enpti+//NIWFhZmbCMkJMR26NChTHMwrQFYt27dDOskVapUybZx48Ysb8+cOXNsISEhxlyeeuqpLK8HXOXIGoDXJSYm2sqXL288f9iwYU737c4agC+99JLd15EGDRpk+Xx45swZ28MPP2y3jc6dO2eZg6trAD7yyCPGPqtUqWLbtGlTltf/9ttvtgIFChjbeOmll7K8fv369XafP2vVqpXlmnFXrlyxvfXWW3bXoG3QoEGmz7+ektUagDabzTZ16lTL8fvuu8/lPr/++mtLe506dcpwjjtrAC5ZssTu2naFCxe2RUdHZ3p9SkqK7f3337f7tylQoIBD69aNHj3a7v9GeHi4bfz48ZmuoXfixAlb+/bt7bZx409WawCmp6fbGjVqZLw2d+7ctjFjxtiSkpIybWPp0qW2SpUqGdvw8/OzbdiwIdPrWQMQwJ3G2TUA7aEACNhx8OBBu8UE00/evHltjzzyiG3cuHG2AwcO3JIcPV0ADAgIsC1fvtyhvg8dOmS3wHH9x9HNH5KSkmyVK1c2tjFz5sxMr72TC4Dr1q0z3ub77rvPlpCQ4FTOe/bssYWGhlraqlGjhlPt5FQB8MEHHzTeF0WLFrXt37/f4f537Nhhy58/v7Gtbt26ZXqtqQB440/VqlVtZ8+edTgXe/9rRYsWdbgNwFnOFABttmvFJ1OBwt/fP8sP0TdztQC4c+dOuxtGPfXUU7a0tDSHc3j33Xft/g8vXrw402tdKQBeunTJ+FpcqlQp28WLFx3Oe+3atcb7LyoqKtPr0tPTbXXq1DHe3kceecShDaGuW758ud1NwGbNmuVwO65ypACYkJBgfO+xe/dul/ps06aNpa0pU6ZkOMfVAmBqaqrdIlX58uVtZ86ccTjPVatW2XLnzm1s68UXX8z02jNnzth9P1u8eHHbwYMHHc7jzTffzPR1Usq6ADhx4kTjdYUKFbL9+eefDucSHx9v98v6Vq1aZXotBUAAdxo2AQGyWalSpTRnzpy/p79mJSYmRjNmzNCzzz6rqKgoRUVFacCAAZoxY4ZiYmKyOVvPePfdd9W0aVOHzi1ZsqR69uxp93ibNm0cXiQ6KChIw4cPNx47c+aMQ23ciW6cVnqjTz/91OHH3XXlypVT3759LXHTVO3bzapVq7R8+XJLPHfu3FqwYIGioqIcbqtSpUr69ddfFRgYaDn2888/a8+ePS7lGBISoujoaBUoUMDha3r06KEHHnjAEj99+jRrFOG20aRJE+P0+NTUVPXr1++WPFZHjRpl7Kd169b63//+J19fx9/GvvHGGxowYIDx2AcffOByjvasWrVKiYmJlvg777yjiIgIh9upV6+eOnToYIkfOHAg09fB2bNna/369ZZ448aNNXXqVMuaeZlp2rSpZsyYYby/x4wZ43A72Sl37hsjHYgAACAASURBVNzGKa/Tp093uq3snv47c+ZM43qWBQsW1KJFi5yakl6/fn1NmzZNPj4+lmPjx4/XuXPn7F47ceJExcfHW+L58uXTokWLLEt8ZOadd97R008/7fD5N0tJSTGubRkYGKjZs2erTp06DrcVGhqqX375RdWrV7ccW7RokbZs2eJyngBwp6MACLigadOmWrFihSpWrOj0tQcPHtS4cePUrVs3FSxYUHXr1tXrr7+uZcuW3ZY7CRcrVkwvvZTlqOEM2rRpY4z7+Pho9OjRxjeq9rRt29Z4/p1SPHXF9u3bLbFy5cqpYcOGLrVnuu78+fMutXUrffXVV8b4a6+9pqpVqzrdXt26dTV48GBLPD09PcNO1c548803nSpEXvfYY48Z83BnF0jA00aPHq0iRYpY4ps3b7a7Hq6nXLx40biTa0hIiMaNGyd/f+eXsbZ3e5YtW+bylwD22PuSpXnz5k631aJFC2M8sx3Rx44da4mFhobqxx9/dOm+a9mypfH5c9WqVdq9e7fT7WUHT+0GHB0dbVnXrk2bNn+v6+oue69to0aNUvHixZ1ur127dsbXlMTERE2ePNl4TWave2PGjFH58uWdzuPjjz9W4cKFnb5OuvZFnGm93rffflv16tVzur1cuXLphx9+MK5FOHHiRJdyBABvQAEQcFGtWrW0ceNGux8oHJGWlqb169frgw8+UPPmzZU3b1517txZP/zwgxISEjycsWueeeYZpzc0qVChgjHeqFEjpws3+fPnN34bnpaW5lQ7dxLTwt6uvAG+LjIy0hKzeWA3yOyUlJSkWbNmWeL33HOPhg4d6nK7b775pvLkyWOJT5s2zen7JDg4WM8++6xLeZhGJkiybLQC5KSIiAi7G0j861//0oEDB7Kt7+joaOOXYi+++KJKlCjhUpthYWF66623jMdcGSmWmQsXLhjjrmyg0rJlS40aNcryY3pul66NDly1apUlPmjQIJffr0jXvnwxjRw0PVfnhHbt2ik0NDRDbMeOHfrrr7+caic7d/89ffq0fvvtN0u8evXqeuqpp1xud9SoUcbCrr0C6NKlS3Xo0CFLvF69eurdu7dLOYSFhelf//qXS9d+++23llihQoX0wgsvuNSedG3k/6OPPmqJ3y6PVwDICRQAATcEBwfrlVde0aFDhxQdHa1evXopX758Lrd35coVzZ49Wz179lTJkiX13nvvGadn3EqtW7d2+hp705vsjQzMir0POd5q1qxZiomJyfAzbtw4l9u7E4ulmzZtMhbBH3/8caemrt0sT5486tq1qyV+4sQJHTx40Km2OnXq5PJjM2/evC5dB9xqjzzyiDp16mSJJyYm6tlnn822LxP++OMPS8zHx8etaYbStSn4pueQ33//3a12b2ZvtJjpdmWlfPny+sc//mH5sVcInTNnjuXv4uPjo4EDBzrd940KFSqkRx55xBJftGiRW+16SnBwsHG6tDPF3QsXLliW4QgODlb79u3dzk+6NmLS9EVP7969nZrSfrPixYsbR5faey01FSEl6fnnn3dqlsbNevbs6fRSJQkJCcalT/r27ev2juPPP/+8JXbs2DHt2rXLrXYB4E5FARDwgKCgIHXu3FmTJ0/W2bNntXHjRn344Ydq1aqVgoODXWrzwoULeuONN1StWjWtXLnSwxk7rly5ck5f4+fn57G2MmvPW4WFhSkyMjLDj6uPI0nav3+/B7O7NdatW2eMP/744263bZoqJcm4XlZmGjVq5HIO7nzQA261zz77TOHh4Zb40qVL9c0332RLn2vXrrXE6tSpozJlyrjVbnh4uHGtuA0bNni0mFmyZEljfOjQodm+hu2SJUsssVq1aqlYsWJut92yZUtLbOvWrW636ymmEV/OTAOeNWuWZfrvQw895LHpv6bHta+vr93XJWeY2khLS9OmTZss8TVr1lhioaGhevjhh93KITQ01Om1ElesWKHk5GRL3PTFg7Pq1q1rHPXPOoAA7lZ8AgE8zNfXVzVr1tTw4cO1cOFCXbx4UUuXLtXrr7+uunXrOl3MOnz4sJo2barvvvsumzK2z8/Pz6Oj75zZKAGeceLEidtmkXZnmAqAYWFhqlatmtttP/DAA8YC3J9//ulUO3Xr1nU7F+BOUKxYMbsbZQwbNszjBa3Y2FjjmnwNGjTwSPumdmJjY7V3716PtC9dW3vVtP7Y3r17Vb16dX355ZeWQpOnmAo+7nxhcaPatWtbYjExMTp58qRH2ndX69atLcXqvXv3avPmzQ5dn53TfyXza1tUVJTLa+fdyN7/x82vbdeXn7nZAw884PToPZMmTZo4db7p8RocHGx8rDnLz89PNWvWtMR37NjhdtsAcCeiAAhks6CgIDVr1kzvvfee1q1bp/Pnz2vmzJl6/vnnHR4Rl5aWpj59+mjGjBnZnG1Gfn5+bk0FMbWH7Hfx4kUtX75czz33nCpUqKDDhw/ndEpOMy0qX716dY+MnAsLC1Pp0qUtcWc/EBQtWtTtXIA7xYABA4wFhpiYGL344ose7WvPnj3G0Xg1atTwSPv21uD0ZFEgLCzM7lpqZ86c0fPPP6+SJUtqwIABmjdvnnHHYFdcvHjRuI5s2bJlPdK+vR1qb5eCSq5cuYwjxxyZBmya/hsSEmIcMeoq02ubpx7XUVFRljUQJevf5vTp08Zpwc7stJsZZ2+PaTpu6dKlPTZS3vSYdXZdSADwFs5vAwbALREREerSpYu6dOkiSdq3b59mz56tSZMmaefOnXavS0tLU79+/VS3bl2XdomDd0lLS9ORI0e0d+/eDD+7d+/WsWPHcjo9t5l2w3VlV0J7KlSoYJka7ezO0nfb2pS4u/n6+mr8+PGqWbOmZXOOadOm6YknnvDYOmn2dsN2dRmJm9l7LvH07vLvvPOOFi5cqKNHjxqPnzx5UuPGjdO4ceMUGBio2rVrq2HDhmrUqJEaNGjg0nOMvR3ev/rqK82cOdPp9m5mb6Oiffv2GacH54RHH33UMmti2rRpev/99zP9UtM0/bdt27bGoporbDabYmNjLXFPvbb5+vqqXLlylhF1Nz+u7f1/ValSxSN5VK5c2anzTRvmnDp1ymOPJ1OB8U5cGgUAPIECIJDDypYtq2HDhmnYsGFasmSJRowYYXcqYmxsrEaMGJEj04GRs86cOaMlS5Zo5cqVWrVqlfbs2WNcM8dbmD6g2NtcxhWmD9amD2b2+Pj4uLUuI3AnqlSpkl599VW9/fbblmPPP/+8mjRp4pG10uz9L3rqOcBeYc2Z5wBHFC5cWPPmzVOHDh2MO67eKDk5WatXr9bq1as1evRo+fr6qlq1amrTpo3atWunBg0aODQi314Rc9u2bS7dBkddunQpW9t3RsuWLRUZGZnhdeTQoUNav359pks3mKb/duvWzWN5JSQkGKd9m9aoc5Ujr232CoCe+lIrd+7cCgwMdPg9iukxGxMTY1zL0lNup8crANxKTAEGbiMtWrTQmjVrNHLkSLtTH6ZNm6bjx4/f4syQUxYsWKAuXbqoWLFieuKJJ/TVV19p+/btXl38S01NNU5PMm1C4CrTBy5Pf/gHvNFrr72mihUrWuLHjh3T66+/7pE+7BUoPFUoCQkJMa7PZ69fd1SuXFmbN29Wv379jH3ak56eri1btmjUqFFq1KiRypcvr//85z+W0Zc3y47b4Ij4+Pgc6dckMDBQnTt3tsQz2wzkVkz/tfca48kCoKmtmx8T2V1gt5eHPZ4eeeuI2+nxCgC3EgVA4Dbj6+urESNG6OOPPzYeT0lJ0dy5c29xVrjVjh8/rubNm+uhhx7SrFmzlJqa6tT14eHhatasmT799FNNnjw5m7LMHunp6cb1vzy5c25gYKAl5qk1uABvFhQUpAkTJhj/H7/44gvj7qLOSktLM8bv1OeAPHnyaPz48dq1a5deeOEFu+voZWbfvn16+eWXVaFCBUuh6kZJSUnupOoy05c2Ocm0G/BPP/1kd6fn6Ohoy+i8du3aeWRTjOty6nF982PCdI6n83Cm2J0Tj1kKgADuVkwBBhxw/Phx48LNntoxzWTw4MH65ZdftHjxYsuxFStWaMCAAdnSL3Le/v371aRJE4d2VQwMDFS5cuVUqVIlVapUSZUrV1b16tVVpkyZv6eLLV26NLtT9qjAwECFhIToypUrGeKenLITFxdniXlyFAbgzRo0aKBnn31WX375ZYZ4enq6+vXrp02bNtktMjjC3lTEuLg4l4pnN0tNTbU8v0ieHQFlEhUVpU8++UQfffSRli1bpoULF2rhwoWZrv97s8OHD6t169aaMGGCcZMRe89jXbt2Vf78+V1NPUue2LHVk5o1a6b8+fNnWBPx2LFjWr16tXEzm+ze/Vey//gyvR65ypHXtpzKw56IiAjL+50KFSqocePGHsvHJDU1Vf7+fBQGcHfhWQ9wwLJly/TUU09Z4ps3b9Z9992Xbf0OHDjQWAA8cuRItvUJ+27Ft9QpKSnq3r273eKfn5+fmjRporZt26p169YqX768U9+03ykiIyMtH9A9+eHENAUqb968Hmsf8HYffPCB5syZoxMnTmSI79ixQ6NGjdI///lPl9u2V6Dw1JcAcXFxxpFgt2pjn4CAALVu3VqtW7eWdG3Dg99//11//PGHVqxYoR07dtgdqSZdK1z0799fZcqUUcOGDTMcs/c8NnjwYDVt2tRjt+F2FxAQoC5dumjChAkZ4tOmTbMUAE3Tf3Pnzq22bdt6NKfw8HD5+vpaNlLx5Jdbjry22fv/8tT08ZSUFF2+fNnh803/d1WrVtW4ceM8kg8A4P9jCjDgAHvfqJt2LvOkevXqGeP2dvlD9roV69RMmTJFmzdvNh7r3Lmz9uzZo6VLl2ro0KGqUqWKVxb/JPMHlIMHD3qsfVMRnV19AcflyZNHn332mfHY+++/b9x501H2ChSeeg44fPiwMZ5TXwIUKVJEjz76qD777DNt375d586d0/fff6+HH35YISEhxmtSUlI0dOhQS9ze89jd+L7BNA14xowZlgJcdHS0ZZmN9u3b273vXeXr62t8P3mrX9vsPUb27NnjkRwOHDjg1PmmfM6dO+eRXAAAGVEABBxw7733GuPZvauevcKjp9+UIms2m01nz57N9n6+/fZbY3zYsGGKjo5WVFRUtudwOyhdurQltmXLFo+0nZycrO3bt1vixYsX90j7wN2ic+fOevjhhy3xq1evqn///pZCi6PsPc/Z+3LEWRs3bjTGb5fngHz58unxxx/XjBkztHfvXj3yyCPG8/78809t3bo1Q6xw4cLKlSuX5VxPFXfuJE2bNrVMGb8+2vJG2b37741Mj21PPa5PnTplnD1w8+O6YMGCKlCggOW89evXeyQPe/9f9pQsWdISuxsfrwBwK1AABBxQsWJF+fn5WeIrVqzI1n7tfWPviTWQ4Jx9+/Z5dAqqSXJyslavXm2JV6lSRR988EG29n27uf/++y2x8+fPOz2ywGTLli3GnTRNfQLI3Keffmocsbdy5UqXp/AVLlxYJUqUsMT//PNPl9q72bp16yyxgIAA1apVyyPte9I999yjn376SU8//bTx+M3vQwIDA423Y9WqVdmS3+3Mz8/PWKC+cTfg8+fPW6b/hoaGenz673WmmR27du3yyDRg0+NaMr+21alTxxJbvXq1ZSMUVzi7EdADDzxgiZ06dUqHDh1yOxcAQEYUAAEHBAcHq0qVKpb4vHnzdPz48Wzr196HHVMuyF6mwpynHTp0yPjmu1evXm4tVJ3dU9Wzg73p7zd+cHPV1KlTjXHThxAAmStSpIg+/PBD47HXXnvNskago0zPAStWrNDp06ddau+6q1evKjo62hKvXr26x0bXHzx4UB9++KHlZ+/evS63+fbbb/+9sdONTO9BTM9lK1eu9MhOvT/++KO6d++e4eell15yu93sYpoG/PPPP/895XfWrFnG6b/BwcHZko/pcZ2amqqZM2e63bYzr22mAuCFCxf066+/upVDSkqKpk+f7tQ19evXN8bnz5/vVi7StXUNb368du/e3TgLAADuBhQAAQe1a9fOEktJSdGoUaOyrc8ffvjBGH/wwQezrU9vZloc21HfffedBzMxs5dfuXLl3GrX2W/jbwd16tQxrm84ZcoUl6cVStc+/Jv+r8LCwlS9enWX2wXuZv369TPu2BkXF6eBAwe61KZpp9bU1FS7r4uOmjVrlnGzA1N/rrpw4YJeffVVy49pqqmjihUrZlwrzbSb8c0bg0hSfHy8pkyZ4nL/0rWlMN566y399NNPGX6ye3S8Oxo1aqQiRYpkiJ07d07Lly+XJGOxytO7/97IXrFr8uTJbrV74cIFzZkzxxIvXbq05fZL9t9Hurvxxi+//OL0+n0lS5ZUsWLFLPGvvvrKrVyka8uq3Px4jY6ONo4wBoC7AQVAwEE9evQwfvv+xRdfaO7cuR7v788//9SsWbMs8fDw8LtqJz9PcnVNmb/++uvvDwvZyTTNXJJbBa8LFy64/cEiJ4SHh/+9Q+aNdu3aZXedREeMHTvWuJZjly5d3BplCdzNfHx8NH78eOPac7Nnz3bpOaxr167y9bW+TR01apTLX+YkJyfb3Z3Yk0Wfe+65xxh3ZxpuWlqacQRf4cKFLbHWrVsbp2WPGTPGWDB01A8//GAcxdiyZUuX28xuvr6+xjUUp02bpvPnz1te28PCwtSmTZtsyycqKko1a9a0xJcvX66FCxe63O5bb72lpKQkS9ze47px48bG9QgXLFigefPmuZRDSkqKRowY4dK1ppGa27dv188//+xSe5J0+fJljRkzxhKvV6+ewsPDXW4XAO5kFAABB1WpUkXNmze3xG02m5544gm33rjd7NSpU+rWrZvxQ9Nzzz2nsLAwj/XlrUwffubMmaO0tDSn2klPT9dzzz0nm83mqdTssre2o6tTVWw2m5577rlbsntxdujXr58x/tprr+nMmTNOt7d37169//77xmP9+/d3uj0A/1/58uVd/vBvUqxYMT300EOW+Llz5zR8+HCX2nzvvfeMBayqVat6dAmAQoUKGUfrLV261OUp0YsWLVJycrIlbtpAIVeuXOrdu7clfvDgQb322msu9X/27Fnj/R4ZGamOHTu61OatYiouRUdHa/r06Zbpvx06dMi26b/X2Xtte/HFFxUfH+90e2vXrjWOlvPz81Pfvn2N1/j4+NhdV3LgwIEubXr2/vvva/fu3U5fJ127T0wF/4EDB7q8g/Xrr79u3BTlqaeecqk9APAGFAABJ4wePdo4SisuLk7t2rXT+++/r8TERLf6+O2331SrVi0dPXrUcix37twaMmSIW+3fLUxTXg4ePKjx48c71c5rr72mlStXeiqtTBUpUsT4rfS3335r/GY/M2lpaRo4cKBbU86yYvow6knt27c3rnd55swZtW7d2qlRQMePH1erVq10+fJly7GmTZt6dPofcLcaPny4R9eoffXVV43xCRMm2C3m2/P111/r3XffNR57/fXXjSP8XeXn56dWrVpZ4snJyRo4cKDTXyjFxcUZX/sDAgKMI6UlaejQocZC1n//+1+nly65dOmSunbtaiymPPvsswoNDXWqvVutfv36uvfeezPEYmJijKNBs3P673VPPfWU8T3Knj171KlTJ6de73fu3KkOHToYv9x89NFHVaZMGbvXPv3008Z1Lw8fPqyHHnrIqand33zzjd5++22Hz79Z+fLljTsvnzlzRq1atXK6CDhu3Dj997//tcQLFiyoXr16uZwnANzpKAACTqhRo4ZeeeUV47G0tDSNGDFCpUuX1kcffeTU7mUpKSlatGiR2rRpo2bNmunUqVPG88aMGaNChQq5lPvdpkmTJsb4kCFDHFrkOjExUYMGDdLo0aP/jmX3FNGAgADjVKpDhw6pf//+lpEK9uzZs0dNmjTRl19+afccm83m8kiU60wfBj3J19dXH3/8sfHY1q1bdf/99zu0Ocuvv/6qevXq6ciRI5Zj/v7+dvsA4JzAwEBNmDDBOJLHFQ0bNjSO3pKkESNGqG/fvlkWKa5cuaIhQ4aof//+xsJbo0aN7Pbhji5duhjjs2fPVo8ePRwurmzZskUNGzY0LmHRunVrFShQwHhdsWLF7BZQX3vtNfXu3duhUV5btmxR48aNjdOXCxQooJdffjnLNnKaj4+Psbh08wZZ9pae8LTg4GC7G+csX75cDRs2dGjk/5QpU9SoUSNjcSw0NDTLQm/hwoXtvqfdtGmTatSokeXyJ0lJSXr55ZfVt29ft2dKjB49Wrlz57bEN2/erAceeECLFi3Kso0rV65o2LBheu6554zH/x97dx7nZVkvfPz7G2YYFkf2VVbZBRVEQBTXXHItRTPNBdJzKi3L03Y69lRPR+vYKTM7dfJE2uOWpZGaKyioiLsSiOACyCKyDzvDOvfzR8dz1Pn9Zgf08v1+vfjnurdrZhhm/Hjf9/W9730v76sKAD7u7ouIrNCfkpKSDD6udu7cmZ188skFvz/e+6dXr17ZRRddlH33u9/Nfv7zn2e33HJL9qc//Sm78cYbsx//+MfZlVdemR111FFZ8+bNazzXuHHjaj3HfOe7//77qz3mjjvuqHJM06ZN6/U5Wr58ed6P4amnnqrX+QYPHlzlXD/84Q+rPWb27NlZUVFR3nkUFRVll1xySTZz5swqx61atSr7zW9+k+2///5V/t275pprqpzr+9//frXz6Nq1a5VjfvnLXxbc/8EHHyz4d2D48OHZxIkTs4qKiirHrV27Nrvnnnuys88+u+DH/cE/X/7yl7Ndu3ZVO/93NW3atMrxw4YNy1atWlWr44844og6fw3fdfnllxf8GJo0aZKdeuqp2e23357NmTMn27RpU7Z+/fps9uzZ2W9/+9vs6KOPrvZzcPXVV9d4/bvvvrvKcblcrlZzL2T27Nl557N8+fIGnRcK+Zd/+Ze8f+c2bNjQ6Nf6yle+UuO/P5dffnmtzrVy5cpsv/32K3ieDh06ZFdccUU2derU7O233862bduWLV26NJs+fXr27W9/u9pjW7Vqlb355ps1zuGhhx6q88/HnTt3ZkOGDKn22l/72tey++67L1uwYEG2fv36LMuyrLy8PJsxY0Y2YcKE7JRTTin473lpaWk2d+7cauewffv2bPTo0dXO4ZJLLsn++te/ZvPmzcu2bNmSbdmyJXvrrbeyO++8MzvzzDOzJk2aFDz+L3/5S62+hg11xRVX5L1+ZWVlrc/x7LPP1vh38oILLqjTvD71qU9VOUePHj1qdWxlZWV25plnFpxL06ZNs7Fjx2Z//vOfs9dffz3bsmVLVl5ens2aNSu74YYbshEjRlT7sdx00021mse2bduyYcOGFTxPLpfLxowZk/3mN7/JnnnmmWzp0qXZ/Pnzs6lTp2bf+ta38v6OExHZueeeW2Xsd7/7XY3zufnmm6v9uI4++ujsl7/8ZTZz5sxs5cqV2a5du7JVq1ZlTzzxRHbVVVdlXbp0KXjsiSeeWOPfmSlTpuQ9try8vFafT4A97Yknnqjx51tEfC1qIABCNSoqKrLTTjutNt9sjfLn4osvznbs2FHr+QmAfzdu3LgaP7ft27fPDj300Ozwww/Punfvnvc/dnK5XHbjjTdmU6dOrbKtsQNglmXZ8ccfX+2cS0pKsiFDhmRHHnlkdsghh2TdunUr+B9pLVq0yG655ZastLQ07/YhQ4Zkl156aTZ+/Phq59S5c+e8x7ds2TI7+OCDs2OOOSY7+OCDs7Fjx+Y9viEBcOvWrdknPvGJRv++Ou+882oVQAVAUrAnA+CGDRuy7t27V/v9V9sAmGVZ9txzz2VlZWWN+v3ftGnT7KGHHqrV9esTALMsyyZPnlxtQGvIn1/84he1mvvSpUuzPn36NPr1v/vd79bq+o2hMQJgZWVl1qtXr2o/pnvvvbdO82pIAMyyLFu3bl218a2+f6688so6fRwLFiwo+DO+Pn+++tWvZvfee2+V8doEwCzLsm984xuN/jkZNGhQrX6+CoDAR01dA6BHgKEemjVrFvfee2/84Ac/iJKSkt12ndLS0rj++uvj5ptvtkJpPfzsZz+r8X1Uq1evjhdffDGefvrpWLJkSZX36ORyubj22mv36CIRt912W+y///4Ft+/YsSNmz54d06ZNi5dffjnefvvtvO//6d27d0yfPj0uvPDCGDlyZN5zzZ49OyZMmBC33nprtXMaM2ZM3vHNmzfHzJkz4/HHH4+ZM2fmXaWyoUpLS+Pee++NU089tdHOeckll8Qtt9zSaI8qAv+rrKwsfv3rXzfa+UaOHBkPPfRQtG/fvlHOt++++8a99967W1d7jYg4/vjj48Ybb2zU9wvmcrm47rrr4oorrqjV/l27do0pU6bEQQcd1GjX/973vlfwfYofVrlcrtr3+7Vq1WqPPP77wWtOmjQpDj/88EY753e+85342c9+VqdjevfuHY8++mh069atwde/4IIL4rrrrmvQOX7yk5/EVVdd1WjfN0OGDIkpU6Z4hQ5ACIBQb0VFRfH9738/ZsyYEaeeemqj/oJfVFQU55xzTrz66qvx1a9+tVHP/XHStm3bmDRpUhx22GH1Or6srCxuv/32gu/I2V06deoUjz76aBx66KH1Or64uDguu+yyePHFF2Po0KEREXHppZc2aE7f/va3d2vsrknLli3j3nvvjR/96EcNen9P69atY8KECTFhwgRRHXaj0047rVHfrXfEEUfEiy++GMcff3yDznP44YfH888/v9vj37suueSSmDhxYnTu3LnB5+rXr19MmjSpzouB9ejRI6ZPnx6XXXZZg36f6N69ezz44IMNWuxhb6ouAJ5xxhlRWlq6B2fzd+3bt48pU6bEN7/5zbyLzNVW586dY+LEifGjH/2oXl/jwYMHN+j7oqioKK666qpG+R9ruVwurr766rjnnnuiNzWg3gAAIABJREFUa9eu9T5PUVFRXHnllfH88883yvcfQAoK/YS4LyJOL3RQSUnJbl/9ET5qXn311bjzzjtj4sSJMWfOnHqdo3///nHWWWfFpZdeGn369Kn3XG666aYqC0Z88pOfjB49ehQ8Zv78+fHYY4+9b6yoqKhe4aiioiLvHWVnnHFGvX4Ju+uuu2Lt2rXvGzv00EPjkEMOqdXxO3fujBtuuCGuv/76WLJkSY37FxcXx7nnnhs/+tGP3vc5e+edd+L+++9/377Dhw+P4cOHFzzXbbfdFlu2bHnf2BFHHBGDBw+ucR7bt2+P66+/Pn7xi1/UasGN4uLiOOOMM+Kaa66JgQMHvm9bZWVljBs3ruCdfsXFxbFjx45qz3/33XfHpZdeWu3L60866aR4+OGHq4zfd999sXz58veN1eVr+F6LFi2Kf/u3f4s77rgjNmzYUKtjOnToEJdcckl8/etfr/NdRG+99VZMnjy5ynhD7gpdu3Zt3hWaL7zwwrwrd0JDvfDCCzFjxowq4+PHj99tcX/lypVxzz335N02ePDgeq++ff/998dPfvKTeOqpp2q98MCoUaPi61//eowdO7bOgWLJkiXx0EMPvW+srj8f16xZEzfccEPcfPPNtfo59F6jRo2Kz3/+83HxxRc3OFLNnDkzrrnmmrjvvvti27ZttTqmb9++cfnll8cll1wSZWVlDbp+fTz99NMxe/bsKuP1+Tc43+9HEX9fDGbQoEF1OtcjjzxSZXGpffbZJ84///w6zysiYu7cufHjH/847r777qioqKjVMd26dYsvfvGLccUVVzTa1+bee++NH//4x/Hcc8/Vav8jjzwyrr322hg9evT/jC1atCgeeeSR9+139NFHx4ABA+o0l02bNsV//Md/xH/+53/G4sWLa3VMs2bN4vzzz48rrrgiDj744DpdL9/veRHRKN97ALvDk08+WXDxy/e4MiKujxAAYbd44403YsaMGTF79uyYM2dOrFq1KjZt2vQ/4aR169bRvHnz6NmzZ3Tv3j2GDh0ahx12WPTq1WvvTjxxO3fujEcffTSmT58eL730UqxatSrKy8ujadOm0bZt2+jfv3+MHj06TjvttAb9X+fGtn379pgyZcr/PPK7Zs2aWLNmTbRu3Tq6dOkSXbt2jdGjR8cpp5xS4yMuf/nLX+LOO++MOXPmxJYtW6J9+/YxYMCAOOyww+Kyyy6rcS4rV66MW2+9NZ544olYuHBhbN68OfbZZ59o06ZN9O3bN4499tj43Oc+11gferUqKirisccei2nTpsXcuXNj6dKlsW7duoiIaNeuXXTv3j0GDx4cRx99dBx11FF79Q5GoPEtXLgwJk+eHM8991zMmzcvVq9eHRUVFVFaWhrt2rWLvn37xogRI+KEE06Ifv367e3pRkTErl274tlnn40XX3zxf17hsH79+li3bl0UFxdH69ato02bNtG/f/849NBDY/To0dG3b99Gn0d5eXlMnjw5pk+fHq+//nosX748Nm3aFC1atIh27dpFly5dYtSoUTFmzJg45JBDvC5hD9qwYUM8+uij8dRTT8Vrr70Wy5Ytiw0bNkRRUVG0bds2evbsGQceeGAcd9xxMXr06N32tZk7d248/PDD8cILL8SCBQtizZo1UVlZGW3atIlevXrFIYccEqeffnoceOCBu+X671VZWRnPPvtsTJkyJWbNmhWLFy+ONWvWRC6Xi3bt2kW7du1i8ODBMWbMmBgzZky0adNmt88J4MNAAAQAAACAhNU1APrfeQAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhBVH9D2n6vCqrhG7Ch5UWdkk7rrrod04LQAAAAAgn7lz50bEPh8Y3RYRO/Lun4vok+3uSQEAAAAAu9PqiFj/3oErI+L6CI8AAwAAAEDSBEAAAAAASJgACAAAAAAJEwABAAAAIGHFBbcM7rkHpwEAAAAA1Gj52og1G+p0SP4AWJSLOOeoxpgSAAAAANBYHnkx4pm6BUCPAAMAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhBXv7QkAQGqaNmkSR/XsudvOX5llsX7r1li7dWus3rIlNmzbttuuxYffgHbtonurVlXGX3znnVi3detemBEAAB82AiAANLK2zZvH5Asv3GPXW7R+fTy/dGk8+/bbcefs2fHOxo177NrsfV8aMSK+OmpUlfGjbr45pi1evBdmBADAh40ACAAfcT1btYqerVrFOQccENcef3z89Y034rpnnomnxB8AACC8AxAAklJcVBRnDhwYT44bFzd96lPRsqRkb08JAADYy9wBCAAJyuVyMX7o0Di4U6c46bbbYvWWLXt7SnyIdWzZMvZp2rTK+KJ162JXlu2FGQEA0JgEQABI2CFdusRfzzsvjvn972Pbrl17ezp8SF130knxuQMPrDLe+ac/jRWbN++FGQEA0JgEQADYg374xBMNXpihdbNm0XmffWJg+/ZxXO/eMah9+2r3P6xbt/je0UfHVVOmNOi6AADAR5MACAB70CsrV8ajCxY06jmHdu4c1xx3XJzSr1/Bfb5++OHx6xdeiKVWCAYAgI8di4AAwEfc35Yvj1PvuCN+8PjjBfcpbdIk/mH48D03KQAA4ENDAASARPzfJ56IP8yeXXB7dXcIAgAA6RIAASAh//TII7G9wGIfw7t0iQ4tWuzhGQEAAHubAAgACVm+aVM8uWhR3m1FuVwMrGHBEAAAID0CIAAk5rG33iq4rUPLlntwJgAAwIeBVYABIDHvVLPSb8dGDoA9WrWKAe3aRfdWraJFSUlERGzbuTOWbtwY88rLY155eVRmWaNes5DO++wTB3ToEO2aN482zZtH8+LiWL9tW6zfujWWbtwYs1asiK07d+6RuZBfWdOmcVCnTtGxZcto07x5lDVtGlt27Ih1W7fGys2bY9aKFbF269a9PU0AgOQIgACQmFWbN+/W84/u1i0uHjo0Tu7bN3q0alXtvuUVFTF14cK4fdasuP+NN2JHZWWjzaMol4vj998/Ljr44DiyR48a57KjsjJmrVgRf54zJ37/t7/Fsk2b6nzNMwYMiEF5HqP+5fPPx5YdO+p8vvc6sU+fGNa5c5Xx3778cpRXVDTo3O91bK9eMXK//d43NrhDh7z7fnnkyNi0fXuV8Z8+/XTsqmXYPbBjx/j8sGFxQp8+MbB9+2iSy1W7/7zy8nho3ryY8PLLMWvFilpdAwCA6gmAAJCY0uLCP97XN+DuqiO6d49/O/74GNOjR62Padu8eYwdNCjGDhoUb61bF1c99li1KxXX1mcGD45rjz8+erVuXetjSoqKYniXLjG8S5f44bHHxm9efDG+89hjeQNXIZ8dMiTOGzKkyvhNM2Y0OAB+asCAuGzEiCrjf3nttUYNgKf06xffOPzwWu373aOOyjt+/bPPxq4Ci828a1jnznHDySfX6e9LRETftm3jKyNHxldGjozJCxbEF/7613hr3bo6nQMAgPfzDkAASEy75s0Lbluwdm2dz9e0SZO4/pOfjCfHj69zzHmv3q1bxx1jx8bdn/lM7FtaWq9ztCotjb+ed1788eyz6xT/Pqi4qCi+PHJkvPKlL1kYpZHlIuLq446L5//hHxr09yUi4oT9949XLrssxg4a1DiTAwD4mBIAASAxh3Tpknd8R2VlvLJyZZ3O1aq0NCZdeGF8ddSoKKrh0c3aGjtoUEy5+OJqQ2U+bZs3j8kXXRSn9e/fKPOIiOjVunVMvvDC6N2AmMj/Ksrl4jennRZXHXlkFBc1zq+ZLUtK4g9nnx2n9uvXKOcDAPg4EgABICFFuVyc2KdP3m2T58+v02OqLUpK4oHPfS6O7tmz2v12VlbGkg0b4rmlS2PG8uWxbNOmyGp4P9zwLl3iL5/9bDRt0qTW87n9rLNiRNeuNc7ltdWr47mlS+PpJUvilZUrY1sNj6p223ffuPnTn671PCjsm4cfHv84fHiN+y1avz5eWrYspi1eHDOWL491NTyaXlJUFLeedVa0b9GisaYKAPCx4h2AAJCQsw84IPq2bZt324SXX67TuW487bQ4onv3gtunLlwYN774Yjwyf36VgLNfWVl8euDA+MqoUTGgXbu8xx/Zo0f867HHxrcffbTGuVxw0EHxyb59826rzLL4w+zZcfOMGfHU4sVVgl9xUVEc3r17XDZiRJw7eHDecxzds2eMHTQo/jx3bo1z+aj7t6eeiv988cX3jV130knxqQEDquw7asKEWL1lS5Xx7Xmiat+2beP7xxxT8LrTlyyJXz3/fDw0b17e4HdAhw5x0cEHx1dHjYpmed5j2aZZs/jBMcfElx98sOA1AADITwAEgETs36ZN3HDyyXm3PfP223HPa6/V+lznH3hgXHDQQXm3rdqyJcbdc088+OabBY9funFj/OqFF+K/Xnoprhw9Oq457ri8j4T+0+jRcfsrr9S42uu3jzgi7/jKzZvjrD/+MaYvWVLw2J2VlfHkokXx5KJFMXHu3LjtrLOiJM9cLjnkkI9FAFxTURFrPrCoSKGFUBatWxcrarmq9BWjRkXzPOFuZ2VlXPHQQ1Wi4wfNWbUq/vnRR+OWmTNj8oUXRteysir7XHjQQfFPjzySN0ACAFCYR4ABIAEn9ukTj48bF51atqyyrbyiIi6cODGqfyj3f5U1bRrXnXRS3m3zysvjsAkTqo1/77WjsjJ+Mn16nPnHP0bFzp1VthcXFcUPjz222nMc2LFjDOnYscr4riyrMf590J9efTV+NG1a3m3H9e4dZU2b1vpc/K8muVx8psDdld+bOrXG+Pdec1atis9NnJj3MfJ9S0vjmF696jtNAICPLQEQAD6CmuRyMaBdu/j8sGHxxLhx8fDnPhfd9923yn5rt26N0//wh5hfh9V/Lx85Mm9I3Lh9e5zxhz/UayXh+994Iy5/4IG8287o3z/6FXhsOSLi8AKPIT88b16d4t+7rn/22bx3kJU2aRIHdOhQ5/MR0adt24Lx+efPPlvn8z2+cGG88M47ebcN69y5zucDAPi48wgwAOxB1x5/fPzzmDH1Pr60SZMoKy2NTi1b5n1P2nu9tnp1nHPXXTG7Div/FhcVxRWjRuXd9o1Jk2Lu6tV1mu973fy3v8XpAwbEmQMHvm88l8vF54cNi+889lje4/bLEzYjIp6uR/yLiFi3dWvMXLEi74IiXfI8dkrN9ivweXtp2bLYmufOz9p4fOHCGLnfflXG8z0aDABA9QRAANiD9m/TZrdfY/uuXfGL556L70+dmvex2+qc2KdPdNlnnyrj88rL46YZMxo8tx88/nh8esCAyOVy7xv/9MCBBQNgm2bN8o435D1w/2fKlOjZunWV8bmrVtX7nB9nbZo3zzu+owFfo9tfeSXvnatvrllT73MCAHxcCYAAkJC31q2LE265pU6P/L7Xpz9wd967fv3CC7GzsrIhU4uIiFkrVsSTixfH0T17vm98YPv20bNVq1i0fn2VY9Zv25b3XEf37Bk/ffrpes3jkfnz63Uc+a3Ps6pvRMSobt2iWXFxve4CnLViRY2LwwAAUDveAQgACendunXcf/75MXbQoHodf1KfPnnH67KCcE0mFYhvw7p0yTu+OE8UjIg4tV+/OLfAwhPsWYW+Ru2aN4/rTjopcnm3AgCwpwiAAJCYge3bx92f+Uzc/KlPRYuSklof16lly+jRqlWV8QVr18Zb69Y12vwKvbsv30q/ERFT33or73gul4vbx46Na48/PloXeEyYPePN8vJ4e8OGvNu+dOihcd9550WfPfD4OwAA+XkEGAD2oFkrVsTKzZsbdI6y0tJo3axZ9G7dOpo2aVJwv3FDh0bXsrI4/Q9/qNX78g7q1Cnv+BuN/M61ZRs35h0vFADfLC+PxxcujGN69aqyrUkuF9864oj40ogR8ec5c+L+N96ISfPnx8bt2xtzytTChJdfjh8cc0zebaf17x8n9+sXD8+bF/e9/no88MYbsbTA3wMAABqfAAgAe9C/Pvlk3D1nTqOcq1lxcYzu1i0uGzEizho0KIpyVR+0PLFPn/j3E06Irz78cI3ny7coRkREuxYt4ttHHNHg+b5rn6ZN844f0KFDwWO+OXlyTBs/vuDKx2VNm8a4oUNj3NChsX3Xrnj27bdj+pIlMX3x4nh6yZJYW+AddTSe6555Ji46+OCCC900yeXi1H794tR+/SLLspi9alU8uWhRPL1kSTy1eHHBx4gBAGg4ARAAPqK27twZUxcujKkLF8Zp/fvHHWPHRlmeuHb5yJEx4eWX45WVK6s9X9eysrzjI7p2jRFduzbKnKvTrsBKshERL77zTlwwcWL84eyzo6So+jeYNG3SJI7q2TOO+u+FRiqzLOauXh1PLV4cjy5YEI8tWCAI7gYbt2+Pk2+/PZ4YNy4651lJ+r1yuVwc2LFjHNixY1w+YkRERLy9YUM8tXhxTHnrrZg0f37eBWEAAKgf7wAEgATc/8Yb8Q/33Zd3W5NcLi7778hSnUJ35u0pZaWl1W7/89y5ccTvfhdvlpfX6bxFuVwM7tAhvjB8eNx1zjmx6lvfikcvuijOP/DAgncUUj9vrFkTw268sV6rLHfbd9/47JAh8V+nnx4Lv/a1eOVLX4p/Gj06OrRosRtmCgDw8SIAAkAi/vjqq/HEokV5t51Vi1WBS6t5n+Ce0LKkJO9jzO/1wjvvxJBf/zq+cP/99V6YpEkuF5/o3TtuP+usePMrX4nxQ4fWeF1qb/mmTfHJ226LT952W0wvsOBLbQzp2DF+duKJsfBrX4urjzsu792tAADUjgAIAAn57Usv5R3v2LJl9C7wjr93bdmxY3dMqdaKcrloWYtVi7fv2hX/9dJL0feGG+LY//f/4nczZsSKei6s0m3ffeOmT30q/nreedHGSsKN6pH582PMTTfFAb/6VVwzbVq8Xs/FZFqUlMRVRx4ZL33hCwUXigEAoHqeewGAhExbvLjgth6tWlV711x5RUXe8WunT4//KhAWG1tdImRllsXjCxfG4wsXRi7+vorxCX36xDG9esUR3btH6zoEvVP69YvJF10UR918814LoanehTh39er47pQp8d0pU6JHq1Zxwv77x7G9e8dRPXtG9333rfV5+rVtG9PGj4/DJkyod0wEAPi4EgABICGL16+P9du2Ras879NrVUMQK7QwRlEuFwvWrm2U+e0uWUTMXLEiZq5YET99+ukoyuViSMeOcVTPnjGmR484plev6NSyZbXnGN6lS/z8pJPiC/ffv2cm/QH71vAOxBQsXr8+fjdjRvxuxoyIiOjZqlUc2bNnHNmjRxzdq1cMaNeu2uNbN2sWE889Nw7+zW9iZ2XlnpgyAEASBEAASMyaLVvyB8AaAlOhOwBrCmcfRpVZFrNWrIhZK1bEfzz/fBTlcjG6W7c4c9Cg+PywYQUf9/38sGHxk+nTY/5eCJ5tq1kFOVWL1q+PRbNmxW2zZkVExIB27eLTAwfG54cNi/4FYuABHTrEBQcdFL//29/25FQBAD7SvAMQABKzcfv2vOPNa3i/3rwCq+sO69KlwXPa2yqzLKYvWRLfmDQp9v/FL2Li3Ll59ysuKoqxBxywh2f3dz1atdor1/0weX3Nmrh2+vQ44Fe/iu9OmRJZluXd7zODB+/hmQEAfLQJgACQmMoC0WTHrl3VHjd31arYlmefwR06JHV32rqtW+Pcu++OZ95+O+/2MT167OEZ/f3R1oHt2+/x635Y7cqyuGbatPj3p5/Ou31vfI0AAD7KPAIMAB8TO2p4Z9qOysqYvnhxHNe79/vGi3K5OGPAgEZ75PKHxx4bp/TrV2V8/D33xCsrV75v7KQ+feKsQYOq7Pvs22/HzQ2Yz87Kyvj5M8/E6HPOqbKt8z771Pl8DV3AY0yPHh/ZRUB6tW4d3xkzpsp4eUVFfOexxxp07p8980x88/DDI/eBz01Z06axT9OmsanA3a4AALyfAAgAHxM13QEYEfHQvHlVAmBExJdHjmyUANiqtDSuPOyw2Kdp0/eNb9y+Pe/Krl0SITodAAAgAElEQVTLyuIfhw+vMn5Qp04NCoARUXAl2WbFdf/1qE3z5rFi8+Z6z+WSYcPqfeyHQb6v0a4si3998skGraq8cvPmKN+6NdrluQO1WXGxAAgAUEseAQaAj4nahK0/vPJK7MrzCPHwLl3i0wMHNngO/zxmTJX4FxHx+MKFsT1PoFy6cWPe8wzv2jVa17CqcU0KPdb8ToFrVmdQAx7f3b9Nmzitf/96H7+3vbNxY9539TXJ5eLYXr0adO7ioqK8qyNv27Ur1mzZ0qBzAwB8nAiAAJCYQnf6tahhEZCIvwe3+15/Pe+235x2WrRv0aLe8xrWuXNcOXp03m2F7i58bfXqvOMlRUUxfujQes8lIuLUPI8hR0QsXr++4DHrtm7NO35mnseUayMXEf91+ulRXPTR/ZVs+65dsWDdurzb8t0ZWBcn9ukTJXk+N4vXr4/8b7oEACCfj+5vmwBAXoUeuezdpk2tjr/6ySfz3tHVqWXLePiCC+oVAXu2ahV/+exno7RJkyrb3lizJu557bW8xy1evz5eXbUq77Z/OfLIeq+ce2DHjnHZiBF5tz3wxhsFj1tW4O7A84YMicEdOtR5Ht896qj4RJ5Hrj8sahsmH3rzzbzjp/fvXzC01mSfpk3j3084Ie+2BwtcDwCA/ARAAEjM2gJ3qR3SpUutjn952bL43YwZebcN79Ilpo0fH4d3717r+RzZo0dMv+SS6Fkg1v3fJ54ouHJxRBS8I7F9ixbx8AUXRP927Wo9l4iIY3r1iskXXZT3jsjyiop4aN68gsc+W2Dl4OKiorjns5+NLrVcQKRJLhdXH3dc/PDYY2s36b2kY8uWtdrvrwWiaS6XizvGjq3zI849WrWKxy66KA4oEFVvnzWrTucDAPi4EwABIDELCzyOObpbt1q/N++bkyfHgrVr824b2L59PDV+fNx59tlxWv/+ed8tWFJUFMf26hV/OueceGLcuNivrCzvuf706qtxxyuvVDuXG557ruBiD4Pat48ZX/hC/OqUU2LkfvsVvGOtZUlJfHrgwLjvvPNi6sUXR6cCYet7U6fmfRfhux5fuDDWVFTk3da3bduY8cUvxucOPLDgPIpyufhE797xwj/+Y1x15JHv29bQRU12h3yrNeczef78eH7p0rzb9i0tjfs++9m477zz4pN9+0ZZnndARvw9oh7evXv86pRT4vUvfzlG7rdf3v3+PHduvPDOO7X7AAAAiAirAANAct4ssLpti5KS+NYRR8S/PPZYjedYt3VrnPXHP8YT48dHqzyLMORyuTh38OA4d/Dg2LpzZyxcty5Wbt4cW3fujA4tW8bA9u2jeQ2Ljry+Zk188f77a5zL8k2b4trp0+NfC9wt16KkJC4bMSIuGzEituzYEfPXro21FRVRsXNnNC8uji5lZdGnTZsoyuWqvc7UhQvj1y+8UO0+Oyor40fTpsXPTjwx7/ZOLVvGbWedFT898cSYunBhvLFmTWzcti3aNG8ePVq1iuP33z/vXYLTFi+Orz38cIPfa1hfG7dtyzv+w2OPjYM6dYo5q1bF+m3bonlxcfRu0yYuf+CB2FFZ+T/7ZRHx9UmT4slx4yKX5/Ocy+Xi9P794/T+/WNXlsW88vJYs2VLbNy+PUqKiqJDy5bRv127vI+Iv9eqLVvisgceaNDHCgDwcSQAAkBinitwJ1ZExLeOOCJmLFsWd82ZU+N5Zq5YEZ+87bZ44PzzC66YG/H31YUHtm8fA+uwEu7slSvj+FtuKfi48gf9eNq0OLhTpzj7gAOq3a9FSUkc2LFjrefxrulLlsSZd95Zq4Ulfvncc/GZwYNjVIE71CIiOu+zT5w3ZEitrv3ysmVx+h13VHvn4e42t8BiK0W5XHxm8OAq41958MEqY08tXhxfffjhuOHkk6u9VpNcLga0axdRx0e3l2/aFCfeemus3Ly5TscBAOARYABIzqwVKwo+ptokl4s7zz47TurTp1bnevbtt2Pkb38bLy9b1mjzu2vOnDjm97+PFXUIObuyLD43cWLcOXt2o80jIiLLsrht1qw46dZbY32Bu+A+aEdlZZxy++0xc8WKBl9/8oIF8Ylbbqn1tXeXu159NTYXWDymLn75/PPx9UmT3nd3YGN44Z134sibb45XVq5s1PMCAHxcCIAA0MgqsyzWbt2a98+euMtrZ2Vl3DpzZsE5rN+2rdo7+j5o/tq1MWrChPj6pEmxasuWes/r9TVr4qw//jE+c9ddBQNldbbv2hXn/fnPMfZPf4olGzbUex7vemnZsjjullviwr/8pc7xq7yiIg7/3e/il88/n3fF5JpU7NwZ33nssTjl9ttj3X/fBZkV+Huzq4aYVrFjR97jdtYhwi3btCkuf+CBahdjqa3rnnkmht94Y8EFU+rinY0b4wv33x+HTZgQ88rLG3w+AICPq1xEn6q/6RXlIr53wV6YDgDwYdaypCQ+M3hwnHfggTGmR48a3/O3YvPmeGLhwpjw8svx6IIFtXrEtjaa5HLxyb59Y/ywYXFkjx61Wq12V5bF66tXx+QFC+L3f/tb/G358kaZy4B27eKyESPi3CFDCi4u8q4Fa9fGnbNnx69eeCHe2bixUa7fmD7Ru3f8+4knxrDOnavdr9nVV8e2WsTs4V26xPhhw+Lkvn1j/zZtajWHJRs2xLRFi+K2WbNi0vz5sasRoiQAQFIeeTHimbl5NqyOiPXvHbgyIq6PEAABgHoqbdIkDurUKfq2bRtdysqiRUlJbNu5M8orKmJNRUXMXrlyj921tV9ZWRzcuXN0aNEi9i0tjbLS0qjMsli3dWus27o1lm7YEDOWLy+4mnBj6dOmTQzt3Dk6tmwZbZs3j11ZFpu3b49F69fH7JUrC66s/GEzoF27GN61a+xXVhalxcVRsWNHrKmoiIXr1sW88vJ4ux53YLZu1iyGdu4cXcvKYt/S0mhVWhrFRUWxftu2WLd1a6zesiVeXrbMO/4AAGoiAAIAAABAwuoRAL0DEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkrzjuaRcSjM/bsTAAAAACA6i1eVedDCgTALOKp2Q2dDgAAAACwl3kEGAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkrjsj+uerw+osjdg0qdFCTJk3immuu2Z3zAgAAAADyeOutt+LGG2/8wOjWgvvnCozfFxGnFzqopKQktm/fXvfZAQAAAAAN8uSTT8bRRx9d025XRsT1ER4BBgAAAICkCYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAAgIQJgAAAAACQMAEQAAAAABImAAIAAABAwgRAAAAAAEiYAAgAAAAACRMAAQAAACBhAiAAAAAAJEwABAAAAICECYAAAAAAkDABEAAAAAASJgACAAAAQMIEQAAAAABImAAIAAAAAAkTAAEAAAAgYQIgAAAAACRMAAQAAACAhAmAAAAAAJAwARAAAAAAEiYAAgAAAEDCBEAAAAAASJgACAAAAAAJEwABAAAAIGECIAAAAAAkTAAEAAAA/j975x1WxfH9//elFxGsKDZssaAiKoqg2LCgWFBQjBpbNJbYkk+sMcauMZZoNIndxK5YUKMgWBCNiIJdQeyIiiKCSof5/eFPvl529t69e+8FxPN6nvs8cnbnzNl1d3bmzMw5BEEUY8gBSBAEQRAEQRAEQRAEQRDFGHIAEgRBEARBEARBEARBEEQxhhyABEEQBEEQBEEQBEEQBFGMIQcgQRAEQRAEQRAEQRAEQRRjyAFIEARBEARBEARBEARBEMUYcgASBEEQBEEQBEEQBEEQRDGGHIAEQRAEQRAEQRAEQRAEUYwhByBBEARBEARBEARBEARBFGPIAUgQBEEQBEEQBEEQBEEQxRhyABIEQRAEQRAEQRAEQRBEMYYcgARBEARBEARBEARBEARRjCEHIEEQBEEQBEEQBEEQBEEUY8gBSBAEQRAEQRAEQRAEQRDFGHIAEgRBEARBEARBEARBEEQxhhyABEEQBEEQBEEQBEEQBFGMIQcgQRAEQRAEQRAEQRAEQRRjyAFIEARBEARBEARBEARBEMUYcgASBEEQBEEQBEEQBEEQRDGGHIAEQRAEQRAEQRAEQRAEUYwhByBBEARBEARBEARBEARBFGPIAUgQBEEQBEEQBEEQBEEQxRijwjagINmwYQMCAwMF8smTJ6NZs2Z6q3fo0KF49+6dkszMzAx///232rLTpk3D3bt3lWTe3t7o37+/Tm0kCILQBVFRUVi4cKGSzNjYGNu2bSsUe/bs2YM9e/YoyapVq4YlS5YUij3EexYtWoTIyEglWfv27TFq1KhCsoggCEIec+bMwfXr15VknTt3xvDhwwvJIkJfrFy5EmFhYQCA8uXLY9WqVVAoFIVsFUEUDhkZGRg5ciTS0tIAAN27d8egQYMK2SpCHZ+VAzAqKkowEASAAQMG6NUBeODAAbx+/VpJVqJECUllg4ODcfHiRSVZ7dq1dWYbQRCELnn69KmgnTUzMyska4AbN24I7GnUqBE5AAuZsLAwHDlyRElWsmTJQrKGIAhCPqGhoQgJCVGSlS9fvpCsIfTF2bNn8d133yEnJwcAsHbtWnL+EZ81pqamqFatGubOnQsAOHToEJycnNCgQYNCtoxQBW0BJgiCIAiCIAiCIAgOb9++xZAhQ/Kcf40bN8awYcMK2SqCKHymTp2KKlWqAADS09MxePBgZGZmFrJVhCrIAUgQBEEQBEEQBEEQHCZOnIjY2Ni8v5cvXw5DQ8NCtIggigYWFhZ5KwABIDIyEgsWLChEiwh1fFZbgImCpUOHDkhOTlaSLVq0CB4eHoVkEUEQhGZ4e3vj8ePHSrLp06ejd+/ehWSR5nTt2hUJCQlKstmzZ6Nbt26FZBFBEARRlDhw4ADmzZunJKtcuTIOHDhQSBYVHcLDw7Fx48a8v9u3b4+2bdsWnkEEUcQYOHAgFixYgJiYGADA4sWLMXjwYFSvXr2QLSN4kAOQ0BtXrlxBYmKikiwpKamQrCEIgtCcGzdu4M6dO0qyFy9eFJI18rh27Rri4uKUZPnbZoIgCOLz5cWLF7h06ZKSLH/88s8RxhgmTJgAxlie7McffyxEiwii6GFoaIgpU6bkJT5KT0/HDz/8gL179xayZQQP2gJMEARBEARBEARBEB/xzz//IDw8PO9vFxcXtGvXrhAtIoiiyaBBg2Bvb5/3t7+/P44fP154BhGikAOwiBMREQHGmNJv/vz5hW0WQRDEJ8HPP/8saEOvXLlS2GZ99hw+fFjw/7J+/frCNosgCIIgAABZWVmYOXOmkmzatGmFZA1BFG2MjY0xadIkJRmtli2akAOQIAiCIAiCIAiCIP4/W7duxaNHj/L+rlKlCsXOJQgVDB48GBYWFnl/X7hwAcHBwYVoEcGDHIAEQRAEQRAEQRAEASAnJweLFy9Wko0YMYIy/xKECqytrdG3b18lGWUELnqQA5AgCIIgCIIgCIIgAOzbtw/R0dF5fxsZGWHYsGGFaBFBfBp88803Sn+fPHkS//33XyFZQ/AgByBBEARBEARBEARBAFizZo3S3x06dEClSpUKyRqC+HRwcXFBnTp1lGT53yeicDEqbAOIguf+/fsIDw9HbGwskpKSkJKSAkNDQ9jY2MDW1haOjo5o1qwZSpYsWdimquTVq1cICwvD7du38ejRI6Snp8PQ0BBmZmawt7dH/fr14erqCisrK73ZwBhDVFQULly4gOjoaLx9+xYGBgYoXbo06tevj/bt2xdKhyEpKQmHDh1CZGQkUlNTUapUKXh7e8PFxUUjPQ8fPkRkZCRiY2Px9OlTvHv3Djk5OTA1NYWVlRXKlSuHBg0aoGHDhrCzs9PT1Qi5fPkyzp8/j9u3byM1NRUAYG5ujjp16sDNzQ2Ojo6S9OTk5ODixYuIiorC8+fP8fLlS6Snp8PGxgaVKlWCq6srmjRpAiMjair1xe3btxEWFoaYmBgkJycjJycHZmZmqFatGho0aIDWrVujRIkShW2mXnj48CHCw8MRExOD169fIzk5Oa8tLleuHBwdHeHs7Axra+vCNlUSubm5OHnyJEJDQ/H06VOYm5ujbt26GD16dKHYk5mZibCwMERFReHhw4dIS0uDkZERSpcujerVq8PV1RX16tWDQqHQed1PnjzBqVOncOvWLbx48QK5ubmwsLDAF198ARcXFzRt2lTndRIEwefFixc4deoUbty4gWfPniEnJwfGxsaoWrUqGjZsCHd3d732FeXy8uVLnD17Nq+fm5GRkdfPrV69OhwcHNCyZcsi/41MTU3FpUuXEBkZiYSEBCQlJSErKwslSpSAjY0NatSogebNm+OLL77QS3usKbGxsTh9+rSSzMfHR+f1JCcnIywsDDdu3FAax1hYWKBatWpwcHCAq6srLC0tdV63GNevX8f58+fz+mS5ubmwsbFBhQoV0Lx5czg7O8PMzEwvdcfHx+PMmTOIiYlBfHw8srKy8vpENWrUQKNGjeDs7FxgffLIyEgEBQXhwYMHMDQ0RPny5TFjxgyN6//Q/ty8eRPx8fHIzc2FmZkZatasiebNm8PFxQUGBsVrTZaPj49S0lJ/f3+sWrUKNjY2hWgV8QEa1RZx5s6di2vXrinJvL290b9/f430PHr0CBs2bMCmTZvw+PFjtecbGBigY8eOGDVqFHr06KG2YTp27Bg2btyoJHvz5o3gvOXLl2PPnj1Kstq1a0vObJyTk4Ndu3Zh3bp1CA0NRW5ursrzDQ0N0bFjR4wcORK9evXSWcciJSUFv//+O/7880+V91OhUKB9+/b46aef4O7unif/+++/cfjwYaVzra2tsW7dOlFd/v7+2LVrl5Js1KhRaN++fd7fWVlZWLhwIZYsWYK3b98qnWtjYyPJAZiQkIDffvsN/v7+Stsf1OHo6Ih+/fph5MiRKFOmjORyAPDu3TsMHTpUSWZvb49ffvkl7+/c3Fxs3LgRixcvRmxsrEp9Dg4OmD17Nvr06cM9npaWhpUrV2LVqlV48uSJSl12dnYYN24cJk6cqLdOz+dGTk4ONm3ahGXLluHWrVsqzzUxMYGXlxcmTpyI1q1ba1zXv//+i82bNyvJqlWrhiVLlgjODQsLw8qVK5VkT58+FZy3bt06hISEKMkqVqyI3377Ta09T548wYYNG7Bx40Y8fPhQ7fkKhQIdOnTAN998A29vb7Xxh06cOIE///xTSZaYmCg4b/Xq1YI2KP87B7wfgI4ZM0ZJVq9ePcyePVtJdurUKYwePRq3b99Wkos5AFeuXImwsDAlWfv27TFq1CiRK3vfvg0YMEBJxrvvz549w+LFi7Fp0yYkJyeL6gOAGjVqYMyYMRg9erRS4Go5MMbg7++P5cuX49y5cyrPrVmzJv73v//h66+/zhtM3Lp1C7NmzRKcO3fuXMFsOkF8zjx9+hQTJkxQkjVq1EiQcfL06dNYuHAhgoODkZOTI6rP2NgY3bt3x6RJk9CqVSu92CyV7OxsbN++HevXr0dYWBgYYyrPNzIyQufOnTFy5Eh0795dcj939OjRSt+Ge/fuCc55/vy5IJ4XAEyePBnNmjVTex1HjhzB2rVrERQUhOzsbLU2VaxYEcOHD8c333yDypUrS7gK/bBx40al+25kZISePXvqRDdjDAcOHMCff/6JkJAQlc8l8P7Z9PT0xJgxY9C5c2eN61u0aBEiIyOVZEuXLkWVKlXy/s7KysKmTZuwdOlSxMTEqNRXokQJfPXVV/juu+9Qs2ZNje3JT1paGjZt2oT169cjKipK7fklS5ZE3759MX78eDRs2FDj+oYNG6Y0PjI3N8eWLVuUzomOjsaoUaNw6tQpQfnJkydLdgAGBQVh6dKlCA4OVjletbOzw4QJEzBu3DiYm5sDeO80HDt2rODciRMnwtXVNe/vV69ecftNvXr1wpdffinJTjHS0tIwdOhQge1ubm6C9jc/+R2AaWlp2L59u6A/SRQtAgAwsZ+xsTH7FBk7diz3eg4cOKDXem1sbAR1lihRQlJZDw8PQdnp06dLrjsjI4PNmjWLmZiYiP5/qvu5u7uz2NhYlfWsWrVKtn4XFxdJ1xIaGsrq1q0rux4nJyd24cIFyfdOjD179jBbW1uN6lYoFGzEiBEsLS2NMcbY0qVLBefY2tqqrHfOnDmCMuvXr887npSUxNq1aydqw4IFC1Tqz87OZrNmzWIWFhay7zEAVrp0abZ69WqN7mlSUpJAT+PGjfOOP3r0iLm4uGhsy/Dhw1l2drZSXZcuXWI1a9aU9fzcv39fo+v6HDly5Ijg3pmZmeUdv3PnDmvatKmsZ6tXr17s6dOnGtmzfPlygZ5GjRpxz922bZvs5/6LL75QaUdmZiabN28eMzMzk12Hq6sri46OVlnP+vXrZev/+J37wMOHDwXnubu7K52zbNkyZmBgwNVZt25drp0DBgzgvq+qSE9PV3vfd+3axUqVKqXxtdepU4dFRESorF8VMTExrGXLlhrX27RpUxYTE8MYY+zevXvcc86ePSvbLoIojkRHRwvek44dO+Ydf/36NbeNkfLz8fFhL1680MieDh06CPSMHTtW4+sKCQlhtWvXlt2GN2vWjEVGRkqqq3LlyrLrUTduunTpEmvcuLFs/ZaWlmzVqlUsNzdX43uoLTk5OczOzk7Jnvbt2+tEd0REBHNycpJ9X9q1a8fu3bunUZ3dunUT6Ll27Vre8ejoaNasWTONbbGwsGBr1qzR6n7s2rWLVapUSda9MDAwYF9//TVLSUnRqM7SpUsr6bGyslI6fuTIEVaiRAnRelNTU9XWER8fz7p27arxNdWuXTuvH5Kens7tV+3cuVNQX4MGDQTnNW3aVKP7wmPnzp1cO3fs2CGpfP6xVrNmzbS2ieBz+vRpKc/YRKiBHIA6pLAcgElJSaxFixayPzQf/0qVKsWuXr0qWpc+HYC5ubls/vz5ogNMTX5GRkZs1apVku4fz44ffvhBq/pbtWrFkpOT2f79+wXHtHEAvnv3Tu3gU5UD8PXr16xz5846eVY+/L799luWk5Mj6d6qcgDevHlT0BnT5PexU+HUqVNaOTjr16/PkpOTJV3T54oqB+DFixdZmTJltHquKlasyC5duiTZnqLgAExJSWGtWrXSyXtVsmRJlddf0A7AZcuWqdRZkA7AJUuWMIVCIfv6raysZE0SHTt2jFlZWcmut0yZMiw8PJxlZWUxY2NjwXFyABKEMqocgI8fP2YODg5atbOVK1dWcpKoQ1sHYG5uLps1a5ZW7deHn7GxMVu7dq3aOvXlANy8eTMzMjLS+joAsJEjRxa4E/Ds2bMCOxYvXqy13hUrVujkvlhbW7Pg4GDJ9apyAEZERLCyZctqZc/8+fM1vhcZGRls2LBhOnlGateurZFTVJUDMDAwkPsN/vinzgEYERGh8SKRj38WFhbsyJEjjDHGqlSpIjjOcwDyxocANHYW56dHjx7c50+KE5Qxvt/l4cOHWtlE8NHUAVi8NpwTeaSlpaFjx44IDw/Xib6kpCR07twZCQkJOtGnCVOnTsWMGTPUbveVQnZ2NsaNG4dFixZpXHbSpEncbYOaEBYWBm9vb53HBRw5cqTsDEs5OTno06cPAgMDdWrT77//rnXQ17i4OHTq1Anx8fGydWzYsAHbtm1DeHg4unfvnhczUA43b97EzJkzZZf/nLl//z48PT2521E14enTp+jQoQOuXr2qI8v0S0ZGBjp37izY7iqXlJQUdOnSRat3QlcEBgbif//7X2GbAQBYv349fvjhB7Xb5VTx5s0b9OzZEykpKZLLBAUFoUePHtyQF1JJTExE165dERsbq7QtiyAIzXj16hU6d+6MGzduaKUnLi4Obdu2FYQ00BcTJ07E7NmztWq/PpCVlYWRI0dixYoVOrBMM3bs2IFhw4ZJ2u4rhbVr12LBggU60SWVgIAAgaxdu3Za6Zw5cyYmTpyok/uSnJwMLy8vQYxCTYmNjUWXLl3w8uVLrfTMmDFDo/FDZmYmevXqJQgbJZc7d+7A3d1dbTgfddy7dw++vr7IysqSrSMqKgodOnTA8+fPZetITU2Fj48Pzp49ixo1akgqw9umDwB79+6VbUdiYiKOHTsmkPv4+ORtU1ZH27ZtBbJDhw7JtonQHRQDsJgyd+5cXLx4kXvMwsICXl5ecHV1RfXq1WFhYYHMzEzExcXh3Llz2L9/P3cA9PTpU8yaNQt//PGH4JiDgwNGjhypJPv777+Rnp6uJPPw8BA0aNWrVxe9jvXr1wtiUn1M6dKl4evri6ZNm8LOzg6MMTx58gQXLlzAvn378Pr1a2656dOno3bt2qIx4vKzdu1alfG9GjZsiL59+6JGjRooX748nj9/jrt372L37t2CjuiJEyfw119/SapXCrt27cK2bdvUnifWYK9Zs0YQz+wDBgYGcHd3R7t27VC7dm2UK1cOwHsH86NHjxAZGYnDhw+LOoanT58OPz8/lC1bVuLV/B+ZmZnw9fVFXFxcnszW1hZjxoxBz549UatWLRgZGSE+Ph7BwcFYtmyZaGd90qRJyM7OVhqkm5qaYujQobEyKSIAACAASURBVOjfvz/q16+P0qVLIyEhAWFhYVi1ahVCQ0O5utatW4cff/wx714Q6snNzUX//v3x4sULwbEmTZqgW7dusLe3h7m5OZ49e4Zr165h//79ou/v69ev0aNHD1y+fFmnAYVr1aolaMd27doliCPXunVr1KtXT0lma2vL1bl48WJR57y5uTm6du0KNzc31KxZExYWFsjKykJcXBzOnz8Pf39/bgy7Fy9eYMaMGdi0aZPgWN26dQXXsG3bNrx7905J9uGd/hhNnE+vXr3CsGHD1E7MFETczAsXLnDjFH711Vfo2rUrKleuDBsbGyQmJuLixYvYtWsXtm/fzu3oP336FIsWLZI06IyNjUXfvn2RmZnJPV6uXDn069cPTZo0QcWKFfPazcDAQAQFBSnFfkpMTESfPn1ga2vLjcVFEIRqGGMYOnQobt68KThmb2+PPn36oGbNmihbtiyePXuG2NhY+Pv7izoOEhMT4eXlhaioKL0mCPn9998FsWc/pmzZsvD19c1rR3JzcxEXF4fw8HDR/joAfPfdd6hVqxa8vLy4xwcMGICkpKS8v2/fvi3o95QsWRJ+fn6Csvb29gLZs2fPMGbMGNFvgoODA7p164ZGjRqhfPnyUCgUePXqFW7evJmXtI7H/PnzMWjQIFStWpV7XNfkdwDa2NigSZMmsvX99ddfmDdvnujx+vXro0ePHqhfvz7Kly+P9PR0PH78GMHBwQgMDBSMowAgPT0dPj4+uHz5sqwFBWlpaejXr5/ShKyNjQ0GDBiAPn36oE6dOrC1tcW7d+8QHR2No0ePYs2aNaKOrUmTJuH69euSElmMHDkSR48e5R4zMDBAy5Yt0a1bN9SoUQNlypTBq1ev8ODBAxw6dAjnzp3jPl9xcXHo3bs3zp49KytBSE5ODgYPHqx28s/MzEw0xubLly/Ro0cPUR3W1tbw9fVF8+bNUalSJWRnZ+Px48c4efIkDh8+jIyMjLxz09LS4OvrCycnJ0n216lTB40aNRJMjPv7++OHH36QpCM/e/fu5fZtvvrqK8k62rZtC4VCoTSxERAQwI1tSBQNaAuwDinoLcBxcXGiS5iHDRvGXr58qbJ8YmIi69evH7e8kZERe/bsmSTbeVv9du/eLaksY+9jKpmbm3PtMDMzY4sXL2YZGRmi5dPS0tjs2bNF74WNjY2keGIxMTGi20bt7e1ZSEiIyvJHjx4VxLhQKBSCrR5ytgDPmTNHsJzd1NSU9enTh23atIldunSJvX79WlRneno6q1ChAvfaXF1d2c2bN9Xen4yMDLZixQpmamrK1SNlKwpvC3D+38CBA9Vei5+fn6Ql9k2aNFEbS23BggWi5bdt26b2mj5XeFuAeb+GDRuy8PBwUT1paWls1apVzNLSUlTH4MGD1dqjyRZgHrx4TH/++aeksgkJCaIx/wYOHMgSEhJUln/9+jUbNGgQt7yBgQF79OiRJDt4W722bNkiqazYFuC+ffsK5I0bN2aLFi1iwcHB7OnTpywrK0tUr662AFetWlUpNqyJiQlbsmSJyroZYywyMpJVq1aNe28rVaqkdttZTk6OaIgNU1NT9ssvv7DMzEzR8vfv32ft27cXlOVtAaQtwAShDG8LMK+/aGtry/z9/UXDkeTk5LA9e/aI9oOA99tQ1SF3C/CNGzdE+04WFhZs2bJlKtuR1NRU9uOPP4puLS1btqzaPv8H1q5dKyhfs2ZNSWUZY2zUqFGi7emHLY2qCAgIEI3fOn78eMl2aENsbKygbi8vL9n6Ll++LPr/W7duXbX3JSEhgY0YMUI0BFLPnj3V2sDbAtyxY0elv3v37q12PPT69WvWs2dP0ffkv//+U2vLxo0bRct37NhRZagpxhi7fv0691378Fu0aJFaG3hbgBcuXCjQZW9vz6ZPn84OHTrEHjx4wNLT01Xq7d27N9cmQ0NDNmXKFPbu3TvRsgkJCczHx0dSf4C3BZgxxubNm8ctL3fLbevWrQX6qlevrvGW/IYNGyrpMDExYW/fvpVlEyEOxQBUwefiAOQNeAGw77//XrLNOTk5zNPTk6tn48aNknRo6wD08vLi1l+qVCkWFRUlWc+5c+dEA7oOGzZMbfnu3btzyzZv3lxyPLgXL16w+vXrq3wx5TgA8zsm+/fvr9ap8DEBAQFcW1xdXSXHePjA4cOHuR+rPn36qC2rzgE4atQoSR+d9PR0bjDcj3/Ozs4qHYkfI+Z8GTNmjKTynyNSHIC+vr5qO1MfuHPnjqijRqFQqI0HWJgOwD/++EPr5yc3N5d5e3tz9UgNwK1rB2D+dqdmzZrs9OnTkq+JMd05AD/+GRsbs/3790u24ebNm6IO5itXrqgsu2HDBm45KysrlY7tj8nJyREdNH/8IwcgQSjDcwDm/zk6OkruD7148ULUoW9gYMAuX76ssrxcByCvjw+AlStXjl2/fl2S7Yy9H/yJTVRL/d5o4wDMzMwUOFaA9w5ITRwQZ86c4Tq77O3tJevQhi1btgjqnjVrlixdubm5zNXVlft/4unpyd68eSNZ144dO0STOZ45c0ZlWZ4DMP93V2q87oyMDObm5sbV8/PPP6ss+/LlS9EY0FOmTJHsWFIVj93a2pq9evVKZfn8z6mRkZHSvS1dujT7559/NHJ0BQUFifZJpDi/PzB37ly17ZqYAzAmJoZ7/rJlyyTX/4EHDx5wx3M//fSTxroGDx4s0HPy5EmN9RCqIQegCsQcgI6OjszDw0NvP97MnD4dgLxkDuXKlVO5Wo7H1atXufdryJAhkspr4wCMjIzk1m1qaiprMBQYGMgMDQ0F+oyMjNiDBw9Ey4ndA3t7e/b8+XONbLh//77KYLtyHIAf/xYuXKiRPYwxNn78eIEehUIhaeUfD57TuHnz5mrLqXIANm/eXOUMeH62bt0qqsvGxkajTL53797ldka9vb0l6/jcUOcAdHd3l+z8+0B0dDQrV64cV9/QoUNVli1MByBvttzGxkblTDAPsY6dn5+fpPK6dgB+/HN2dtZoIPMBfTgAlyxZorEd06dP5+o6dOiQaJnc3FxWq1YtQRkDAwN27NgxjerPzs5mXbp0UXld5AAkCGXUOQCrVKnCnjx5opHOly9fsnr16sn6zshxAJ47d45bl7m5uayM5IcOHeIO2k1NTVl8fLza8to4AMPCwrjXsmLFCo2vQ2zCqyCSB4wePVpQr7+/vyxdBw8e5F6Hi4uLxuMxxhj7+++/ufrUrVBU5QB0c3OT7Pz7wKVLl2S9I9OmTeOWk5MtmzHGxowZw9WnLikJz1H94VexYkWNxggfaNOmDVffhg0bNNY1dOhQlW2bmAOQMcbNMO3m5qaxDbwVkQqFgsXExGisi5coTlVSSkIe5ABUgZgDsDB++nQA8laaSR0o5oc3cOzUqZOksto4AIcPH869b1OnTpV1HYwxNmLECK7OGTNmiJYZN24ct4zcVaO///676DOhjQNw0KBBsuzhfbRat24tSxdjjP3yyy8CfdWrV1dbTpUDUNOVRa9evRLdLjF79myNr6lx48YCPW3atNFYz+eCKgegmZmZ7Kxk27dv5+q0sLBQuaKzMB2ATZo0EZSVsmVHqh1S31V9OQBtbW0lDSx56NoB2KRJE5adna2xHTdv3uTq27Rpk2iZkJAQbhl1AyAx7t69K7pNDCAHIEHkR50DMCAgQJbeCxcucPsPlpaWLCUlRbScHAcgrw0E1K+kUoXYroW5c+eqLauNA3Dnzp3cetWFWpFqByBti6m28Pp7sbGxsnTxtlBaWlpKDt3Bo3///gKdhoaGKp3dYg5AIyMjduvWLVl28MaZ3bt3Fz3/3bt3zNraWlCmYcOGspyhjL0PE8Nz2NesWVPl6j0xB6ChoSG7cOGCxnZER0dzHe8eHh6yruvVq1cqnZSqHIA8x52BgQGLi4vTyAbeTipXV1dZ18PrL6l6Vgh5UBZgghtov2TJkrJ0TZ06FVOmTFH6iQUU1hVZWVnw9/cXyMuXL48ZM2bI1jtv3jxYWFgI5Dt37uSen5aWhq1btwrk7u7u6NmzpywbRo4cqTLpiRyMjY1VBhhWxdOnTwUyV1dX2bbwkn1ok725cePGcHd316hMqVKlYGdnJ5AbGhoKEgVIoWHDhgKZrjLcfW5MnDhR9vPv5+eH1q1bC+SpqanYtWuXtqbpBV22xf/73/8EbbG3t7e2JmrFpEmTULFixUK14QMTJ06EoaGhxuXq1avH/S58nKAjP+vWrRPITE1NMX/+fI3rB4AaNWrg66+/llWWIAhlPDw80L17d1llnZ2dMWTIEIH83bt3on1FOaSlpeHgwYMCuZ2dHSZPnixb78KFC2FqaiqQ69J2HrxvHSDve9e6dWvBt27KlCk6TfjFIy0tDdeuXVOSWVpaSs7E+jF3795FWFiYQD527FitMr3PmTNH8J3LycnBgQMHNNbl5eWFunXryrKjadOmApmqvv7+/fu5Cc1mz54NExMTWTaYmZnhxx9/FMjv3r2Ly5cva6zP19cXzs7OGpdbv349N3v3r7/+qrEu4P0YRm4b4OvrK5Dl5uZi3759knVcvXoV169fF8g1Sf7xMbwxVEREhCxdhO6gLMDFkBIlSgg+xnJftsLI1HP58mVu9k8/Pz+UKFFCtt7y5cujR48ego7Q3bt38fjxY8FH+eTJk0oZ0j4wbNgw2TYYGxvDz88PCxculK0jPz4+PrKzox0/flzgzCpTpoxsW7Rx9vHw9PSUVa5UqVJK2YOB9x17OdmIS5cuLcsGQhmFQoFRo0ZpVX7ChAk4c+aM4NiZM2cEmW+LArz26uLFi2CMiWaSE6OoXZ+5ublW/5+6pGTJkvDx8ZFdvmzZsnj06JGkc7OysgRZIgGga9euWjlDv/rqK6xevVp2eYIg3jN69Gityo8fPx4bN24UyI8ePYoRI0ZopfsDFy9exNu3bwXygQMHwtzcXLbeSpUqwdPTU+AQunHjBl68eIFy5crJ1q0Ksb55RESExs7YunXrYtGiRbowSyPu378vmPipXLmyxt9qADhw4IDAKaRQKDB+/HitbKxVqxY8PT1x+PBhJXlgYKDGE9zajGU07Uvv379fIKtevTp69eol2wYA6Nu3L7777jtBduLAwEDJGXQ/MGnSJFk28BasNGvWDI6OjrL0Ae/bgenTp2s8pqpZsyaaNm2KS5cuKcn37t2LcePGSdKxbds2gczU1BR9+/bVyJYPlCtXDhYWFkhNTc2TPXv2DCkpKbInxAntoRWAxRDe7FJUVBTWrFlTCNZoTnh4OFc+YMAArXX379+fK+c5SM+fPy+QmZmZab3qhjdDow0eHh6yy1atWhU1atRQ+llbW8vW9/DhQ9lleTg4OMgqZ2QknNvQpS5Cc1q1aoVq1apppcPLy4vrkBVrMwobXlt869YtLFu2rBCs0S3Ozs5atRW6pEWLFloNmjVZOXj16lWljuwH/Pz8ZNcPvL+f2r4fBPG5U6pUKXTr1k0rHY6OjmjcuLFArstVK4XRz71w4YLWusUQW9U2depUvHr1Sm/16pLY2FiBTO5qvePHjwtkzs7OqFSpkix9H9O5c2eBTNMVbwYGBtwdFVLR5JuZm5uLkJAQgbxHjx6ynKsfY2RkhA4dOgjkmt4PGxsbNGvWTOP6ExIScO/ePYFc2/5ApUqV0LJlS1lleY66s2fP4tmzZ2rL5ubmYseOHQJ59+7dUapUKVn2AO8d6fm5e/eubH2E9tDIFu9n3uvXr683/T///DPS09P1pj8/bdu2RWhoqED+7bffIiIiAnPmzNFqCbq+4XWMLCwsuEvONaV169ZQKBSCmbkLFy6gd+/eSjKeA9DR0VHrGQtHR0fBbIg2yP1I6JrHjx9zt8Zpg5wVe2Loa+abkEb79u211mFqaor27dtj7969SvLY2FgkJiZqtXpVH7Rp0wZBQUEC+Q8//ICoqCjMmzcP9vb2BW+YDtAmVICuad68eYHVJTZw12YwBbxfHdKyZUudT6IQxOeEm5sbdwuspnTp0kXgRIiLi8PTp091EvaA147Y2Nhwt8tpiljYlIiICK2do2K0bNkSJiYmyMzMVJLfvHkTzZo1w/z58+Hn56e1w0ef8BwSPMeFFPKvwALej810QYsWLQSyx48fIzk5WfKkXJ06dfS+pfoDd+/e5e7q0tX9cHFxwfbt25VkvC2s6nQYGGi+Jkpf/QHgfR/r7NmzGpfz9fXF1KlTlca5OTk52L9/v9rV0WfOnMHjx48Fcrnbfz9QuXJlxMTEKMnu3r2r8SpNQneQAxBA7969Zcd0k8KiRYsK1AE4dOhQLFq0SPAhZoxh8+bN2LlzJ7p164YePXqga9euOnWy6IIbN24IZI6OjrLiO+WnVKlSqFq1qmCQdfXqVcG5Fy9e5NqhLQYGBnBwcNDJbLKBgQHq1KmjtR65ZGZm4saNG9i6dSs2btzI/chrg7GxcZHURWiOLhz4H/TkdwAyxvDgwYMi5wAcMmQI5s2bh7S0NCU5Ywzbtm3Dnj170LVrV/To0QPdunVD+fLlC8lSzalXr15hm5BHQU5o8dptW1tbnTgFGjRooLUOgvicadKkiV71XL58WSfvOq+f6+TkpBMHWYUKFWBrayvYFsnr5+oKCwsLfPXVV1i/fr3g2P379/Hll19i7ty58Pb2Ro8ePeDs7CzL4aJPeGEgKlSooLGe58+f4+XLlwJ57dq1ZdmVH55NjDHcuHFD8sScXMemHHjPOvB+O7MusLW1FchiYmKQmZkpOb6g3P4Mrz9gaGioE0e+3P5A9erV4ezsLFjxu3fvXrUOQN7233LlyqFLly6ybPkA75mVGnaF0A/kACyG2NvbY/r06fj555+5x9PT0+Hv7w9/f38YGBigYcOGaN26NVq1aoXWrVtzEygUJLztArocbNavX1/gAMxfZ0ZGBjf+n9yAufmpU6eOThyAJUuWLJBOVFJSEu7cuYOYmJi83+3bt3Hz5k1kZWXpvX7i00fuFuz8NGrUiCvnva+FjZ2dHWbNmoWpU6dyj2dmZuLAgQM4cOBA3sSAu7s73Nzc4O7urpPtQvqiqGz/BaDV1hRNyT+oBnT3XdCVHoL4XNHVd0Zsslcs2YWmFEQ/N39bpe+tuLNnz8aRI0e4yeWA9+Evbt26hQULFqBMmTJwc3PLG3s0bdq00Cdp37x5I5DxEkSpg+f8A97HitNFvz//4o4P3LlzR7IDsCC/mWL349dff9XJal3eirWsrCzcv39f8gIJuf0Z3rbaatWqaRWS5APa9Ad8fX0FDsDQ0FCVcUAzMjIEk+vA+5AC2r6blpaWAllKSopWOgntIAdgMeWnn35CQkKC2rh/ubm5uHLlCq5cuYLff/8dwPsgoh4eHujSpQs6deok6wOoDbxVZLpcqs6LIZbfeSDmTNCVHbr6+OpjEJ6cnIwzZ87gzJkz+O+//3D79m2ddXqJzxddPfNinZei6AAEgClTpiAhIUFt3L/c3Fxcu3YN165dy0sGUb16daW2WJskSLqmKDkAeZ1LfcF7znT1XSioLVkEUVzR93dGV7scikI/V9fY2dnhyJEj6Natm6gT8AOJiYkICAjIS6hkYWEBV1dXdO7cGd26dSuUFea8pCxyHDlijtZjx45prEsTNHk2C/KbKXY/tmzZotd6eVmHxZDbnymq/QFfX19MnjxZaRtwdnY2Dhw4IJrI6OjRo9zr0Xb7L8B3pPMc7kTBUbTWXxM6Q6FQYPXq1di+fbvGK/ru3r2Lv/76C97e3rCzs8OYMWO4wXH1QU5ODndWQJeZgni68n84xTpKuhr06up6dPkRP3XqFAYMGIAKFSqge/fu+OWXX3DmzBly/hFao1AodPbMi3WKdL39XJcsXboUe/fu1Xir6v3797Fu3Tr06dMHdnZ2GDlyJKKjo/VkpWYUJWdkQcL7Nujq2aaMeAShHbrqo1lbW3N3V+jiO5OamoqMjAyBvKD7ufrAyckJly9fho+Pj0bbmVNTUxEcHIwffvgB9evXh4uLC7Zs2SLIyqtPeA5AOQsgCivpiSYOlYKMxVhYk7Oa3A+5/Zmi2h+oVq0aN1Ykb4XfB/LHUQTeryTWRfge3nvEe9+IgoMcgMWc/v374+7du1i5cqXo1jlVJCcn448//oCDgwN++OEH0aXnuiI7O1uQoAPQbfw2MzMzgezdu3dKf4s1TLrKCMuzQQ66+IjHxcWhU6dOaNeuHbZv365xvEojIyM0a9YMCxcuxE8//aS1PUTxw8DAQGdb1cU65LrYSqJP+vTpgzt37mDNmjWyAh+/efMG69atQ8OGDTFhwoQCjStL/B+8QYWuvk+6+i4QxOeKrt5FAwMDbvwwXQxaxcKmFHQ/V1+UL18ee/bswaVLlzBw4EBZE9Xh4eEYMmQIGjduLJpoQdfk5uYKZHL62LpK8KcpRdWhUlDPXX4K4n7w6igq/QFeNuCTJ09yHdQpKSk4dOiQQK6L1X8AP2t0dna2TnQT8qAtwJ8BZmZmGDduHMaNG4crV64gICAAgYGBCA8Pl/wCZmZm4tdff8X58+fx77//wsrKSi+2mpqawtzcXBA0X5exAngDuPyzxmIzL7paslxUlj7funUL7dq148a14mFnZ4f69eujfv36cHBwQOPGjdGoUaO8D9WmTZv0aS7xiZKTk4N3797pZNWY2CqGgoxpIxdTU1OMHj0ao0ePxvXr13Hw4EEEBQXh3LlzktvirKwsrFy5EuHh4Th69Ogncd3FiZIlSyI+Pl5JpqvvU1H5LhDEp4om2/5UkZGRwZ1k0UXf18rKCgYGBgKHU0H3c/WNk5MT/vnnH7x9+xaHDh3CsWPHEBQUxI2bJsb169fRpk0bbNmyBf369dOjtfxVYPnHIlIQu89dunTR29gJAL744gu96dYG3v0wMTHRa/JNAAWSFI43Viwq/QEfHx98//33SotqsrKycPDgQQwdOlTpXH9/f0F7Z2BggAEDBmhlwwd4TvHPdRdJUYEcgJ8Zjo6OcHR0xMyZM5GSkoIzZ84gNDQUZ86cwcWLF9UmdAgLC8PAgQNx8OBBvdloY2OjVwcgz4GQfxDNi5+iSzuKQvDT1NRU9OrVS9T5p1Ao0LRpU3Tt2hUeHh5o0KABORsI2SQnJ+vkgy+2neRTezYbNGiABg0aYMaMGXjz5g3CwsLy2uOIiAi1q63Dw8Ph5+eHY8eOFeh2ns8d3rehOH0XCOJTRlcOQLGJJrG+oSYYGBjA2tpa8C0r6H5uQVGiRAn0798f/fv3B2MMN2/exOnTpxEaGorQ0FC18QIzMjIwePBgVKtWDS4uLnq1Mz9yHIBi93n27Nlo3ry5xvo+dXj3Izc3F7t27frk+y5FuT9QpUoVtGzZEufOnVOS7927V+AA5G3/bd++vc6yRfMcgPp0hhPqoS3AnzElS5ZEt27dsHjxYpw7dw5JSUkIDAzEmDFjULFiRdFyAQEB+Pfff/VmF+9jkT9rrzbwMkblb8RLlSrF/TDpKm15/hUkhcGaNWsQExPDPda9e3dcv34dERERmD17Nlq3bv3JOViIosW9e/f0qqcgZnv1hZWVFTw9PbFgwQKEhYUhKSkJx48fx7hx41R2wIKCgrBv374CtJTgdfiL03eBID5l9P2d0YUDEOD3cx88eKAT3YC0fm5hoFAo4ODggDFjxmDnzp2Ij49HTEwMVq5cibZt23K3CgLvnYATJ07Uq208B6Cc7bxifeXPNZ4277nLzs4usonbNIF3bXFxcdzt5Jqii/4AbxtwcHCw0gRBfHw8Tp48KThPV9t/AXIAFkXIAUjkYWlpiU6dOmH16tWIi4vD6tWrRQPuq8surA3VqlUTyKKionSiOzs7G1evXhXIK1WqpPS3kZERbG1tBedduXJFJ3boSo82bNiwgSv/8ccfERAQgPr16xewRURxJjIyUid6Lly4IJCZm5ujVq1aOtFfFLCwsICHhwdWrlyJR48eYe3ataKDN322xYSQ/N8KALhz545O4j7xvk0EQUhHV9+ZiIgIrlxXK2J4/dzLly/rRHd6ejpu3rwpkPParqJA7dq1MW7cOJw8eRK3bt1Cx44dueeFh4fj0qVLerODt/Dh5cuXGuupVKkS15F59+5dWXZ96oglPyuo5JL6hPdOvXnzRicTEbroD/j4+Ajib2dmZuZl3waAXbt2CZLtlChRAr1799a6/g/w3iNVC40I/UMOQIKLgYEBxowZg7CwMG7Q/dDQUL1l5+JlLnr69Cni4uK01n3t2jXukn5enS1bthTIIiMjuUlKNCExMVFnK0bkEh8fj9u3bwvkrVq1wpw5cwrBIqK4899//+lET1hYmEDWpEkTnQZQL0ooFAqMGDEC586d486Ynjt3jptRktAPvO9CTk6OTgbvunJeEMTnyvnz53Wi5+zZswKZkZGRTjJiAvw+54MHD3SySiwqKoobzodXZ1Gjdu3aCAoKwsCBA7nHeSuVdEXNmjUFMjnjDisrKzg4OAjkvGfqc8DZ2ZnrEM2/NfVThNcfAKATR7Uu+gOVKlWCm5ubQO7v75/3723btgmO9+7dW1byHjF47xHvfSMKDooBWMw4fPiwYNmwtbW17OC5Dg4OGDx4MP744w8l+Zs3b/Dq1SuUK1dOtq1iiHVS9uzZg0mTJmmle/fu3Vw5rxF3c3PD/v37lWTPnz/H2bNn0apVK9k2BAQEaO1E1JZbt25x5SNGjNAqJodY3ByCOHz4MN6+fatVHMCrV69yV88WxYHN0aNHBduwrKys0L9/f1n66tSpg6+//hrLly9Xkqenp+P58+eoWrWqbFsJ6Yi1/fv27YOrq6tsvQkJCTpzkhPE50psbCwuXryIZs2aydbx+vVrbkZMR0dH0Sz0msL7ZjHGsHfvXowePVor3bt27eLKxZwV2hIfH4/Dhw8L5B06dJA9yF+8eDG2bdsm6CvrMhxQfni7COQuPGjZsqVgBdepPCRoZAAAIABJREFUU6eQlZWl9WTlv//+i9DQUCVZxYoVMWHCBK306ouSJUuiQYMGgr5bUFCQTrZ1//nnn4Lt8y1atIC3t7fWutXRokULGBsbCxzu+/bt0yppTWZmJo4ePaqteQAAX19fnDlzRkkWFBSElJQUxMfHc52Vutz+C5ADsChCDsBixpYtW7B3714lmYmJCXr06AFzc3NZOsVmPN+8eaMXB2Dz5s1haGgoWGH4zz//aOUAzM7OxtatWwVyc3NzODk5CeRiA71t27Zp5QDkBVstaMRib2i77Vds2wxBvHv3Dnv37sWQIUNk6/jrr7+4cg8PD9k69cX27dsF7Y2JiQl8fHxkDwBUtcVEwVCzZk1UrFhRELh+165dWLx4sWgMK3Xs2bNHciZogiDE2bx5s1YOwH/++Ye7U4S3kkYuLi4uUCgUAgfXP//8o5UDMDMzEzt27BDIPzhh9EFiYiK++eYbgXzWrFn4+eefZem0s7ODnZ0dnjx5oiTX57eO55DgxVKUgpubm6C/kpCQoLVjiDGG7777DtHR0Ury4cOHy9ZZELi5uQkcgIGBgbh//z6qV68uW+/Tp08xfvx4gQNu/fr1snVqgqWlJZycnAShaQ4fPoyUlBRulmApHDt2TGcxEn18fDBx4kSluITp6ek4fPgwdydYlSpV0K5dO53UDbzv+7969UpJVqJECW6YLaLgoC3AxQxePILMzExcvHhRts53795x5fp6eUuXLs1tfKKiopSWLWvKH3/8wZ2F6NGjB0xMTATy5s2bo27dugL55s2bZQdrPn/+PEJCQmSVLQjyx4rQhCdPnghWTBLEx8yePVtWVj0AuH79OtatWyeQV6lSBZ06ddLWNJ0j1hZrs8qroNtigs+gQYMEsri4OO7zKYX09HT8+uuv2ppFEATeD/7lxhd79eoV5s6dyz3Ge+/lUqFCBa5D8b///sORI0dk612xYgUSEhIEcm9vb9mTE+qws7PjyrXd4sn73unzW2dtbS1wAiYlJeHZs2ca6+revTvMzMwE8sWLF2s10bN7926B8w8ompOgH+Pj4yOQ5ebmYtGiRVrpXbRoEXe7e0HeD167kJqaisWLF8vSxxjDggULtDUrj4oVK6J169YC+d69e7kLUgYOHKjVWDA/vB1nTk5On3wG6E8dcgAWM7744guufOfOnbJ1Hj9+XCArW7asTuMD5EdsNuv7779HcnKyxvqePHmCn376iXtsxIgRXLlCocCYMWME8vT0dHz33Xcab+PNzs6WVU4fiHWixLYGqyM3NxcjRoxAenq6NmYRxZwHDx7IijGZnp6OkSNHcjt6w4cP19vARhvE2uLNmzfL1slriy0tLT/pDMifIqNHj+Y+cz/99JOsGF7Lli3TaQZQgvicycjIwLfffqtxnGrGGCZNmsR9h52dnbVaVchDrJ87adIkvH37VmN9Dx48EHVeivVzdUHp0qVRtmxZgTw0NFSwgk8qERER3JAy+g514eLiIpDJSdpnY2PDzcAaFRWFX375RZZtr169wuTJk7l1devWTZbOgqJNmzbcPtG6detw4sQJWTovXbokCE8FvN+9xUuyoy8GDx7Mjc+8bNky3LlzR2N9W7duRXh4uC5My4P3LB48eJCbmEaXEx0A//3RVzgCQjrkACxmdO7cmSvfsGGDrFWAR44cwb///iuQd+nSRWNdACTPfPn4+KBGjRoC+cOHD9GjRw+NVhElJiaic+fO3M5E8+bN0aFDB9GygwcP5i7h3r9/v6hDUYwxY8YUmRhPNWvW5M6+bNq0SWNdH5x/uopXQRRvFi9ejI0bN0o+PysrC/369eO+OxYWFnod2IghpR3r1KkT9x3bunWrrGDgwcHB3BW2Xbp0kTWTSttN5WNvb4/u3bsL5C9evICXl5foSk0eAQEBGn9LCIJQTWBgIMaPH69RmWnTpuHvv//mHhs7dqwuzFLiyy+/5GZIvXPnDry9vTVK7vT8+XN06tSJ6zh0d3eXvX2ZN+mWH4VCwR17ZGRkyArbk5mZyY0Np1AoZI89pMJzTMhxAALAlClTRCeK/vnnH410paWloV+/ftwEgt988w3XAVWUMDAwwNSpUwVyxhj69u2rcdKMR48eoU+fPtzn8/vvv5dtpxysrKy4oW3S09PRtWtX7opcMc6fP49Ro0bp0Lr39OnTR/Asfrwl+APOzs6oV6+eTusmB2DRhByAxYyaNWty43xkZGTAy8tLEAhUDMYYNm/eDF9fX24j8eWXX8qyT+pSeiMjI9EtUaGhoWjXrp2k1Wrnz5+Hm5sbbty4IThmYGCAFStWqCxfsmRJzJw5k3ts3rx5GD16tNqZ2uTkZAwaNEjt9rCCXMVkZ2eHRo0aCeQhISFYunSpZD13795FmzZtVDp0EhISuM8Q8XnCGMPIkSMxbdo0ZGZmqjz39u3bcHd3R0BAAPf45MmTRbcf6RMp7VjlypW5MfuysrLQq1cvybPejDFs374dvXr14q5o0XdbTPCZP38+N5bjhQsX0LZtW25snY9hjGHNmjXw8/NTu1KpKK5wJYiizpo1a+Dr64vExESV57148QJ9+/YV3bLXuHFj0ay02mBiYiJaZ3BwMDp06CBpBdGZM2fg5ubGPdfQ0FCQOEoTXrx4Ian/1qNHD658z549Gu0OiYuLg6enJ3f7cIsWLfSeOIDnmJCb4b1+/frceI45OTkYMmQIZsyYgdTUVLV6YmNj4eHhgeDgYMGx0qVL6ySRRkEwePBgODs7C+SJiYno0KEDNm7cKOlZO336NNzc3LgJYZydnUWfRX0yY8YMWFtbC+SxsbFo3bq1pBV9u3fvRteuXdU+E0ZGmqdvsLW1hbu7u9rzdJ38AxC+PwqFghyARZgAAEzsZ2xszD5Fxo4dy72eAwcO6LVeGxsbQZ0lSpSQVNbDw0NQdvr06SrL7Nq1S/T/TqFQsO7du7Pt27ezBw8esJycnLxymZmZ7PLly2zFihWscePGojo6duzIcnNz1dpetmxZQdnGjRuzlJQUSdfOGGNffvmlqB1mZmZsyJAhLCgoiCUmJuaVSUhIYAcPHmS+vr7M0NBQtPz//vc/STZkZmYyFxcXUT1Vq1Zls2fPZjdu3GDp6emMMcbS09PZjRs32KxZs1ilSpWUzreysmIDBgwQ6KlRo4ZKO+bMmSMo4+DgIPle5mfp0qWi19SvXz92+fJlbrm0tDQWEhLCBg4cyIyNjUV1fPzbsGGDSluSkpK45UJCQmRdm5OTk0DXzJkzZen6/vvvBbrc3Nxk6focOHLkiOB+NWnShPv/W7NmTTZv3jx2+fJl9vr1a5aVlcUePnzIAgICmJ+fHzM1NRV9ppycnFhGRoZae5YvXy4o26hRI8nX88UXX3Dt/rjNEePgwYMq22JPT0+2detWdv/+fUFbfPXqVbZq1SrWrFkzUR2tW7dWKidGlSpVBGXr1avHXr9+rbbsw4cPuXVHRESoLasKXhs4fPhwlWXS09O5thw+fFgrW6pXry7QuX79erXl5s6dK/p/Y25uzoYPH85OnjyZd59zc3NZXFwc27BhA2vZsqWgzKhRo7i6xNpigvhciY6OltT3AMDKli3LJk6cyM6dO8cSEhJYbm4ui4+PZ6dOnWJjx45lpUqVEi1ramrKIiMj1drToUMHQdmxY8eqLZebm8u8vb3VtiMhISHs1atXeeWePXvG9u3bx7y9vZmBgYFo+R9//FHyPV23bh1Xx7p169SWzc7OZvXr1xe1o2LFimzOnDns7Nmz7O3bt0plnz17xo4cOcKGDx/OzM3NueUNDAzYmTNnJF+LXHJycpitra1S3ZUqVZKtLyUlhdWtW1f0vlSpUoXNmDGDXbhwQem+vHnzhgUHB7Ovv/6amZmZiZbfuXOnWhu6desmKDds2DDZ18QYY//73/8EOrt166a23I0bN1iJEiVEr8fJyYktW7aM3b59O288xdj7Z8Tf3595eXkxhUIh+q7cunVLrQ2lS5eW9YyrY/PmzaLXZWRkxPz8/NiRI0fYy5cvla5rx44drFOnTpL7A4cOHZJl3x9//KGynTQxMWEvXrzQ+j58TFpamuD5dXJy0mkdxHtOnz4t5XuodraAHIA6pKAdgLm5uax169ZSHgQGgNnY2LCSJUtKOrdMmTLs3r17kmyvVauWqI6OHTsyX19f1qVLF9avXz9RHW/evGHOzs6SbDM3N1f5ofz45+npyTIzMyVdB2PvB8F2dnaSdKvqTBoaGrLDhw+zBQsWCI7Vq1dPpQ26dgCmp6cze3t7lddiZ2fH2rdvz3x9fVnnzp2Zo6Oj6D22tLRkS5Ys4R774HieNWsWW7BggcAWcgAWH3gOwMWLF7MhQ4ZIbpPU/SpWrCi5HdLWAdi8eXOuDdbW1qxDhw7M19eXde3alXl6enLL89pwsZ+1tTWztraWdK6NjQ27ffu2pGto2LChaFvl4eHBfH19maenJ/P29haUJQegODk5Oaxnz56S/r8sLS2ZiYmJ6PFvvvmG3bx5k3tMyqCGID4nxByAYv18OT+FQqF28vIDch2AjDH2+vVr5ujoKMkmCwsLlRNjH/969uzJsrOzJd/TvXv3iupycnJiPXv2ZL1792YuLi4sKChIUP7o0aMqnZEf/0xNTVmpUqVUtokf/6RO2OuC4cOHC+qPjo6Wre/WrVusXLlykr8TqhxkH/8mTpwoqf6i5ABkjLH9+/czIyMjSddobW0taVxnaGjItm3bJql+fTkAGWNs9OjRkq5L3XjVy8uLvX79mnvs+PHjsmx7/vy5yvves2dPndyDjzlx4oSgnlmzZum8HkJzByBtAS6GKBQK7N+/X/I+/tevXyMlJUXteba2tjh16pTklO28YLrA++Xex48fx549e3Ds2DHuMu4PlChRAkePHoWrq6va+tLS0iRtM+jZsyf8/f2527fEqFq1KoKCgiRtN1SVuv3XX39Ft27duLFdeBnD9ImpqSn27t2LEiVKiJ4THx+PEydOYM+ePQgMDMSVK1e497hGjRo4d+4cvv/+e1SoUEFwnDGGQ4cOYfbs2Vi/fr1Or4P4NPjrr7/g6emptZ7KlSvj+PHjktshbRFrx5KTkxESEoI9e/bg33//5QZTBt5vgeJttxfTKSXJUdmyZRESEoI6depI0it2DUlJSQgODsaePXtw9OhR3L9/X5I+4j0GBgbYsWOHpOf63bt3olveO3bsiFWrVonG/CrobwNBfKqMGjUKixcv1jrDpIGBAVauXIlhw4bpyDJxrK2tERgYKCnJSGpqqqTYgL6+vti1a5dG4QOaN28uet+ioqJw8OBB7Nu3D+fPn+duU+zSpQt+++03SXVlZGQgKSlJbRgQABg/frzsxBly4G0hPXnypGx9devWRXBwMDfeY37evXsnKQHMxIkTsWzZMtk2FSa9evXCzp07YWFhofbc5ORkteM6IyMjbNmyRXY4FF2yatUqDB48WO15qsarjRs3xvbt20XjNJuamsqyrXz58mjbtq3ocX1s/z116pRAxoufTBQ85AAsppQpUwYnTpyAl5eXTvT16NEDFy5c4MYXFGPSpEk6iV1UpkwZhISEYOLEiVqlJjczM8PChQuxb98+mJuba1zewcEhL6agppiYmGDt2rV5sTp4SUx4yUb0TdOmTXH48GGu004KhoaGGDFiBCIiItCoUSMoFApuMFyCMDExwYEDB7RK2tGhQweEh4fDwcFBh5apZty4cVo5YGxsbBAcHAxvb2+d2OPp6YkLFy6gSZMmkstMmDBBowkPQjrm5uYICAjApEmTZDkd/Pz8EBAQAGNjY9HkVoXxbSCIT5XJkydj69atKic3VVG+fHkEBATg22+/1bFl4tja2uL06dMYM2aMVs5Lc3NzLF26FLt27dLYUVClShX4+fnJrhsAvv32W2zZsgU2NjZa6QHeT3Rt3LgRv/32m9YOXU3w8PCApaWlkuz48eNa6WzUqBEiIiK0jk9XtmxZ7NixA8uXLy/Qe6Jr+vTpg7Nnz0qeHBXDwcEBZ8+exYABA3RkmXYYGhpi06ZNWLhwoaw+V4cOHXDy5ElYWVmJ9gd4sQalwssGDLyPJamPTNL541ZWqVJFo74roT80jyT5CdOxY0duh6B27dp6rXfChAkCT7+JiYmksv369RMEkpcSyBMAKlSogEOHDmH37t1YuXKlxpknjYyM4OnpiTFjxsjKvNWkSRP8/fffGDFihKRAt6owMzPD8uXLMXjwYMydOxcBAQGSs1iam5ujf//++PHHH7VeNVSlShWcPn0a69atw7x58/DkyRO1ZVxdXbF69Wo0btw4T/bmzRuublW4ublhypQpSjJbW1uJlovTpk0bXLlyBTNmzMDWrVslraI0MDCAp6cnFi1aJHAKT58+HcHBwRplnTY1NRVcGwBUq1ZNso6PGTJkCDp16qQka9WqlSxd7dq1EwTdlWvX50DNmjUF/5ctWrQA8H+O8F69emHatGm4evWqJJ316tXDzJkz4efnp3Gnt1mzZgJ7NHF416pVC7t378agQYMkrc7jUa5cOezbtw/79u3Db7/9hjNnzoAxJrm8oaEhOnfujNGjR8ua1HFwcMD27dsxdOhQSasLPqZkyZLcd1PupMEHvLy8ULlyZSUZL0D4xxgaGnJt0TYw/KhRo/Dq1SslmSYDEyMjIyxbtgx9+vTB1KlTERYWpraMnZ0d5s+frzRhwvsuWFpaonTp0pJtIQjifXIkV1dXTJs2DXv27FGbaAd4n81zxIgRmDFjhsbvnJ+fn2AFn6aB7i0sLLB69WoMHToU8+bNw+HDhyXZ/aHswIEDMX36dK36J3/99RdevHjBTTghla+++goeHh5YuHAhtm3bpnJXDI+qVati6NChGDduHMqUKSPbDrlYWFjA19cXmzdvzpMdO3YMqampklatiWFra4uDBw/i2LFjmD9/vqTvxAfKly+PkSNHYvz48ShXrpxG9fr4+Aj66VJWm6qiXbt2ggUedevW1UhH48aNcfHiRWzevBlLliyRlPDm47rGjRuH4cOHa+zonjBhgmBM6ujoqJEOVSgUCkydOhXdunXD1KlTcfToUbX9vdKlS2PGjBlKC114/QEAgn6TJojtVujXr5/slYVixMfH4/z580qyQYMGfdKO6+KE2P9CAADRNZrGxsaSlm0TRYvbt2/j5MmTuHTpEm7cuIGXL18iJSUFmZmZMDc3h42NDcqVK4cmTZqgWbNmaN++PSpWrKh1vQ8fPsS6detw8uRJ3Lt3D+np6TA2NkaZMmVQo0YNtG/fXuO07QkJCThy5AhCQ0Nx69YtPH78GKmpqVAoFLCwsED16tXRoEEDtGnTBl27dtXLCors7GwcO3YMR44cwcWLF/Ho0SNkZmbCzMwM9vb2aNGiBXx8fLiOJy8vLxw5ckRJNm3aNCxYsEDndmpCQkICDh48iDNnzuDq1at4+fIl3r17h5IlS6JSpUqoVKkSWrVqhV69eqnsZKanp2PVqlXYv38/7ty5g+zsbJQqVQoNGjRAx44dMW7cuAK8KqIowhhDWFgYDh06hEuXLuHOnTt48+YNFAoFrK2tUatWLTg7O8PLy0tSCAB98/TpU6xbtw4hISG4c+cO0tLSYGRkhDJlysDe3h4tW7bErFmzJOm6c+cOQkJCEBkZiWvXriExMRHJycl57ceHttjJyQnOzs5o164dKlWqpPU1xMXFYd26dThx4gRiY2OV2uLq1avD3d0dU6dO1bqez50rV67A398f586dQ3R0NN6+fQsDA4O87OteXl7w9vYWrCxdv369YIVs3bp1JWW8J4jPiZiYGG4IhGvXrgmcHY8ePYK/vz9CQ0MRHR2NZ8+egTEGExMTVK1aFQ0bNkTHjh3RvXt32asG9cGzZ8/y+rm3b9/G48ePkZaWBoVCAUtLS1SvXh0NGzbM6+fqynbGGA4ePIhdu3YhKioKCQkJYIzBysoKFStWRO3atTF9+nTUr19fra709HQEBgbi4sWLiIyMxKNHj5CSkoKUlBQoFArY2NigVKlSed97FxcXuLq6arXbRxeEhYWhdevWSjJ/f3/07t1bZ3XExsbiyJEjOHv2LGJiYvD06VNkZmbC1NQUZcqUQYUKFeDq6go3Nze0a9dO5w6aokZ4eDiCgoJw4cIF3L17F8+fP0dubi4sLS1RpkwZVKtWDW5ubnB3d4eLi8sn40iKiYmBv78/Tp8+jejoaLx+/RoKhQK2trZo0KABPD094ePjIxinBgYGChbfWFpaajyJ+zE7duzgbpX+77//REPFyOX3339XGuspFArcuXNH75m8P1dCQ0PRpk0bdadNArACIAcgQRQKDRo0wI0bN5Rka9aswejRowvJIoIgCKIwmTFjhmASqGPHjggKCiokiwiiaKKJA5AgNIUxhnr16iE6OjpP9uWXX2Lbtm2FaBXxOfHnn38KxoTaTgh27NhRsLr3iy++UHrOdUXbtm1x+vTpvL/bt2+PkJAQnddDvEdTByDFACSIAiYpKQm3b98WyJ2cnArBGoIgCKIokH+7DEDfBYIgiIJGoVBg5MiRSrJDhw6JbsskCF2j6/7AgwcPcOLECYF80KBBsnWK8fjxY8EW9/zvE1G4fFYxAAlCE5KTk7kJCyZOnKjVlsQTJ04I4rqUKFFCEOuRIAiCKHrMnDlTMGPu5uaGCRMmyNaZmprKjdOrKmsfQRAEoR9GjBiB+fPn58WHffPmDXbs2EGODEKJFStW4Ny5c0qyunXrYs6cObJ1Msa4cTi16Q9s2rQJubm5SjKFQoGBAwfK1inG+vXrlca5tWrVgo+Pj87rIeRDDkCCEMHa2hrBwcGCAMblypXTygG4du1agaxVq1aUpZMgCOIT4MmTJ9izZ4+S7OzZsxg/frzsuESbN29GRkaGkszIyEh28iKCIAhCPlZWVhg3bhxmz56dJ/vrr7/IAUgokZSUJOgPmJmZYcqUKYJs0lI5fPgwN8mkXAdgbm6uUlKbD7i7u8Pe3l6WTjGys7OxYcMGJdnkyZMFSWOIwoW2ABOECniZsnbs2IHnz5/L0nf69GluPCc5mT0JgiCIgoeXrTg+Ph67d++Wpe/t27dYtGiRQN6mTRtYWVnJ0kkQBEFox7hx45SSq0RGRiIiIqIQLSKKGrz+QHp6Ov766/+1d3ehWdZ9AMd/K7dVzhecyGCzF8p5oLMXqKSMGIZrUifOzUBIow7KE3t6saiwkygoAg8KeoLIg8KoRWVMwlBzUtkkEoMbXEigI9Q2nIgVm7bn4KGBzz3ftnu+/J7P5+y67vv+X//BBPe9r+v///eoxhscHDwlOv+jvr4+6uvrRzVme3t77N+/v+j8ww8/PKrxzqSjo+OUeFlXVzcu12FsBEA4gxUrVhSdO3LkSDz66KNFd2ucza+//hrLli0rOl9VVTUut2ADUHptbW1FO/hGRKxevTr27dt3XmOdOHEili1bFgcOHCh67fHHHx/1HAEYm+rq6njyySdPOffmm29epNlwKWpqaoqampqi82vXro0ff/zxvMd74oknRvzcaDeJPHr0aKxdu7bofFVV1bg8lvu//z5eeuml9DtYX44EQDiDpUuXRl1dXdH5jo6OaGpqGnEzj5F8/PHHcdddd4145+DTTz8dU6ZMGfNcARh/1dXVI36jfejQobj77rvj888/P6dxCoVCNDY2xqZNm4peu+WWW2LJkiVjnisAo/f8889HbW3t8HF7e/u47JrK5am8vDxWrVpVdP748ePR2NgY69evL1p7byT79++PBx98sOjx2YiI2trasz56Pjg4GN3d3adcq6urK5qbm0f8fX3kkUdi8uTJZ53X+ejs7IwdO3YMH998883x2GOPlfQalMbpFqvZGBEPnu5D5eXlMTAwMD4zgkvM5s2b4/7774+hoaGi1yZMmBBNTU2xePHimDdvXkybNi0qKiqit7c3Dh8+HN999118+eWXUSgURhx77ty50dXVFVdfffV4/xgAlEh/f380NDRET0/PiK/PmzcvWlpa4s4774yampqYNGlSHDt2LA4ePBiFQiE6Ojpi+/btceLEiaLPVlRUxLfffjviEhRARHd3d8yePbvo/M8//xxz5869CDMisw8++OCU3VJXrFgx4ppq/H8aGBiI22+/Pfbs2TPi67NmzYrW1taYP39+1NXVxZQpU+L48eNx+PDh2Lt3b2zatCm2bNkSf/31V9Fny8rKYuPGjWddKqqvry+mT58eV111VVRXV0dfX9+I40VETJw4MQqFQlx77bXn/8OewaJFi+Lrr78ePt62bZuNzC6Qzs7OuPfee8/2tn9FxLoIARDOyauvvhovvvhiScesqamJzs7OmDVrVknHBWD87dy5M5qbm6O/v79kY15xxRXx3nvvxcqVK0s2JmQjAHIhDQ0NxYIFC4Z3ey0vL49CoRA33XTTRZ4Zl4q9e/fGwoULR9y8YyxeeeWVc/r7858AeC5ef/31ePbZZ8c6tVN8//33p2yQ2draOup1kTl/5xsAPQIM5+CFF16It99+u2TrGMyZMye++eYb8Q/gMjV//vzYunVryb5Fr6qqig8//FD8A7iElJWVxfvvvz+8q+vg4GCsWbPmIs+KS8ns2bNjx44dMWfOnJKMV1FREevWrSv5zSctLS3xzDPPlHTMoaGheOqpp4aPZ8yYEW+99VZJr0FpCYBwjlatWhV79uyJ5ubmKCs73c2zZ1ZVVRUvv/xydHV1jfjtNQCXj1tvvTUKhUKsWbMmrrnmmlGNUVZWFi0tLbF79+546KGHSjxDAMaqvr4+3njjjeHjzz77LLZt23YRZ8Sl5oYbboiffvopXnvttTGt7b5w4cL44YcfYvXq1SWcXcTKlStjw4YNo/4b9nQ2bNgQO3fuHD5+9913Y8aMGSW9BqXlEWAYhV9++SXWr18fW7dujd27d592nYWIiOnTp8eCBQvigQceiNbW1pIvugq7om80AAAJd0lEQVTAxXf06NH46KOP4osvvohdu3ZFb2/vad9bWVkZd9xxR9x3332xfPnyuPHGGy/gTOHy5hFgLoahoaFYsmRJbN++PSL+u1nTli1bSh5UuPz9+eef8emnn0Z7e3vs2rUrfvvtt9O+d8KECXHbbbdFY2NjLF++PBoaGs77en/88UcsXbo0Nm/eHCdPnhw+X1ZWFvfcc08899xzsXjx4lH9LGfyz/qHBw4ciIiItra2eOedd0p+Hc7MGoBwgQ0ODsa+ffviyJEj0d/fHwMDAzFx4sSYOnVqXH/99ee8JgMAefT09MTBgwejv78/+vv7Y+rUqVFZWRnXXXdd1NbWxpVXXnmxpwiXpWPHjsVXX31VdH7RokVjuvMGYDwcOnQoenp6hv8/MGnSpKisrIyZM2fGzJkzo7y8vCTX6evri+7u7ujt7Y3JkydHQ0NDTJs2rSRjc+kSAAEAAAAgMZuAAAAAAADDBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEBEAAAAAASEwABAAAAIDEJozmQydPnoy2trZSzwUAAAAAOIvff//9vN4/qgD4999/xyeffDKajwIAAAAAF5BHgAEAAAAgMQEQAAAAABITAAEAAAAgMQEQAAAAABITAAEAAAAgMQEQAAAAABITAAEAAAAgsf8A4864/vgW+ZsAAAAASUVORK5CYII=" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Problem to solve\n", + "\n", + "Find a real-world problem that can benefit from the application of combinatorial optimization. Consult the list of [OpenQAOA](https://openqaoa.entropicalabs.com/) problem classes to find references. \n", + "\n", + "Your solution's innovativeness will be rewarded with extra points.\n", + "\n", + "The process is the following\n", + "\n", + "![wf.png](attachment:wf.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 1: Define your problem and solve it using QAOA\n", + "Considering the examples based on OpenQAOA, we already have different classes and methods that facilitate the construction of quantum circuits, but to generate a QUBO we will rely on docplex.\n", + "\n", + "You can find more information on QAOA [examples](https://github.com/entropicalabs/openqaoa/tree/main/examples) and how to generate [QUBOs](https://openqaoa.entropicalabs.com/problems/what-is-a-qubo/) in the [OpenQAOA documentation](https://openqaoa.entropicalabs.com/). The code is available on [GitHub](https://github.com/entropicalabs/openqaoa/tree/main) and you can find more details of implementation in the [API reference](https://el-openqaoa.readthedocs.io/en/main/index.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib notebook\n", + "\n", + "# Import external libraries to present an manipulate the data\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "# Import docplex model to generate the problem to optimize\n", + "from docplex.mp.model import Model\n", + "\n", + "# Import the libraries needed to employ the QAOA quantum algorithm using OpenQAOA\n", + "from openqaoa import QAOA\n", + "\n", + "# method to covnert a docplex model to a qubo problem\n", + "from openqaoa.problems.converters import FromDocplex2IsingModel #check this method and properties\n", + "from openqaoa.backends import create_device\n", + "\n", + "# method to find the correct states for the QAOA object \n", + "from openqaoa.utilities import ground_state_hamiltonian" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We will do simple verion of [the Task Scheduling Problem (TSP)](https://parasollab.web.illinois.edu/research/scheduling/#:~:text=The%20task%20scheduling%20problem%20is,directed%20acyclic%20graph%20(DAG).) for the challenge. This a fundamental challenge in combinatorial optimization, where the goal is to allocate a set of tasks to specific time slots such that the overall schedule maximizes certain objectives—such as total task priority. It is a complex combinatorial optimization problem as the number of potential schedules increases exponentially with the addition of tasks, making traditional enumeration approaches computationally infeasible for large sets of tasks.\n", + "\n", + "In the context of our TSP, binary variables will be employed to represent the inclusion or exclusion of tasks in the schedule. The Quantum Approximate Optimization Algorithm (QAOA) will be utilized to efficiently navigate the search space. The objective function in our TSP is to maximize the aggregated priority of the selected tasks within the constraints of the maximum allowable total task duration." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "*Note*: For our problem, we are considering that tasks cannot be done in parallel, i.e., in a time slot the tasks are done one after the other.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Code your problem" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Inputs:\n", + "tasks = [0, 1, 2] # List of tasks, each task is identified by a unique number (0, 1, 2).\n", + "time_slot = [0] # List containing a single time slot (0) for simplicity in this example.\n", + "priorities = [3, 2, 1] # List of priorities for each task, where a higher number indicates a higher priority. Corresponds to `weights`.\n", + "durations = [2, 1, 3] # List of durations for each task, indicating how long each task takes to complete.\n", + "max_duration = 5 # The maximum total duration allowed for all tasks within the time slot. Corresponds to `max_weight`.\n", + "\n", + "def TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration):\n", + " # Create an optimization model named 'task_scheduling'/Initialize a model:\n", + " mdl = Model('task_scheduling')\n", + "\n", + " # Create a binary variable for each task in a dictionary/Indicate the binary variables.\n", + " x = {t: mdl.binary_var(name=f'x_{t}') for t in tasks} # If a variable is 1, the task is scheduled; if 0, it is not.\n", + "\n", + " # Define the objective function to maximize the sum of the priorities of the scheduled tasks.\n", + " mdl.maximize(mdl.sum(priorities[t] * x[t] for t in tasks)) # It calculates a weighted sum where each task's binary variable is weighted by its priority.\n", + " \n", + " # Constraint for the total duration of the scheduled tasks.\n", + " # Instead of using an inequality constraint, we can ensure that the sum of durations [...]\n", + " # [...] multiplied by the binary decision variable is exactly equal to the maximum duration.\n", + " # This removes the need for slack variables:\n", + " total_duration_expr = mdl.sum(durations[t] * x[t] for t in tasks)\n", + " mdl.add_constraint(total_duration_expr == max_duration, \"max_duration_constraint\")\n", + " \n", + " # Return model.\n", + " return mdl # Check with FromDocplex2IsingModel." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "maximize\n", + " 3 x_0 + 2 x_1 + x_2;\n", + " \n", + "subject to {\n", + " max_duration_constraint:\n", + " 2 x_0 + x_1 + 3 x_2 == 5;\n", + "\n", + "}\n", + "None\n" + ] + } + ], + "source": [ + "# Create the model:\n", + "problem = TaskSchedulingProblem(tasks, time_slot, priorities, durations, max_duration)\n", + "\n", + "print(problem.prettyprint())" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This file has been generated by DOcplex\n", + "// model name is: task_scheduling\n", + "// single vars section\n", + "dvar bool x_0;\n", + "dvar bool x_1;\n", + "dvar bool x_2;\n", + "\n", + "minimize\n", + " - 143 x_0 - 72 x_1 - 211 x_2 [ 28 x_0^2 + 28 x_0*x_1 + 84 x_0*x_2 + 7 x_1^2\n", + " + 42 x_1*x_2 + 63 x_2^2 ] + 175;\n", + " \n", + "subject to {\n", + "\n", + "}\n" + ] + } + ], + "source": [ + "# Ising encoding of the QUBO problem for binpacking problem\n", + "qubo_converter = FromDocplex2IsingModel(problem)\n", + "\n", + "# Docplex encoding of the QUBO problem for binpacking problem\n", + "qubo_docplex, ising_model = qubo_converter.get_models()\n", + "\n", + "qubo_docplex.prettyprint()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this first part, we can notice the transition from a classical optimization model in DOcplex to a quantum Ising model is particularly. Although the constraint does not appear explicitly in the QUBO representation, this could be due to the nature of the problem. We will see during the process if the constraint is being accounted for." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.184803
11111.00.212477
20114.00.320020
311023.00.047347
400127.00.044277
510060.00.056918
6010110.00.129274
7000175.00.004884
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.184803\n", + "1 111 1.0 0.212477\n", + "2 011 4.0 0.320020\n", + "3 110 23.0 0.047347\n", + "4 001 27.0 0.044277\n", + "5 100 60.0 0.056918\n", + "6 010 110.0 0.129274\n", + "7 000 175.0 0.004884" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Initialize the QAOA object\n", + "qaoa = QAOA()\n", + "\n", + "# Set the parameters to use the QAOA algorithm\n", + "# where n_shots=1024 and seed_simulator=1\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# p=1, a custom type and range from 0 to pi\n", + "\n", + "qaoa.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa.optimize()\n", + "\n", + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-4.0, ['101'])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# To find the correct answer using ground_state_hamiltonian\n", + "# and the parameter is a cost_hamiltonian\n", + "correct_solution = ground_state_hamiltonian(qaoa.cost_hamil)\n", + "correct_solution" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Validate your answer using docplex, you can see how to check the classical solution using the following tutorial [here](https://github.com/entropicalabs/openqaoa/blob/main/examples/community_tutorials/02_docplex_example.ipynb) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "objective: -4.000\n", + "status: OPTIMAL_SOLUTION(2)\n", + " x_0=1\n", + " x_1=0\n", + " x_2=1\n" + ] + } + ], + "source": [ + "## docplex solution\n", + "sol = qubo_docplex.solve()\n", + "qubo_docplex.print_solution(print_zeros=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + " \n", + "The results presented here align logically with the input parameters of the TSP and demonstrate for a simple example, how to apply quantum computing for combinatorial optimization. The output bitstring '101' suggests that tasks 0 and 2 are to be included in the schedule, while task 1 is excluded. *This decision is based on the priorities and durations of the tasks*: task 0 has a high priority (3) with a duration of 2, and task 2 has the lowest priority (1) but also the longest duration (3). When scheduled together, tasks 0 and 2 fulfill the maximum duration constraint exactly, which is 5 time units in total.\n", + "\n", + " \n", + "The negative energy value (-4.0) in the quantum result indicates an optimal solution with respect to the objective function, which is to maximize the total priority of the scheduled tasks. This corresponds to the classical solution found by the DOcplex model, and follows the constraint.\n", + "\n", + " \n", + "Nevertheless, the quantum algorithm does not necessarily eliminate all invalid solutions from the search space.\n", + "\n", + " \n", + "In terms of quantum computing skills, the project showcases the capability to model classical problems for quantum solutions, the conversion of these models into a format suitable for quantum computation, and the utilization of a quantum algorithm (QAOA) to find an optimal solution.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 2: Improve the QAOA circuit\n", + "\n", + "Perform the same process as above now with the variant of using different backends, p values, and different optimizers until you find the one that can provide the correct answers with the least number of iterations, quantum circuit depth." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.035156
11111.00.063477
20114.00.022461
311023.00.363281
400127.00.480469
510060.00.016602
6010110.00.012695
7000175.00.005859
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.035156\n", + "1 111 1.0 0.063477\n", + "2 011 4.0 0.022461\n", + "3 110 23.0 0.363281\n", + "4 001 27.0 0.480469\n", + "5 100 60.0 0.016602\n", + "6 010 110.0 0.012695\n", + "7 000 175.0 0.005859" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "## Implementation\n", + "\n", + "# Initialize the QAOA object and use a device:\n", + "device = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "\n", + "qaoa = QAOA(device)\n", + "\n", + "# Set the parameters to work the QAOA algorithm\n", + "# play with the parameters values\n", + "\n", + "#Indicate the properties to the QAOA quantum algorithm,shots,seed:\n", + "qaoa.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "#check the p value and the variational init params:\n", + "qaoa.set_circuit_properties(p=2, init_type=\"custom\", variational_params_dict={\"betas\":2*[0.01*np.pi],\"gammas\":2*[0.01*np.pi]})\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa.optimize()\n", + "\n", + "pd.DataFrame(qaoa.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Extra: Compare Qiskit Simulators with different simulation methods\n", + "\n", + "As part of the Hackathon test, let's use different simulator backends to solve the same problem and compare their simulation results." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.209425
11111.00.049032
20114.00.612317
311023.00.000609
400127.00.065913
510060.00.022718
6010110.00.037558
7000175.00.002430
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.209425\n", + "1 111 1.0 0.049032\n", + "2 011 4.0 0.612317\n", + "3 110 23.0 0.000609\n", + "4 001 27.0 0.065913\n", + "5 100 60.0 0.022718\n", + "6 010 110.0 0.037558\n", + "7 000 175.0 0.002430" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Others:\n", + "\n", + "device_sv = create_device(\"local\", 'qiskit.statevector_simulator')\n", + "\n", + "qaoa_sv = QAOA(device_sv)\n", + "\n", + "qaoa_sv.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Playing with the parameters values.\n", + "# Circuit properties/Check the p value and the variational init params:\n", + "qaoa_sv.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# Classical optimizer properties:\n", + "qaoa_sv.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_sv.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_sv.optimize()\n", + "\n", + "pd.DataFrame(qaoa_sv.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.542969
11111.00.004883
20114.00.026367
311023.00.042969
400127.00.345703
510060.00.013672
6010110.00.021484
7000175.00.001953
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.542969\n", + "1 111 1.0 0.004883\n", + "2 011 4.0 0.026367\n", + "3 110 23.0 0.042969\n", + "4 001 27.0 0.345703\n", + "5 100 60.0 0.013672\n", + "6 010 110.0 0.021484\n", + "7 000 175.0 0.001953" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "device_shot = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "\n", + "qaoa_shot = QAOA(device_shot)\n", + "\n", + "qaoa_shot.set_backend_properties(n_shots=1024, seed_simulator=1)\n", + "\n", + "# Circuit properties:\n", + "qaoa_shot.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# classical optimizer properties\n", + "qaoa_shot.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "# Compile the QAOA with the Ising model of the task scheduling problem:\n", + "qaoa_shot.compile(ising_model)\n", + "\n", + "# Run the QAOA algorithm\n", + "qaoa_shot.optimize()\n", + "\n", + "pd.DataFrame(qaoa_shot.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "\n", + " \n", + "We are comparing the results from the QAOA algorithm with different backends and parameter configurations.\n", + "\n", + " \n", + "In all cases, the bitstring `101` is identified as the solution with the lowest energy, which is the optimal answer given the problem constraints. This consistency across different backends and parameter settings indicates that the QAOA algorithm works well for this particular problem.\n", + "\n", + " \n", + "But also, the probability associated with the optimal solution `101` has decreased in some case using the Qiskit backend. While the solutions and their energies are an important part of the result, other metrics like the number of iterations required to converge to the solution and the depth of the quantum circuit are also crucial.\n", + "\n", + " \n", + "Still, for the `qiskit.qasm_simulator` with the classical optimizer we got the best result so far. The mixer Hamiltonian we used determines how the algorithm explores the solution space. An 'X' mixer (applying Pauli-X gates) is an standard choice for QAOA and promotes exploration by flipping the qubits from 0 to 1 and vice versa. The high probability of '101' suggests that these settings allowed the QAOA to effectively navigate the solution space and concentrate the quantum state around the optimal solution.\n", + "\n", + " \n", + "Regarding the use of Qiskit as a backend, the results indicate that changing backends and variational parameters can significantly impact the distribution of probabilities for each solution. This illustrates the importance of backend selection and parameter tuning in quantum algorithm performance.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Part 3: Noise Model\n", + "\n", + "The optimal combination that you found with the best optimizer, the lowest number of $p$'s and the correct answer, can give the same answer with noise, use the circuit with a noise model and identify if it gives the same answer." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
solutions_bitstringsbitstrings_energiesprobabilities
0101-4.00.110
11111.00.270
20114.00.265
311023.00.260
400127.00.045
510060.00.025
6010110.00.010
7000175.00.015
\n", + "
" + ], + "text/plain": [ + " solutions_bitstrings bitstrings_energies probabilities\n", + "0 101 -4.0 0.110\n", + "1 111 1.0 0.270\n", + "2 011 4.0 0.265\n", + "3 110 23.0 0.260\n", + "4 001 27.0 0.045\n", + "5 100 60.0 0.025\n", + "6 010 110.0 0.010\n", + "7 000 175.0 0.015" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# implementation using a noise model using qiskit \n", + "\n", + "## real hardware\n", + "from qiskit.providers.fake_provider import FakeVigo\n", + "from qiskit.providers.aer.noise import NoiseModel\n", + "from qiskit.providers.aer import QasmSimulator\n", + "device_backend = FakeVigo()\n", + "device2 = QasmSimulator.from_backend(device_backend)\n", + "noise_model = NoiseModel.from_backend(device2)\n", + "\n", + "# initialize the QAOA object\n", + "q = QAOA()\n", + "\n", + "device_noisy = create_device(\"local\", 'qiskit.qasm_simulator')\n", + "# choose the noise model\n", + "\n", + "# set your device\n", + "q.set_device(device_noisy)\n", + "\n", + "# circuit properties\n", + "q.set_circuit_properties(p=2, param_type='standard', init_type='rand', mixer_hamiltonian='x')\n", + "\n", + "# Backend properties with noise:\n", + "q.set_backend_properties(n_shots = 200, noise_model = noise_model)\n", + "\n", + "# set the parameters to work the QAOA algorithm\n", + "q.set_classical_optimizer(method='COBYLA', maxiter=200, tol=0.001,\n", + " cost_progress=True, parameter_log=True)\n", + "\n", + "q.compile(ising_model)\n", + "\n", + "# run the QAOA algorithm\n", + "q.optimize()\n", + "\n", + "pd.DataFrame(q.result.lowest_cost_bitstrings(8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "results_sv = qaoa_sv.result\n", + "results_shot = qaoa_shot.result\n", + "results_noisy_shot = q.result" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_device_pixel_ratio', {\n", + " device_pixel_ratio: fig.ratio,\n", + " });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute('tabindex', '0');\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;' +\n", + " 'z-index: 2;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'pointer-events: none;' +\n", + " 'position: relative;' +\n", + " 'z-index: 0;'\n", + " );\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box;' +\n", + " 'left: 0;' +\n", + " 'pointer-events: none;' +\n", + " 'position: absolute;' +\n", + " 'top: 0;' +\n", + " 'z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " /* This rescales the canvas back to display pixels, so that it\n", + " * appears correct on HiDPI screens. */\n", + " canvas.style.width = width + 'px';\n", + " canvas.style.height = height + 'px';\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " /* User Agent sniffing is bad, but WebKit is busted:\n", + " * https://bugs.webkit.org/show_bug.cgi?id=144526\n", + " * https://bugs.webkit.org/show_bug.cgi?id=181818\n", + " * The worst that happens here is that they get an extra browser\n", + " * selection when dragging, if this check fails to catch them.\n", + " */\n", + " var UA = navigator.userAgent;\n", + " var isWebKit = /AppleWebKit/.test(UA) && !/Chrome/.test(UA);\n", + " if(isWebKit) {\n", + " return function (event) {\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We\n", + " * want to control all of the cursor setting manually through\n", + " * the 'cursor' event from matplotlib */\n", + " event.preventDefault()\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " } else {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " canvas_div.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " canvas_div.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " canvas_div.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " fig.canvas_div.style.cursor = msg['cursor'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "function getModifiers(event) {\n", + " var mods = [];\n", + " if (event.ctrlKey) {\n", + " mods.push('ctrl');\n", + " }\n", + " if (event.altKey) {\n", + " mods.push('alt');\n", + " }\n", + " if (event.shiftKey) {\n", + " mods.push('shift');\n", + " }\n", + " if (event.metaKey) {\n", + " mods.push('meta');\n", + " }\n", + " return mods;\n", + "}\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * https://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " // from https://stackoverflow.com/q/1114465\n", + " var boundingRect = this.canvas.getBoundingClientRect();\n", + " var x = (event.clientX - boundingRect.left) * this.ratio;\n", + " var y = (event.clientY - boundingRect.top) * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " modifiers: getModifiers(event),\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis\", \"fa fa-square-o\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\", \"webp\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(12,8))\n", + "\n", + "results_sv.plot_cost(ax=ax,label='Statevector Simulator')\n", + "results_shot.plot_cost(ax=ax,color='red', label='Noise-free shot simulator.')\n", + "results_noisy_shot.plot_cost(ax=ax,color='green', label='Noisy shot simulator and noise model from ibmq')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The addition of a noise model represents a step closer to the conditions experienced on actual quantum hardware, as opposed to the idealized conditions of a simulator without noise. Noise in quantum computing can come from various sources, such as errors in quantum gate operations, qubit measurement errors, and decoherence. A noise model attempts to mimic these imperfections and can provide a more realistic assessment of how a quantum algorithm might perform on a real quantum computer." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Last comments:\n", + "\n", + "
\n", + " \n", + "- In terms of originality, this project stands by applying quantum computing principles to the **Task Scheduling Problem (TSP)**. We used the *Quantum Approximate Optimization Algorithm (QAOA)* within the OpenQAOA framework, and the subsequent tuning to account for realistic noise models, which address complex problems through quantum algorithms. The team's exploration of various parameters and optimizers to enhance the QAOA circuit's performance demonstrates a commendable attempt at tackling quantum optimization in a novel context.\n", + "\n", + " \n", + "- Regarding usability and knowledge, the project exemplifies a decent degree of functionality in its design, ensuring that the principles used are grounded in quantum theory and can be take as reference by others interested in compare Qiskit simulators with different methods.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Acknowledgments\n", + "\n", + "🎉🎉🎉 \n", + "\n", + "Special thanks to Entropica Labs for helping us create this challenge and being able to use their SDK, OpenQAOA. If you want to know more about OpenQAOA or ask them questions directly, check out their [discord channel](discord.gg/ana76wkKBd).\n", + "\n", + "🎉🎉🎉 " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}